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We further discuss th&l=2 superinstantons in SP) gauge theory, obtained from the general self-dual
solutions of topological charge constructed by Atiyah, Drinfeld, Hitchin, and ManiADHM). We realize
the N=2 supersymmetry algebra as actions on the superinstanton moduli. This allows us to recast in concise
superfield notation our previously obtained expression for the exact classical interaction bat&&dhv
superinstantons mediated by the adjoint Higgs bosons, and, moreover, to incoyofiteors of hypermul-
tiplets. We perform explicit one- and two-instanton checks of the Seiberg-Witten prepotentialsNgr aiid
arbitrary hypermultiplet masses. Our results for the low-energy couplings are all in precise agreement with the
predictions of Seiberg and Witten except fdg =4, where we find a finite renormalization of the coupling
which is absent in the proposed soluti¢80556-282(96)03124-4

PACS numbdps): 11.30.Pb, 11.15.Tk

I. INTRODUCTION feature in the presence of massless matter hypermultiplets is
that only even numbers of instantons contribute, due to an
anomalous discrete symmetf]. Recently we have ex-
The low-energy dynamics d§=2 supersymmetric gauge tended our two-instanton analysis to this case as (@]l
theory in the Coulomb phase is determined by a single hofocusing on the four-fermion vertex in the low-energy effec-
lomorphic function: the prepotentiat. In the case oN=2  tjye action. In a parallel calculation, the authors of H&l,
supersymmetric Yang-Mill§SYM) theory with gauge group have extracted the two-instanton contribution to the expecta-
SU(2), an exact solution fofF has been obtained by Seiberg tion value of the quantum modulus=(TrA?), with A the
and Witten[1]. In Ref.[2], these authors have generalized adjoint Higgs field. The generalization to the case of massive
their analysis to include the coupling My flavors of matter  hypermultiplets was also briefly described . So far, vir-
hypermultiplets in the fundamental representation of theually all the instanton calculations described above have
gauge group. Their analysis relies on an elegant physicgirecisely confirmed the predictions of Seiberg and Witten.
interpretation of the singularities df, as points at which the The sole exception has been a discrepa@yin the two-
theory admits a weakly coupled dual description in terms ofnstanton contribution ta in the model withN=3. In the
massless monopoles and dyons. following, we will also find an interesting discrepancy in the
An important feature of the Seiberg-Witten analysis iscaseNg=4.
that it comprises a complete set of predictions for all multi- In the absence of matter, it has also been possible to make
instanton contributions to the long-distance physics. In prinsome progress for arbitrary instanton numbeT he relevant
ciple, these predictions can be compared with the results dfeld configurations are constrained supersymmetric instan-
supersymmetric instanton calculus at weak coupling. Semitons based on the general solutions of the self-dual Yang-
classical instanton methods rely neither on duality, nor orMills equation obtained by Atiyah, Drinfeld, Hitchin, and
any subtle assumptions about the number or nature of thilanin (ADHM) [9]. In Ref.[4], we solved for the large- and
singularities ofF at strong coupling. As such, they provide short-distance behavior of all the component fields in the
independent tests of the proposed exact resulfd,@f, and  self-dual background. This enabled us to construct the exact
consequently, of the electric-magnetic duality on which theyclassical interaction between ADHM instantons mediated

A. Recent background

are grounded. by the adjoint Higgs bosons, both in the pure bosonic as well
This instanton program has been carried out in the oneas in theN=2 SYM theory.

and two-instanton sectors d8f=2 SYM theory in Refs[3] Unfortunately, the problem of specifying the multi-

and[4], respectively[Another approach is that of R€5]; instanton measure for integration over the ADHM moduli

also see Ret6] for higher gauge groups than 8).] Anew  remains unsolved fan>2; this is the principal obstruction to
an all-orders check of the prepotential. Nevertheless, it is still
possible to verify with our methods certain general features

*Electronic address: n.dorey@swansea.ac.uk of the proposed exact solution in timeinstanton sector. An
"Electronic address: valya.khoze@durham.ac.uk example is the nonperturbative relation between the vacuum
*Electronic address: mattis@pion.lanl.gov modulusu and the prepotentiaF. While this relation was
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originally derived from the Seiberg-Witten solution by Ma- The difference between these two quantities as tests of the
tone[10], it turns out to be true on much broader grounds; inproposed exact solutions is purely academic, except for the
fact, it is built into the instanton approach. This was showncaseNg=4 which we now discuss.

in Ref.[11], which extends to alh the observation of Ref.

[12]. B. The caseNg=4

. The first goal of this paper is to generalize the multi- ForNz=4, both the perturbativg function and the ()
instanton SYM results of Ref4] to allow for Ne fundamen- 55 may vanish. This theory is parametrized by the dimen-
tal hypermultlplets Wlth arbltrar_y masses. We will constructgjgniess gauge coupling? and the vacuum anglé which

the superinstanton action in this larger class of models, exzannot be rotated away; these are combined to form a single
tending to alln the two-instanton formula used in Ref§,  complex parameter,. In this model, Seiberg and Witten

8]. To accomplish this, we adopt a method which was origi-propose an exact electric-magnetic duality which relates
nally developed in the early papers on supersymmetric intheories characterized by different valuesrgt For this du-
stantons by Novikov, Shifman, Vainshtein, and Zakharovality to hold it is necessary that the massIbigs=4 theory be
[13]. As the relevant field configurations obey equations ofexactly conformally invariant. In other words, the conformal
motion which are manifestly supersymmetric, any nonvan-anomaly which vanishes to all orders in perturbation theory
ishing action of theN=2 supersymmetry generators on a must remain zero when non-perturbative effects are included.
particular solution necessarily yields another solution. It fol-These authors also make the stronger assumption that the
lows that the supersymmetry transformations of the fields aréassles®Ng =4 theory is classically exact, which means that
equivalent(up to a gauge transformatipto certain transfor-  the low-energy effective coupling..1) is simply equal to its
mations of the bosonic and fermionic collective coordinatestlassical counterpart:
of the superinstanton solution. Physically relevant quantities

such as the saddle-point action of the superinstanton must be

constructe_d out of s_upersymmetric invariant combinations ofy, the massivé\ =4 theory the low-energy correlators have,

the collective coordinates. instead, an infinite expansion in the dimensionless one-
An especially attractive feature of the ADHM construc- instanton factoq:

tion is that the various constraints on the parameters of the

bosonic and fermionic fields are automatically supersymmet- g=expimry). 1.3

ric. This means that the=2 supersymmetry algebra can be

realized directly as transformations of the highly overcom- As mentioned above, certain general features of the multi-

plete (order n?) set of collective coordinates which appear instanton contributions can be deduced from the general

explicitly in the ADHM constructiort. In fact, these param- form of the superinstanton action. In particular, we will ob-

eters assemble naturally into a single space-time-constafain a representation for the prepotential itself as an integral

N=2 chiral superfield. This superfield notation systematize®Vver the superinstanton moduli, generalizing\ip>0 a re-

the construction of supersymmetric invariant combinationssult of Ref.[11]. Although forn>2 the measure of integra-

of the collective coordinates. Thus we demonstrate, in retrotion is not known, its only dependence onis through the

spect, the invariance of thé=2 SYM superinstanton action superinstanton action for which we have obtained an exact

obtained by component methods[#]. The incorporation of formula. By dimensional analysis, each term in the multi-

Ng massive hypermultiplets into this action is then straight-instanton series faf is seen to scale like? whenNg=4, so

forward. that the vanishing of thes function [which is related to
Subsequently, we apply these general formulas to somé&"(v)] is essentially built into the instanton approdch.

explicit calculations in the one- and two-instanton sectors. However, we should also comment on a result we have

These sections provide a more detailed account of the resul@btained for theNg=4 theory with massless hypermultiplets

presented in our recent pag@. As stated there our results Which appears to differ from the predictions of Seiberg and

agree with the predictions of Seiberg and Witten for the four-Witten. We have calculated the two-instanton contribution to

antifermion correlator(\(x;)A(X,) #/(X3) (x,)) which is the Iqw—energy effective coupling (the odg—lnstanton con-

proportional to*Zldv?, wherev is the classical vacuum {ributions being zero as noted abgviVe find thatre re-

expectation valu¢VEV). However, we now also extract the Ceives finite corrections of the form

effective low-energy gauge couplingi which involves the i

second derivative of the prepotenttal: e =Tt — 2245 cq", (1.4

n=24.4...

Teff= Tcl - (12)

Tet=29°Fl v 2. (1.1
in contrast with the proposed classical exactnds®. Spe-
cifically we extract the dimensionless numlagrin Sec. VIII
IThis feature of the ADHM construction has been noticed byP€low and find that it is nonzera@,=—7/(2°3"). From our
other author§14—16. expression for the prepotential we expect all theto be

) . ) . enerically nonzero as well. Note that the “translation” half
2The factor of 2 on the right-hand side of this equation is |n‘[ro-g y

duced in order to normalizery to the notation of [2],

74=8ilg?+ flwr. We perform no further rescalings of the param-

eters ofN=2 SYM theory when the hypermultiplets are added. See A caveat to this is that the integrals over the superinstanton
Ref. [4] for a complete list of our conventions. moduli must presumably be finite.
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of the modular group is preserved by such afunction of the space-time variabie®*
series: 7,—7y+2 implies 74— 7+ 2. It is natural to con-

jecture that the “inversion” half of the modular group is Ayi=ay+byx,
realized as wel[albeit in a more complicated way than for
Eq. (1.2] as some S(2,2) transformation
Tei— (@4 b7e)/(C+d7e4), With the value ofc, providing a

helpful clue. a e :
=Uy“9,U , 2.2
Finally we should mention the case of massiNss4 su- Om AT SN OmEnap 22

persymmetric gauge theory. In this case the instanton haghere the quaternion-valued vectdr, lives in theL space
eight fermion zero modes which are protectedNby4 su-  of A:

persymmetry and cannot be lift€tl7]. It follows that instan- o o

tons do not contribute to the prepotential and in particular AU, =U,A, =0, (2.33
corrections of the forn{1.4) do not occur.

