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For anS, space-time manifold global aspects of gauge fixing are investigated using the relation to topo-
logical quantum field theoryTQFT) on the gauge group. The partition function of this TQFT is shown to
compute the regularized Euler character of a suitably defined space of gauge transformations. Topological
properties of the space of solutions to a covariant gauge conditon on the orbit of a particular instanton are
found using the S(®) isometry group of th&, base manifold. We obtain that the Euler character of this space
differs from that of an orbit in the topologically trivial sector. This result implies that an orbit with a Pontryagin
numberx=*1 in covariant gauges o8, contributes to physical correlation functions with a different mul-
tiplicity factor due to the Gribov copies than an orbit in the triviat O sector. Similar topological arguments
show that there is no contribution from the topologically trivial sector to physical correlation functions in
gauges defined by a nondegenerate background connection. We discuss the possible physical implications of
the global gauge dependence of Yang-Mills the¢80556-282(196)06024-9

PACS numbgs): 11.15.Tk, 11.15.Bt

. INTRODUCTION £, Al A]={U:U(x) e SU(n),3-AY=0}/SU(n). (1.4
Since the pioneering work of Gribdd] and Singef2] it Note that the Euler character of the space of solutions to the
is known that the gauge condition covariant(Landay gauge conditiors- AY=0 vanishes due
to the isometry with respect to right multiplication by con-
F(A)=0 (1.1)  stant group elements. This isometry group has been factored

out in Eq.(1.4) and it was shown3] that x(&,.,) =o0dd#0
generally does not determine the representative connectidn the vicinity of flat connectionsA=U'dU for an SU?2)
A of a gauge orl_)it uniquely for pon-AbeIian gauge groupsgauge group defined on any compact space-time manifold.
such as SU{). It is, therefore, of interest to study the space  Since the topological properties of the moduli spékd)

of gauge equivalent solutions to E(d..1) do not change under continuous deformations, one is guar-
anteed thaj (€A A]) is constant within a topologically con-
EAAI={U:U(x) e SU(n), F(AY)=0}, (1.2 nected sector of gauge orbits. The Euler character could,
however, depend ofi) the topological sector of the gauge
on the gauge orbifAY} with representative connectiok orbit and/or(ii) the gauge fixing conditiofl.1).
The two possibilities are intimately related, since the ex-
AY=U'Au+U"dU. (1.3 istence of topologically disconnected sectors in the orbit

space implies that background gauge conditions of the type
It was recently pointed oy8] that gauge fixing of Yang-

Mills theory defined on a compact space-time manifold F(A)=DB.A-9.-B=0 (1.5
amounts to the construction of a certain topological quantum
field theory (TQFT) on the space of gauge transformations,also cannot be deformed into each other for background con-
whose partition function computes some topological numbenectionsB belonging to different topological sectors.
of Eq. (1.2). This relation to TQFT enables us to investigate  In this paper we will investigate both possibilities by con-
global aspects of the gauge fixing procedure in greater detasiidering an S(R) gauge theory defined d8,. Disconnected
than was previously possible. We will show in Sec. Il thatsectors of the orbit space with different Pontryagin number
the partition function of the TQFT proposed in RER] is  «[A]eZ,
proportional to the Euler characterisi§¢&,. o) of the moduli

space %L TrF(A)AF(A)=«[A], F(A)=dA+AAA,
4
(1.6
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gin number of the orbif(E4A])=x A «[A]). Since anS, the infinite dimensional space of gauge transformations. This
manifold has only trivial 1-cycles, the result presented in thegeometrical interpretation af(x) as a basis for the cotan-
appendix of 3] actually implies thay (k[A]=0)=1 foran  gent space at U becomes particularly convincing in the vi-
SU(2) theory in any covariant gauge which can be deformectinity of U=1. The BRST operator can be identified as the
to Landau gauge-A=0. In Sec. Ill we discuss the moduli coboundary operator of the Lie algebra cohomology and Egs.
spacet,,, of such covariant gauges for a particular instanton(2.3) are regarded as the explicit representation of its action
orbit with Pontryagin numbek[A]=1. In Sec. IV we con- at an arbitrary point WX) in the space of gauge transforma-
struct this space explicitly in Landau gauge. On the othetions. General argumentfor a review see, e.g[p]) suggest
hand, we see in Sec. V that the Euler character of the moduthat the TQFT with thes-exact action(2.2) computes the
space £;{A] vanishes in the topologically trivial sector Euler characteristic of the space of gauge transformations.
k[A]=0 for gauges(1.5) defined by any nondegenerate One, however, first has to make sense of the Euler character
backgroundB. These results show that global characteristics?f an infinite dimensional space.

