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Topological aspects of gauge-fixing Yang-Mills theory onS4
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For anS4 space-time manifold global aspects of gauge fixing are investigated using the relation to topo-
logical quantum field theory~TQFT! on the gauge group. The partition function of this TQFT is shown to
compute the regularized Euler character of a suitably defined space of gauge transformations. Topological
properties of the space of solutions to a covariant gauge conditon on the orbit of a particular instanton are
found using the SO~5! isometry group of theS4 base manifold. We obtain that the Euler character of this space
differs from that of an orbit in the topologically trivial sector. This result implies that an orbit with a Pontryagin
numberk561 in covariant gauges onS4 contributes to physical correlation functions with a different mul-
tiplicity factor due to the Gribov copies than an orbit in the trivialk50 sector. Similar topological arguments
show that there is no contribution from the topologically trivial sector to physical correlation functions in
gauges defined by a nondegenerate background connection. We discuss the possible physical implications of
the global gauge dependence of Yang-Mills theory.@S0556-2821~96!06024-9#

PACS number~s!: 11.15.Tk, 11.15.Bt
I. INTRODUCTION

Since the pioneering work of Gribov@1# and Singer@2# it
is known that the gauge condition

F~A!50 ~1.1!

generally does not determine the representative connect
A of a gauge orbit uniquely for non-Abelian gauge group
such as SU(n). It is, therefore, of interest to study the spac
of gauge equivalent solutions to Eq.~1.1!

EF@A#5$U:U~x!PSU~n!,F~AU!50%, ~1.2!

on the gauge orbit$AU% with representative connectionA:

AU5U†AU1U†dU. ~1.3!

It was recently pointed out@3# that gauge fixing of Yang-
Mills theory defined on a compact space-time manifol
amounts to the construction of a certain topological quantu
field theory~TQFT! on the space of gauge transformations
whose partition function computes some topological numb
of Eq. ~1.2!. This relation to TQFT enables us to investigat
global aspects of the gauge fixing procedure in greater det
than was previously possible. We will show in Sec. II tha
the partition function of the TQFT proposed in Ref.@3# is
proportional to the Euler characteristicx(E]•A) of the moduli
space
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E]•A@A#5$U:U~x!PSU~n!,]•AU50%/SU~n!. ~1.4!

Note that the Euler character of the space of solutions to the
covariant~Landau! gauge condition]•AU50 vanishes due
to the isometry with respect to right multiplication by con-
stant group elements. This isometry group has been factored
out in Eq.~1.4! and it was shown@3# thatx(E]•A)5oddÞ0
in the vicinity of flat connectionsA.U†dU for an SU~2!
gauge group defined on any compact space-time manifold.

Since the topological properties of the moduli space~1.4!
do not change under continuous deformations, one is guar-
anteed thatx(EF@A#) is constant within a topologically con-
nected sector of gauge orbits. The Euler character could,
however, depend on~i! the topological sector of the gauge
orbit and/or~ii ! the gauge fixing condition~1.1!.

The two possibilities are intimately related, since the ex-
istence of topologically disconnected sectors in the orbit
space implies that background gauge conditions of the type

F~A!5DB
•A2]•B50 ~1.5!

also cannot be deformed into each other for background con-
nectionsB belonging to different topological sectors.

In this paper we will investigate both possibilities by con-
sidering an SU~2! gauge theory defined onS4. Disconnected
sectors of the orbit space with different Pontryagin number
k@A#PZ,

1

4p2E
S4

Tr F~A!`F~A!5k@A#, F~A!5dA1A`A,

~1.6!

