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Multi-instanton calculus in N52 supersymmetric gauge theory. II. Coupling to matter
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We further discuss theN52 superinstantons in SU~2! gauge theory, obtained from the general self-dual
solutions of topological chargen constructed by Atiyah, Drinfeld, Hitchin, and Manin~ADHM !. We realize
theN52 supersymmetry algebra as actions on the superinstanton moduli. This allows us to recast in concise
superfield notation our previously obtained expression for the exact classical interaction betweenn ADHM
superinstantons mediated by the adjoint Higgs bosons, and, moreover, to incorporateNF flavors of hypermul-
tiplets. We perform explicit one- and two-instanton checks of the Seiberg-Witten prepotentials for allNF and
arbitrary hypermultiplet masses. Our results for the low-energy couplings are all in precise agreement with the
predictions of Seiberg and Witten except forNF54, where we find a finite renormalization of the coupling
which is absent in the proposed solution.@S0556-2821~96!03124-4#

PACS number~s!: 11.30.Pb, 11.15.Tk
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I. INTRODUCTION

A. Recent background

The low-energy dynamics ofN52 supersymmetric gauge
theory in the Coulomb phase is determined by a single
lomorphic function: the prepotentialF. In the case ofN52
supersymmetric Yang-Mills~SYM! theory with gauge group
SU~2!, an exact solution forF has been obtained by Seiber
and Witten@1#. In Ref. @2#, these authors have generalize
their analysis to include the coupling toNF flavors of matter
hypermultiplets in the fundamental representation of t
gauge group. Their analysis relies on an elegant phys
interpretation of the singularities ofF, as points at which the
theory admits a weakly coupled dual description in terms
massless monopoles and dyons.

An important feature of the Seiberg-Witten analysis
that it comprises a complete set of predictions for all mul
instanton contributions to the long-distance physics. In pr
ciple, these predictions can be compared with the results
supersymmetric instanton calculus at weak coupling. Se
classical instanton methods rely neither on duality, nor
any subtle assumptions about the number or nature of
singularities ofF at strong coupling. As such, they provid
independent tests of the proposed exact results of@1,2#, and
consequently, of the electric-magnetic duality on which th
are grounded.

This instanton program has been carried out in the o
and two-instanton sectors ofN52 SYM theory in Refs.@3#
and @4#, respectively.@Another approach is that of Ref.@5#;
also see Ref.@6# for higher gauge groups than SU~2!.# A new
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feature in the presence of massless matter hypermultiplets i
that only even numbers of instantons contribute, due to an
anomalous discrete symmetry@2#. Recently we have ex-
tended our two-instanton analysis to this case as well@7#,
focusing on the four-fermion vertex in the low-energy effec-
tive action. In a parallel calculation, the authors of Ref.@8#
have extracted the two-instanton contribution to the expecta
tion value of the quantum modulusu5^TrA2&, with A the
adjoint Higgs field. The generalization to the case of massive
hypermultiplets was also briefly described in@7#. So far, vir-
tually all the instanton calculations described above have
precisely confirmed the predictions of Seiberg and Witten.
The sole exception has been a discrepancy@8# in the two-
instanton contribution tou in the model withNF53. In the
following, we will also find an interesting discrepancy in the
caseNF54.

In the absence of matter, it has also been possible to mak
some progress for arbitrary instanton numbern. The relevant
field configurations are constrained supersymmetric instan
tons based on the general solutions of the self-dual Yang
Mills equation obtained by Atiyah, Drinfeld, Hitchin, and
Manin ~ADHM ! @9#. In Ref. @4#, we solved for the large- and
short-distance behavior of all the component fields in the
self-dual background. This enabled us to construct the exac
classical interaction betweenn ADHM instantons mediated
by the adjoint Higgs bosons, both in the pure bosonic as wel
as in theN52 SYM theory.

Unfortunately, the problem of specifying the multi-
instanton measure for integration over the ADHM moduli
remains unsolved forn.2; this is the principal obstruction to
an all-orders check of the prepotential. Nevertheless, it is still
possible to verify with our methods certain general features
of the proposed exact solution in then-instanton sector. An
example is the nonperturbative relation between the vacuum
modulusu and the prepotentialF. While this relation was
7832 © 1996 The American Physical Society
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originally derived from the Seiberg-Witten solution by Ma
tone@10#, it turns out to be true on much broader grounds;
fact, it is built into the instanton approach. This was show
in Ref. @11#, which extends to alln the observation of Ref.
@12#.

The first goal of this paper is to generalize the mult
instanton SYM results of Ref.@4# to allow forNF fundamen-
tal hypermultiplets with arbitrary masses. We will constru
the superinstanton action in this larger class of models, e
tending to alln the two-instanton formula used in Refs.@7,
8#. To accomplish this, we adopt a method which was orig
nally developed in the early papers on supersymmetric
stantons by Novikov, Shifman, Vainshtein, and Zakharo
@13#. As the relevant field configurations obey equations
motion which are manifestly supersymmetric, any nonva
ishing action of theN52 supersymmetry generators on
particular solution necessarily yields another solution. It fo
lows that the supersymmetry transformations of the fields a
equivalent~up to a gauge transformation! to certain transfor-
mations of the bosonic and fermionic collective coordinat
of the superinstanton solution. Physically relevant quantiti
such as the saddle-point action of the superinstanton mus
constructed out of supersymmetric invariant combinations
the collective coordinates.

An especially attractive feature of the ADHM construc
tion is that the various constraints on the parameters of
bosonic and fermionic fields are automatically supersymm
ric. This means that theN52 supersymmetry algebra can b
realized directly as transformations of the highly overcom
plete ~order n2! set of collective coordinates which appea
explicitly in the ADHM construction.1 In fact, these param-
eters assemble naturally into a single space-time-cons
N52 chiral superfield. This superfield notation systematiz
the construction of supersymmetric invariant combinatio
of the collective coordinates. Thus we demonstrate, in ret
spect, the invariance of theN52 SYM superinstanton action
obtained by component methods in@4#. The incorporation of
NF massive hypermultiplets into this action is then straigh
forward.

Subsequently, we apply these general formulas to so
explicit calculations in the one- and two-instanton secto
These sections provide a more detailed account of the res
presented in our recent paper@7#. As stated there our results
agree with the predictions of Seiberg and Witten for the fou
antifermion correlator^l̄(x1)l̄(x2)c̄(x3)c̄(x4)& which is
proportional to]4F/]v4, where v is the classical vacuum
expectation value~VEV!. However, we now also extract the
effective low-energy gauge couplingteff which involves the
second derivative of the prepotential:2

teff52]2F/]v2. ~1.1!

1This feature of the ADHM construction has been noticed b
other authors@14–16#.
2The factor of 2 on the right-hand side of this equation is intro

duced in order to normalizetcl to the notation of @2#,
tcl58p i /g21u/p. We perform no further rescalings of the param
eters ofN52 SYM theory when the hypermultiplets are added. Se
Ref. @4# for a complete list of our conventions.
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The difference between these two quantities as tests of the
proposed exact solutions is purely academic, except for the
caseNF54 which we now discuss.

B. The caseNF54

ForNF54, both the perturbativeb function and the U~1!R
anomaly vanish. This theory is parametrized by the dimen-
sionless gauge couplingg2 and the vacuum angleu which
cannot be rotated away; these are combined to form a single
complex parametertcl . In this model, Seiberg and Witten
propose an exact electric-magnetic duality which relates
theories characterized by different values oftcl . For this du-
ality to hold it is necessary that the masslessNF54 theory be
exactly conformally invariant. In other words, the conformal
anomaly which vanishes to all orders in perturbation theory
must remain zero when non-perturbative effects are included
These authors also make the stronger assumption that th
masslessNF54 theory is classically exact, which means that
the low-energy effective coupling~1.1! is simply equal to its
classical counterpart:

teff[tcl . ~1.2!

In the massiveNF54 theory the low-energy correlators have,
instead, an infinite expansion in the dimensionless one-
instanton factorq:

q5exp~ iptcl!. ~1.3!

As mentioned above, certain general features of the multi-
instanton contributions can be deduced from the genera
form of the superinstanton action. In particular, we will ob-
tain a representation for the prepotential itself as an integral
over the superinstanton moduli, generalizing toNF.0 a re-
sult of Ref.@11#. Although forn.2 the measure of integra-
tion is not known, its only dependence onv is through the
superinstanton action for which we have obtained an exact
formula. By dimensional analysis, each term in the multi-
instanton series forF is seen to scale likev2 whenNF54, so
that the vanishing of theb function @which is related to
F-(v)# is essentially built into the instanton approach.3

However, we should also comment on a result we have
obtained for theNF54 theory with massless hypermultiplets
which appears to differ from the predictions of Seiberg and
Witten. We have calculated the two-instanton contribution to
the low-energy effective couplingteff ~the odd-instanton con-
tributions being zero as noted above!. We find thatteff re-
ceives finite corrections of the form

teff5tcl1
i

p (
n52,4,6,...

cnq
n, ~1.4!

in contrast with the proposed classical exactness~1.2!. Spe-
cifically we extract the dimensionless numberc2 in Sec. VIII
below and find that it is nonzero,c2527/~2635!. From our
expression for the prepotential we expect all thecn to be
generically nonzero as well. Note that the ‘‘translation’’ half

y

-

-
e 3A caveat to this is that the integrals over the superinstanton
moduli must presumably be finite.
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of the modular group is preserved by such
series: tcl→tcl12 impliesteff→teff12. It is natural to con-
jecture that the ‘‘inversion’’ half of the modular group is
realized as well@albeit in a more complicated way than fo
Eq. ~1.2!# as some SL~2,Z! transformation
teff→~a1bteff!/~c1dteff!, with the value ofc2 providing a
helpful clue.

Finally we should mention the case of masslessN54 su-
persymmetric gauge theory. In this case the instanton h
eight fermion zero modes which are protected byN54 su-
persymmetry and cannot be lifted@17#. It follows that instan-
tons do not contribute to the prepotential and in particul
corrections of the form~1.4! do not occur.