of the gauge theory can depend on the gauge-fixing condition There are essentially two ways to compute the Euler char-
employed. We conclude by discussing the possible relevanc@cteristic of a manifold. One is by use of the Gauss-Bonnet

of this dependence for the quant|zat|on of a gauge theory theorem, which glveS the Euler characteristic as an Integral
of the Euler class over the manifold. The other makes use of

Il. GAUGE FIXING AND TQFT the PoincaréHopf theorgm, which amounts to counting Wl_th
signs the number of isolated zeros of some vector field
Gauge fixing an Sth) YM theory with the gauge condi- 7=VV generated by a potentil on the manifold. The
tion (1.1) amounts to the statement that the partition functionsigns are determined by the sign of the Hessian at these
isolated points. More generally, when the zero locus of the

Z[A]:f [dU][dc][dc][db]exp(Sa) (2.1  vector field 7 is finite dimensional, the regularized Euler
characteristic of a manifoldM is

with the action
X(M)= ; (=1)x(X), (2.4
X:Flx=0

Sp=-— 2f dxsTr[c(x) F(AY) ()]
where the signs depend on the orientation of the fixed point

U manifoldsX embedded itv. The latter method can be gen-
= _ZJ dXTr { b(x) F(AZ)(X) eralized to the case of infinite dimensional manifolds, where
Eq. (2.4) is regarded as theefinitionof the regularized Euler
SF(AY)(x) characteristic of the manifolfb].
fd /6(X) =5 SU(y) c(y) (2.2 The usual argument that the TQFT with BRST algebra

(2.3) computes the right-hand side of E®.4) is based on
does not vanish and is independent of the orbit which théhe fact that the saddle point approximation is apparently an
connectionA represents. In this case, the partition functionexact evaluation of the functional integral. To see this one
(2.1 could be inserted in the gauge-invariant measure of thean for example modify the actiof2.2) by thes-exact term
Yang-Mills (YM) theory and the change of variables («/2)b?:
AY— A would yield the usual gauge-fixed action proposed
by Faddeev and Popov. The so far rather formal functional
integral in Eq.(2.1) extends over the gauge-group elements
U(x) e SU(n), the Lie-algebra-valued Nakanishi-Lautrup
field b(x) as well as the Lie-algebra valued anticommuting
Faddeev-Popov ghosts and antighasts), c(x). The func-
tional derivative in(2.2) is computed with respect to right
multiplication of the group J 5]:(AU)(X) )

. ) S dyd: o(y)
In Ref.[3] it was observed that E¢2.1) with action(2.2) )
can be regarded as the partition function of a TQFT in the
gauge group with the Becchi-Rouet-Stora-TyU®RST) al-  Because of the topological nature of the theory, the partition

=—2J' dxslr|c

c(x )(f(AU)——b(X))
=2f der(%bz(x)—b(x)a-AU(x)

(2.5

gebra, function should be independent af Gaussian integration
over the multiplier fieldb in the functional integral with
sU(x)=U(x)c(x), actionS, shows that
1 _ 1
sa(x) =~ 5[e(x),e(x)], Z[A]“f [dU][dc][dc]ex 2f dx —5(7-'(AU))2
J— U
Sa(x)=b(x), sh(x)=0. 2.3 fd 5f(A ))( ) oty )> 2.6

Note that the connectioi is a parameter of the TQFT
(sA=0). The nilpotent BRST algebr@.3) suggest$4]| that  In the «—0 limit only fluctuations around U’s satisfying the
one may identify the ghost fields as Maurer-Cartan forms oriixed point equationF(AY)=0 will contribute to the func-
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tional integral. With the correctg-dependentnormalization  space of gauge transformations in the neighborhood of a par-
the contribution of an isolated fixed point to the partition ticular U(x) one has to consider all fluctuatiod®) which
function(2.1) is + 1 depending on the sign of the “Hessian” are normalizable in th&2-norm || 8U||. To preserve invari-