OsA<=n, Isl=n. (2.1

The gauge fieldv ,(x) is then given by(displaying color
indices

U,U,=1. (2.3b
C. The plan of this paper It is easy to show that self-duality of the field strengt, is

i ioni itiorABB 4
This paper is organized as follows. In Sec. Il, after a briefequ'\f?lent- to the quate.rnlo.mc conqmomn Aniga
review of our ADHM conventions fronj4], we implement =(f 1%, ; Taylor expanding in then gives
the N=2 supersymmetry algebra directly as an action on the

overcomplete set of bosonic and fermionic ADHM param- aa=(aa)'x ", (2.49
eters. The results of this exercise are collected in(E®8. .

In Sec. Il we revisit theN=2 SYM multi-instanton action ba=(ba)T, (2.4b
from Ref.[4], and demonstrate that it is in fact a supersym- .

metry invariant. To make this manifest we assemble the bb=(bb)Tx 7, (2.49

ADHM parameters into a singl&l=2 space-time-constant
“superfield,” and recast the SYM action as ah=2 “F where theT stands for transpose in the ADHM indices |,
term.” In Sec. IV we show that the various ADHM bosonic €tc) only.
and fermionic constraints likewise assemble into a single N @ supersymmetric theory there is also the gaugino
N=2 supermultiplet. R — —

Hypermultiplets are introduced starting in Sec. V. We in- (No)P,=UPYM fbU,;,—UP bEIMYTU ;. (2.5
corporate them into the general multi-instanton SYM action

using invariance arguments. The final expression for the acl'® SUPPress ADHM indices but exhibit coltdotted and

tion, Eq.(5.20, is discussed further in Sec. VI. Weyl (undotted indices for clarity. The condition that be

In Sec. VIl we discuss the prepotenti&l General aspects considered the superpartner of the self-dual gauge digl

of the prepotential that emerge from the Seiberg-Witten for—Slmply that it satisfy the two-component Dirac equation in

malism are reviewed in Sec. VIl A. Alternatively, a formal the ADHM background[13], D**\,=0. This, in turn,
representation, Eq7.20, of the prepotential as an integral 'S equivalent to the following Ilnea}r constraints on the
over the multi-instanton supermoduli space is derived in Sed" T 1)%n constant Grassmann matrix(,, [19]:

VII B. Finally the explicit one- and two-instanton tests dis-

_d'y - _ yT a
cussed above of the proposed exact solutions are performed AT M= = M85, (2.69
in Sec. VIII. Numerical values of the two-instanton contri- B M= M7b 2 65
butions to the prepotentials fd¥=0,1,2,3,4 are given in o My=M7Dy . (2.6D

Eq_?.'rfz'zg ?err]da(liféé)nta'ns three Appendixes. In partic IarIn the N=2 theory the fermion zero modé€2.5) are redupli-
: pap I -€ APPENAIXES. In particuiar, ,.q by the Higgsings as well, to which we associate the
in Appendix C we explain an important difference in the

: ; matrix V., ; in addition there is the adjoint Higgs fiellto be
numbers of fermion zero modes lifted by the VEV of an discusse%l shortly. J 99
adjoint Higgs field as opposed to a fundamental Higgs field;  \yithout loss of generality we can restrict to the following

in the latter case the different topological sectors do not in¢anenical forms for ther(+ 1) x n matricesa,,,, b, #, M”
aa 1 1
terfere. and A" “

II. N=2 SUPERSYMMETRY ALGEBRA
ON THE INSTANTON MODULI “We use quaternionic notationx=X,,=X,on;, a=a**
=a"o?”, b=b,?, etc., wheres" and¢" are the spin matrices of
Wess and Baggéf.8]. See the reposted/published versiof4iffor
. . . . a self-contained introduction to the ADHM construction including a
The basic ObJECt_ in the ADHM (_:onstructlc[l@]_of self- full account of our conventions and a set of useful identities ugsed
dual SU2) gauge fields of topological numberis an (' yroughout the present paper. We alsogetl throughout, except,
+1)Xn quaternion-valued matrid,(x), which is a linear  for clarity, in the Yang-Mills instanton actions#n/g2

A. ADHM preliminaries
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o --- 0 lective coordinates. In order to do so, we must first under-
W144 Wi SB ... 0 stand[21] how to relate a variatiodU, (hencedv,,) to an
amz( o ) b, A= * . , underlying variationsa of the collective coordinate matrix,
aa 0 5' B assuming that we restrict attention to variations that preserve
@ the various ADHM conditions and constraints. Varying Eq.
y y y y (2.3a gives SUA=—USGSA, or equivalently U (1-P)=
M= M1 Kn N7=( 1 V”)_ —UJSATA, whereP is the usual ADHM projection operator
M"Y ’ N'Y
27 Prc=UnU,e= 81— Ay i (213

Thanks to this simple form fdw, the constrain{2.49 is now
automatically satisfied, while Eq$2.4b and (2.6b reduce

to the symmetry conditions on thex n submatrices: SU— —U_5AfA_+2(x)E (2.12
a’=a'l, M'=MT, N'=N"T. (2.9

By inspection, the general solution is

HereX(x)“ is arbitrary, save for the conditia2.30) which
Let us pause to count the number of superinstanton colforces G=3+3=tr, 3; consequently>(x) is precisely an
lective coordinates. We expect there to be iBosonic de- infinitesimal local SW2) gauge transformation. From Eq.
grees of freedom in the matrix (4n instanton positionsn (2.2) we obtain, finally[21],
scale sizes, and r8 iso-orientations in the far-separated

limit), matched by # Grassmann degrees of freedom in each Svm= 5E9mU +E9m5U
of M andN. From Egs(2.8), (2.69, and(2.49 we see that - o
the fermionic count is correct; however there are far too =Udsafo,bU—-Uobfsal—-D,2. (2.13

many bosonic variables, in fact, ordef. These necessarily
unphysical redundancies reflect the existence of the remainn the last rewrite we have used Eg.3a, Eq.(2.1), and an
ing x-independent S(2)xO(n) symmetries which preserve integration by parts; we have also séi=da as we are
all ADHM constraints as well as the canonical form lof  holdingb fixed as per Eq(2.7). Comparing the active trans-
given above: formation (2.10 and (2.5 with the passive transformation
(2.13, we extract the simple rule
0 5aozd: §ldMa+ deNa (214)
A— RT -A-R. (2.9

Notice that the local gauge transformation represented by the

0 last term of Eq(2.13 proved unnecessary; one can 5et0.

d . indices- i < P Next we turn to the subtler case of the fermions, whose
HereR_eO(n) and carries no S@) Indices, in contra “@ active supersymmetry transformation is given by
is a unit-normalized quaternion which acts on these indices.

While the Q) degrees of freedom merely double count the

global gauge rotations, the action of ther(oses a bigger ON=1V2E,DA—1£10™0 iy, (2.158

technical problem; in general it must be eliminated from the o

path integral with a Faddeev-Popov prescriptjan,4]. S=—IVIE,DA—iExa™ 0, (2.15H
B. N=2 SUSY algebra Here the adjoint Higgs componeAtof the superinstanton is

We can now construct th=2 supersymmetry variation defined by the Euler-Lagrange equafion
of the collective coordinate matrix. We start with the usual

transformation__law for the gauge field under D?A=V2i[\,¢]. (2.16
3is12&6Q+&4Q;:
=126 §|E L L o (In contrast, the antibosoh™ obeys the homogeneous equa-
U m=E10mN+ L0 — Noér— Yoné,. (2.10 tion
In the present case the first two terms on the right-hand side D?°AT=0 (2.1

are obtained from Ed2.5); the final two terms vanish, since

the antifermions are zero at the classical ldie¢y are down whenNg=0; the superinstanton breaks the conjugation sym-

by one power of the couplingFollowing [13], the strategy metry betweerf\ andA’.) The construction of the solution of

is to trade aractivetransformation on the fields such as Eq. Eq. (2.16 for generaln is one of the principal results ¢4].