exist in this case. For a given gauge conditionF(A), the
Euler characterx(EF) of the moduli spaceEF associated
with an orbit can therefore in general depend on the Pontrya-
—
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gin number of the orbitx(EF@A#)5xF(k@A#). Since anS4
manifold has only trivial 1-cycles, the result presented in th
appendix of@3# actually implies thatxF(k@A#50)51 for an
SU~2! theory in any covariant gauge which can be deform
to Landau gauge]•A50. In Sec. III we discuss the moduli
spaceEcov of such covariant gauges for a particular instanto
orbit with Pontryagin numberk@A#51. In Sec. IV we con-
struct this space explicitly in Landau gauge. On the oth
hand, we see in Sec. V that the Euler character of the mod
space EF@A# vanishes in the topologically trivial sector
k@A#50 for gauges~1.5! defined by any nondegenerat
backgroundB. These results show that global characteristi
of the gauge theory can depend on the gauge-fixing condit
employed. We conclude by discussing the possible releva
of this dependence for the quantization of a gauge theory

II. GAUGE FIXING AND TQFT

Gauge fixing an SU~n! YM theory with the gauge condi-
tion ~1.1! amounts to the statement that the partition functio

Z@A#5E @dU#@dc#@dc̄#@db#exp~SA! ~2.1!

with the action

SA522E dxsTr @ c̄~x!F~AU!~x!#

522E dxTr S b~x!F~AU!~x!

2E dyc̄~x!
dF~AU!~x!

dU~y!
c~y! D ~2.2!

does not vanish and is independent of the orbit which t
connectionA represents. In this case, the partition functio
~2.1! could be inserted in the gauge-invariant measure of t
Yang-Mills ~YM ! theory and the change of variable
AU→A would yield the usual gauge-fixed action propose
by Faddeev and Popov. The so far rather formal function
integral in Eq.~2.1! extends over the gauge-group elemen
U(x)PSU(n), the Lie-algebra-valued Nakanishi-Lautrup
field b(x) as well as the Lie-algebra valued anticommutin
Faddeev-Popov ghosts and antighostsc(x), c̄(x). The func-
tional derivative in~2.2! is computed with respect to right
multiplication of the group.

In Ref. @3# it was observed that Eq.~2.1! with action~2.2!
can be regarded as the partition function of a TQFT in t
gauge group with the Becchi-Rouet-Stora-Tyutin~BRST! al-
gebra,

sU~x!5U~x!c~x!,

sc~x!52
1

2
@c~x!,c~x!#,

sc̄~x!5b~x!, sb~x!50. ~2.3!

Note that the connectionA is a parameter of the TQFT
(sA50). The nilpotent BRST algebra~2.3! suggests@4# that
one may identify the ghost fields as Maurer-Cartan forms
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the infinite dimensional space of gauge transformations. Thi
geometrical interpretation ofc(x) as a basis for the cotan-
gent space at U becomes particularly convincing in the vi-
cinity of U51. The BRST operator can be identified as the
coboundary operator of the Lie algebra cohomology and Eqs
~2.3! are regarded as the explicit representation of its action
at an arbitrary point U(x) in the space of gauge transforma-
tions. General arguments~for a review see, e.g.,@5#! suggest
that the TQFT with thes-exact action~2.2! computes the
Euler characteristic of the space of gauge transformations
One, however, first has to make sense of the Euler charact
of an infinite dimensional space.

There are essentially two ways to compute the Euler char
acteristic of a manifold. One is by use of the Gauss-Bonne
theorem, which gives the Euler characteristic as an integra
of the Euler class over the manifold. The other makes use o
the Poincare´-Hopf theorem, which amounts to counting with
signs the number of isolated zeros of some vector field
F5¹W V generated by a potentialV on the manifold. The
signs are determined by the sign of the Hessian at thes
isolated points. More generally, when the zero locus of the
vector fieldF is finite dimensional, the regularized Euler
characteristic of a manifoldM is

x~M!5 (
X:FuX50

~61!x~X!, ~2.4!

where the signs depend on the orientation of the fixed poin
manifoldsX embedded inM . The latter method can be gen-
eralized to the case of infinite dimensional manifolds, where
Eq. ~2.4! is regarded as thedefinitionof the regularized Euler
characteristic of the manifold@6#.