C. The plan of this paper

This paper is organized as follows. In Sec. II, after a bri
review of our ADHM conventions from@4#, we implement
theN52 supersymmetry algebra directly as an action on t
overcomplete set of bosonic and fermionic ADHM param
eters. The results of this exercise are collected in Eq.~2.28!.
In Sec. III we revisit theN52 SYM multi-instanton action
from Ref. @4#, and demonstrate that it is in fact a supersym
metry invariant. To make this manifest we assemble t
ADHM parameters into a singleN52 space-time-constant
‘‘superfield,’’ and recast the SYM action as anN52 ‘‘F
term.’’ In Sec. IV we show that the various ADHM bosonic
and fermionic constraints likewise assemble into a sing
N52 supermultiplet.

Hypermultiplets are introduced starting in Sec. V. We in
corporate them into the general multi-instanton SYM actio
using invariance arguments. The final expression for the
tion, Eq. ~5.20!, is discussed further in Sec. VI.

In Sec. VII we discuss the prepotentialF. General aspects
of the prepotential that emerge from the Seiberg-Witten fo
malism are reviewed in Sec. VII A. Alternatively, a forma
representation, Eq.~7.20!, of the prepotential as an integra
over the multi-instanton supermoduli space is derived in S
VII B. Finally the explicit one- and two-instanton tests dis
cussed above of the proposed exact solutions are perform
in Sec. VIII. Numerical values of the two-instanton contr
butions to the prepotentials forNF50,1,2,3,4 are given in
Eqs.~8.21! and ~8.22!.

The paper also contains three Appendixes. In particul
in Appendix C we explain an important difference in th
numbers of fermion zero modes lifted by the VEV of a
adjoint Higgs field as opposed to a fundamental Higgs fie
in the latter case the different topological sectors do not
terfere.

II. N52 SUPERSYMMETRY ALGEBRA
ON THE INSTANTON MODULI

A. ADHM preliminaries

The basic object in the ADHM construction@9# of self-
dual SU~2! gauge fields of topological numbern is an (n
11)3n quaternion-valued matrixDl l(x), which is a linear
a
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function of the space-time variablex:4

Dl l5al l1bl lx, 0<l<n, 1< l<n. ~2.1!

The gauge fieldvm(x) is then given by~displaying color
indices!

vm
ȧ

ḃ5Ūl
ȧa]mUlaḃ , ~2.2!

where the quaternion-valued vectorUl lives in the' space
of D:

D̄llUl5ŪlDl l50, ~2.3a!

ŪlUl51. ~2.3b!

It is easy to show that self-duality of the field strengthvmn is

equivalent to the quaternionic conditionD̄kl
ḃbDl lbȧ

5( f21)kld
ḃ

ȧ ; Taylor expanding inx then gives

āa5~ āa!T}dḃ
ȧ , ~2.4a!

b̄a5~ b̄a!T, ~2.4b!

b̄b5~ b̄b!T}da
b, ~2.4c!

where theT stands for transpose in the ADHM indices~l, l ,
etc.! only.

In a supersymmetric theory there is also the gaugino

~la!ḃ
ġ5Ū ḃgMg f b̄Uaġ2Ū ḃ

ab fMgTUgġ . ~2.5!

We suppress ADHM indices but exhibit color~dotted! and
Weyl ~undotted! indices for clarity. The condition thatl be
considered the superpartner of the self-dual gauge fieldvm is
simply that it satisfy the two-component Dirac equation in

the ADHM background@13#, D”̄ ȧala50. This, in turn,
is equivalent to the following linear constraints on the
(n11)3n constant Grassmann matrixMg @19#:

āȧgMg52MgTag
ȧ, ~2.6a!

b̄a
gMg5MgTbga . ~2.6b!

In theN52 theory the fermion zero modes~2.5! are redupli-
cated by the Higgsinoc as well, to which we associate the
matrixNg ; in addition there is the adjoint Higgs fieldA to be
discussed shortly.

Without loss of generality we can restrict to the following
canonical forms for the (n11)3n matricesaaȧ , ba

b ,Mg,
andNg:

4We use quaternionic notationx5xaȧ5xnsaȧ
n , ā5āȧa

5āns̄n
ȧa , b5ba

b , etc., wheresn and s̄n are the spin matrices of
Wess and Bagger@18#. See the reposted/published version of@4# for
a self-contained introduction to the ADHM construction including a
full account of our conventions and a set of useful identities used
throughout the present paper. We also setg51 throughout, except,
for clarity, in the Yang-Mills instanton action 8p2n/g2.
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aaȧ5Sw1aȧ ••• wnaȧ

aaȧ8 D , ba
b5S 0

da
b

A
0

•••
•••
�

•••

0
0
A

da
b
D ,

Mg5S m1
g ••• mn

g

M8g D , N g5S n1
g ••• nn

g

N 8g D .
~2.7!

Thanks to this simple form forb, the constraint~2.4c! is now
automatically satisfied, while Eqs.~2.4b! and ~2.6b! reduce
to the symmetry conditions on then3n submatrices:

a85a8T, M85M8T, N 85N 8T. ~2.8!

Let us pause to count the number of superinstanton c
lective coordinates. We expect there to be 8n bosonic de-
grees of freedom in the matrixa ~4n instanton positions,n
scale sizes, and 3n iso-orientations in the far-separate
limit !, matched by 4n Grassmann degrees of freedom in eac
ofM andN. From Eqs.~2.8!, ~2.6a!, and~2.4a! we see that
the fermionic count is correct; however there are far to
many bosonic variables, in fact, ordern2. These necessarily
unphysical redundancies reflect the existence of the rema
ing x-independent SU~2!3O(n) symmetries which preserve
all ADHM constraints as well as the canonical form ofb
given above:

D→S V 0 ••• 0

0

A RT

0

D •D•R. ~2.9!

HereRPO(n) and carries no SU~2! indices; in contrastVa
b

is a unit-normalized quaternion which acts on these indic
While the V degrees of freedom merely double count th
global gauge rotations, the action of the O(n) poses a bigger
technical problem; in general it must be eliminated from th
path integral with a Faddeev-Popov prescription@20,4#.

B. N52 SUSY algebra

We can now construct theN52 supersymmetry variation
of the collective coordinate matrixa. We start with the usual
transformation law5 for the gauge field under
( i51,2 j iQi1 j̄ i Q̄i :

dvm5 j̄1s̄ml1 j̄2s̄mc2l̄s̄mj12c̄s̄mj2 . ~2.10!

In the present case the first two terms on the right-hand s
are obtained from Eq.~2.5!; the final two terms vanish, since
the antifermions are zero at the classical level~they are down
by one power of the coupling!. Following @13#, the strategy
is to trade anactive transformation on the fields such as Eq
~2.10!, for an equivalentpassivetransformation on the col-

5We follow the supersymmetry conventions of Appendix A of@4#,
with the exception thatvm→ ivm due to our conventional use of
anti-Hermitian ADHM gauge fields. The relation to the supersym
metry parameters of@7# is given byj5j1 andj852j2.
ol-
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e

e
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lective coordinates. In order to do so, we must first unde
stand@21# how to relate a variationdUl ~hencedvm! to an
underlying variationda of the collective coordinate matrix,
assuming that we restrict attention to variations that prese
the various ADHM conditions and constraints. Varying Eq
~2.3a! gives dŪD52ŪdD, or equivalentlydŪ ~12P!5
2ŪdD f D̄, whereP is the usual ADHM projection operator

Plk5UlŪk5dlk2Dl l f lkD̄kk . ~2.11!

By inspection, the general solution is

dŪ52ŪdD f D̄1S~x!Ū. ~2.12!

HereS(x) ȧ
ḃ is arbitrary, save for the condition~2.3b! which

forces 05S1S̄[tr2 S; consequentlyS(x) is precisely an
infinitesimal local SU~2! gauge transformation. From Eq.
~2.2! we obtain, finally@21#,

dvm5dŪ]mU1Ū]mdU

5Ūda fs̄mb̄U2Ūsmb fdāU2DmS. ~2.13!

In the last rewrite we have used Eq.~2.3a!, Eq. ~2.1!, and an
integration by parts; we have also setdD5da as we are
holdingb fixed as per Eq.~2.7!. Comparing the active trans-
formation ~2.10! and ~2.5! with the passive transformation
~2.13!, we extract the simple rule

daaȧ5 j̄1ȧMa1 j̄2ȧNa ~2.14!

Notice that the local gauge transformation represented by
last term of Eq.~2.13! proved unnecessary; one can setS50.

Next we turn to the subtler case of the fermions, who
active supersymmetry transformation is given by

dl5 i& j̄2D”̄ A2 i j1s
mnvmn , ~2.15a!

dc52 i& j̄1D”̄ A2 i j2s
mnvmn . ~2.15b!

Here the adjoint Higgs componentA of the superinstanton is
defined by the Euler-Lagrange equation6

D2A5& i @l,c#. ~2.16!

~In contrast, the antibosonA† obeys the homogeneous equa
tion

D2A†50 ~2.17!

whenNF50; the superinstanton breaks the conjugation sym
metry betweenA andA†.! The construction of the solution of
Eq. ~2.16! for generaln is one of the principal results of@4#.
In brief, the answer has the additive formA5A(1)1A(2),
where

-

6In both Eqs.~2.15! and ~2.16!, and elsewhere in this paper, we
ignore the auxiliary fieldsF andD which only turn on at a higher
order in the coupling.
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iA ~1!ȧ
ḃ5

1

2&
Ū ȧa~Na fMbT2Ma fN bT!Ubḃ ,

~2.18!

and iA (2)ȧ
ḃ5Ū ȧaAa

bUbḃ , with A a block-diagonal con-
stant matrix,

Aa
b5S A00a

b 0 ••• 0

0

A Atotda
b

0

D . ~2.19!

A00 is related in a trivial way to the VEV~which we point in
the t3 direction!,

A00a
b5

i

2
vt3a

b, Ā00a
b52

i

2
v̄t3a

b, ~2.20!

while the n3n antisymmetric matrixAtot is defined as the
solution to an inhomogeneous linear matrix equation@4#,
namely Eq.~A1! in Appendix A below.~In the language of
Sec. VII of @4#, Atot is the sum

Atot5A81Af8 , ~2.21!

whereA8 is purely bosonic whileAf8 is a fermion bilinear.!
As above we need to equate the active transformat

~2.15a! with the passive transformation derived from E
~2.5!:

dl5ŪdMf b̄U1dŪMf b̄U1ŪMf b̄dU

1ŪMd f b̄U2H.c. ~2.22!