at that point. To evaluate the contribution from a finite di-ance under infinitesimal isometry transformations
mensional subspace of fixed points, one introduces local coc—x+¢(x) of the base manifold, ) as well as
ordinates and restricts the BRST algek2&d) to that space. U[x+¢e(x)] have to belong to the space of allowed gauge
This procedure generally induces curvature tefifis One  transformations. This implies that one has to account for
may then use the Gauss-Bonnet theorem to find that the cofiuctuations SU= U[x+&(x)]—U(x), which in general are
tribution to the partition function of the TQFT is the Euler only normalizable in thé.2, norm||-||=]||-||o, if U is nor-
characteristic of the submanifo[@]. In the «— 0 limit, the ~ malizable in||-||;. These considerations determine the func-
partition function of the TQFT is thus seen to reproduce thetional space we should consider in the TQFT with BRST

right-hand side of Eq(2.4). algebra (2.3: U(x) eC” completed in the norm|-||y;
It could appear that the space of gauge transformations(x), c(x), and c(x) in C* completed in the norm
and therefore its Euler characteristic can be defined indepeft- ||=||-||o.

dently of the connectioA and that the TQFT2.1) does not Our previous argument indicates that tlegularizedEu-
depend onA at all. Let us stress, however, that the Eulerler characteristic so obtained does not necessarily coincide
characteristic computed via the Poincétepf theorem is ac-  with the Euler characteristic of the full space of gauge trans-
tually that of thedomain D ={xe M,|V(x)|<w=}, rather formations and may depend on topological properties of the
than the Euler characteristic of the whole manifaldl Thus  gauge conditior{1.1). The purpose of this paper is to inves-
the Euler characteristic defined by E@.4) coincides with tigate this possibility.
that of the original manifold\ only if the potential is finite For certain gauge conditiori&.]) it is easy to see that the
everywhere. regularized Euler characteristic computed in this way van-

If the TQFT on the gauge group is to be employed as dshes. This is for instance the case, whenever the Euler char-
gauge-fixing device, the gauge conditithl) will only de-  acteristic of each subspace of fixed points vanishes individu-
pend on the orbifAY} rather than U itself. Any background ally due to a group isometry. One encounters this situation in
gauge condition of the forr(iL.5) is the gradient of an asso- any background gaugél.5 defined by a degenerate orbit
ciated potential, introduced 9] B and in particular in covariant gauges, which correspond to
choosing the degenerate background d&sit0. The associ-
ated potentiaV is invariant with respect to right multiplica-
tion by a certain group in this case and the fixed point spaces
therefore possess an isometry generated by the group action.
_ EJ dXTr(A— BUT)-(A— BUT). 2.7) Since this isometry has no_fixed points, the Euler character-

2 istic of each subspace vanishes.

The problem can be circumvented by an equivariant

V[U]:||AU—B||2=%J dxTr(AY—B)-(AY-B)

Indeed, the fixed points of this potenti@V/[ U] =0, BRST constructiof3] which divides out this group mani-
fold. In covariant gauges one considessSU(n) rather than
A = — FAY)(x) the space of fixed point& itself and the TQFT based on the
oU(x) ' equivariant cohomology computes the Euler characteristic

x[X/SU(n)]. For details on the equivariant BRST construc-
are just the solutions to the gauge conditidnb). The do-  tion in covariant gauges and the associated TQFT we refer to
main of the potentia(2.7) in the sense of the Poincaropf  [3].
theorem consists only of those gauge transformatjbhsfor
which the connectiolAV—B is square integrable. This do-
main does not depend on continuous deformations of the Il INSTANTONS ON S, IN COVARIANT GAUGES