The usual argument that the TQFT with BRST algebra
~2.3! computes the right-hand side of Eq.~2.4! is based on
the fact that the saddle point approximation is apparently a
exact evaluation of the functional integral. To see this one
can for example modify the action~2.2! by thes-exact term
(a/2)b2:

SA8522E dxsTr F c̄~x!SF~AU!2
a

2
b~x! D G

52E dxTr S a

2
b2~x!2b~x!]•AU~x!

1E dyc̄~x!
dF~AU!~x!

dU~y!
c~y! D . ~2.5!

Because of the topological nature of the theory, the partition
function should be independent ofa. Gaussian integration
over the multiplier fieldb in the functional integral with
actionSA8 shows that

Z@A#}E @dU#@dc#@dc̄#expF2E dxS 2
1

2a
„F~AU!…2

1E dyc̄~x!
dF~AU!~x!

dU~y!
c~y! D G . ~2.6!

In thea→0 limit only fluctuations around U’s satisfying the
fixed point equationF(AU)50 will contribute to the func-
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tional integral. With the correct (a-dependent! normalization
the contribution of an isolated fixed point to the partitio
function~2.1! is61 depending on the sign of the ‘‘Hessian
at that point. To evaluate the contribution from a finite d
mensional subspace of fixed points, one introduces local
ordinates and restricts the BRST algebra~2.3! to that space.
This procedure generally induces curvature terms@7#. One
may then use the Gauss-Bonnet theorem to find that the c
tribution to the partition function of the TQFT is the Eule
characteristic of the submanifold@8#. In thea→0 limit, the
partition function of the TQFT is thus seen to reproduce t
right-hand side of Eq.~2.4!.

It could appear that the space of gauge transformati
and therefore its Euler characteristic can be defined indep
dently of the connectionA and that the TQFT~2.1! does not
depend onA at all. Let us stress, however, that the Eul
characteristic computed via the Poincare´-Hopf theorem is ac-
tually that of thedomain D:5$xPM,uV(x)u,`%, rather
than the Euler characteristic of the whole manifoldM. Thus
the Euler characteristic defined by Eq.~2.4! coincides with
that of the original manifoldM only if the potential is finite
everywhere.

If the TQFT on the gauge group is to be employed as
gauge-fixing device, the gauge condition~1.1! will only de-
pend on the orbit$AU% rather than U itself. Any background
gauge condition of the form~1.5! is the gradient of an asso
ciated potential, introduced in1 @9#

V@U#5uuAU2Buu25
1

2E dxTr~AU2B!•~AU2B!

5
1

2E dxTr~A2BU†!•~A2BU†!. ~2.7!

Indeed, the fixed points of this potentialdV@U#50,

dV

dU~x!
52F~AU!~x!,

are just the solutions to the gauge condition~1.5!. The do-
main of the potential~2.7! in the sense of the Poincare´-Hopf
theorem consists only of those gauge transformations$U% for
which the connectionAU2B is square integrable. This do
main does not depend on continuous deformations of
connectionsA andB but may~and we will indirectly see that
it does! depend on their topological characteristics.

Completing the space ofC` connections in theL2 norm
uu•uu was shown@10# to naturally extend to considering th
space ofC` gauge transformations completed in the Sobol
norm uuUuu15uuUuu1uu]Uuu. For the TQFT it is important
that this is a topological space of gauge transformatio
which furthermore fully describes the gauge orb
$AU%5$A$U%% @10#. We know of no other space of gaug
transformations where this important property holds and w
therefore work in this space. Note that in order to span

1In contrast with@9# we here however do not select a represen
tive connection by the absolute minimum of the potential~2.7! on
the gauge orbit, but rather sum over all its relative minima in t
sense of the Poincare´-Hopf theorem.
n
’’
i-
co-

on-
r

he

ons
en-

er

a

-

-
the

e
ev

ns
it
e
ill
the

space of gauge transformations in the neighborhood of a par
ticular U(x) one has to consider all fluctuationsdU which
are normalizable in theL2-norm uudUuu. To preserve invari-
ance under infinitesimal isometry transformations
x→x1«(x) of the base manifold, U(x) as well as
U@x1«(x)# have to belong to the space of allowed gauge
transformations. This implies that one has to account for
fluctuationsdU5U@x1«(x)#2U(x), which in general are
only normalizable in theL2, norm uu•uu5uu•uu0, if U is nor-
malizable inuu•uu1. These considerations determine the func-
tional space we should consider in the TQFT with BRST
algebra ~2.3!: U(x)PC` completed in the normuu•uu1;
b(x), c(x), and c̄(x) in C` completed in the norm
uu•uu5uu•uu0.