The first term on the right-hand side contains the unkno
dM that we wish to determine; the second and third ter
are already fixed by Eqs.~2.12! and ~2.14!; the fourth term,
too, is a known entity, since

d f52 fd~D̄D! f52 f ~dāD1D̄da! f . ~2.23!

A lengthy but straightforward calculation yields a welcom
simplification: the second, third, and fourth terms, tak

together, cancel precisely against the piecei& j̄2D”̄ A(1) from
Eq. ~2.18! that enters the right-hand side of Eq.~2.15a!.
Equating what remains gives the defining condition fordM:

Ū ḃgdMg f b̄Uaġ2H.c.

5 i& j̄2D”̄ A~2!2 i j1s
mnvmn

5Ū ḃg~24ibj1g22&Cgȧj̄2
ȧ! f b̄Uaġ2H.c. ~2.24!

The final rewrite makes use of the well-known form of th
ADHM field strength,

vmn
ȧ

ḃ5~vmn
ȧ

ḃ!dual54Ū ȧabsmn a
b f b̄Ubḃ , ~2.25!

as well as identities~7.8! and~C1! from @4#. The (n11)3n
quaternion-valued constant matrixC is defined as
ion
q.

wn
ms

e
en

e

C5SA00w12wkAtot k1 ••• A00wn2wkAtot kn

@Atot ,a8#
D .

~2.26!

It follows that

dMg524ibj1g22&Cgȧj̄2
ȧ ~2.27a!

and likewise

dNg524ibj2g12&Cgȧj̄1
ȧ . ~2.27b!

The final ingredient needed is theN52 transformation
law for Atot itself. As shown in Appendix A, it is a
singlet: dAtot50. This equation together with Eqs.~2.14!
and~2.27! are the sought-after realization of theN52 super-
symmetry algebra on the collective coordinates of th
ADHM superinstanton. When hypermultiplets are included
these equations are supplemented by Eq.~5.18! below, where
K andK̃ are the Grassmann collective coordinates associat
with the fundamental fermions. For ease of reference w
assemble them all here:

daaȧ5 j̄1ȧMa1 j̄2ȧNa , ~2.28a!

dMg524ibj1g22&Cgȧj̄2
ȧ , ~2.28b!

dNg524ibj2g12&Cgȧj̄1
ȧ , ~2.28c!

dAtot50, ~2.28d!

dKi50, ~2.28e!

dK̃i50. ~2.28f!

The careful reader will notice, however, that theN52
algebra is not precisely obeyed by the above. For instanc
the anticommutator$Q̄1 ,Q̄2%, rather than vanishing when
acting ona,M, or N, gives a residual symmetry transfor-
mation of the form~2.9!. ~This is analogous to naive real-
izations of supersymmetry that fail to commute with Wess
Zumino gauge fixing, for example.! For present purposes this
poses no problem, as we are always ultimately concern
with singlets under Eq.~2.9!; otherwise one would have to
covariantize the supersymmetry transformations with respe
to Eq. ~2.9! in the standard way.

III. MULTI-INSTANTON ACTION IN PURE N52
SUPERSYMMETRIC GAUGE THEORY

Although, as we saw in the previous section, the superi
stanton transforms under supersymmetry, its saddle-point a
tion must be invariant. For a single instanton, in the presen
of a Higgs field~fundamental or adjoint!, the bosonic part of
the action is proportional touvu2r2. In N51 models, such as
those considered in@13,22#, the squared instanton scale-size
r2 is augmented in the action by a fermion bilinear term t
form a supersymmetric invariant combinationr inv

2 . We now
check that the same property holds for the action inN52
supersymmetric Yang-Mills theory, for arbitrary topologica
numbern. In this case the action is given by@4#
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Sinst
0 5

8np2

g2
116p2uA00u2(

k
uwku228p2L̄lkAtot kl

14&p2mk
aĀ00a

bnkb , ~3.1!

whereL̄ is then3n scalar-valued antisymmetric matrix

L̄lk5w̄lĀ00wk2w̄kĀ00wl , L lk5w̄lA00wk2w̄kA00wl .
~3.2!

The supersymmetric invariance of this expression under
transformations~2.28a!–~2.28d! is immediate: the second
and third terms on the right-hand side give, respective
216p2uA00u

2(mkwkj̄11nkwkj̄2) and 216p2( j̄2w̄lĀ00nk
2m lĀ00wkj̄1)Atot kl which are canceled precisely by th
variation of the last term.

Despite the simplicity of this last calculation, it is illumi
nating to reformulate the action~3.1! in a more concise form
in which the supersymmetry is manifest. To this end, w
promote the ADHM collective coordinate matrixa to a
space-time-constant ‘‘superfield’’a( ū i) in an obvious way:

7

aaȧ→aaȧ~ ū i !5eū 2Q̄23eū 1Q̄13aaȧ

5aaȧ1 ū1ȧMa1 ū2ȧNa12&Caḃū2
ḃū1ȧ

1& ū1ȧū2
2CN a , ~3.3!

where the Grassmann matrixCN is defined in analogy withC,

CN5SA00n12nkAtotk1 ••• A00nn2nkAtot kn

@Atot,N 8#
D .

~3.4!

A short calculation making use of the defining equatio
~A1! for Atot gives the desired rewrite of the action~3.1! as a
manifestly supersymmetricN52 ‘‘F term:’’

Sinst
0 5

8np2

g2
2p2Trā~ ū !~P`11!a~ ū !U

ū
1
2 ū

2
2
. ~3.5!

Here the capitalized ‘‘Tr’’ indicates a trace over both ADHM
and SU~2! indices, Tr5Trn+tr2, andP` is the (n11)3(n
11) matrix

P`5 lim
r→`

P512bb̄5dl0dk0 . ~3.6!

Note the following.
~1! The intermediate expression~3.3! is not symmetric in

ū1 and ū2. This merely reflects the point noted earlier, th
we have only realized theN52 algebra up to transformation
of the type~2.9!; thereforeQ̄1 and Q̄2 do not actually anti-
commute. Nevertheless the final expression~3.5! is a singlet
under Eq.~2.9!, so this poses no problems.

~2! The purely bosonic part ofSinst
0 in Eq. ~3.5! may be

viewed in two ostensibly different ways. On the one hand,

7From now on we ignore the action of theQi which act in a trivial
way, and focus exclusively on theQ̄i . For a related construction in
a model without a VEV, see@14#.
the
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the above construction, it comes entirely from the square of
the fourth term on the right-hand side of Eq.~3.3!. On the
other hand, we also know@4# that it comes entirely from the
Higgs kinetic energy term in the component Lagrangian
~where only the bosonic part ofA is taken!. To reconcile
these two statements, note that the bosonic part ofC from Eq.
~2.26! is precisely Eq.~C1! in @4#. The bosonic action there-
fore corresponds to the expression~B5! of @4# for the overlap
of two vector zero modesDnA, which is indeed the Higgs
kinetic energy~see Appendixes B and C of@4# for details!.
The form of Eq.~3.5! was therefore inevitable.

IV. SUPERSYMMETRIC REFORMULATION
OF THE CONSTRAINT EQUATIONS

The component fields of theN52 superinstanton, and
their respective moduli, follow a suggestive pattern.

~i! The gauge fieldvm obeys a nonlinear homogeneous
differential equation~the Yang-Mills equation!. The associ-
ated collective coordinatesa obey a nonlinear homogeneous
constraint ~2.4a!. This condition imposes32n(n21) con-
straints on the upper-triangular traceless quaternionic ele-
ments ofāa.

~ii ! The fermionsl andc obey linear homogeneous dif-
ferential equations~the covariant Dirac equation!. Their as-
sociated moduliM andN obey the linear homogeneous con-
straint ~2.6a!. This imposesn(n21) conditions on each of
M andN.

~iii ! Finally the Higgs fieldA is the solution to an inho-
mogeneous linear differential equation~the covariant Klein-
Gordon equation with a Yukawa source term!. Correspond-
ingly, the matrix Atot satisfies an inhomogeneous linear
‘‘constraint equation,’’ namely Eq.~A1! below. This equa-
tion determines the12n(n21) scalar degrees of freedom in
then3n antisymmetric matrixAtot .

Notice that the total number of bosonic and fermionic
constraints are each 2n(n21). This balancing between
bosonic and fermionic degrees of freedom suggests that the
set of constraints~2.4a!, ~2.6a!, and~A1! might naturally be
combined into anN52 ‘‘super-multiplet’’ of constraints.
Here we show that this is in fact the case.

In light of the ‘‘superfield’’ a( ū) constructed above, the
obvious ansatz for this super-multiplet of constraints is to
introduceū dependence into the original ADHM condition
~2.4a!:

ā~ ū !a~ ū !5„ā~ ū !a~ ū !…T}dḃ
ȧ . ~4.1!

@Note that Eq.~2.4b! is automatically satisfied fora→a( ū)
thanks to the canonical choices~2.7!–~2.8!.# The first few
terms in the Taylor expansion of Eq.~4.1! look promising
~see Fig. 1!: The bosonic component is just Eq.~2.4a!

FIG. 1. TheN52 supermultiplet, and the corresponding ele-
ments of the super-ADHM constraints~4.1!.
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itself, while theū1 and ū2 components indeed reproduce th
zero-mode condition~2.6a! forM andN, respectively.

Less obvious is theū13 ū2 component of Eq.~4.1!, which
we rewrite as the triplet of conditions

tr2t
kā~ ū !a~ ū !50, k51,2,3, ~4.2!

wheretk is a Pauli matrix. Extracting theū2ḃū1
ȧ component

of Eq. ~4.2! after some index rearrangement gives

05tkḃ
ȧL f1tġȧ

k
„~ āC!ġḃ1~ C̄a!ḃġ

…, ~4.3!

where in the notation of@4#,

L f52L f
T5

1

2&
~MbTNb2N bTMb!. ~4.4!

