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We consider supersymmetric S]{P gauge theories witk matter fields in the defining representation, one
matter field in the adjoint representation, and no superpotential. We construct a sequence of dual descriptions
of this theory using the dualities of Seiberg combined with the “deconfinement” method introduced by
Berkooz. Our duals hint at a new nonperturbative phenomenon that seems to be taking place at asymptotically
low energies in these theories: for smellsome of the degrees of freedom form massless, noninteracting
bound states while the theory remains in an interacting non-Abelian Coulomb phase. This phenomenon is the
result of strong coupling gauge dynamics in the original description, but has a simple classical origin in the
dual descriptions. The methods used for constructing these duals can be generalized to any model involving
arbitrary two-index tensor representations of Sg{2SO(N), or SUN) groups.[S0556-282196)02824-X

PACS numbdss): 11.15.Tk, 11.15.Pg

[. INTRODUCTION without a superpotential is described by an interacting super-
conformal fixed point for &<F<2N [13]. This suggestion is
Recently there has been considerable progress in unden accordance with the results of REf4], which studied the
standing nonperturbative effects in supersymmetric gaugtheory with the addition of a superpotential
theories (see, for example, Refs[1-4]). In particular,
Seiberg[3] has argued convincingly that the low-energy dy- .
namics of supersymmetric SNj QCD can be described by W=XQAQ, 1.2
a dual gauge theory with different gauge group and matter
content[The SON) and Sp(2) cases were worked out in A
detail in Refs.[5] and [6], respectivelyl Dual descriptions where Q and Q are the fundamental and antifundamental
have since been discovered for a wide range of theories; segatter fields, respectively. For finitethe theory is smoothly
for example, Refs[7-9]. connected tdN=2 supersymmetric QCD, which is known to
One theory that has attracted considerable attention réye in an Abelian Coulomb phagé5,14. When the limit
cently is the model with gauge group SWUY, SON), or  \—0 is taken, it is found that singularities appear in the
Sp(2N), containingF vectorlike “flavors™ of matter fields  |ow-energy effective actiofil4], as expected if the theory is
in the defining representation and one matter figlth the  entering a non-Abelian Coulomb phase, and the requisite
adjoint representatioi10-13. Kutasov and Schwimmer gauge bosons are becoming massless. In this paper, we fur-
[10,11] have constructed dual descriptions for the BY( ther investigate the conjecture that the theory without a su-
theory with the addition of a superpotential of the form  perpotential is at an interacting superconformal fixed point
for all 0<F<2N.
W=tr(AHh), (1.7 We will study the Sp(®) version of this theory. Its prop-
erties are expected to be very similar to the S)€ase, but
The SON) and Sp(A) analogues of this model were it is easier to analyze because the invariants of Sp(are
worked out in Ref[12] (see also Ref.16]). It was found that  simpler. Assuming that the theory is at a nontrivial supercon-
the size of the dual gauge group dependkpand becomes formal fixed point, we show that some massless degrees of
infinitely large ask—oo. More recently, Kutasov, Schwim- freedom must decouple from the superconformal fixed point
mer, and Seiberfl3] have obtained impressive detailed evi- theory for F<F,, whereF,=1/2(N+1). We describe the
dence for the validity of the duality presented in R¢f)],  various possibilities for which operators decouple in the in-
[11]. frared.
The dynamics of the theory without a superpotential is We then construct a series of dual descriptions that sug-
still not well understood, although there are some hints comgest that gauge-invariant operators of the fo@A*Q,
ing from analyzing the theory with various superpotentialsk=0,1,2 . .., sequentially decouple &8 is reduced. The
added. Using the dual descriptions of R¢fid], [11], [13] it  dual descriptions are constructed by generalizing the “de-
can be shown that in the presence of the superpotential, Eqonfinement” method introduced by Berkof&,9]. The first
(1.1), the theory is at an interacting superconformal fixeddual description is a theory with gauge groupx&0, with
point for 2N/(2k—1)<F<2N. Taking the limit k—oo matter fields in the fundamental and adjoint representations,
(which makes the superpotential arbitrarily flat at the opigin and a superpotential. We then iterate the process, applying
one can argue that the low-energy dynamics of the theorthe deconfinement method to SO and Sp groups to obtain
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TABLE I. Field content of the theory. the two-loop coefficient is negative of ordif. Arguments
due to Banks and ZaK49] show that the gauge coupling has
Field Sp(N) SU(2F) u(1) U(1)r  anontrivial perturbative fixed point in the infraréat least in
N1 the largeN limit). At the fixed point we can calculate
Q O O — 1 anomalous dimensions in perturbation theory:
o
A mm 1 -1 0 yAA:—?*(N-i-l)-FO(ai),
(2.9
more complicated dual descriptiohs. oy 1 2
This paper is organized as follows. In Sec. Il we introduce YT T o ( N+ 2 O,