Our previous argument indicates that theregularizedEu-
ler characteristic so obtained does not necessarily coincid
with the Euler characteristic of the full space of gauge trans-
formations and may depend on topological properties of the
gauge condition~1.1!. The purpose of this paper is to inves-
tigate this possibility.

For certain gauge conditions~1.1! it is easy to see that the
regularized Euler characteristic computed in this way van-
ishes. This is for instance the case, whenever the Euler cha
acteristic of each subspace of fixed points vanishes individu
ally due to a group isometry. One encounters this situation in
any background gauge~1.5! defined by a degenerate orbit
B and in particular in covariant gauges, which correspond to
choosing the degenerate background orbitB50. The associ-
ated potentialV is invariant with respect to right multiplica-
tion by a certain group in this case and the fixed point space
therefore possess an isometry generated by the group actio
Since this isometry has no fixed points, the Euler character
istic of each subspace vanishes.

The problem can be circumvented by an equivariant
BRST construction@3# which divides out this group mani-
fold. In covariant gauges one considersX/SU(n) rather than
the space of fixed pointsX itself and the TQFT based on the
equivariant cohomology computes the Euler characteristic
x@X/SU(n)#. For details on the equivariant BRST construc-
tion in covariant gauges and the associated TQFT we refer to
@3#.

III. INSTANTONS ON S4 IN COVARIANT GAUGES

The main reason for employing covariant gauges in
Minkowski or Euclidean space-time is that they allow a
manifestly relativistically invariant formulation of the quan-
tum field theory~QFT!. The natural generalization of this
distinction to other spacetime manifolds likeS4, is that a
covariant gauge condition preservesall isometries of the
base manifold. Covariant gauges preserve the homogeneit
and isotropy of space-time and do not select a preferred poin
and/or direction in the gauge-fixed theory. This could be par-
ticularly important for defining the thermodynamic limit un-
ambiguously, especially since color forces are expected to b
strong and of infinite range.

By formulating a massless theory such as unbroken YM
on compact Euclidean space-time, one can avoid infrared
divergences while preserving the gauge~or rather BRST!
symmetry. One hopes that the thermodynamic limit of physi-
cal correlation functions can be obtained by rescaling the

ta-

he
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compact base manifold and that this limit is independent
the manifold used to formulate the theory. The thermod
namic limit, if it exists, can at most depend on topologic
characteristics of the base manifold.

In the case of Yang-Mills theory on compact space-tim
with the topology of anS4 it is well known that the space of
gauge orbits is disconnected. The possible importance of s
tors with Pontryagin numberk@A#Þ0 has been recognized
long ago@11# and ’t Hooft’s semiclassical calculation@12#
indicates that this could resolve the UA(1) problem@13#. We
wish to stress that the UA(1) problem is intimately related to
the existence of covariant gauges, since one makes use o
Goldstone theorem to formulate it@13#. Due to an anomalous
contribution, the conserved UA(1) current is gauge depen-
dent. In covariant gauges the Ward identities neverthele
imply the existence of a Goldstone pole in correlation fun
tions of this current with quark multilinears, if the UA(1)
symmetry is spontaneously broken@14#. It is therefore im-
portant to verify that gauge orbits with Pontryagin numb
k@A#50 contribute to physical correlation functions inco-
variant gauges.

We adopt conformal coordinates to parametrize theS4
and use its diameter 2R51 as the unit of length. In these
coordinates the metric is diagonal (x25(mxmxm),

gmn~x!5g~x!dmn5~11x2!22dmn , ~3.1!

and the invariant volume element of theS4 is simply
dx5d4xg2(x).