This equation is analyzed as follows. Tracing on color ind
ces tells us thatāC1 C̄a}dȧ

ḃ . So we plug

~ C̄a!ȧ
ḃ5Xdȧ

ḃ2~ āC!ȧ
ḃ ~4.5!

into Eq. ~4.3!, the n3n matrix X being the unknown, and
deduceX5L f1tr2āC. Equation~4.5! then becomes

L f5 C̄a1~ āC2tr2 āC!5 C̄a2~ C̄a!T. ~4.6!

Up to this point the manipulations have been valid for arb
trary C. But if one substitutes the explicit expression~2.26!
for C in terms ofAtot , Eq. ~4.6! does in fact become the
defining linear equation~A1! for Atot , expressed in espe
cially concise form. With Eqs.~2.26! and ~2.4a! one also
confirms thatāC1C̄a is pure trace in the SU~2! space; thus
all tensor components of Eq.~4.3! have properly been ac-
counted for. The remainingu components of Eq.~4.1! turn
out to be ‘‘auxiliary’’ as they contain no new information
Some are satisfied trivially, while others boil down to th
earlier relations~2.4a!, ~2.6a!, or ~A1!.

V. MULTI-INSTANTON ACTION IN N52
SUPERSYMMETRIC QCD

Following @2# we now turn our attention to the richer clas
of models in which theN52 supersymmetric Yang-Mills
action is augmented byNF matter hypermultiplets which
transform in the fundamental representation of SU~2!. Each
N52 hypermultiplet corresponds to a pair ofN51 chiral
multiplets,Qi and Q̃i where i51,2,...,NF , which contain
scalar quarks~squarks! qi and q̃i , respectively, and fermi-
onic partnersxi and x̃ i . We will restrict our attention to the
Coulomb branch of the theory where the squarks do not
quire a VEV. In theN51 language, the matter fields coup
to the gauge multiplet via a superpotential,

W5(
i51

NF

&Q̃iFQi1miQ̃iQi ~5.1!

suppressing color indices. The second term is anN52 in-
variant mass term.

As reviewed above, the component fields of the super
stanton which reside in the adjoint representation of SU~2!
have the generic formŪXU. Similarly, those in the funda-
e

i-

i-

-

.
e

s

ac-
le

in-

mental representation have the structureŪX. The solution of
the coupled Euler-Lagrange equations for each of these fiel
is simplified by the use of the differentiation identities in the
ADHM background:

Dn~ŪX!52Ū]nD f D̄X1Ū]nX, ~5.2a!

D2~ŪX!5Ū]2X22Ūbsnf D̄]nX14Ūb f b̄X, ~5.2b!

Dn~ŪXU!52Ū]nD f D̄XU2ŪXD f ]nD̄U1Ū]nXU,
~5.2c!

D2~ŪXU!54Ū$b f b̄,X%U24Ūb f•tr2 D̄XD• f b̄U

1Ū]2XU22Ūb fsnD̄]nXU

22Ū]nXDs̄nf b̄U. ~5.2d!

As in @4#, the construction of the short-distance superin
stanton starts with the fermion zero modes in the ADHM
background, then proceeds to the Higgs bosons in the pre
ence of fermion-bilinear Yukawa source terms. The funda
mental fermion zero modesxi andx̃ i , for i51,...,NF , were
constructed in@19,23#:

~x i
a!ḃ5Ūl

ḃablkf klKl i , ~ x̃ i
a!ḃ5Ūl

ḃablkf klK̃l i , ~5.3!

with a a Weyl andḃ an SU~2! color index. Using Eq.~5.2a!

it is easily checked that these are annihilated byD”̄ ġ
a . Note

that eachKki and K̃ki is a Grassmann number rather than a
Grassmann spinor; there is no SU~2! index. The normaliza-
tion matrix of these modes is given by@23#

E d4x~x i
a!ḃ~ x̃a j !ḃ5p2Kl i K̃l j . ~5.4!

Next we consider the adjoint Higgs bosons. In the pres
ence of the superpotential the Euler-Lagrange equatio
~2.16! for A is unchanged; however Eq.~2.17! for A† now
becomes

~D2A†!ġ
ȧ5

1

2&
(
i51

NF

~x i
ġx̃ i ȧ1x̃ i

ġx i ȧ!, ~5.5!

displaying color and flavor but suppressing Weyl indices
The solution of Eq.~5.5! is similar to, but simpler than, that
of Eq. ~2.16!. At the purely bosonic level, with all Grass-
manns turned off,A andA† must coincide, except forv→ v̄.
In contrast, the fermion bilinear contributions toA and toA†

in the path integral are to be treated as independent. Th
bilinear contribution toA† is straightforwardly obtained from
Eq. ~5.5!, using the identity~5.2d!, together with the manipu-
lations described in Sec. VII B of@4#. It has the form

2 iŪ ȧa
•S 0 ••• 0

A Ahypda
b

0
D •Ubḃ , ~5.6!

where then3n antisymmetric matrixAhyp is defined as the
solution to the inhomogeneous linear equation
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L•Ahyp5Lhyp. ~5.7!

HereL is the ubiquitous linear matrix operator reviewed in
Appendix A, and then3n antisymmetric matrixLhyp is
given by

~Lhyp!k,l5
i&

16 (
i51

NF

~KkiK̃l i1K̃kiKl i !. ~5.8!

Similarly, the squarksqi satisfy the leading-order Euler-
Lagrange equation

D2qi52 i&lx i ~5.9!

and likewise forq̃i . Using Eq.~5.2b! together with identities
~7.9! and ~C.3a! in @4# one easily derives

qi
ḃ5Ūl

ḃb
•S dl0v ib1

i

2&
Ml lb f lkKkiD , ~5.10!

wherev i is the fundamental VEV of thei th hypermultiplet;
in the Coulomb branch all thev i are zero. All remaining
adjoint and fundamental component fields of the superinsta
ton in N52 supersymmetric QCD may be constructed b
these methods. Fortunately, through judicious use of integ
tions by parts together with the equations of motion, the ne
expressions~5.3!, ~5.6!, and~5.10! are all that are needed for
our present goal of constructing the superinstanton actio
Sinst
NF . By inspection of the component Lagrangian, one se
that this action consists of a sum of five types of terms:~i!
purely bosonic terms,~ii ! terms bilinear in the adjoint ferm-
ion collective coordinatesM andN, ~iii ! terms bilinear in
the fundamental fermion collective coordinatesK andK̃, ~iv!
fermion quadrilinear terms, consisting of one paramet

drawn from each ofM, N, K, and K̃, and finally ~v! the
N52 invariant hypermultiplet mass term. Let us conside
each in turn.

The construction of~i!, ~ii !, and ~iii ! proceeds precisely
along the lines discussed in detail in Secs. IV C and VII D o
@4#: the relevant bits of the component action are converte
to a surface term, and are given by the coefficient of the 1/x2

falloff of the total adjoint Higgs field, including fermion bi-
linear contributions, as it approaches its VEV. In this wa
one immediately finds that the contributions~i! and ~ii ! to
Sinst
NF are still given bySinst

0 , Eq. ~3.1! or Eq. ~3.5! above. By
identical arguments,~iii ! is given by

28p2L lkAhyp kl , ~5.11!

whereL was defined in Eq.~3.2!.
More subtle is the construction of the fermion quadrilin

ear term~iv!. Our calculation of this term proceeds in three
steps, summarized as follows.~1! Show thatL is self-
adjoint, and use this property to rewrite Eq.~5.11! as

28p2LhyplkAkl8 , ~5.12!

whereA8 was defined in Eq.~2.21! as the purely bosonic
piece ofAtot ; ~2! show thatLhyp is a supersymmetric invari-
ant; and finally~3! promote Eq.~5.12! to a supersymmetric
invariant in the unique way. Here are the details.
n-
y
ra-
w

n,
es

er

r

f
d

y

-

~1! Let V andV8 be two n3n antisymmetric matrices
that are scalar valued~i.e., proportional to the identity in the
quaternionic space!. Let us define an inner product on the
space of such matrices in the naive way, by

^V8uV&5TrnV8TV. ~5.13!

From the explicit expressions in Appendix A, it is elemen-
tary to show thatL is self-adjoint with respect to the above
metric:

^V8uL•V&5^VuL•V8&. ~5.14!

The claimed equality between Eqs.~5.11! and ~5.12! then
follows immediately from Eqs.~5.14! and~5.7! together with
the defining equation forA8 @Eq. ~7.21! of @4# #:

L•A85L. ~5.15!

~2! Next we show that each individualKki and K̃ki , and
henceLhyp, is a supersymmetric invariant. As in Sec. II
above, we equate the active supersymmetry transformation8

d~x i
a!ḃ52 i& j̄1ȧD”̄ ȧaqi

ḃ52
1

2
j̄1ȧs̄nȧaŪ ḃb

„Mb f ]n~D̄D!

1bsnbġ f D̄
ġgMg…fKi , ~5.16!

with the passive supersymmetry transformation

d~x i
a!ḃ5d~Ū ḃab fKi !5dŪ ḃab fKi1Ū ḃabd fKi

1Ū ḃab fdKi . ~5.17!

Remembering Eqs.~2.12!, ~2.23!, and~2.28a!, one finds that
the first two terms on the right-hand side of Eq.~5.17! equal
the first two terms on the right-hand side of Eq.~5.16!, re-
spectively; this leaves

05dKi5dK̃i , ~5.18!

as claimed.
~3! SincedLhyp50, supersymmetrizing Eq.~5.12! simply

means promotingA8→Atot , as per Eqs.~2.21! and ~2.28d!.
Since the difference between them consists of fermion bilin
ears, this step introduces the promised fermion quadrilinear
and restores supersymmetry invariance.

Finally we turn to~v!, the hypermultiplet mass term given
in Eq. ~5.1!. In the Coulomb branch this reduces to a mass
term for the fundamental fermions only, up to higher-order
corrections in the coupling constant. From the normalization
condition ~5.4! one derives

Smass5p2(
i51

NF

miKl i K̃l i . ~5.19!

Putting these pieces together gives the general ADHM supe
instanton action forN52 supersymmetric QCD with gauge
group SU~2!:

8To avoid clutter we restrict ourselves here to the first supersym
metry.
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Sinst
NF5Sinst

0 28p2LhyplkAtot kl1Smass. ~5.20!