connection®A andB but may(and we will indirectly see that The main reason for employing covariant gauges in
it doeg depend on their topological characteristics. Minkowski or Euclidean space-time is that they allow a
Completing the space &~ connections in th&.? norm  manifestly relativistically invariant formulation of the quan-
||-]| was shown10] to naturally extend to considering the tym field theory(QFT). The natural generalization of this
space ofC* gauge transformations completed in the Sobolevgstinction to other spacetime manifolds ik, is that a
norm ||U|[;=[|U||+[|4U[|. For the TQFT it is important covariant gauge condition preservali isometries of the
that this is a topological space of gauge transformationase manifold. Covariant gauges preserve the homogeneity
which furthermore fully describes the gauge orbit and isotropy of space-time and do not select a preferred point
{AY ={AlY}} [10]. We know of no other space of gauge and/or direction in the gauge-fixed theory. This could be par-
transformations where this important property holds and willticularly important for defining the thermodynamic limit un-
therefore work in this space. Note that in order to span thembiguously, especially since color forces are expected to be
strong and of infinite range.
By formulating a massless theory such as unbroken YM
In contrast with[9] we here however do not select a representa-on compact Euclidean space-time, one can avoid infrared
tive connection by the absolute minimum of the potentzal) on  divergences while preserving the gau@® rather BRST
the gauge orbit, but rather sum over all its relative minima in thesymmetry. One hopes that the thermodynamic limit of physi-
sense of the Poincatgopf theorem. cal correlation functions can be obtained by rescaling the
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compact base manifold and that this limit is independent ofinder conformal transformations
the manifold used to formulate the theory. The thermody-
namic limit, if it exists, can at most depend on topological p(X)=p (X € (Xa,0) +P(X)€, (X a,0), (3.8
characteristics of the base manifold. _ _ _
In the case of Yang-Mills theory on compact space-timeWill also be useful in the following. -
with the topology of ar, it is well known that the space of ~ The prototype of a covariant gauge condition is the Lan-
gauge orbits is disconnected. The possible importance of sefau gauge, which on a8, in conformal coordinates takes
tors with Pontryagin numbex[A]#0 has been recognized the form
long ago[11] and 't Hooft's semiclassical calculatidri2] 1 Vo1
indicates that this could resolve tha (1) problem[13]. We F(A)=0-A=(deg) ~79,(deg)™g,,A,(X)
wish to stress that the AJ1) problem is intimately related to -2 _
the existence of covariant gauges, since one makes use of the 9 "(X)7ug()A,LX) =0. 3.9
Goldstone theorem to formulate{k3]. Due to an anomalous  The following considerations are, however, not particular to
contribution, the conserved J(1) current is gauge depen- | andau gauge and only make use of the fact that the gauge
dent. In covariant gauges the Ward identities neverthelessyndition /(A) is covariant. To investigate topological char-
imply the existence of a Goldstone pole in correlation func-gcteristics of the space of solutiofis2) to a covariant gauge
tions of this current with quark multilinears, if the,(l) condition in the sector with Pontryagin number=1, we
symmetry is spontaneously brokénd]. It is therefore im- || choose a particular orbit in that sector.
portant to verify that gauge orbits with Pontryagin number g giscussed in the previous section the space of solutions
«[A]=0 contribute to physical correlation functions@- (1 2) to a covariant gauge condition like E@.9) for general
variant gauges. . . orbits only possesses an isometry with respect to right mul-
We adopt conformal coordinates to parametrize $3e tiplication by constant gauge group elements. The space of
and use its diameterR=1 as the unit of length. In these sojutions(1.2) of certain orbits can, however, have a larger
coordinates the metric is diagonal®c 3 ,x,,X,,), isometry. Covariant gauges are invariant under the580
_ _ 2\ -2 isometry group of thes, by definition, and we will find a
9 () =9(X) 8, = (1) 755, @D particular connectioA® in the k=1 sector for which isom-
and the invariant volume element of tH®, is simply _etry.trar_]sformation(;3.4) of the b_ase space are equivalent to
dx=d*xg?(x). infinitesimal gauge transformations
The S@5) isometry group of ar, is generated by the
coordinatg t:ansformgti%ns P ¢ o9 / SAD(X) =AF€,(%;a,0) + AP (e, 4(X;a,0)
S
X/, =X, ~ €,(%8,0) =X, 0,,X,+a,(x*~1)—2x,X-a, =0*"0(xa,0). (3.10

3.2
32 The equivalencd3.10 between isometry and gauge trans-

depending on ten infinitesimal parameters, and formations is only possible for an orbit whose classical YM
Lagrangian(3.6) and Pontryagin density3.7) are both in-

W, ,=—wW,,.
#A scala# densitys(x) transforms as variant under the S@) isometry group. The S@) invari-
ance of£(x) andP(x) implies that these pseudoscalar den-
0s(X)=s ,(X)€,(X;a,0) (3.3 sities are only functions df=x2. Using Egs.(3.8) and(3.2)

_the required invariance with respect to the(S\58Q0(4) coset
generators gives the differential equation