The SO~5! isometry group of anS4 is generated by the
coordinate transformations

xm8 5xm2em~x;a,v!5xm2vmnxn1am~x221!22xmx•a,
~3.2!

depending on ten infinitesimal parametersam and
vmn52vnm .

A scalar densitys(x) transforms as

ds~x!5s,m~x!em~x;a,v! ~3.3!

under the isometry group. Together with the variation of ve
tor fields such as a connectionAm(x),

dAm~x!5Am,nen~x;a,v!1An~x!en,m~x;a,v!, ~3.4!

Eq. ~3.3! determines the transformation properties of a
higher rank tensors. The isometry generators~3.2! of course
do not change the conformal metric~3.1!:

dgmn~x!505g~x!@em,n~x;a,v!1en,m~x;a,v!#

1dmng,s~x!es~x;a,v!. ~3.5!

The change of a pseudoscalar densityp(x) such as the YM
Lagrangian

L~x!5
1

2g2
Adet~gmn!Tr FmnFrsgmr

21gns
21 , ~3.6!

or the Pontryagin density

P~x!5
1

32p2 «mnrsTr FmnFrs ~3.7!
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dp~x!5p,m~x!em~x;a,v!1p~x!em,m~x;a,v!, ~3.8!

will also be useful in the following.
The prototype of a covariant gauge condition is the Lan-

dau gauge, which on anS4 in conformal coordinates takes
the form

F~A!5]•A5~detg!21/2]m~detg!1/2gmn
21An~x!

5g22~x!]mg~x!Am~x!50. ~3.9!

The following considerations are, however, not particular to
Landau gauge and only make use of the fact that the gauge
conditionF(A) is covariant. To investigate topological char-
acteristics of the space of solutions~1.2! to a covariant gauge
condition in the sector with Pontryagin numberk51, we
will choose a particular orbit in that sector.

As discussed in the previous section the space of solutions
~1.2! to a covariant gauge condition like Eq.~3.9! for general
orbits only possesses an isometry with respect to right mul-
tiplication by constant gauge group elements. The space of
solutions~1.2! of certain orbits can, however, have a larger
isometry. Covariant gauges are invariant under the SO~5!
isometry group of theS4 by definition, and we will find a
particular connectionA(s) in thek51 sector for which isom-
etry transformations~3.4! of the base space are equivalent to
infinitesimal gauge transformations

dAm
~s!~x!5Am,n

~s! en~x;a,v!1An
~s!~x!en,m~x;a,v!

5DA~s!
u~x;a,v!. ~3.10!

The equivalence~3.10! between isometry and gauge trans-
formations is only possible for an orbit whose classical YM
Lagrangian~3.6! and Pontryagin density~3.7! are both in-
variant under the SO~5! isometry group. The SO~4! invari-
ance ofL(x) andP(x) implies that these pseudoscalar den-
sities are only functions oft5x2. Using Eqs.~3.8! and~3.2!
the required invariance with respect to the SO~5!/SO~4! coset
generators gives the differential equation

S ~11t !
d

dt
14D HP~ t !

L~ t !
50, ~3.11!

determiningP(t) andL(t) up to a normalization. The nor-
malization ofP(t) is fixed by the Pontryagin numberk51
and forL(x) can be absorbed in the definition of the cou-
pling constant. The solution of Eq.~3.11! is thus seen to be
just the familiar pseudoscalar density of a BPST instanton
@15# with scaler52R51 located at the ‘‘origin’’x50

g2

8p2L~x!5P~x!5
6

p2 ~11x2!245
1

32p2 emnrsTr Fmn
~s!Frs

~s! .

~3.12!