(2.10, for an equivalenpassivetransformation on the col- In brief, the answer has the additive forf=A®+A2),
where

SWe follow the supersymmetry conventions of Appendix A4f
with the exception thab,—iv, due to our conventional use of  ®In both Egs.(2.15 and(2.16, and elsewhere in this paper, we
anti-Hermitian ADHM gauge fields. The relation to the supersym-ignore the auxiliary field$= andD which only turn on at a higher
metry parameters df7] is given byé=¢;, and&'=—&,. order in the coupling.
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. 1 — AgoW1—WiAot k1 AooWn— Wi Aot kn
iAbe =—— Ur(N FMPT— M TN PFU 45, C= .
p 2V2 ( WWes [Apr,a]
(2.18 (2.26)

and iA(z)dbzm“AfUﬁB, with A a block-diagonal con- It follows that
stant matrix,

, SM.,=—4ibéy,—2V2C, &5 (2.273
A 0o - 0
%O“ and likewise
B— -
Aa : Ao | 219 ON,= —4ib &y, +2VIC, L £2 (2.27H
0

The final ingredient needed is tHé=2 transformation
; ; i ; - law for Ay itself. As shown in Appendix A, it is a
;ﬁ‘g’? é?::é?igr;n a trivial way to the VEVwhich we point in singlet: 8A4,,=0. This equation together with Eq&2.14)
' and(2.27) are the sought-after realization of the=2 super-
i _ i symmetry algebra on the collective coordinates of the
AOOQ[”:E v Agll=— > vr3., (220  ADHM superinstanton. When hypermultiplets are included,
these equations are supplemented by(Ed.8 below, where
K andC are the Grassmann collective coordinates associated
with the fundamental fermions. For ease of reference we
assemble them all here:

while the nXn antisymmetric matrix4,, is defined as the
solution to an inhomogeneous linear matrix equatidh
namely Eq.(Al) in Appendix A below.(In the language of
Sec. VII of [4], A,y is the sum

8340= E10Ma+ €2aNo, (2.283

Atot: A+ Af, y (22]) I
OM,=—4ibé,,—2vV2C &7, (2.28h

where A’ is purely bosonic while4; is a fermion bilineay. .
As above we need to equate the active transformation ON,=—4ibé&,,+2V2C,,¢7, (2.289

(2.153 with the passive transformation derived from Eqg.

(2.5 S Ai=0, (2.280
S\=USMfbU+ SUMfFbU+UMfbsU 8K =0, (2.289
+UMSfbU—H.c. (2.22 5E=0- (2,280

The first term on the right-hand side contains the unknown

oM that we wish to determine; the second and third terms The qareful reader will notice, however, that th?zz
are already fixed by Eq$2.12 and (2.14); the fourth term algebra is not precisely_obeyed by the above. For instance,
t00, is a known entity, since ' " the anticommutato{Q,,Q,}, rather than vanishing when

acting ona, M, or N, gives a residual symmetry transfor-
Sf= —fﬁ(A_A)f= —f(5a_A+A_5a)f. (2.23 _mat_ion of the form(2.9). (This is gnalogous to nai_ve real-
izations of supersymmetry that fail to commute with Wess-

A lengthy but straightforward calculation yields a welcome ZUmino gauge fixing, for examplef-or present purposes this

simplification: the second, third, and fourth terms, takenP0Ses no problem, as we are always ultimately concerned
. , ) with singlets under Eq(2.9); otherwise one would have to

together, cancel precisely against the pia@g, DA™ from oy ariantize the supersymmetry transformations with respect

Eq. (2.18 that enters the right-hand side of E.153. to Eq. (2.9 in the standard way.

Equating what remains gives the defining condition axt:

IIl. MULTI-INSTANTON ACTION IN PURE N=2

LBy W o —
U”?6M,fbU,;—H.c. SUPERSYMMETRIC GAUGE THEORY

_ i‘fzg_zﬁa)_ i&0™y Although, as we saw in the previous section, the superin-
stanton transforms under supersymmetry, its saddle-point ac-
:U_By( —4ibé; ,— zﬁcydg) fb_Ua.y_ Hec. (2.29 tion must be invariant. For a single instanton, in the presence
of a Higgs field(fundamental or adjoint the bosonic part of
The final rewrite makes use of the well-known form of the the action is proportional tfy|%?. In N=1 models, such as
ADHM field strength, those considered ifi3,22, the squared instanton scale-size
o o p? is augmented in the action by a fermion bilinear term to
vmndb:(vmndb)dua|:4u befmnaﬂfbuﬁ'ﬁ: (2.25  form a supersymmetric invariant combinatipfy, . We now
check that the same property holds for the actiorNi#2
as well as identitie$7.8) and(C1) from [4]. The (h+1)Xn supersymmetric Yang-Mills theory, for arbitrary topological
guaternion-valued constant matd@xs defined as numbern. In this case the action is given 4]
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2

8nm —
S%St:gTJFlGWZMooFEk Wil =87 Ay Aror Um B 1
L A ) — & o 2
+4‘/§772MI{(1-’40001BVk51 3.9 A 6104

whereA is thenXxn scalar-valued antisymmetric matrix FIG. 1. TheN=2 supermultiplet, and the corresponding ele-

—_ — — — ments of the super-ADHM constraint4.1).
A=W AgoWie— WieAogWy , A=Wy AggWi — WicAgoW, -

3.2 _ :
32 the above construction, it comes entirely from the square of

The supersymmetric invariance of this expression under ththe fourth term on the right-hand side of E§.3). On the
transformations(2.289—(2.280 is immediate: the second other hand, we also knoj] that it comes entirely from the
and third terms on the right-hand side give, respectivelyHiggs kinetic energy term in the component Lagrangian
—16ﬁAodiMka§1+Vka§z) and —16m2(£,W, Agovk (where only the bosonic part & is taker)_. To reconcile
— 1 AogWié1) A Which are canceled precisely by the these two statements, note that the bosonlc' pa(r‘lfgfm Eq.
variation of the last term. (2.26 is precisely Eq(C1) in [4]. The bosonic action there-

Despite the simplicity of this last calculation, it is illumi- foreé corresponds to the expressi@b) of [4] for the overlap
nating to reformulate the actid8.1) in a more concise form Of two vector zero mode®,A, which is indeed the Higgs
in which the supersymmetry is manifest. To this end, wekinetic energy(see Appendixes B and C ¢4] for details.
promote the ADHM collective coordinate matrix to a 1 he form of Eq.(3.5 was therefore inevitable.
space-time-constant “superfieldd(6;) in an obvious way":

IV. SUPERSYMMETRIC REFORMULATION

Aua—Aa(0)=€72%2x e %X a,,, OF THE CONSTRAINT EQUATIONS
:aad+0_ldMa+6—2dNa+ Zﬁcaﬁgggld The component fields of th&l=2 superinstanton, and
o their respective moduli, follow a suggestive pattern.
+v2601,05Cx o (3.3 (i) The gauge fieldv,, obeys a nonlinear homogeneous

_ o _ differential equation(the Yang-Mills equatiop The associ-
where the Grassmann matix, is defined in analogy witlf,  ated collective coordinates obey a nonlinear homogeneous
constraint (2.43. This condition imposesin(n—1) con-

- Aoo1~ VieArota Aoo¥n= ViAot kn straints on the upper-triangular traceless quaternionic ele-
v [AweN '] ' ments ofaa.
(3.9 (i) The fermions\ and ¢ obey linear homogeneous dif-

ferential equationgthe covariant Dirac equatipnTheir as-
sociated moduliM and A\ obey the linear homogeneous con-
straint (2.69. This imposes(n—1) conditions on each of

A short calculation making use of the defining equation
(A1) for A,y gives the desired rewrite of the acti@® 1) as a

manifestly supersymmetrid=2 “F term:” M and .
8n 2 L ) (iii) Finally the Higgs fieldA is the solution to an inho-
R=—75— 72Tra(6)(P.+1)a(6)| (3.5  mogeneous linear differential equatithe covariant Klein-
9 6262 Gordon equation with a Yukawa source terr@orrespond-

l 2 . . . . . .
ingly, the matrix A, satisfies an inhomogeneous linear

Here the capitalized “Tr” indicates a trace over both ADHM “‘constraint equation,” namely Eq(A1) below. This equa-
and SUY2) indices, TE=Trotr,, and P, is the (1+1)X(n  tion determines thén(n—1) scalar degrees of freedom in
+1) matrix the nXn antisymmetric matrix4;.
) — Notice that the total number of bosonic and fermionic
Po=limP=1—bb=05)¢d,0- (3.60  constraints are eachn2n—1). This balancing between
= bosonic and fermionic degrees of freedom suggests that the
set of constraint$2.43g, (2.69, and (A1) might naturally be
combined into anN=2 “super-multiplet” of constraints.
Here we show that this is in fact the case.
In light of the “superfield” a(6) constructed above, the
obvious ansatz for this super-multiplet of constraints is to
introduce # dependence into the original ADHM condition

Note the following.
__ (1) The intermediate expressi@8.3) is not symmetric in
0, and 6,. This merely reflects the point noted earlier, that
we have only realized thid=2 algebra up to transformations
of the type(2.9); thereforeQ, and Q, do not actually anti-
commute. Nevertheless the final expresdi®m) is a singlet (2.43:
under Eq.(2.9), so this poses no problems. B

(2) The purely bosonic part 080, in Eq. (3.5 may be o
viewed in two ostensibly different ways. On the one hand, in a()a(h)=(a()a(0)) =s",. 4.9