the theory under investigation and consider some of the pos-

sible scenarios for the infrared physics. In Sec. Il we de-Wheree, is the gauge coupling at the fixed point, given by
scribe the construction of the first dual, and in Sec. IV we

iterate the construction to obtain additional duals that we Px (N+1)= f+o(62)’ e=2— L 2.6
then use to speculate about the infrared spectrum. In the 2 N+1
Appendixes, we perform some consistency checks on these

dual descriptions and show how the deconfinement method "€ Superconformal algebra in the infrared includes an
can be generalized to arbitrary two-index representations. 2nemaly-freeR symmetry whose chargésc are related to
the dimensions of chiral operato3 by [20]

Il. MODEL dim(0)=32Rgd 0). (2.7

The theory we wish to study has gauge group $p(2
with 2F matter fieldsQ in the defining representation, and
one matter fieldA in the adjoint(symmetric second rank

The Rgc charges must be a linear combination of the
anomaly-free 1) symmetries of the ultraviolet:

tensoj representation. It has the anomaly-free global sym- Rsc=R—bU, (2.9
metry SU(F)XU(1)XU(1)g. The field conten{with glo-
bal chargesis given in Table I. whereR and U denote charges under thg )k and U1),

The moduli space can be parametrized by the holomorrespectively. The coefficierit is a function ofF andN that
phic gauge-invariant polynomials in the matter fielghe  we would like to determine, since determines the scaling
“chiral ring” ).? In the present case, these are generated bydimensions of the operators in the superconformal algebra.

Near the Banks-Zaks fixed point
T =tr A%, k=1.2,..., (2.2
2 €

M =QAQ, k=0,1,... . (2.2 b=3—5+0(e). (2.9

In Ref.[12] (following Refs.[10], [11]) this theory is studied As we decreasE away from 2(N+ 1) the gauge coupling at
with the addition of a superpotential the fixed point increases; eventually, perturbation theory
ok breaks down and we do not know how to deternmnéiow-
W=tr A%, (2.3 ever, assuming that the theory is at a conformal fixed point in
e infrared we can find limits oh by using the fact that the
imensions of gauge-invariant chiral operators satisfy the
unitarity bound[20] dim(®)=1. The bound is saturated for
free fields. In Fig. 1 we show the values lof(as a function
of F) for which the operators in the chiral ring saturate the

and different dual descriptions are constructed for each valu
of k=1. The dual gauge group is Sp{2, whereN=(2k
+1)F—(N+2).

We will consider the theory with no superpotential. We
will often take advantage of the simplifications of the laiye

limit (with N/F held fixed, but we believe that most of these bound:

results remain valid foN~1. The exactB function of the N+1 k

theory satisfie$18] dim(T)=3kb=1, dimM,)=3-3b——— 5) =
Bx2(N+1)—F(1—yoo) +(N+1)yan, (2.9 (2.10