P(t)
L(t)

under the isometry group. Together with the variation of vec
tor fields such as a connectid),(x),

A, (X)=A, e, (X a,0)+A (X)€, (X a,0), (3.4 0, (3.11)

d
(1+t)a+4

Eqg. (3.3 determines the transformation properties of all
higher rank tensors. The isometry generat@®) of course  determiningP(t) and £(t) up to a normalization. The nor-

do not change the conformal met(i8.1): malization of P(t) is fixed by the Pontryagin numbear= 1
o _ _ and for £(x) can be absorbed in the definition of the cou-
99,,(X)=0=g(X)[ €, ,(X;a, @)+ €, ,(X;a,0)] pling constant. The solution of E¢3.11) is thus seen to be
+8,,0.4(X) €,(X;8,). (3.5 Just the familiar pseudoscalar density of a BPST instanton

[15] with scalep=2R=1 located at the “origin”"x=0

The change of a pseudoscalar dengifx) such as the YM 5

Lagrangian g _ _ 6 o4 (9e(9)
. Wﬁ(X)—'P(X)—?(l-FX ) —WE#VPUTF F:vaSo'
£(X)= 5z detg,,,)Tr FoF00tal, (36 (3.12
A self-dual configuration with Pontryagin number=1
or the Pontryagin density will be called astandardinstanton in what follows if its

Pontryagin density is invariant under the GDisometry
group of theS,. In conformal coordinates, its Pontryagin

P(x)= density is given by Eq(3.12.

TrF,Foe (3.7

=~ &
32772 nvpo
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Jackiw and Rebbi16] studied the Belavin-Polyakov- are linearly independentof these—simply because they
Schwarz-Tyupkin(BPST) instanton[15] solutions to the transform according to different representations of thé430
classical equations of motion of an &) Yang-Mills theory ~ subgroup.
on a EuclidearS,. The space of these solutions forms an To summarize: isometry transformations of & are
S0O(5,1)/SO(5) modulo gauge transformations, which tallies mapped to an SO(5)/SO(3)S; subspace of the automor-
with the fact that the moduli space in tike= = 1 sector of an Phisms of the gauge orbit of a standard instanton. Modulo
SU(2) theory is five dimensional17]. They found that a glopal Su2) transfo_rr_nations, the space of solutions_to a co-
particular connection of the standard instanton is invariany@'iant gauge condition on the orbit of a standard instanton
under the SC¥) isometry group of theS, modulo gauge Nas the topological structure
transformations. Actually this does not depend on the point SQ(5)
on the gauge orbit of the standard instanton, but is true on the SCO\,[A(S)]: W
whole orbit. This slight generalization of their result enables
us also to study the infinitely many Gribov copies of the The spaceB was not determined and could depend on the
connection considered ir16] without the need to explicitly covariant gauge condition employed. The re$8I13 shows

XB=S,xB. (3.13

construct them. that the gauge orbit of a standard instantonrnghe Gribov
The generalization is possible because the moduli spadeorizon in any covariant gauge.
of an SU?2) instanton is only five dimensiongl7] and very Our arguments did not make use of awplicit form for

well known. Any variation ofA(® which does not change the the connection of a standard instanton. They only rely on the
YM action is either a gauge transformation or would have tosPecial property3.10 of the orbit of a standard instanton
dilate or translate the standard instanton and therefore sho@id apply to any covariant gauge.

up as a change of its Pontryagin density. There arkidden
IV. THE EULER CHARACTERISTIC OF THE SPACE

moduli parameters in the=1 sector on which the Pontrya-
. . . . OF SOLUTIONS TO COVARIANT GAUGE CONDITIONS
gin density of an instanton does not depend. Since the IN THE x=+1 SECTORS

Pontryagin density of a standard instanton is invariant under

isometry transformations, we are assured that this transfor- In Landau gauge two explicit standard instanton connec-

mation does not move in the moduli space of the instantortions have been studied extensively. In conformal coordi-

and must be a gauge transformation only. The equivalenceates on arg, they are

(3.10 therefore holds at every point on the gauge orbit of a

standard instanton. Ar})(x)
We still have to determine the space these gauge modes of

the standard instanton actually span. Only the trivial configu

ration A= 0 is invariant under the full SG) isometry group.