A self-dual configuration with Pontryagin numberk51
will be called astandard instanton in what follows if its
Pontryagin density is invariant under the SO~5! isometry
group of theS4. In conformal coordinates, its Pontryagin
density is given by Eq.~3.12!.
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Jackiw and Rebbi@16# studied the Belavin-Polyakov-
Schwarz-Tyupkin~BPST! instanton @15# solutions to the
classical equations of motion of an SU~2! Yang-Mills theory
on a EuclideanS4. The space of these solutions forms a
SO~5,1!/SO~5! modulo gauge transformations, which tallie
with the fact that the moduli space in thek561 sector of an
SU~2! theory is five dimensional@17#. They found that a
particular connection of the standard instanton is invaria
under the SO~5! isometry group of theS4 modulo gauge
transformations. Actually this does not depend on the po
on the gauge orbit of the standard instanton, but is true on
whole orbit. This slight generalization of their result enabl
us also to study the infinitely many Gribov copies of th
connection considered in@16# without the need to explicitly
construct them.

The generalization is possible because the moduli sp
of an SU~2! instanton is only five dimensional@17# and very
well known. Any variation ofA(s) which does not change the
YM action is either a gauge transformation or would have
dilate or translate the standard instanton and therefore s
up as a change of its Pontryagin density. There are nohidden
moduli parameters in thek51 sector on which the Pontrya
gin density of an instanton does not depend. Since
Pontryagin density of a standard instanton is invariant un
isometry transformations, we are assured that this trans
mation does not move in the moduli space of the instan
and must be a gauge transformation only. The equivale
~3.10! therefore holds at every point on the gauge orbit o
standard instanton.

We still have to determine the space these gauge mode
the standard instanton actually span. Only the trivial config
rationA50 is invariant under the full SO~5! isometry group.
Vector fields which are invariant under an SO~4! subgroup of
SO~5! are pure gauge—the corresponding antisymme
field strength tensor, an (1,0)% (0,1) representation of
SO~4!, has to vanish since only the null vector is invaria
under SO~3! rotations.2 The best one can achieve in th
kÞ0 sectors is invariance of the connection under an SO~3!
subgroup of SO~5!. The corresponding field strength tens
is then~anti-!self-dual. We therefore conclude that:

A BPST instanton in thek51 topological sector is
changed by~or breaks! the seven generators of the SO~5!/
SO~3! coset space of the isometry group of anS4. The bro-
ken generators form an (12,

1
2)% (1 , 0) representation of

SO~4!.
We already know that isometry transformations of th

standardinstanton are equivalent to gauge transformatio
The isometries of an SO~5!/SO~3! coset space therefore cor
respond tonontrivial gauge transformations of the standa
instanton. The three broken generators of the (1 , 0) rep
sentation obviously generate constant gauge transformati
The other four broken generators in the (1

2,
1
2) representation

must generate gauge modes of the standard instanton w

2A more pedestrian proof of this statement is obtained by us
conformal coordinates adapted to the SO~4! in question. The invari-
ant vector field in these coordinates is of the for
Am(x)5xmF(x2) and easily seen to be pure gauge.
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are linearly independentof these—simply because they
transform according to different representations of the SO~4!
subgroup.

To summarize: isometry transformations of anS4 are
mapped to an SO(5)/SO(3).S7 subspace of the automor-
phisms of the gauge orbit of a standard instanton. Modulo
global SU~2! transformations, the space of solutions to a co-
variant gauge condition on the orbit of a standard instanton
has the topological structure

Ecov@A~s!#.
SO~5!

SO~3!3SU~2!
3B.S43B. ~3.13!

The spaceB was not determined and could depend on the
covariant gauge condition employed. The result~3.13! shows
that the gauge orbit of a standard instanton ison the Gribov
horizon in any covariant gauge.

Our arguments did not make use of anyexplicit form for
the connection of a standard instanton. They only rely on the
special property~3.10! of the orbit of a standard instanton
and apply to any covariant gauge.

IV. THE EULER CHARACTERISTIC OF THE SPACE
OF SOLUTIONS TO COVARIANT GAUGE CONDITIONS

IN THE k561 SECTORS

In Landau gauge two explicit standard instanton connec-
tions have been studied extensively. In conformal coordi-
nates on anS4 they are

Am
~1!~x!5

x2u†]mu

11x2
5
2hmnxn

11x2

and

Am
~2!~x!5Am

~1!u†~x!5
u]mu

†

11x2
5

2h̄mnxn

x2~11x2!
. ~4.1!