; : Assuming that the gauge coupling is at a fixed point in the
where yqoq and yaa are the anomalous dimensions of the . ; :
operatorQQ and trA?, respectively. The theory is infrared infrared fo_r 0_<F<2_(N+1)’ for Ia_rgeN we can imagine
free for F=2(N+1). ForF just below 2N+1) the one- three qualitatively different scenaridgsee Fig. 1

loop coefficient of thes function is small and positive while (A) b success!vely crosses the lines corresponding to
P # P Mo,Mq, ... asF is reduced. At the valué =F, whereb

crosses thd/ line, the dimension oM as calculated using
L ' ' . ~ Eq.(2.8) violates the unitarity bound. This implies tHdt, is
A similar series of duals for an SU theory with an antisymmetric 5 free field[with dim(M,)=1] for F<F,. The theory can
tensor was noted ifg]. still be at an interacting superconformal fixed point for
2This connection has been known for some time; for a proof, sed<Fg, since there is an accident®}, symmetry in the in-
Ref.[17]. frared under which only the free field transforms. THRg
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s M, M, TABLE II. Field content of the first “deconfined” theory.
: Y My
e T Field Sp(N) SO(N+5) U@  U(1)r
1 S N+1
) / 7 | 1 — 1
,'1’ /I 4 ’,” Q F
K T <7 A
05 s - X1 O 1 0
T 2
T n by 1 NG -2
0.5 1 15 2 P, O 1 }—N 4
F/(N+1) 2
P3 1 1 —2N 6

FIG. 1. The scenariosA), (B), and (C) for the behavior of the

coefficientb that determines the superconfor charges as a . . .
’ e g symmetry breaking[2,5]. The problem with a straightfor-

function of F/(N+1), for large, fixedN. The curves meet at e 2l ! ;
F=2(N+1), where the position and slope can be calculated invard application of this idea is that the SP2<SO(N’)

perturbation theory. FOF near zero it presumably does not make theory has one less anomaly-fre€lsymmetry, since there
sense to plotb as a continuous function. The lines labeled iS an additional constraint that the(1) symmetries have no
indicate the region where the corre- SO(N’) anomaly. This problem can be circumvented by in-
troducing additional fields that transform under S} and
adding terms to the superpotential in the deconfined descrip-
tion. The matter content of the model that accomplishes this
is displayed in Table Il. The superpotential in the deconfined

description is

Mo,Mq,... andT,,To, ...
sponding operators have scaling dimensions of a free field.

symmetry redefines the superconforrRatharge ofM, and
allows the dimension oM to stay one. The other fields do
not transform under the accident) symmetry, and there-
fore the dimensions of all other operators in the theory are
still given by Eq.(2.8). We will therefore assume that the
theory remains at a superconformal fixed point. Since th?We have set the coefficients of the superpotentiakfob
number of degrees of freedom is of ordef, and we are ; X Perp 100y
changing the number of degrees of freedom by order 1 irqeijgarl:qnfs;zz ?glfﬁgzenx;mgje,‘Omfetggnfusp,; rtg(;tpe(lr;nzlngs 0
crossing theM,, line, it is plausible thatb is continuous 9 0,) that appear when the SB() group confined. ith
across the line as shown in Fig. 1. Analogous effects occur (??lls r%natter content. we takd’ = 2N+ 5. Note that th-e )
,t\)/llcl\r/lozsses the lines corresponding to the operatorCharges arze uniquely dhetimzilaedh by the forl1lowing C?n_
NG . . straints: They agree with the charges in the original
e il . TS0, ey 3 anomaly free, and the supepotetal ' -
R : : . variant. We explicitly check that all anomalies of the original
couple in a similar fashion as in scenati®) above. theory match those of the dual in Appendix A
t (C'\zI b cré)_?_ses lines corresponding to both types of opera- We can now use the known dual descriptibn of 92
orsM, andT,. . . 4
Without further information we cannot decide which of ggﬁg;t?hﬁg?lhggr f?:i::pnesng@f] tguwzt?hig:'alwdifs cr;ipu- o
these scenarios is correct. In the next sections we will Con(jrou S (2F+2)>{SO(Z\I+5) Th?e figld conteynt i %/eng
struct dual descriptions that we will use to argue in favor of: T pbl p”l_ the dual h : tential 9
the first scenario. The operatoké, appear as fundamental i Table 1ll, the dual has superpotentia
fields in the duals and there appear to be values ahdN
where they are free fields.