Vector fields which are invariant under an @Psubgroup of

SQ(5) are pure gauge—the corresponding antisymmetric

field strength tensor, an (18)0,1) representation of _

S04), has to vanish since only the null vector is invariant (7). 7., are the Lie-algebra-valuddnti-self-dual tensors

under S@3) rotations? The best one can achieve in the introduced by 't Hooft[12]. As indicated in Eq.(4.1)

«+#0 sectors is invariance of the connection under afi30 U(X) = (x*1+iox)/\x? is the gauge transformation relating

Subgroup of S@) The Corresponding field Strength tensor these two connections. Both connectiofsl) have finite

is then(anti-)self-dual. We therefore conclude that: L? norm [|-|| and the gauge transformatiar(x) relating
A BPST instanton in thex=1 topological sector is them is normalizable i -||_1. In the functional space we are

changed by(or breaks the seven generators of the G@ considering, the_ connect|0r(§,._1) therefore _belong to the

SO3) coset space of the isometry group of & The bro- samegauge orbit and aréoth instantons with Pontryagin

ken generators form an3()®(1, 0) representation of numbersx=+1. . . .

SQ4). In_ fact they are just tWO points Oﬁ.a@“ of gauge equiva-
We already know that isometry transformations of thelem instantons parametrized by=R™:

stan(_jardinsranton are equivalent to gauge transformations. A(b)(X)=A(1)“T(X+b)(x):u(x+b)A(1)(x)uT(x+b)

The isometries of an SG)/SQ(3) coset space therefore cor- # " #

respond tonontrivial gauge transformations of the standard +u(x+ b)a#uT(er b). (4.2

instanton. The three broken generators of the (1, 0) repreosing

sentation obviously generate constant gauge transformations:

The other four broken generators in thg3) representation 27,,%,

must generate gauge modes of the standard instanton which u’(x)d,u(x)= 2 (4.3

2.t
_Xuldu 27X,
1+x? 1+x2

and

uaMuT: 27,,%,
1+x°  x?(1+x%)°

A@(x)= ALY ()= 4.1

and the su(2) algebra of the self-dual tensers, it is
2A more pedestrian proof of this statement is obtained by usingstraightforward to verify that any connectigs.2) satisfies
conformal coordinates adapted to the(80n question. The invari- the Landau gauge conditiof8.9). Modulo constant gauge
ant vector field in these coordinates is of the form transformationsA®~*)=A®) and AP=0=A) Points at
A, (x)=x,P(x?) and easily seen to be pure gauge. infinity in the parameter space correspond to connections
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A®) which are equivalent modulo constant gauge transforto divide out in this gauge, and the equivariant construction
mations and are identified in equivariant TQFT. Thus theof Ref.[3] cannot be employed. 't Hooft used this gauge for
parametersy can be considered projective coordinates onhis semiclassical calculatiofil2]. The Faddeev-Popov op-
S, of gauge equivalent standard instanton connections satigrator in this case i®B.DA". At the absolute minimum of
fying the Landau gauge condition. The connectithd) are  the potential atAV=B=A® this operator is positive defi-
those at the “north” and “south” poles of thiS,. One may  nite. Although we do not have much control over the Gribov
also verify epricitIy that an infinitesimal variation of the Copies in this gauge, the=1 sector may very well contrib-
parameter® in A corresponds to an isometry transforma- yte to the partition function of the TQFT.
tion (3.2). On the other hand this background gauge condition is
The construction in Landau gauge shows that there is ngegenerate for the flat orb&=U'dU. The Faddeev-Popov
further identification of connections on tis sinceall con- operatorD®. DV g this orbit apparently has zero modes

stant gauge transforms &%) are identified with a single corresponding to left multiplication of U by global gauge

point on theS,. The space of solutions to the Landau gaugeransformations and the space of solutions to this gauge con-
condition on the orbit of a standard instanton therefore inition on the flat orbit has the topological structure

deed has the structur€3.13 and we conclude from
X(S4)=2 that Eps. Al A=0]={U:DB(UT9U)=0}=SU(n) X B. (5.1
X(E,. ALA®])=even. (4.4