This is the generalization to alln of the two-instanton action
presented recently in@7,8#.

VI. GENERAL FEATURES
OF THE SUPER-MULTI-INSTANTON ACTION

From the form of the action~5.20! we can immediately
make several observations of a general nature.

~1! The self-adjointness property ofL noted above allows
us to reexpress this action in a variety of equivalent way
For instance we can rewrite

8p2LhyplkAtot kl58p2~L lk1L f lk!Ahyp kl , ~6.1!

where the antisymmetric matrixLf introduced in Eq.~4.4! is
the Yukawa source term forAf8 @Eq. ~7.29! of @4# #:

L•Af85L f . ~6.2!

~2! Let us isolateSmassfrom the action~5.20! and assign it
to then-instanton collective coordinate integration measu
dmhyp for the fundamental fermions:

E dmhyp5
1

p2nNF E )
i51

NF

dK1i•••dKnidK̃1i•••dK̃ni

3exp~2Smass!, ~6.3!

where the normalization constant in front has been read fr
Eq. ~5.4!. Consider this expression in the chiral limit
Smass50. In this limit, for fixed flavor indexi , the Grassmann
measure is obviously even or odd under the discrete symm
try

Kl i↔K̃l i , ~6.4!

depending on whethern itself is even or odd. On the other
hand, the term28p2LhyplkAtot kl in the action~5.20! is al-
ways even under this symmetry, as follows from Eq.~5.8!.
Therefore, for NF.0, only the even-instanton sector
n50,2,4... can contribute in the chiral limit9 ~recall that when

9The absence of a one-instanton contribution is particularly ea
to see sinceLhyp vanishes identically forn51, and so theK andK̃
Grassmann integrations are unsaturated.
s.

re

om
,

e-

s

NF50, all instanton numbers contribute!. This selection rule
was already noted by Seiberg and Witten in Sec. III of@2#; it
is not surprising to find that it is built into the instanton
calculus. It is violated when masses are turned on, since
Kl i K̃l i is odd under this symmetry.

~3! In the even-instanton sectors~and in the odd-instanton
sectors as well when masses are turned on!, the number of
exact fermionic modes, i.e., those modes which do not ap
pear in the action, remains the same for alln and for allNF .
Just as in pure Yang-Mills theory@4#, the unbroken modes
are the four adjoint fermionic modes associated with the four
supersymmetry generators that act nontrivially on the self-
adjoint ADHM gauge field.10 These are the supersymmetric
gaugino and Higgsino zero modes generated byj1Q1 and
j2Q2, respectively. Explicitly, they are given by Eq.~2.5!,
with

Mg54j1gb and Ng54j2gb. ~6.5!

~4! Following the strategy originally established by Af-
fleck, Dine, and Seiberg@24#, in the explicit calculations to
follow we will saturate these four unbroken modes by suit-
able insertions of long-distance fields. These are the compo
nents of the superinstanton that are parallel to the adjoin
VEV and hence have power-law falloff; in comparison, the
components orthogonal to the VEV decay exponentially as
exp~2MWr !, and can be ignored. As we saw in pure Yang-
Mills theory @4#, for any n the structure of these long-
distance fields can be read off directly from the superinstan-
ton action itself. In that theory, the long-distance anti-
Higgsino and antigaugino components satisfy@4#

c̄ ȧ~x!5 i&v21SHiggsj1
aSaȧ~x,x0! ~6.6a!

and

l̄ȧ~x!52 i&v21SHiggsj2
aSaȧ~x,x0!, ~6.6b!

respectively. HereSHiggs is the purely bosonic part of the
superinstanton action,x0 is the position of the multi-
instanton, andS(x,x0) is the Weyl spinor propagator:

S~x,x0!5]”G~x,x0!, G~x,x0!5
1

4p2~x2x0!
2 . ~6.7!

In @11# we found it helpful to rewrite Eq.~6.6! in a slightly
different way, as

c̄ ȧ~x!5 i&
]Sinst

0

]v
j1

aSaȧ~x,x0! ~6.8a!

and

l̄ȧ~x!52 i&
]Sinst

0

]v
j2

aSaȧ~x,x0!, ~6.8b!

sy 10This mode counting contrasts sharply with that ofN51 theories
with only fundamental Higgs bosons; see Appendix C for a brief
discussion of those types of models.
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where in performing these derivatives we distinguish be
tweenv and v̄. Of course, in the pure Yang-Mills case, the
expressions~6.6! and ~6.8! are identical. This is because
SHiggs is linear in v ~bilinear in v and v̄!, whereas the
fermion-bilinear contribution toSinst

0 depends only onv̄ @see
Eqs.~3.1! and~2.20! above#. However, forNF.0, this equal-
ity no longer holds, since the new term in the action
28p2LhyplkAtot kl , depends onv, not v̄ @see Eqs.~6.1!,
~3.2!, and~2.20!#. It turns out that the correct generalization
to NF.0 is given, not by Eq.~6.6!, but by the differential
representation~6.8! with Sinst

0 replaced bySinst
NF . As these

long-distance expressions enter pervasively in the calcu
tions below, we should make this point especially clear; th
is done in Appendix B.

Also needed below is the piece of the long-distance Ab
lian field strengthvmn that is bilinear inj1 andj2. The rel-
evant expression is Eq.~5.13! of @4# which we likewise re-
write as a derivative:

&
]Sinst

0

]v
j1s

klj2Gmn,kl~x,x0!, ~6.9!

whereGmn,kl is the gauge-invariant propagator of U~1! field
strengths,

Gmn,kl~x,x0!5~hnl]m]k2hnk]m] l2hml]n]k1hmk]n] l !

3G~x,x0!. ~6.10!

As explained in Appendix B, this expression, too, genera
izes immediately to NF.0, with the substitution
Sinst
0 →Sinst

NF .

VII. THE PREPOTENTIAL

In this section we discuss some general features of t
prepotentialF(NF) for N52 supersymmetric QCD. In Sec.
VII A, which is restricted to the casesNF,4 unless other-
wise stated, we review the predictions of Seiberg and Witte
@2# ~see also Refs.@25# and @26#!. Alternatively, in Sec.
VII B, we derive a formal expression, valid forNF<4, for
the prepotential in terms of the multi-instanton measure, e
tending a result given in@11# to incorporate hypermultiplets.
Explicit numerical comparisons in the one-instanton an
two-instanton sectors will be given in Sec. VIII below.

A. Seiberg-Witten predictions for the prepotential

In N52 SQCD withNF,4 massless hypermultiplets in
the fundamental representation, the restrictions imposed
holomorphy, renormalization group invariance, and th
anomaly imply that the prepotential has the following expan
sion at weak coupling:

F~NF!~v !5 i
~42NF!

8p
v2 lnSCv2LNF

2 D 2
i

p (
n51

`

Fn
~NF!

3S LNF

v D n~42NF!

v2. ~7.1!
-

,

la-
is

e-

l-

he

n

x-

d

by
e
-

LNF
is the dynamically generated scale of the theory11 andC

is a numerical constant. The logarithm comes from the clas
sical result combined with one-loop perturbation theory
while the remaining terms correspond to an infinite series o
instanton corrections. As discussed above, forNF.0 the dis-
crete symmetry~6.4! ensures that only even numbers of in-
stantons contribute: henceF2k11

(NF) 50. Each nonzero coeffi-

cient F2k
(NF) is a pure number characterizing the leading

semiclassical contribution of instantons of topological charge
2k. In Sec. VIII below, we carry out an explicit two-
instanton computation ofF2

(NF) for NF<4. For the special
case ofNF54 massless hypermultiplets theb function is
zero and we expect the following expression for the prepo
tential:

F~4!~v !5
1

4
tclv

22
i

p (
n52,4,6,...

Fn~4!qnv2, q5eiptcl.

~7.2!

Furthermore, Seiberg and Witten propose that the massle
NF54 theory is classically exact, Eq.~1.2!, which implies
F n

(4)50 for all n. Instead, in Sec. VIII we will obtain a
nonzero value forF2

~4! .
The general description of the low-energy theory, Eqs

~7.1! and ~7.2!, is modified in two ways by the introduction
of masses for the hypermultiplets. First, as noted earlier, th
mass terms explicitly break the discrete symmetry~6.4!;
hence the contribution of odd numbers of instantons be
comes nonzero. Second, each term in the instanton expa
sion will itself be a polynomial in the dimensionless ratios
mi /v. As we will see below, these polynomials can be ob-
tained from the exact solution of the low energy theory pro-
posed by Seiberg and Witten.

For eachNF , the exact behavior of the low-energy theory
is characterized by an elliptic curve of the form

y25x31Bx21Cx1D[~x2e1!~x2e2!~x2e3!. ~7.3!

For NF,4, where the theory is asymptotically free, the co-
efficientsB, C, andD ~and hence the rootsei! are functions
of the modulusu, the dynamical scaleLNF

, and the masses
mi . The exact solution for the VEVv and its dualvD as
functions of the modulusu is given in terms of the periods of
the elliptic curve ~7.3!. In the region of parameter space
where the roots are real ande1>e2>e3 , we have the explicit
formulas~in the conventions of@3#!

11The numerical values of the constantsF2k
(NF) depend on the defi-

nition of the scaleLNF
. In this paper, as in@4#, we adopt theL

parameter of the Pauli-Villars regularization scheme which is ap
propriate for instanton calculations, and corresponds to ’t Hooft
conventions for the collective coordinate measure@27#. In this
scheme the renormalization group matching conditions are mos
straightforward since the threshold factors are unity@3#. TheL of
the Pauli-Villars scheme is related to theL parameter of@1,2# as
4LNF

42NF5(LNF
SW)42NF for 0<NF,4.
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]v
]u

5
cK~k!

Ae12e3
,

]vD
]u

5
icK8~k!

Ae12e3
. ~7.4!

Here K and K8 are elliptic functions of the first kind,k
5A(e22e3)/(e12e3), andc is a numerical constant fixed
by demanding the asymptotic behaviorv5A2u1••• in the
weakly-coupled regime of largeu. The second derivative of
the prepotential is then given as

]2F
]v2

5
1

2

]vD
]v

5
iK 8~k!

2K~k!
. ~7.5!