[Note that Eq.(2.4b is automatically satisfied foaﬂa(e_)
"From now on we ignore the action of ti@ which actin atrivial  thanks to the canonical choic€8.7)—(2.8).] The first few

way, and focus exclusively on tH@; . For a related construction in terms in the Taylor expansion of E¢.1) look promising
a model without a VEV, sefl4]. (see Fig. I The bosonic component is just ER.49
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itself, while thee—1 and¢9_2 components indeed reproduce the mental representation have the structupé. The solution of

zero-mode conditiori2.69_for M and.V, respectively. the coupled Euler-Lagrange equations for each of these fields
Less obvious is thé, X 6, component of Eq(4.1), which  is simplified by the use of the differentiation identities in the
we rewrite as the triplet of conditions ADHM background:
tr,7a(0)a(6)=0, k=123, 4.2 Dy (UX)= — U, AFAX+Ud,X, (5.29
where 7 is a Pauli matrix. Extracting the, ;607 component D2(UX)=Ud?X—2Ubo"fAd, X+ 4UbfbX, (5.2b

of Eq. (4.2 after some index rearrangement gives

D, (UXU)=—Ud,AfAXU—UXAfJ,AU+Ud, XU,
(5.29

DX(UXU)=4U{bfb,X}U—4UDbf-tr, AXA-fbU

0= A+, (30 P+ (Ca)f), (43

where in the notation df4],

A= —AT= 2 (MPN- N M), (44 +Ud?XU—2Ubfo,Ad"XU
2v2 -
—2Ud"XAo,fbU. (5.20
This equation is analyzed as follows. Tracing on color indi-
ces tells us thadC+ Cax 5511-3_ So we plug As in [4], the construction of the short-distance superin-
_ . . stanton starts with the fermion zero modes in the ADHM
(Ca)*3=X58";—(al)*s (4.5  background, then proceeds to the Higgs bosons in the pres-

ence of fermion-bilinear Yukawa source terms. The funda-
into Eq. (4.3, the nXn matrix X being the unknown, and mental fermion zero modeg andy;, fori=1,... Ng, were
deduceX= A;+tr,aC. Equation(4.5) then becomes constructed if19,23:

o (AP tr. EPY— (T — — — ~
Ag=Cat(aC~tr; aC)=Ca—(Ca) . (4.6 (xP=U8Dfuli,  (XP=ULDfKii, (5.3

Up to this point the manipulations have been valid for arbi-_. : . .
trary C. But if one substitutes the explicit expressi¢h26) with &2 Weyl ands an SU2) color index. Usmg_Eq(S.Za)

for C in terms of A, Eq. (4.6) does in fact become the it is easily checked that these are annihilatedZ¥y,. Note
defining linear equatiorfAl) for A, expressed in espe- that eachC,; and Ky; is a Grassmann number rather than a
cially concise form. With Eqs(2.26 and (2.48 one also Grassmann spinor; there is no @Jindex. The normaliza-
confirms thataC+Ca is pure trace in the S@) space; thus tion matrix of these modes is given 23]

all tensor components of E@4.3) have properly been ac-

counted for. The remaining components of Eq(4.1) turn J byfoavB= N 2k T
out to be “auxiliary” as they contain no new information. dX(X) (Xaj) p= 7 KiK. (5.4
Some are satisfied trivially, while others boil down to the
earlier relationg2.49, (2.6a, or (Al). Next we consider the adjoint Higgs bosons. In the pres-
ence of the superpotential the Euler-Lagrange equation
V. MULTI-INSTANTON ACTION IN N=2 (216) for A is UnChanged; however E(Ql?) for AT now
SUPERSYMMETRIC QCD becomes
Following[2] we now turn our attention to the richer class , 1 N .
of models in which theN=2 supersymmetric Yang-Mills (DZAT)H:% 21 (X" XiatXTXi2)s (5.9
1=

action is augmented b¥g matter hypermultiplets which
transform in the fundamental representation of(§UEach
N=2 hypermultiplet corresponds to a pair bf=1 chiral
multiplets, Q; and Q; wherei=1,2,...Ng, which contain
scalar quarkgsquark$ g, andq;, respectively, and fermi-
onic partnersy; and’; . We will restrict our attention to the
Coulomb branch of the theory where the squarks do not a
quire a VEV. In theN=1 language, the matter fields couple
to the gauge multiplet via a superpotential,

displaying color and flavor but suppressing Weyl indices.
The solution of Eq(5.5) is similar to, but simpler than, that

of Eq. (2.16. At the purely bosonic level, with all Grass-
manns turned offA andA" must coincide, except far—uv.

dn contrast, the fermion bilinear contributionsAcand toA"

In the path integral are to be treated as independent. This
bilinear contribution toA" is straightforwardly obtained from
Eq. (5.5), using the identity5.2d), together with the manipu-

Ne _ lations described in Sec. VII B d#]. It has the form
W=, v2Q;®Q;+mQ;Q; (5.0
i=1 O e 0
suppressing color indices. The second term isNan2 in- —iue | Apypd,” Upg, (5.6
variant mass term. 0

As reviewed above, the component fields of the superin-
stanton which reside in the adjoint representation ofZ3U where thenXn antisymmetric matrix4,,, is defined as the
have the generic forndXU. Similarly, those in the funda- solution to the inhomogeneous linear equation
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L - Anyp= Anyp- (5.7 (1) Let Q and Q' pe twonxn antisymmgtric ma’grices
that are scalar value@d.e., proportional to the identity in the
Herel is the ubiquitous linear matrix operator reviewed in quaternionic spage Let us define an inner product on the
Appendix A, and thenXn antisymmetric matrixA,,, is  space of such matrices in the naive way, by
given by

(Q'1Q)=Tr,Q'7Q. (5.13
Ng
(Ahyp)k"zl_B 2 (Kyilii + Kii i) - (5.9 From the explicit expressions in Appendix A, it is elemen-
=1 tary to show that is self-adjoint with respect to the above
Similarly, the squarkg); satisfy the leading-order Euler- metric:
Lagrange equation (Q'IL-Q)=(Q|L-Q"). (5.14
D?g;=—ivV2\x; (5.9  The claimed equality between Eq&.11) and (5.12 then

follows immediately from Eqs(5.14) and(5.7) together with

and likewise forg; . Using Eq.(5.2b) together with identities the defining equation ford’ [Eq. (7.21) of [4] |

(7.9 and(C.39 in [4] one easily derives
L-A"=A. (5.19

L — i
af=ug’. Shovig™t 3 Mugfikii |, (5.10 (2) Next we show that each individu#l,; and Eki, and
hence Ay, is a supersymmetric invariant. As in Sec. II
whereu; is the fundamental VEV of théth hypermultiplet; ~above, we equate the active supersymmetry transformétion,
in the Coulomb branch all the; are zero. All remaining _ . 1 _
adjoint and fundamental component fields of the superinstang ,«) 5= _jy3¢, . pregf=— = 1,07 UPP(M g3, (AA)
ton in N=2 supersymmetric QCD may be constructed by 2
these methods. Fortunately, through judicious use of integra-
tions by parts together with the equations of motion, the new
expressiong5.3), (5.6), and(5.1Q are all that are needed fo_r with the passive supersymmetry transformation
our present goal of constructing the superinstanton action,
SI':Et By inspection qf the component.Lagrangian, ong sees 5(Xia)/'3: 5(U_';3“beCi)= 5U_';3“beCi+U_B“b5fICi
that this action consists of a sum of five types of terfgs: '
purely bosonic terms(ji) terms bilinear in the adjoint ferm- +U_Babf5Ki _ (5.17)
ion collective coordinates\t and A, (iii) terms bilinear in
the fundamental fermion collective coordinatésand/C, (iv) Remembering Eqg2.12), (2.23, and(2.283, one finds that
fermion quadrilinear terms, consisting of one parametethe first two terms on the right-hand side of E§.17) equal
drawn from each ofM, N, K, and K, and finally (v) the the first two terms on the right-hand side of E§.16), re-
N=2 invariant hypermultiplet mass term. Let us considerspectively; this leaves
each in turn. -
The construction ofi), (i), and (iii) proceeds precisely 0=0K;= 6K, (5.18

along the lines discussed in detail in Secs. IV C and VII D of )
[4]: the relevant bits of the component action are converte@S claimed. o ,
to a surface term, and are given by the coefficient of thé 1/ (3) Since 5Ahyp:91 supersymmetrizing Eq45.12 simply
falloff of the total adjoint Higgs field, including fermion bi- Means promotingd’— Ay, as per Egs(2.2) and(2.280.
linear contributions, as it approaches its VEV. In this WaySmce the d|ffe(ence between them_ con5|sts.of fermlon. bilin-
one immediately finds that the contributiofi$ and (i) to ~ €&'S; this step introduces the promised fermion quadrilinears,

Ne - 0 and restores supersymmetry invariance.
Spg are still given bySing;, Eq. (3.1) or Bq. (3.5 above. By Finally we turn to(v), the hypermultiplet mass term given

identical argumentdjii) is given by in Eg. (5.1). In the Coulomb branch this reduces to a mass
_8772A|k~Ahypklv (5.11) term fqr the. fundament_al fermions only, up to h|gher_-0rd.er
corrections in the coupling constant. From the normalization

whereA was defined in Eq(3.2). condition(5.4) one derives

More subtle is the construction of the fermion quadrilin- Nr -
ear term(iv). Our calculation of this term proceeds in three Shass 7722 m, [Cy KCji - (5.19
steps, summarized as follows(1) Show thatL is self- =1
adjoint, and use this property to rewrite £§.11) as

+borng, FAT MK, (5.16

Putting these pieces together gives the general ADHM super-
) , instanton action foN=2 supersymmetric QCD with gauge
8 Ahy[ikAkl! (512 group SL(Z)
where A" was defined in Eq(2.21) as the purely bosonic
piece of Ay; (2) show thatAy,, is a supersymmetric invari-
ant; and finally(3) promote Eq.(5.12 to a supersymmetric  ®To avoid clutter we restrict ourselves here to the first supersym-
invariant in the unique way. Here are the details. metry.
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Ne_ 0 _ g 2 Ng=0, all instanton numbers contribyid his selection rule
Sinst Sinst™ 87 Aty Aot + Smass (629 was already noted by Seiberg and Witten in Sec. I[i&f it
is not surprising to find that it is built into the instanton
calculus. It is violated when masses are turned on, since
IC;i Gy is odd under this symmetry.