(h̄mn),hmn are the Lie-algebra-valued~anti-!self-dual tensors
introduced by ’t Hooft @12#. As indicated in Eq.~4.1!
u(x)5(x411 isW xW )/Ax2 is the gauge transformation relating
these two connections. Both connections~4.1! have finite
L2 norm uu•uu and the gauge transformationu(x) relating
them is normalizable inuu•uu1. In the functional space we are
considering, the connections~4.1! therefore belong to the
samegauge orbit and areboth instantons with Pontryagin
numberk511.

In fact they are just two points of anS4 of gauge equiva-
lent instantons parametrized bybPR4:

Am
~b!~x!5Am

~1!u†~x1b!~x!5u~x1b!Am
~1!~x!u†~x1b!

1u~x1b!]mu
†~x1b!. ~4.2!

Using

u†~x!]mu~x!5
2hmnxn

x2
~4.3!

and the su(2) algebra of the self-dual tensorshmn it is
straightforward to verify that any connection~4.2! satisfies
the Landau gauge condition~3.9!. Modulo constant gauge
transformationsA(b→`).A(1) and A(b50)5A(2). Points at
infinity in the parameter space correspond to connections

ing
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A(b) which are equivalent modulo constant gauge transf
mations and are identified in equivariant TQFT. Thus t
parametersb can be considered projective coordinates
S4 of gauge equivalent standard instanton connections sa
fying the Landau gauge condition. The connections~4.1! are
those at the ‘‘north’’ and ‘‘south’’ poles of thisS4. One may
also verify explicitly that an infinitesimal variation of the
parametersb in A(b) corresponds to an isometry transform
tion ~3.2!.

The construction in Landau gauge shows that there is
further identification of connections on theS4 sinceall con-
stant gauge transforms ofA(1) are identified with a single
point on theS4. The space of solutions to the Landau gau
condition on the orbit of a standard instanton therefore
deed has the structure~3.13! and we conclude from
x(S4)52 that

x~E]•A@A~s!# !5even. ~4.4!

The Euler characteristic of the space should not depend
continuous deformations of the orbit or the gauge conditio
Hence for a genericcovariantgauge condition which can be
continuously deformed to Landau gauge, the Euler char
teristic of the space of solutions on orbits in thek561
sectors iseven:

xcov~k@A#561!5even. ~4.5!

To determine the Euler characteristic more accurately tha
Eq. ~4.5! would require a better understanding of the so f
undetermined spaceB in Eq. ~3.13!. Together with the pre-
vious result of Ref.@3# for thek50 sector onS4,

xcov~k@A#50!51. ~4.6!

Equation ~4.5!, however, already shows that the partitio
function of the TQFTdependson the topological sector of
the orbit in covariant gauges.

V. GENERAL BACKGROUND GAUGES
AND POSSIBLE PHYSICAL IMPLICATIONS

OF GLOBAL GAUGE DEPENDENCE

In the previous section we observed that the partiti
function of the TQFT associated with a covariant gaug
fixing condition depends on the topological sector of the o
bit. Although we cannot construct the space of solutions
an arbitrary background gauge~1.5!, we will see that its Eu-
ler characteristic vanishes for orbits in the trivial topologic
sectork50 when the background connectionB is not de-
generate. Thus the partition function of the TQFT either va
ishes identically in this case, or depends on the topolog
sector also in these gauges.

Consider for instance a gauge condition~1.5! where the
background connectionB is the instanton connectionA(1).
Since the orbit ofB is nondegenerate,3 the associated poten
tial ~2.7! in this case has a unique absolute minimum
U51 for A5B. There is no degenerate subspace of solutio

3DBv50 only has the trivial solutionv50 whenB5A(1) of Eq.
~4.1!.
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to divide out in this gauge, and the equivariant constructio
of Ref. @3# cannot be employed. ’t Hooft used this gauge fo
his semiclassical calculation@12#. The Faddeev-Popov op-
erator in this case isDB

•DAU. At the absolute minimum of
the potential atAU5B5A(1) this operator is positive defi-
nite. Although we do not have much control over the Gribo
copies in this gauge, thek51 sector may very well contrib-
ute to the partition function of the TQFT.