This equation, together with Eq.~7.4!, determines the prepo-
tential corresponding to a particular elliptic curve up to irre
evant constants of integration.

With the definition of theL parameter given above, the
elliptic curve for theNF50 theory is simply

y~0!
2 5x2~x2u!1L0

4x. ~7.6!

For 0,NF,4, the curves can be written in terms of the fo
lowing set of symmetric polynomials in the massesmi :

M0
~NF!

51,

M1
~NF!

5(
i51

NF

mi
2,

M2
~NF!

5(
i, j

NF

mi
2mj

2,

A A

MNF

~NF!
5)

j51

NF

mj
2. ~7.7!

The curves are then given by

y~NF!
2 5x2~x2u!1AMNF

~NF!
LNF

42NFx2
1

4
LNF

2~42NF!

3 (
d50

NF21

M d
~NF!

~x2u!NF212d. ~7.8!

Given these explicit forms, it is straightforward to expan
Eqs.~7.4! and ~7.5! as a power series inLNF

42NF and extract

the first few terms in the instanton expansion of the prep
tential. However, as we will see below, several features
the expansion can be deduced without further calculation

Let us order the masses so that they satisfymNF
>mNF21>•••>m1>0. An important restriction on the form
of the elliptic curves comes from the scaling limi
mNF
→`, LNF

→0 with mNF
LNF

42NF held fixed. In this limit

one of the flavors becomes infinitely massive and decoupl
leaving an effective theory described byN52 SQCD with
NF21 flavors. In the chosen regularization scheme, theL
parameters for different numbers of flavors are related as
l-

l-

d

o-
of
.

t

es,

mNF
LNF

42NF5LNF21
52NF. ~7.9!

It is easy to check that the curves~7.8! have the required
propertyy(NF)

2 →y(NF21)
2 in the decoupling limit. This prop-

erty is then inherited by the prepotential itself:

F~NF!~v;$mi%,LNF
!→F~NF21!~v;$mi ,i,NF%,LNF21!.

~7.10!

Moreover, this relation must hold order by order in the in-
stanton expansion.

The single-instanton factorLNF

42NF appears in Eq.~7.8!

multiplied by the productm1m2•••mNF
. Obviously this is the

only term in Eq.~7.8! capable of generating odd powers of
LNF

42NF. It follows that the odd terms in the instanton expan-

sion of the prepotential vanish unless all of the masses a
nonzero, as expected from the discrete symmetry~6.4!.

The one-instanton contribution has the form

F~NF!~v;$mi%,LNF
!un5152

i

p

LNF

42NF

v2
F1~0!)

j51

NF

mj . ~7.11!

This clearly obeys the decoupling relation~7.10!. The nu-
merical coefficientF1

~0! can be extracted from the instanton
expansion of the prepotential of theNF50 theory
@3,4#: F1

~0!51/2.
The remaining terms in Eq.~7.8! are proportional to

LNF

2(42NF) and can therefore be thought of as a two-instanton

effect. In particular, note that the term proportional to (x
2u)NF21 remains nonzero in the massless limit. Every term
of orderLNF

2(42NF) which can be formed from the coefficients

of the elliptic curve is proportional to one of the polynomials
M d

(NF) defined above. Hence, by dimensional analysis, th
two-instanton contribution to the prepotential must have the
form

F~NF!~v;$mi%,LNF
!un52

52
i

p
v2S LNF

v
D 2~42NF!

(
d50

NF

f d
~NF!SM d

~NF!

v2d D . ~7.12!

This expression may be constrained further by consider
ing various limits of the masses. In the chiral limit,mi→0,
we recover the coefficients of Eq.~7.1!; this forces f 0

(NF)

5F2
(NF) . In the opposite limitmNF

→`, the decoupling rela-

tion ~7.10! implies that the numerical coefficientsf d
(NF) are

not independent, but obey

f d
~NF!

5 f d21
~NF21!

5•••5 f 0
~NF2d! . ~7.13!

It follows that the constantf d
(NF) is equal to the coefficient

F2
(NF2d) of the massless case. An explicit calculation using

Eqs. ~7.4! and ~7.5! yields the values F2
~0!55/24,

F2
~1!523/25, andF2

~2!51/26. The coefficientF2
~3! corresponds
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to an additive constant in the prepotential which does n
contribute to the low-energy effective Lagrangian and is
relevant for our purposes.

In component form, for any number of flavors, the low
energy effective Lagrangian is defined in terms of the prep
tential as follows ~the superscript SD stands for ‘‘self
dual’’!:

Leff5
1

4p
ImF2F9~A!„]mA

†]mA1 ic]” c̄1 il]” l̄1 1
2 ~vmn

SD!2…

1
1

&
F-~A!lsmncvmn1

1
4F8888~A!c2l2G . ~7.14!

As usual we ignore auxiliary fields as they are subleading
the coupling constant. The last three terms in the above
grangian yield nonvanishing tree-level contributions to t
following three Green’s functions@4#:

^vmn~x1!vkl~x2!&5
1

16p i

]2F
]v2 E d4x0 tr2s

pqs rs

3Gmn,pq~x1 ,x0!Gkl,rs~x2 ,x0!, ~7.15a!

^vmn~x1!l̄ȧ~x2!c̄ ḃ~x3!&

5
1

8&p i

]3F
]v3 E d4x0s

klabGmn,kl~x1 ,x0!

3Saȧ~x2 ,x0!Sbḃ~x3 ,x0!, ~7.15b!

^l̄ȧ~x1!l̄ḃ~x2!c̄ ġ~x3!c̄ ḋ~x4!&

5
1

8p i

]4F
]v4 E d4x0e

abSaȧ~x1 ,x0!Sbḃ~x2 ,x0!

3egdSgġ~x3 ,x0!Sdḋ~x4 ,x0!, ~7.15c!

where the Weyl and field-strength propagatorsS(x,x0) and
Gmn,kl(x,x0) were defined in Eqs.~6.7! and ~6.10! above.
We now discuss how these correlation functions may be c
culated from first principles, using instanton methods.

B. The prepotential in the instanton approach

Our strategy for determiningF is to calculate the leading
semiclassical contributions to the Green functions~7.15! in
the large distance limit. The first step is to replace each of
fields c̄, l̄, and vmn with the long-distance ‘‘tail’’ of the
corresponding component of the superinstanton. These
pressions, which we denotec̄LD, l̄LD, andvmn

LD , were given
above in Eqs.~6.8a!, ~6.8b!, and~6.9!, respectively, with the
substitutionSinst

0 →Sinst
NF .

One also needs the superinstanton measure. In
n-instanton sector, the integration runs over 8n bosonic and
8n12nNF fermionic collective coordinates, which we de
note generically asXi andxi , respectively. At a purely for-
mal level, the measure for this integration can be expres
as
ot
ir-

-
o-

in
a-
e

al-

he

ex-

the

-

ed

E dmn
~NF!

5
1

Sn
E S )

i51

8n

dXi )
j51

8n12nNF

dx j D
3~JBose/JFermi!

1/2 exp„2Sinst
NF ~n!…. ~7.16!

HereJBoseandJFermi are the collective coordinate Jacobians
for the bosonic and fermionic parameters, respectively, and
Sn is a symmetry factor.

As reviewed in@4#, it is only possible to solve the ADHM
constraints and find an explicit formula for the measure for
n,3. However, for the following, it suffices to know that the
only dependence on the VEVv in Eq. ~7.16! is that of the
action Sinst

NF which is separately linear in bothv and v̄. In
addition, as discussed in Sec. VI, we know that all fermionic
zero modes are lifted by the action except for the four super-
symmetric zero modes~6.5! parametrized byj1a andj2a. It is
convenient to separate out from the measure these unbroken
modes together with their bosonic partner, the translational
degrees of freedom,x0:

E dmn
~NF!

5E d4x0d
2j1d

2j2E dm̃n
~NF! . ~7.17!

We will refer todm̃n
(NF) as the ‘‘reduced measure.’’

Putting the pieces together, one finds for then-instanton
contribution to the Green’s function~7.15c!:

^l̄ȧ~x1!l̄ḃ~x2!c̄ ġ~x3!c̄ ḋ~x4!&

5E dmn
~NF!

l̄ȧ
LD

~x1!l̄ḃ

LD
~x2!c̄ ġ

LD~x3!c̄ ḋ

LD
~x4!, ~7.18!

with similar expressions for the other two Green’s functions.
Following @11#, we substitute the expressions~6.8!–~6.9!
into the right-hand side, and perform the trivial integration
over j1a andj2a. This leaves

^vmn~x1!vkl~x2!&5
1

2

]2

]v2 E dm̃n
~NF!E d4x0 tr2s

pqs rs

3Gmn,pq~x1 ,x0!Gkl,rs~x2 ,x0!,
~7.19a!

^vmn~x1!l̄ȧ~x2!c̄ ḃ~x3!&

5
1

&

]3

]v3 E dm̃n
~NF!E d4x0s

klabGmn,kl~x1 ,x0!

3Saȧ~x2 ,x0!Sbḃ~x3 ,x0!, ~7.19b!

^l̄ȧ~x1!l̄ḃ~x2!c̄ ġ~x3!c̄ ḋ~x4!&

5
]4

]v4 E dm̃n
~NF!E d4x0e

ab

3Saȧ~x1 ,x0!Sbḃ~x2 ,x0!e
gdSgġ~x3 ,x0!Sdḋ~x4 ,x0!.

~7.19c!

The linearity ofSinst
NF in v has allowed us to pull thev differ-

entiation outside the collective coordinate integral. Compar-
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ing the semiclassical expressions~7.19! with their exact
counterparts~7.15!, we deduce

F~NF!~v;$mi%,LNF
!un-inst58p i E dm̃n

~NF!
1Av1B, ~7.20!

whereA andB are undetermined constants of integration.
these constants do not contribute to the low-energy effec
Lagrangian, we are free to setA5B50 for convenience.