(3) In the even-instanton sectaf@nd in the odd-instanton
sectors as well when masses are turneg e number of
exact fermionic modes, i.e., those modes which do not ap-

VI. GENERAL FEATURES pear in the action, remains the same forraéind for allNg .
OF THE SUPER-MULTI-INSTANTON ACTION Just as in pure Yang-Mills theorfy], the unbroken modes
are the four adjoint fermionic modes associated with the four

From the form of the actiori5.20) we can immediately supersymmetry generators that act nontrivially on the self-
make several observations of a general nature. adjoint ADHM gauge field? These are the supersymmetric

(1) The self-adjointness property bf noted above allows gaugino and Higgsino zero modes generatedéfy; and
us to reexpress this action in a variety of equivalent ways&Q., respectively. Explicitly, they are given by E.5),

For instance we can rewrite with

This is the generalization to all of the two-instanton action
presented recently ifv,8].

, , M,=4¢,b and N,=4¢, b. (6.5
B AnypicArotia =BT (Auct Ar i) Anpia - (6D (4) Following the strategy originally established by Af-
fleck, Dine, and SeiberfR4], in the explicit calculations to
follow we will saturate these four unbroken modes by suit-
able insertions of long-distance fields. These are the compo-
nents of the superinstanton that are parallel to the adjoint
VEV and hence have power-law falloff; in comparison, the
L-Al=Ay. (6.20  components orthogonal to the VEV decay exponentially as
exp(—Myr), and can be ignored. As we saw in pure Yang-

Mills theory [4], for any n the structure of these long-
distance fields can be read off directly from the superinstan-
ton action itself. In that theory, the long-distance anti-
eI-|iggsin0 and antigaugino components satigfy

where the antisymmetric matri; introduced in Eq(4.4) is
the Yukawa source term fod; [Eq. (7.29 of [4] ]:

(2) Let us isolates,,s;from the action(5.20 and assign it
to the n-instanton collective coordinate integration measur
dppy, for the fundamental fermions:

a0 =1V20 1S5 Sa(X, Xo) (6.69
N
1 F - -
f thyp:W f iﬂl diCy; - dIC,d Iy - Ak and
Na(X) = —1VZ0 181002 S, (X,Xo) 6.6h
X eXP — Shaed, 6.3 (x) v nggsgz (X,Xg) ( )

respectively. HereSqqs is the purely bosonic part of the
superinstanton actionx, is the position of the multi-
where the normalization constant in front has been read frorinstanton, andS(x,x,) is the Weyl spinor propagator:
Eq. (5.4). Consider this expression in the chiral limit,
Simass0. In this limit, for fixed flavor index, the Grassmann
measure is obviously even or odd under the discrete symme-

try

S(X,XO):IQG(X,XO), G(X,XO):W. (67)
In [11] we found it helpful to rewrite Eq(6.6) in a slightly
- different way, as
Kii—Kii (6.9 0
- . aSnst a
Ya(X)=1V2 — = ES,(x.Xo) (6.89
depending on whethen itself is even or odd. On the other
hand, the term-8m2A gk A in the action(5.20 is al-  and
ways even under this symmetry, as follows from Eg8). e
Therefore, for Nz.>0, only the even-instanton sectors N inst .o
n=0,2,4... can contribute in the chiral lifiirecall that when NalX) V2 dv €2Saa(XX0), (6.8

°The absence of a one-instanton contribution is particularly easy 1°This mode counting contrasts sharply with thatbf 1 theories
to see since\, vanishes identically fon=1, and so théC and with only fundamental Higgs bosons; see Appendix C for a brief
Grassmann integrations are unsaturated. discussion of those types of models.
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where in performing these derivatives we distinguish be-A_is the dynamically generated scale of the thebandC
tweenv andv. Of course, in the pure Yang-Mills case, the js 5 hymerical constant. The logarithm comes from the clas-
expressions(6.6) and (6.8) are identical. This is because gjca| result combined with one-loop perturbation theory
Shiggs is linear inv (bilinear nv and v), whereas the hija the remaining terms correspond to an infinite series of
fermion-bilinear contribution (& depends only om [S€e  jnstanton corrections. As discussed aboveNpr-0 the dis-
Egs.(3.1) and(2.20 above. However, foNg>0, this equal-  ¢rete symmetry(6.4) ensures that only even numbers of in-
ity no longer holds, since the new term in the aCtlon'stantons contribute:  hencB“F) = 0. Each nonzero coeffi-
—8772Ahyp|k,4totk,, depends orv, not v [see Egs.(6.1), ) ND) ' k+1 ¢ o _
(3.2), and(2.20)]. It turns out that the correct generalization clent ]_-(ka is @ pure number characterizing the leading
to Ng>0 is given, not by Eq(6.6), but by the differential semiclassical contribution of instantons of topological charge
representatior(6.8) with S replaced byS'F. As these 2k. In Sec. VIl below, we carry out an explicit two-
long-distance expressions enter pervasively in the calculdnstanton computation oF"® for Ng<4. For the special
tions below, we should make this point especially clear; thixase ofNc=4 massless hypermultiplets th@ function is
is done in Appendix B. zero and we expect the following expression for the prepo-
Also needed below is the piece of the long-distance Abetential:
lian field strengthv ,,, that is bilinear ing; and &,. The rel-
evant expression is E@5.13 of [4] which we likewise re- 1 i
write as a derivative: Fv)= 7 Tev2— — FYqp?, q=e .

T n=248...
(7.2

S

V2 £10M G mn(X,Xo), (6.9

v Furthermore, Seiberg and Witten propose that the massless
Ng=4 theory is classically exact, E¢l.2), which implies

whereG,, is the gauge-invariant propagator ofYfield ~ #"=0 for all n. Instead, in Sec. VIl we will obtain a

strengths, nonzero value fotFy".
The general description of the low-energy theory, Egs.
Gkt (X,X0) = (7n1dmIx— TnkImd1 — TmiPndk+ Tmidnd)) (7.1 and (7.2), is modified in two ways by the introduction
of masses for the hypermultiplets. First, as noted earlier, the
X G(X,Xop)- (6.10  mass terms explicitly break the discrete symmety);

hence the contribution of odd numbers of instantons be-
As explained in Appendix B, this expression, too, general-comes nonzero. Second, each term in the instanton expan-
izes immediately to Ng>0, with the substitution sion will itself be a polynomial in the dimensionless ratios
S%sﬁs.':;- m;/v. As we will see below, these polynomials can be ob-
tained from the exact solution of the low energy theory pro-
posed by Seiberg and Witten.
VIl. THE PREPOTENTIAL For eachNg, the exact behavior of the low-energy theory

In this section we discuss some general features of th& characterized by an elliptic curve of the form

prepotential FNF) for N=2 supersymmetric QCD. In Sec.
VII A, which is restricted to the case¥r<4 unless other- y2=x3+Bx?+Cx+D=(x—g€;)(Xx—e,)(X—ej3). (7.3
wise stated, we review the predictions of Seiberg and Witten
[2] (see also Refs[25] and [26]). Alternatively, in Sec. _ _
VII B, we derive a formal expression, valid fod-<4, for ~ For Ne<<4, where the theory is asymptotically free, the co-
the prepotential in terms of the multi-instanton measure, exefficientsB, C, andD (and hence the roots) are functions
tending a result given ifil1] to incorporate hypermultiplets. Of the modulusu, the dynamical scaléy_, and the masses
Explicit numerical comparisons in the one-instanton andm;. The exact solution for the VEVW and its dualvp as
two-instanton sectors will be given in Sec. VIII below. functions of the modulus is given in terms of the periods of
the elliptic curve(7.3). In the region of parameter space
) ) o ] where the roots are real apg=e,=e;, we have the explicit
A. Seiberg-Witten predictions for the prepotential formulas(in the conventions of3])
In N=2 SQCD withNz<4 massless hypermultiplets in
the fundamental representation, the restrictions imposed by
holomorphy, renormalization group invariance, and the ;

nomalv imoly that the pr tential has the following expan- The numerical values of the constam%\‘f) depend on the defi-
anomaly imply that the prepotential has the Tollowing expan-,i;., o e scaleAy_. In this paper, as if4], we adopt theA
sion at weak coupling: F

parameter of the Pauli-Villars regularization scheme which is ap-
2 ® propriate for instanton calculations, and corresponds to 't Hooft
2 |n(_) _ z ]:<NF) conventions for the collective coordinate meas{2&]. In this
T n=1 scheme the renormalization group matching conditions are most
straightforward since the threshold factors are ufifly The A of
(ANF) n(4=Ng) the Pauli-Villars scheme is related to theparameter of1,2] as

| (4—Ng)