On the other hand this background gauge condition
degenerate for the flat orbitA5U†dU. The Faddeev-Popov
operatorDB

•DU†dU on this orbit apparently has zero mode
corresponding to left multiplication of U by global gauge
transformations and the space of solutions to this gauge c
dition on the flat orbit has the topological structure

EDB
•A@A50#5$U:DB~U†]U!50%.SU~n!3B̄. ~5.1!

Since the Euler character of a group manifold vanishes, t
Euler characteristic of Eq.~5.1! vanishes irrespective of the
spaceB̄. We thus see that orbits in thek50 sector cannot
contribute to the partition function of the TQFT in this
gauge. The above argument is easily extended to any non
generate background connectionB—the space of solutions to
the background gauge condition on the orbit of flat conne
tions has vanishing Euler characteristic in this case and it
impossible to remove this degeneracy with an equivaria
construction analogous to that of@3#.

We have shown for anS4 that an orbit with Pontryagin
numberk561 contributes to physical correlation function
in covariant gauges with a different multiplicity factor due t
Gribov copies, than an orbit in the trivial topological secto
and that nondegenerate background gauges generally ann
late thek50 sector of the theory altogether. This confirm
the claim of Ref.@3# that global properties of thequantized
gauge theory may depend on the gauge fixing. Global pro
erties of a YM theory therefore will in general depend on th
gauge.4

Although this ambiguity was found in the continuum for
mulation of a gauge-fixed YM theory, it could also arise i
the thermodynamic limit of a lattice gauge formulation
From this point of view it is perhaps less surprising tha
topologically nontrivial configurations contribute mainly in
lattice gauge theories with noncovariant boundary cond
tions.

Our observation can have implications for the UA(1)- and
strongCP-violation problem, if it turns out that topologi-
cally nontrivial sectors do not contribute in covariant gauge
Our topological arguments are not sufficiently refined to a
tually determine the regularized Euler character in thek
Þ0 sectors of the theory in covariant gauges. They on
indicate that it isevenand therefore differs from that of the
k50 sector. It is obviously desirable to improve on thi
result. Our investigation nevertheless shows that the w
known global dependence of a YM theory on the topology
compact space-time may also extend to the gauge conditi

4Since perturbation theory only accounts for fluctuations around
single solution to the gauge condition, it is not sensitive to th
global issues discussed here.
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Physical correlation functions are gauge invariant and a
gauge-dependent answer is usually attributed to a badly
formed gauge fixing. This, however, presumes that the qu
tization of a classical gauge theory is unique. There may
many different quantized gauge theories which correspon
a single classical theory with a certaininfinitesimalgauge
invariance. There is noa priori reason that so quantize
‘‘gauge theories’’ are identical, since the extension of th
procedure to the whole orbit space will not be unique
general. Of course, onlyoneof these extensions can~at best!
describe physical reality and physical criteria have to be u
to select this model. The phenomenon is very similar to
spontaneous breakdown of a symmetry where the real
model is selected by choosing one of the degenerate va

Our investigation only addressed theories with a BR
symmetry and not the orbit space of gauge theoryper se. We
adopted BRST symmetry as the guiding principle for co
ny
per-
an-
be
d to

d
is
in

sed
the
istic
cua.
ST

n-

structing a gauge theory. The relation of the usual gauge-
fixing procedure to a certain TQFT in the gauge group ob-
served in@3# allowed us to determine global characteristics
of such a theory. We believe that our definition of the parti-
tion function based on a complete BRST approach will allow
us to investigate the Gribov problem in more detail. We
speculate that physical properties such as the apparent ab-
sence of strongCP violation may select a preferred class of
‘‘gauges.’’
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