Equation~7.20! is the desired expression for the prepote
tial as a formal integral over the superinstanton moduli. It
the obvious generalization toNF.0 of the analogous SYM
formula ~21! in @11#. Note that all memory of the long-
distance field insertions has disappeared from this equa
In hindsight, these insertions were merely a conveni
bookkeeping device for extracting the appropriate deri
tives of F dictated by the low-energy Lagrangian~7.14!.
Henceforth we will drop all reference to the ‘‘tail’’ of the
superinstanton, and focus directly on the concise expres
~7.20!. Importantly, by absorbing a factor ofAv̄ into a,M,
andN, one sees thatF depends only onv, and not onv̄, so
that holomorphicity of the prepotential~7.20! is built into the
instanton calculus.

VIII. EXPLICIT CALCULATIONS FOR n51 AND n52

In this section we will use the action derived above
calculate the one- and two-instanton contributions to the p
potential forNF<4. In addition we include nonzero masse
for the hypermultiplets. This section supplies additional d
tails for the calculation of̂ c̄c̄ l̄ l̄&;F8888 presented in our
recent paper@7#. See also@8# for a related calculation of a
different quantity which is not simply given by a derivativ
of F. By focusing onF itself using Eq.~7.20!, we also ex-
tract information about the special caseNF54.

A. The one-instanton contribution

In ADHM language, the bosonic and fermionic param
eters of a singleN52 superinstanton are contained in thr
231 matrices of unconstrained parameters:

a5SwXD , Mg5S mg

Mg
D , Ng5S ng

Ng
D . ~8.1!

In addition there are 2NF Grassmann variablesKi and K̃i
which parametrize the fundamental zero modes~5.3!. The
reduced measure~7.17! is given by

E dm̃1
~NF!

5
27LNF

42NF

p412NF E d4wd2md2n

3)
i51

NF

dKidK̃i exp@2S̃inst
NF ~n51!#, ~8.2!

where the single-superinstanton action is easily read from
general expression~5.20!:12

12We place a tilde over the action to indicate that the Maxw
piece 8p2n/g2 has been subtracted out.
s
tive

n-
is

ion.
ent
a-

sion

to
re-
s
e-

e

-
e

the

S̃inst
NF ~1!516p2uwu2uA00u214&p2mĀ00n1p2(

i51

NF

miKiK̃i .

~8.3!

@For the special caseNF54, where theb function vanishes,
the factorLNF

42NF should simply be replaced byq from Eq.

~1.3!.# Notice that the only dependence onKi andK̃i comes
from the mass termSmass~this is becauseLhyp vanishes iden-
tically for n51, as doL andLf!. The corresponding Grass-
mann integrations can only be saturated by bringing dow
NF powers ofSmass; as expected from the discrete symmetry
~6.4!, the result is nonzero only when all themi are nonzero.
The remaining integration is identical to the case ofN52
SYM theory@3,4#. Using Eq.~7.20! one finds after a simple
calculation:

F~NF!~v;$mi%,LNF
!un5152

i

p

LNF

42NF

v2
F1~0!)

j51

NF

mj , ~8.4!

whereF1
~0!51/2, in agreement with the Seiberg-Witten pre-

diction.

B. The two-instanton contribution

Next we consider the two-instanton contribution to the
prepotential. The notation and the various changes of int
gration variables in the present calculation closely paralle
the simpler case ofN52 SYM theory worked out in detail in
Sec. VIII of @4#. Because the calculation forNF.0 is so
similar, we will chiefly stress those points where they differ

The parameters of then52 ADHM superinstanton are
contained in the following 332 matrices:

a5S w1

x01a3
a1

w2

a1
x02a3

D , ~8.5a!

Mg5S m1g

4j1g1Mg

M1g

m2g

M1g

4j1g2Mg

D , ~8.5b!

Ng5S n1g

4j2g1N3g

N1g

n2g

N1g

4j2g2N3g

D . ~8.5c!

In addition, there are now 4NF fundamental zero modes
~5.3! parametrized by the Grassmann numbersKl i and K̃l i
with l51,2. We also define the following frequently occur-
ring combinations of these collective coordinates:

L5uw1u21uw2u2, ~8.6!

H5uw1u21uw2u214ua1u214ua3u2,

V5w1w̄22w2w̄1 ,

v5w̄2A00w12w̄1A00w25
1
2 tr2VA0052L1,2,

Y5m1n22n1m212M3N122N3M152&~L f !1,2,

Z5(
i51

NF

KkieklK̃ li528& i ~Lhyp!1,2.ell
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From Eq.~5.20! we write down the following expression
for the two-instanton actionS̃inst

NF (n52):

S̃inst
NF ~2!5S̃inst

0 ~2!28p2LhyplkAtotkl1Smass. ~8.7!

The hypermultiplet mass termSmass is given in Eq.~5.19!
above, whereasS̃inst

0 ~2! was evaluated in@4#, and is concisely
expressed in terms of the quantities~8.6!:

S̃inst
0 ~2!516p2LuA00u214&p2mkĀ00nk

2
16p2v̄

H S v2
Y

2&
D . ~8.8!

The remaining term in the action,28p2LhyplkAtotkl , is eas-
ily extracted from Eq.~5.8!, together with the defining equa
tion for Atot , namely Eq.~A1! below. The linear operatorL
that enters that expression is a [1

2n(n21)3 1
2n(n21)]-

dimensional map from the space ofn3n antisymmetric ma-
trices onto itself. Whenn52 this space is one-dimensiona
andL reduces to ordinary multiplication by the quantityH.
From Eqs.~3.2!, ~4.4!, and~8.6!, one therefore finds for this
term:

2
i&p2Z

H S v2
Y

2&
D . ~8.9!

Note that Eq.~8.9! may be absorbed into the SYM actio
~8.8! with the simple substitution

v̄→v̄1 iZ/8&. ~8.10!

Given the action, the next step is the construction of t
two-instanton measure. We begin by eliminating the redu
dant degrees of freedom from Eq.~8.5!. A convenient reso-
lution of the ADHM constraints~2.4a! and~2.6a! is to elimi-
nate the off-diagonal elementsa1, M1g , and N1g , as
follows:

a15
1

4ua3u2
a3~w̄2w12w̄1w2!, ~8.11a!

M15
1

2ua3u2
a3~2ā1M31w̄2m12w̄1m2!, ~8.11b!

and

N15
1

2ua3u2
a3~2ā1N31w̄2n12w̄1n2!. ~8.11c!

The remaining degrees of freedom are unconstrained,
appear as integration variables in the measure. It is helpfu
factor the reduced measuredm̃2

NF into three partsdm̃b , dm̃ f ,
and dmhyp corresponding to the bosonic, adjoint fermioni
and fundamental fermionic parameters, respectively:

E dm̃2
~NF!

5E dmhypdm̃bdm̃ f . ~8.12!

Heredmhyp was defined in Eq.~6.3! above,
,

he
n-

nd
l to

,

E dmhyp5
1

p4NF E )
i51

NF

dK1idK2idK̃1idK̃2i exp~2Smass!,

~8.13!

while dm̃b may be read off from@4#, subject to the replace-
ment ~8.10!, and to the appropriate redefinition of the dy-
namically generated scale parameter:

E dm̃b5
210LNF

2~42NF!

p8S2
E d4a3d

4w1d
4w2

uua3u22ua1u2u
H

3expS 216p2FLuA00u22
v

H
~v̄1 iZ/8& !G D .

~8.14!

The symmetry factorS2516 is associated with a discrete
redundancy in the chosen parametrization~8.11a! of the two-
instanton solution@4,20#. For the special caseNF54, where
the b function vanishes, the factorLNF

2(42NF) should simply

be replaced byq2. The third piece of the measure comprises
the remaining terms in the action:

E dm̃ f5E d2M3d
2m1d

2m2d
2N3d

2n1d
2n2

3expS 24&p2FmkĀ00nk1
Y

H
~v̄1 iZ/8& !G D .

~8.15!

Performing the Grassmann integration over the param
eters of the adjoint zero modes is a straightforward exercise
one finds

E dm̃ f52S 16&p6~v̄1 iZ/8& !

ua3u2H
D 2F 116v̄4uVu2

1
L

2H
v̄2~v̄1 iZ/8A2!v̄1

1

H2 ~v̄1 iZ/8& !2

3„

1
4 v̄

2~L22uVu2!1v̄2
…G . ~8.16!

This is the generalization toNF.0 of the Yukawa determi-
nant given in Eq.~8.13! of @4#. The next step is to integrate
over the fundamental fermionic coordinates using the iden
tity

E dmhypG~Z!5 (
k50

NF MNF2k
~NF!

p4k

]2kG

]Z2k
U
Z50

, ~8.17!

where theM d
(NF) are the polynomials defined in Eq.~7.7!

above. This is the only new feature involved forNF.0.
Finally we turn to the remaining integration over the

bosonic moduli. Following@4#, it is convenient to change
variables in the bosonic measure from$a3 ,w1 ,w2% to the
new set$H,L,V%. The relevant formulas are

E
2`

`

d4a3
uua3u22ua1u2u

ua3u4
→

p2

2 E
L12uVu

`

dH ~8.18!
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and

E
2`

`

d4w1d
4w2→

p3

8 E
0

`

dLE
uVu<L

d3V. ~8.19!

The numerator and denominator in the left-hand side of E
~8.18! are supplied by Eqs.~8.14! and~8.16!, respectively. In
addition we introduce rescaled variablesV5LV8, H5LH8,
andv5Lv8. Following @4# we now carry out the trivial in-
tegration overL. Thanks to Eq.~8.17!, at this stage in the
calculation the renormalization group decoupling prope
~7.12! and ~7.13! is manifest; this is another example of
general feature of the hyperelliptic curves being built into t
instanton calculus.

Finally we switch to spherical polar coordinates,

d3V8→2pE
21

1

d~cosu!E
0

1

uV8u2duV8u, ~8.20!

where the polar angle is defined b
uv8u5uV8uuA00ucosu51

2uV8uuvucosu. This leaves an ordinary
three-dimensional scaleless integral over the remaining v
ablesH8, cosu, and uV8u which is the precise analog of Eq
~8.19! in @4#. Performing this elementary integral with th
help of a standard symbolic manipulation routine gives

F2~0!55/24, F2~1!523/25, F2~2!51/26,

F2~3!525/~2733!. ~8.21!