FNF)(U): 8

v2. (7.0 4A2;NF:(A§‘£’)4‘NF for 0<Ng<4.
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v cK(k)  dvp  icK'(K)

ou */81—63, Ju ‘/el—es.
It is easy to check that the curvé®.8) have the required
Here K and K’ are elliptic functions of the first kindk propertyy(zNF)—>y(2NF,1) in the decoupling limit. This prop-
=\(e;—e3)/(e;—€3), andc is a numerical constant fixed erty is then inherited by the prepotential itself:
by demanding the asymptotic behavior \2u+--- in the
weakly-coupled regime of large. The second derivative of  FNe(vi{m}, Ay ) — FNF V(v i{m; i<Ngh Ay__1).
the prepotential is then given as (7.10

4—N 5-N
mNFANF F:ANF—E' (79)

(7.4)

‘92_7:: E(%’_D: iK” (k) (7.5 Moreover, this relation must hold order by order in the in-
v’ 2 dv 2K(k) stanton expansion.
The single-instanton factoAi,;NF appears in Eq(7.8

This equation, together with E¢7.4), determines the prepo_l_multiplied by the productn;m,- . Obviously this is the

tential corresponding to a particular elliptic curve up to irre

evant constants of integration_ Only term in Eq(78) Capable of generating odd powers of
With the definition of theA parameter given above, the Aﬁ;NF. It follows that the odd terms in the instanton expan-
elliptic curve for theNg=0 theory is simply sion of the prepotential vanish unless all of the masses are
nonzero, as expected from the discrete symmer).
y2 =x3(x—u)+ Adx (7.6) - T
(0) o7 : The one-instanton contribution has the form
For 0<Ng<4, the curves can be written in terms of the fol- ASNe Ne
lowing set of symmetric polynomials in the masses I "Ng
FNO i {mi}, Ay ) n=1=— P fﬁO)jHl m;. (7.1])
MNF =1,
This clearly obeys the decoupling relatign.10. The nu-
Nr merical coefficientF” can be extracted from the instanton
N Z S 2 . 1 ;
M T < my, expansion of the prepotential of théNr=0 theory
(3.4 Fo=1/2.
Ne The remaining terms in Eq(7.8) are proportional to
M<2NF>:E miijZ, Aﬁ(:_NF) and can therefore be thought of as a two-instanton
=) effect. In particular, note that the term proportional to (
—u)NF~1 remains nonzero in the massless limit. Every term
of orderAﬁ(:_NF) which can be formed from the coefficients
o) Ng , of the elliptic curve is proportional to one of the polynomials
MNFF :1:[1 m;. (7.7) M(ﬁNF) defined above. Hence, by dimensional analysis, the
: two-instanton contribution to the prepotential must have the
The curves are then given by form

— l _ f(NF)(U;{mi},AN )|n=2
y(zNF)=x2(x—u)+ ML'\‘FF>A;11FNFX__A2(4 Np) .

4 "N
) 2(4-Np) Np v (NF)
Ng—1 _ b o[ Ne (Np)| 8
x E M(gNF)(X_u)N,:flf&. (7.9 = 1% (_U ) 520 f5 e (7.12

Given these explicit forms, it is straightforward to expand. This expression may be constrained further by consider-

S A ing various limits of the masses. In the chiral limit;,—0,

Egs.(7.4) and (7.5 as a power series in? "% and extract - .
q _( ) (7.9 _ p_ Ne we recover the coefficients of Eq7.1); this forcesféNF)
the first few terms in the instanton expansion of the prepo-

_ Np) ite limi ' -
tential. However, as we will see below, several features of f(Z ' In-the.opposne I'm'mNFioo’ the d?C_OUplL?? rela
the expansion can be deduced without further calculation. tion (7.10 implies that the numerical coefﬂmentg P are
Let us order the masses so that they satisrﬁ)qF not independent, but obey

=my__1=---=m;=0. An important restriction on the form

- o S fNE)_ ¢(NE=1)_ _ ¢(Ne—0) -1
of the elliptic curves comes from the scaling limit s “le-1 T T o . (7.13
My, —2, An,—0 with my Ay "* held fixed. In this limit o

F H ..

one of the flavors becomes infinitely massive and decoupled! LOI[O;VS that the constant ;™ is equal' t'o the COE,‘.ffICIGI"I.t
leaving an effective theory described bi=2 SQCD with ]-'(2 F % of the massless case. An explicit calculation using
Ng—1 flavors. In the chosen regularization scheme, she Egs. (7.4 and (7.5 yields the values FO=5/24
parameters for different numbers of flavors are related as F5'=—3/2°, andF?'=1/2°. The coefficientFs> corresponds
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to an additive constant in the prepotential which does no

contribute to the low-energy effective Lagrangian and is ir
relevant for our purposes.
In component form, for any number of flavors, the low-

energy effective Lagrangian is defined in terms of the prepo-

tential as follows (the superscript SD stands for “self-

dual”):

L — P(A) (O ATOTA+ i phi+iNON+ 3(v3P)?)

ef'f:4

FF(AVYANE|. (7.19

1
+ E F"(AN™ v it

As usual we ignore auxiliary fields as they are subleading i
the coupling constant. The last three terms in the above L

following three Green'’s functiongt]:

(Vmn(X)viK(X2)) =

LS
167 702 J'dxotra' o

><Gmn,pq(xluXO)GkI,rs(XZrXO)u (7-153

(Vmn(XD)Na(X2) 5(X3))
_ 1 @F
8vami v°

X SpalX2,X0) Spp(X3,X0),

A% PG (X1, Xo)
(7.15h

<7\_A(X1))\_B(X2)_'7(X3)%(x4)>
1 *F
" 8mi vt J’ d*X0€PS,4( X1, X0) Spj( X2, Xo)

X €7°S,:(X3,X0) S5x( X4 X0), (7.159

where the Weyl and field-strength propagats(s,x,) and
Gmnki(X,Xo) were defined in Eqgs(6.7) and (6.10 above.

We now discuss how these correlation functions may be cal-

culated from first principles, using instanton methods.

B. The prepotential in the instanton approach

Our strategy for determining is to calculate the leading
semiclassical contributions to the Green functididls in

the large distance limit. The first step is to replace each of the

fields ¢, \, and v, with the long-distance “tail” of the
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t 1 8n+2nNg
f dM;Nm:S_J(H dX H dx;
n
X (Jgosel Jrermi 2 €Xp(— SLE(N)). (7.1

Here Jgyse and Jeermi @re the collective coordinate Jacobians
for the bosonic and fermionic parameters, respectively, and
S, is a symmetry factor.

As reviewed in4], it is only possible to solve the ADHM
constraints and find an explicit formula for the measure for
n<3. However, for the following, it suffices to know that the

only dependence on the VE¥ in Eq. (7.16 is that of the
action Sm; which is separately linear in both andv. In
addition, as discussed in Sec. VI, we know that all fermionic

zero modes are lifted by the action except for the four super-

r%ymmetnc zero mode®.5) parametrized by, , andé,,. Itis

. . L Lo %onvenient to separate out from the measure these unbroken
grangian yield nonvanishing tree-level contributions to the

modes together with their bosonic partner, the translational
degrees of freedonx:

f dﬂﬁNF):f d4XOd2§ld2§2f dﬁENF)

We will refer to d,u ) as the “reduced measure.”
Putting the pieces together, one finds for thenstanton
contribution to the Green’s functiofr.159:

(7.17

(N XN (X0) 13 (Xa) (X))
- [ RN o PR R ) (718

with similar expressions for the other two Green'’s functions.
Following [11], we substitute the expressiori6.8)—(6.9)
into the right-hand side, and perform the trivial integration
over &, and &,,. This leaves

<Umn(xl)vkl X2)> 2 9 -2 J dN(N Jd4X0 tr20'pq0'rs

X Gmn,pq(xl vXO)GkI,rs(XZ vXO)v

(7.193
<Umn(X1)7\_a(X2)I'ﬁ(X3)>
1 68 _
=5 ad dMENF)f d*Xo0™ PG i i (X1,Xo)
X SaalX2,X0) Spp(X3,X0), (7.190

corresponding component of the superinstanton These e(ﬁ(xl);}(xz)%(xaﬁ(m»

pressions, which we denot#®, \'°, andv P, were given

above in Eqs(6.83, (6 8b), and(6.9), respectively, with the

substitutionS0e— S~

One also needs the superinstanton measure.
n-instanton sector, the integration runs over l8sonic and
8n+2nNg fermionic collective coordinates, which we de-
note generically a¥X; and y;, respectively. At a purely for-

In the

04
:W f dﬁaNF)J‘ d4XOEa'B

X Spa(X1,%0) Spa(X2,X0) €7°S,5( X3, X0) Ss5(Xq,Xo) -
(7.199

mal level, the measure for this integration can be expressefihe linearity ofS\", in v has allowed us to pull the differ-

as

entiation outS|de the collective coordinate integral. Compar-
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ing the semiclassical expressioiig.19 with their exact _ _ Ng _
counterpartg7.15, we deduce Smg(l)z 16m2|W|?| Agg 2+ 4V2 7P Aoy + 72>, MiKiK; .
=1

t
(8.3
FNE (0 {mi}, Ay lninse= 87 f dz¥+Av+B,  (7.20
[For the special casd=4, where thes function vanishes,