Since the Euler character of a group manifold vanishes, the
The Euler characteristic of the space should not depend opyler characteristic of Eq5.1) vanishes irrespective of the
continuous deformations of the orbit or the gauge conditionspaceg We thus see that orbits in the=0 sector cannot
Hence for a genericovariantgauge condition which can be cqnripute to the partition function of the TQFT in this
continuously deformed to Landau gauge, the Euler charagya,ge. The above argument is easily extended to any nonde-
teristic of the space of solutions on orbits in thke=*1  gonerate background connectiBa-the space of solutions to
sectors iseven the background gauge condition on the orbit of flat connec-
tions has vanishing Euler characteristic in this case and it is
impossible to remove this degeneracy with an equivariant

To determine the Euler characteristic more accurately than ifionstruction analogous to that ().  with .
Eq. (4.5 would require a better understanding of the so far W& have shown for a, that an orbit with Pontryagin

undetermined spacB in Eq. (3.13. Together with the pre- numberx= *1 contributes to physical correlation functions
vious result of Ref[3] for the k=0 sector orS, in covariant gauges with a different multiplicity factor due to

Gribov copies, than an orbit in the trivial topological sector
Xeod K[A]=0)=1. (4.6) and that nondegenerate background gauges generally annihi-
late thex=0 sector of the theory altogether. This confirms
Equation (4.5), however, already shows that the partition the claim of Ref[3] that global properties of thquantized
function of the TQFTdependson the topological sector of gauge theory may depend on the gauge fixing. Global prop-

Xcod kK[A]=*1)=even. (4.5

the orbit in covariant gauges. erties of a YM theory therefore will in general depend on the
gauge’
V. GENERAL BACKGROUND GAUGES Although this ambiguity was found in the continuum for-
AND POSSIBLE PHYSICAL IMPLICATIONS mulation of a gauge-fixed YM theory, it could also arise in
OF GLOBAL GAUGE DEPENDENCE the thermodynamic limit of a lattice gauge formulation.

From this point of view it is perhaps less surprising that

In the previous section we observed that the partitiontopologically nontrivial configurations contribute mainly in
function of the TQFT associated with a covariant gaugedattice gauge theories with noncovariant boundary condi-
fixing condition depends on the topological sector of the ortions.
bit. Although we cannot construct the space of solutions for Our observation can have implications for thg(l)- and
an arbitrary background gauge.5), we will see that its Eu-  strong C P-violation problem, if it turns out that topologi-
ler characteristic vanishes for orbits in the trivial topological cally nontrivial sectors do not contribute in covariant gauges.
sectork=0 when the background connecti@is not de-  Our topological arguments are not sufficiently refined to ac-
generate. Thus the partition function of the TQFT either vantually determine the regularized Euler character in the
ishes identically in this case, or depends on the topologicak 0 sectors of the theory in covariant gauges. They only
sector also in these gauges. indicate that it isevenand therefore differs from that of the

Consider for instance a gauge conditidn5 where the =0 sector. It is obviously desirable to improve on this
background connectioB is the instanton connectioA™).  result. Our investigation nevertheless shows that the well
Since the orbit oB is nondegeneratethe associated poten- known global dependence of a YM theory on the topology of
tial (2.7) in this case has a unique absolute minimum atcompact space-time may also extend to the gauge condition.
U=1for A=B. There is no degenerate subspace of solutions

“Since perturbation theory only accounts for fluctuations around a
3DBw=0 only has the trivial solutiom=0 whenB=A® of Eq. single solution to the gauge condition, it is not sensitive to the
(4.1. global issues discussed here.
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Physical correlation functions are gauge invariant and angtructing a gauge theory. The relation of the usual gauge-
gauge-dependent answer is usually attributed to a badly pefixing procedure to a certain TQFT in the gauge group ob-
formed gauge fixing. This, however, presumes that the quarserved in[3] allowed us to determine global characteristics
tization of a classical gauge theory is unique. There may bef such a theory. We believe that our definition of the parti-
many different quantized gauge theories which correspond tgon function based on a complete BRST approach will allow
a single classical theory with a certainfinitesimalgauge us to investigate the Gribov problem in more detail. We
invariance. There is n@ priori reason that so quantized 3pecu|ate that phygica| properties such as the apparent ab-
“gauge theories” are identical, since the extension of thissence of stron@ P violation may select a preferred class of
procedure to the whole orbit space will not be unique in“gauges.”
general. Of course, onlgneof these extensions cdat best
describe physical reality and physical criteria have to be used
to select this model. The phenomenon is very similar to the ACKNOWLEDGMENTS
spontaneous breakdown of a symmetry where the realistic
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