These values ofF2
(NF) with NF50,1,2 agree with the predic-

tions extracted from@1,2#. F2
~3! corresponds to a constan

shift in the prepotential, which does not affect the low
energy Lagrangian~7.14!. These numbers are the input pa
rameters for Eqs.~7.1! and ~7.12!. Finally, for the confor-
mally invariant caseNF54 we likewise find a nonvanishing
result,

F2~4!57/~2835!, ~8.22!

which is associated with the series~7.2!. This implies Eq.
~1.4! which is in contradiction with the classical exactne
~1.2! proposed in@2#.

Note added in proof. We propose a resolution of the
NF54 discrepancy in N. Dorey, V. Khoze, and M. Mattis
‘‘On N52 Supersymmetric QCD with 4 Flavors,’’ Repor
No. hep-th/9611016~unpublished!.
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APPENDIX A: SUPERSYMMETRIC INVARIANCE
OF Atot

The purpose of this appendix is to demonstrate that the
n3n antisymmetric matrixAtot is in fact a supersymmetric
invariant, dAtot50, given the transformation laws~2.28a!–
~2.28c!. Our starting point is the defining equation forAtot :

L•Atot5L tot , ~A1!

whereLtot5L1Lf , while Atot5A81Af8 is the quantity un-
der examination. Note that this equation is the sum of Eqs.
~5.15! and~6.2! that we used in the text.L is a linear opera-
tor that maps the space ofn3n scalar-valued antisymmetric
matrices onto itself. Explicitly, ifV is such a matrix, thenL
is defined as@4#

L•V5 1
2 $V,W%2 1

2 tr2~@ ā8,V#a82ā8@a8,V#!, ~A2!

wherea8 was defined in Eqs.~2.7! and~2.8! above, andW is
the symmetric scalar-valuedn3n matrix Wkl5w̄kwl
1w̄lwk .

Applying a generalN52 supersymmetry variation to Eq.
~A1! gives

L•dAtot5dL tot2dL•Atot . ~A3!

SinceL is generically invertible, it suffices to show that the
right-hand side vanishes. To minimize clutter we restrict the
variation toj̄2Q̄2 , as the calculation withQ̄2
Q̄1 proceeds
identically, while the claim forQ1 andQ2 is a trivial conse-
quence of Eq.~2.6b!. We define then-vectors

nW 5~n1 ,...,nn!, wW 5~w1 ,...,wn!, w̄W5~w̄1 ,...,w̄n!.
~A4!

Starting with the most complicated term on the right-hand
side of Eq.~A3!, one finds

dL f5~nW TA00wW j̄22 j̄2w̄W
TA00nW !2~nW TwW •Atotj̄22 j̄2Atot•w̄W

TnW !

1~N 8T@Atot ,a8#j̄21 j̄2@Atot ,ā8#N 8! ~A5!

using Eq.~2.28b!. The first term in big parentheses on the
right-hand side precisely cancelsdL; the second term in big
parentheses groups together with2 1

2$Atot , dW% to give

2 1
2@nW

TwW j̄21 j̄2w̄W
TnW , Atot#; the third term in big parentheses

combines with the remaining terms on the right-hand side of

Eq. ~A3! to give 2 1
2@N 8Ta8j̄21 j̄2ā8N 8, Atot#. Sincew̄W

TnW
1ā8N 85āN these two commutators add to

2
1

2
@N Taj̄21 j̄2āN, Atot# ~A6!

which vanishes by virtue of Eq.~2.6a!. Q.E.D.

APPENDIX B: LONG-DISTANCE FIELDS
IN N52 SUPERSYMMETRIC QCD

In this appendix we justify the differential expressions
~6.8! and ~6.9! for the long-distance ‘‘tail’’ of the superin-
stanton, specifically in the background of the supersymmet-
ric adjoint zero modes~6.5!. As stated in Sec. VI, for the
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caseNF50 these expressions are equivalent rewritings of th
formulas in @4# @e.g., Eq.~6.6! above#, but for NF.0 they
differ by jKK̃ Grassmann trilinears.

From the explicit component Lagrangian including the su
perpotential~5.1!, together with the identities~5.2!, one can
of course solve the Euler-Lagrange equations for these fie
explicitly. But it is easier to exploit theN52 supersymmetry
algebra itself to generate these solutions automatically. As
Sec. IV of @4#, we use a construction due to Refs.@13# and
@22#: One starts with a ‘‘reference’’ superinstantonC~0!

comprising a convenient initial choice of component field
~bosonic and fermionic, adjoint and fundamental!, and gen-
erates the desired configuration by acting on it with the a
propriate symmetry generators.

For present purposesC~0! is specified as follows. In the
hypermultipletsQi andQ̃i , fill only the fundamental fermion
zero modes~5.3!; the remaining fundamental fields are
turned off. In contrast, in the adjoint sector, fill only the
bosonic components initially. Thus the gauge field is th
usual ADHM configuration, while the Higgs bosonsA† and
A satisfy, respectively, Eq.~5.5!, and the homogeneous equa
tionD2A50. All antifermions are initially zero. Note that the
components ofC~0! correctly obey the leading-order coupled
Euler-Lagrange equations.

Next one acts onC~0! infinitesimally with theN52 gen-
erators( i51,2j iQi . This action generates the desired supe
symmetry modes~6.5! in the adjoint gaugino and Higgsino
components. At the same time it produces nonzero an
gaugino and anti-Higgsino fields that automatically satisf
their respective Euler-Lagrange equations in this bac
ground. TheN52 algebra gives

l̄5 i&j2D” A†, c̄52 i&j1D” A†, ~B1!

whereA† obeys Eq.~5.5! as stated above. In particularA†

has not only a pure bosonic part but a part bilinear inKK̃ as
well, which implies trilinear Grassmann contributions tol̄
and c̄.

Now think about the behavior of Eq.~B1! far away from
the center of the multi-instanton. On the one hand~in gener-
alized singular gauge@4#!, the x dependence and the tenso
structure of the right-hand side approaches a spinor propa
tor ~6.7!, up toO(x25) corrections. On the other hand, from
the divergence theorem, we actually know the coefficient
the leading 1/x3 falloff as well. Specifically, this coefficient
can be equated to certain terms in the superinstanton acti
This follows from an integration by parts in the Higgs kinetic
energy term in the component Lagrangian, together with t
Higgs equation of motion to cancel the Yukawa term; se
Secs. IV C and VII D of@4# for details. In the case ofN52
SYM theory the entire superinstanton actionSinst

0 may be
read off from the residue in this way. In the models at han
with NF.0, this particular surface integral only accounts fo
two of the five separate pieces ofSinst

NF listed in Sec. V above,
namely those labeled~i! and ~iii !; these are precisely the
pieces proportional tov. Combining these two observations
about the tensor structure and about the residue, gives
~6.8!; for NF.0 one needs to substituteSinst

0 →Sinst
NF as stated.

In the same way, the desiredj1j2 bilinear piece of the
field strengthvmnmay be generated fromC

~0! by acting with
e

-
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r
ga-
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e
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r

,
Eq.

exp~j2Q2! exp~j1Q1! and keeping the cross term. UnderQ1

one hasdvmn5j1s [nDm] l̄, which is followed by the re-
placement~B1! under the action ofQ2. The remaining steps
in the argument proceed as before~see Sec. V of@4#!, and are
left to the reader.

APPENDIX C: N51 THEORIES WITH FUNDAMENTAL
HIGGS BOSONS

In this appendix we touch on certain basic features of the
N51 supersymmetric theories of the type considered long
ago in@13,24,22#, in which all Higgs bosons live in the fun-
damental representation of SU~2!. We can easily construct
the superinstanton action by the methods of@4#, as follows.
The two relevant terms of the component Lagrangian, the
Higgs kinetic energy and the Yukawa interaction, are turned
into a surface term with an integration by parts in the former
together with the Euler-Lagrange equation for the fundamen-
tal scalar,q. As per the divergence theorem, the action may
then be extracted from the 1/x3 falloff of D'q, where the
normal covariant derivative D' is defined as
(xm/Auxu2)Dm . The generic form ofq including fermion bi-
linear contributions was given in Eq.~5.10! above:

qḃ5Ūl
ḃb
•S dl0vb1

i

2&
Ml lb f lkKkD , ~C1!

ignoring flavor indices from now on. As in the text theK are
the Grassmann parameters associated with the fundamenta
fermion zero modes~5.3!.

Using Eq.~5.2a! together with the asymptotics of the vari-
ous ADHM quantities listed in Sec. VI B of@4#, one easily
derives

D'q
ḃ →

uxu→` s̄0
ḃb

uxu3 (
k51

n S uwku2vb2
i

&
mkbKkD ~C2!

and hence

Sinst}(
k51

n S uwku2uvu22
i

&
v̄bmkbKkD ~C3!

using the notation of Eq.~2.7!.
This supersymmetric multi-instanton action~originally

derived by Yung@28# by different means! differs from that of
the N52 theory discussed herein, in two important ways.
First, it has the form of a disconnected sum ofn single in-
stantons; in these coordinates there is no interaction between
them. Second, the only gaugino modes that are lifted are
those associated with the top-row elementsm k

g of the collec-
tive coordinate matrixMg. This leaves 2n unlifted modes
@after one implements the constraints~2.6!#, which are natu-
rally associated with the diagonal entries of then3n subma-
trix Mg8 . This counting contrasts sharply with theN52
theory in which the number of unlifted modes is independent
of the winding number.

Saturating these modes with anti-Higgsinos as per Af-
fleck, Dine, and Seiberg@24#, one therefore needs
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^c̄(x1)c̄(x2)& in the one-instanton sector, and in genera

^c̄(x1)•••c̄(x2n)& in the n-instanton sector—unlike the
N52 theory, the sectors of different topological number d
not interfere with one another. For completeness we wri
down the generic form of these antifermions, which satis
the inhomogeneous equation

~D” aȧc̄ ȧ!ḃ5c~la!ḃ
ġq

†ġ, ~C4!
l,

o
te
fy

wherec is a normalization constant. Using Eq.~5.2a! once
again, one easily finds

~ c̄ ȧ!ḃ52~c/2!Ū ḃbMb f w̄
ȧgv̄g . ~C5!

Hereḃ andȧ are color and Weyl indices, respectively; also
Eq. ~C5! is only valid when the top row ofM ~i.e., the lifted
modes! consists entirely of zeros.
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