4—N :
whereA andB are undetermined constants of integration. Asthe factorA " should simply be replaced by from Eq.

these constants do not contribute to the low-energy effectivé€l.3).] Notice that the only dependence fh and K; comes

Lagrangian, we are free to sA&=B=0 for convenience. from the mass terr,,¢s(this is becausd,, vanishes iden-
Equation(7.20 is the desired expression for the prepoten-tically for n=1, as doA and A¢). The corresponding Grass-

tial as a formal integral over the superinstanton moduli. It ismann integrations can only be saturated by bringing down

the obvious generalization fd->0 of the analogous SYM N powers ofS,,ss as expected from the discrete symmetry

formula (21) in [11]. Note that all memory of the long- (6.4), the result is nonzero only when all the are nonzero.

distance field insertions has disappeared from this equatiof.he remaining integration is identical to the caseNof2

In hindsight, these insertions were merely a convenienSYM theory[3,4]. Using Eq.(7.20 one finds after a simple

bookkeeping device for extracting the appropriate deriva<calculation:

tives of F dictated by the low-energy Lagrangidi.14). : AilfNF Ne

Henceforth we will drop all reference to the “tail” of the N . _ F 0

superinstanton, and focus directly on the concise expressiofn< F)(U’{mi}'ANF)|n=l— - f'ﬁ )Jﬂl m;, (8.9

(7.20. Importantly, by absorbing a factor afv into a, M,

and.\, one sees thak depends only om, and not orv, so  where 7?=1/2, in agreement with the Seiberg-Witten pre-

that holomorphicity of the prepotentiél.20 is built into the  diction.

instanton calculus.

B. The two-instanton contribution

VIIl. EXPLICIT CALCULATIONS FOR  n=1 AND n=2 Next we consider the two-instanton contribution to the
In this section we will use the action derived above toPrépotential. The notation and the various changes of inte-
calculate the one- and two-instanton contributions to the pregration variables in the present calculation closely parallel
potential forNg<4. In addition we include nonzero masses the simpler case dii=2 SYM theory worked out in detail in
for the hypermultiplets. This section supplies additional de-Sec- VIII of [4]. Because the calculation fdd:>0 is so
tails for the calculation of g\ \)~F"""" presented in our Similar, we will chiefly stress those points where they differ.
recent papef7]. See alsd8] for a related calculation of a ~ 'he parameters of the=2 ADHM superinstanton are
different quantity which is not simply given by a derivative contained in the following 32 matrices:
of F. By focusing onF itself using Eq.(7.20, we also ex- Wi Wo
tract information about the special cade=4.

a=| Xotas ap |, (8.59
a; Xo—as
A. The one-instanton contribution

In ADHM language, the bosonic and fermionic param- M1y M2y

eters of a singleN=2 superinstanton are contained in three M, =| 41yt Mz, My, ], (8.50
2x1 matrices of unconstrained parameters: My, 481,—Ms,

_ w _ Moy _ v,y Viy Vay

a= X ] My_ M-y)’ Ny_ Ny> (81) Ny: 4§2‘)’+N3)’ le . (85@

. . ~ le 4§2’y_N3'y
In addition there are 8 Grassmann variablek; and K;
which parametrize the fundamental zero mo@@s$). The In addition, there are now Mg fundamental zero modes

reduced measurg.17) is given by (5.3 parametrized by the Grassmann numbgfsand K;;
with 1=1,2. We also define the following frequently occur-
27A§‘NF ring combinations of these collective coordinates:
dﬁ(NF): T;N d4Wd2,LLd2V _ ) )
' L L= Jwq|+|wy| %, (8.6)
Ne H=|wy|?+|w,|*+4]ay |+ 4]a,|?,

X _[[1 diG;dK; exg — S E(n=1)], (8.2

inst — —
Q=wW;Wy—Wowy,

where the single-superinstanton action is easily read from the =W AggW1 — W1 AggWo = 3trQ Ago= — A1 5,

general expressiof5.20:12
Y= u1vy— vipp+ 2MaNy—2N3M1=2V2(A¢) 12,

Ng
2we place a tilde over the action to indicate that the Maxwell 7= K. e K= ;
= i€ Kii=—8v2i(A .
piece 87n/g? has been subtracted out. 21 KK (Anypl12
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From Eq.(5.20 we write down the following expression Np o
for the two-instanton actloS F(n=2): f dnyp=—any Hl Ay dKoid Iy dKCo; eXpl— Spasds
1=

(8.13

while d,, may be read off fronj4], subject to the replace-
The hypermultiplet mass terr§,,,ssis given in Eq.(5.19  ment (8.10, and to the appropriate redefinition of the dy-
above, whereaS?(2) was evaluated if4], and is concisely namically generated scale parameter:
expressed in terms of the quantitigs6):

|nst §2)= Snst(z) 8772Ahyplk-’4totkl+smass (8.7

< — 2o, lal?- |2
SL(2) =16m2L| Agg 2+ V2 72 sy Agoi f dip=—"75-—" f d*azd*w,d*w, 2
— Lom’e” v . (8.9 2 2. @ —
H >v3 xex;{—l&r [L|A00| —ﬁ(w+|Z/8\/§)D.
The remaining term in the actior; 8 A pyykAwow , IS €as- (8.14

ily extracted from Eq(5.8), together with the defining equa-
tion for A,;, namely Eq.Al) below. The linear operatdr
that enters that expression is gnfn—1)x3n(n—1)]-

The symmetry factotS,=16 is associated with a discrete
redundancy in the chosen parametrizaii®rila of the two-

dimensional map from the space X n antisymmetric ma- instanton solutior}4,20). For the spezc(LaINc?sNF=4, where
trices onto itself. Whem=2 this space is one-dimensional, the B function vanishes, the factoky * " should simply

andL reduces to ordinary multiplication by the quantity  be replaced by?. The third piece of the measure comprises
From Egs.(3.2), (4.4), and(8.6), one therefore finds for this the remaining terms in the action:
term:

f dﬁf: f d2M3d2M1d2M2d2N3d2V1d2V2

(8.9

ivV2m2Z Y
H V2]’

— Y
X exp( —4\/2772{,ukd400vk+ a (w+ iZ/Sﬁ)} ) .
Note that Eq.(8.9) may be absorbed into the SYM action
(8.8) with the simple substitution (8.19

oo wtiz/sva. (8.10 Performing the Grassmann integration over the param-
eters of the adjoint zero modes is a straightforward exercise;

Given the action, the next step is the construction of theone finds
two-instanton measure. We begin by eliminating the redun-

6
dant degrees of freedom from E@.5). A convenient reso- f A= — ( 16v2m (w:IZ/B\f) |Q|2
lution of the ADHM constraint$2.49 and(2.63 is to elimi- las|*H
nate the off-diagonal elementa;, M,,, and N, as L 1
follows: + o v (@ iZ/18\2)w+ o7 (w+iZ/8v2)?
1
a, = ag(Wowy—Wyw 8.11
1= 4|a |2 3( 2W1 1 2) ( a X(%;Z(L2_|Q|2)+62) . (816

This is the generalization th->0 of the Yukawa determi-
nant given in Eq(8.13 of [4]. The next step is to integrate

over the fundamental fermionic coordinates using the iden-
and tity

1 _ _ _
Mlzw as(2a; Ma+Wopa—Winp), (8.110

N
FMFk&ZKG

1
N = 2[ayl? a3(2aiN3+Wori—wivp). (8110 JdﬂhyDG(Z)_ K x
k=0 9z

. (817
Z=0
The remaining degrees of freedom are unconstrained, and

appear as integration variables in the measure. It is helpful to#/here theM( 2

are the polynomials defined in E¢7.7)

factor the reduced measuig )" into three partsiz,, diz;, ~ above. This is the only new feature involved f9g>0.
and dup,, corresponding to the bosonic, adjoint fermionic, Finally we turn to the remaining integration over the
and fundamental fermionic parameters, respectively: bosonic moduli. Following4], it is convenient to change

variables in the bosonic measure frdmas,w,,w,} to the
new set{H,L,Q}. The relevant formulas are

| a~ [ dungtini. 812
[ ata, It -
dha, Lo 1At

o dH (8.18

Here duyy, was defined in Eq(6.3) above, las|* 2 Jit20
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and APPENDIX A:  SUPERSYMMETRIC INVARIANCE

© 3 rw . -
a
f dw,dw, s f dLJ £o. (819 The purpose of this appendix is to demonstrate that the
— 8 Jo |ol<L nXxn antisymmetric matrix4,,, is in fact a supersymmetric
invariant, 84,,=0, given the transformation law®.289—

The numerator and denominator in the left-hand side of Eq(.2'28c)' Our starting point is the defining equation tdf,:

(8.18 are supplied by Eq$8.14 and(8.16), respectively. In L- A=A, (A1)
addition we introduce rescaled variab@s=LQ', H=LH’,

and w=L'. Following [4] we now carry out the trivial in-  where A, =A+A;, while A=A’ +A¢ is the quantity un-
tegration overlL. Thanks to Eq(8.17), at this stage in the ger examination. Note that this equation is the sum of Egs.
calculation the renormalization group decoupling property(s 15 and(6.2) that we used in the text. is a linear opera-
(7.12 and (7.13 is manifest; this is another example of a tor that maps the space pfn scalar-valued antisymmetric

general feature of the hyperelliptic curves being built into theqatrices onto itself. Explicitly, i€) is such a matrix, theh
instanton calculus. is defined ag4]

Finally we switch to spherical polar coordinates, L L
L-Q=3{Q,W}—3 try([a’,Q]a’—a’[a’,Q]), (A2)

1 1
dSQ,—>27Tf d(cosﬁ)f |Q[2d]Q], (8.20  wherea’ was defined in Eq42.7) and(2.8) above, andV is
-1 0 the symmetric scalar-valuechXn matrix W,=w,w,
+wWW, .

where the polar angle is defined by  Applying a generaN=2 supersymmetry variation to Eq.
|o'|=]Q || Agdcos#=3|Q'||v|coss. This leaves an ordinary (Al) gives

three-dimensional scaleless integral over the remaining vari-

ablesH’, co®, and|Q’| which is the precise analog of Eq. L - 6 A= A o= 6L - Apor. (A3)
(8.19 in [4]. Performing this elementary integral with the

help of a standard symbolic manipulation routine gives Sincel is generically invertible, it suffices to show that the

right-hand side vanishes. To minimize clutter we restrict the
variation t0£,Q,, as the calculation witlQ,=Q, proceeds
FP=52, FY=-312, FP=12 identically, while the claim folQ; andQ, is a trivial conse-
quence of Eq(2.6b. We define then-vectors
F¥=—5/273%). (8.21) -
v=(V1,..¥n), W=(Wq,....W,), W=(Wq,...,Wp).
(Ad)
These values QF(ZNF) with N.=0,1,2 agree with the predic- _ _ . _
tions extracted fron{1,2]. 75 corresponds to a constant Starting with the most complicated term on the right-hand
shift in the prepotential, which does not affect the low- Side of EQ.(A3), one finds
energy Lagrangiari7.14. These numbers are the input pa- R — . - -
rameters for Eqs(7.1) and (7.12. Finally, for the confor-  0At= (7" AgWép— EW  Agoh) = (9'W- A~ Ep Aty WD)
mally invariant caséN-=4 we likewise find a nonvanishing - L
result, +(N T A, 16+ E A @ V) (A5)

using Eq.(2.28h. The first term in big parentheses on the
right-hand side precisely cancefd; the second term in big
parentheses groups together withi{A,,, SW} to give
which is associated with the seri€s.2. This implies Eq.  _1[3Tyg,+ £,w' 5, Ayotl; the third term in big parentheses
8% which isdinr[;?ntradiction with the classical exactnesscombines with the remaining terms on the right-hand side of

.2) proposed i 2]. . A ITal 2 4 2T rrr -

Note added in proofWe propose a resolution of the E(%’(/'\A\/S’):tg_Nw\t/ﬁe;é[t\A/Co Sofﬁr:lftzz:}[ojr\g é(ﬁjtot% Sincew’v
Ng=4 discrepancy in N. Dorey, V. Khoze, and M. Mattis,

“On N=2 Supersymmetric QCD with 4 Flavors,” Report

FY=7/(283%), (8.22

1 — —
No. hep-th/9611016unpublishesl ~3 [NV Tag,+ &aN, Al (AB)
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caseN=0 these expressions are equivalent rewritings of theexp(£,Q,) exp(é,Q,) and keeping the cross term. Undgg
formulas in[4] [e.g., Eq.(6.6) abovd, but for Ng>0 they  one hassv .= & 014D\, Which is followed by the re-
differ by &CK Grassmann trilinears. placemen{B1) under the action of),. The remaining steps

From the explicit component Lagrangian including the su-in the argument proceed as bef¢see Sec. V of4]), and are
perpotential(5.1), together with the identities.2), one can  |eft to the reader.

of course solve the Euler-Lagrange equations for these fields
explicitly. But it is easier to exploit th&l=2 supersymmetry
algebra itself to generate these solutions automatically. As i
Sec. IV of[4], we use a construction due to Reff$3] and

[22]: One starts with a “reference” superinstantoh® In this appendix we touch on certain basic features of the
comprising a convenient initial choice of component fieldsN=1 supersymmetric theories of the type considered long
(bosonic and fermionic, adjoint and fundamehtand gen-  ago in[13,24,22, in which all Higgs bosons live in the fun-
erates the desired configuration by acting on it with the apdamental representation of &). We can easily construct
propriate symmetry generators. the superinstanton action by the methodg4if as follows.

For present purpose® is specified as follows. In the The two relevant terms of the component Lagrangian, the
hypermultipletsQ; andQ; , fill only the fundamental fermion  Higgs kinetic energy and the Yukawa interaction, are turned
zero modes(5.3); the remaining fundamental fields are into a surface term with an integration by parts in the former
turned off. In contrast, in the adjoint sector, fill only the together with the Euler-Lagrange equation for the fundamen-
bosonic components initially. Thus the gauge field is theta| scalar,q. As per the divergence theorem, the action may
usual ADHM configuration, while the Higgs bosoA$ and  then be extracted from the xF/ falloff of D,q, where the
A satisfy, respectively, E45.5), and the homogeneous equa- normal  covariant  derivative D, is defined as
tion D?A=0. All antifermions are initially zero. Note that the (X™/\[x]?)D,,. The generic form of} including fermion bi-

components off¥ correctly obey the leading-order coupled linear contributions was given in E€5.10 above:
Euler-Lagrange equations.

Next one acts on?'? infinitesimally with theN=2 gen- . .
eratorsX; _ ,£Q; . This action generates the desired super- q'ﬁzu_fﬁ_ S\ov g+ ! My gf ik (C1)
symmetry modeg6.5) in the adjoint gaugino and Higgsino 2
components. At the same time it produces nonzero anti-
gaugino and anti-Higgsino fields that automatically satisfyignoring flavor indices from now on. As in the text thiare
their respective Euler-Lagrange equations in this backthe Grassmann parameters associated with the fundamental

I,fO\PPENDIX C: N=1 THEORIES WITH FUNDAMENTAL
HIGGS BOSONS

ground. TheN=2 algebra gives fermion zero mode$5.3).
Using Eq.(5.29 together with the asymptotics of the vari-
)\_:i‘/jgszT’ ;: —iv2g, DAT, (B1) ous ADHM quantities listed in Sec. VI B d#], one easily
derives

where A" obeys Eq.(5.5 as stated above. In particular g
has not only a pure bosonic part but a part bilineak’iG as D B e o 2 W |20 53— — K
well, which implies trilinear Grassmann contributions Xo L7 e | T s e
and ¢.

Now think about the behavior of E¢B1) far away from
the center of the multi-instanton. On the one h&ndgener-
alized singular gaugp4]), the x dependence and the tensor 0 ]
structure of the right-hand side approaches a spinor propaga- S E I |2|v|2— I—FB
tor (6.7), up toO(x " °) corrections. On the other hand, from st | 1Tk VI
the divergence theorem, we actually know the coefficient of
the leading 2° falloff as well. Specifically, this coefficient using the notation of Eq2.7)
can be equated to certain terms in the superinstanton action. This supersymmetric ;'mjlti—instanton acticoriginally
This follows from an integration by parts in the Higgs kinetic derived by Yund 28] by different meandiffers from that of
energy term in the component Lagrangian, together with th?he N=2 theory discussed herein, in two important ways.
Higgs equation of motion to cancel the Yukawa term; S€&irst, it has the form of a disconnécted sumrosingle in-

2?(?\7:: C ar:g vil ? off 4] for _deian?. In thte_s;:%ase dﬂ=b2 stantons; in these coordinates there is no interaction between
eory the enure supernstanton actiSiy; may D€ e second, the only gaugino modes that are lifted are

rgad off from 'ghe re§|due in this way. In the models at handthose associated with the top-row elemeanfsof the collec-
with Ng>0, this particular surface integral only accounts fortive coordinate matrix\M”. This leaves B unlifted modes
two of the five separate Pieceﬁﬁhﬁit listed in Sec. v above, [after one implements the constrairi#sé)], which are natu-
namely those labeled) and (iii); these are precisely the rally associated with the diagonal entries of then subma-
pieces proportional to. Combining these two observations, trix M.,. This counting contrasts sharply with thé=2
about the tensor structure and about the reNS|due, gives Egheory in which the number of unlifted modes is independent
(6.8); for Ng>0 one needs to substitugd — S, @s stated.  of the winding number.

In the same way, the desirefj¢é, bilinear piece of the Saturating these modes with anti-Higgsinos as per Af-
field strengthv,, may be generated fromr® by acting with ~ fleck, Dine, and Seiberg[24], one therefore needs

n

(C2

and hence

ik (€3
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(ﬂxl)z(xin in the one-instanton sector, and in general,wherec is a normalization constant. Using E¢p.29 once

(Y(X1)" - ¥(Xyy)) in the n-instanton sector—unlike the again, one easily finds
N=2 theory, the sectors of different topological number do

not interfere with one another. For completeness we write (*)P=—(cl2UPE M sfw* v . (C5)
down the generic form of these antifermions, which satisfy )
the inhomogeneous equation Here 8 and« are color and Weyl indices, respectively; also
. S Eq. (C5) is only valid when the top row oM (i.e., the lifted
(Daath®)P=c(N)Pq", (C4  mode$ consists entirely of zeros.
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