W=X1p1P2+ P1P1P3- (3.2

W=M 066 +AX X1+ m15'>?1+ m25'|52+ M3X 1P,
+mgzpy+P1P1P3. (3.3

lll. CONSTRUCTION OF THE FIRST DUAL We can integrate out the massive fieldg andp,, leaving

We can find another supersymmetric gauge theory thahe superpotentidlafter field rescaling
has the same low-energy dynamics using the “deconfine-
ment” method of BerkooZ8,9]. (In fact this method is quite W=My
general and can be used to write a dual description of almost
any supersymmetric gauge theory. See Appendix The
idea is to replace the adjoint by a composite “meson” op-
erator of a strongly-interacting SE() group:

QQ+ ArX Xy + mlail + mzaﬁz +(X1P2) (?152)(234)

3The branch of the SO{’) theory that generates a dynamical
superpotential is eliminated because it has no vacuum.

(3.1 “In generalizations of this deconfinement method to other groups,
the confining gauge group generates a dynamical superpotential for
the composite fields. In these cases, the analogues of the superpo-

wherea,b are Sp(2) indices anda’ is an SON’) index. tential terms discussed above also serve to eliminate this superpo-

N’ can be chosen so that S®() confines without chiral tential via their equations of motion. See Appendix B.

Aab_)xaa’xba’
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TABLE lll. Field content of the first dual description.

Field Sp(F+2) SO(N+5) SU(2F) u@) UDg
~ — +
0 0 1 0 N+ 0
F
M, 1 1 H SN+l 2
F
% 0 1 1 1
2
A, 1 1 -1 0
my 1 0 0 N+l 1 1
F 2
+
m, 1 1 0 N+t L 5
F 2
_ 1
Ds 1 1 1 —2N 6
Dy 1 0 1 N -2
My 1 0 1 ~N 4

The anomaly matching is guaranteed to work by the anomalyconformal window” where there is an interacting super-
matching of the Sp duality used in the construction. Theconformal fixed p(_)int [3,6]. Thc_e qne—loop calculation
gauge-invariant chiral operators of the original theory mapamounts to neglecting the contributions of the anomalous

into the dual description as follows: dimensions to thes function in Eq.(2.4); this gives qualita-
tively wrong results when the anomalous dimensions are
tr A2 tr Afk, k=1,2..., large due to relevant interactions in the superpotential or
strong gauge interactions. An example of such a situation is
QQ—Moy, (3.5  our dual forF<2N. The (incorrec} one-loop calculation
suggests that the SO interactions can be ignored in the infra-
QA QmA Im,, k=172,... . red. Ignoring SO we would find that the Sp gauge group is

near the end of its “conformal window"” and the anomalous

Note that the composite operatbt,=QQ of the original dimension of the Sp-gauge-invariant operatgx, would be

. s - ._._near 1 in analogy to supersymmetric QCD. Then the relevant
thec_)lry ![S 2ft_1l;1dar:r1(acjnta: :;'eld n tt.he d]lfal descr|pt|ont. .Th'SC'[S)term in the superpotenti@,;X,X; would force the dimension
similar to Seiberg’s dual description of supersymmetric Q f A, to be near 2. But by the operator mapA#* corre-

[3]. However, the theory we are considering here has a mucfl,,n4s'to the operator 2% in the original description, and
more complicated structure; there are many operators in th@ o gimension ofA is close to 1 at the Banks-Zaks fixed
chiral ring that do not map onto elementary fields in the firstyint thus contradicting our naive interpretation of the dual.
dual. We will see in the following section that the operators’ Thig example illustrates that a one-loop calculationBof
M=QA“Q map onto fundamental fields in tmeh dual for  fynctions is not reliable. The reason is that relevant superpo-
n>k, while operators of the forrli,=tr A% never appear as tential couplings and strong gauge groups contribute large
fundamental fields in our duals. anomalous dimensions to the fields of the theory which can-
What dynamical information can we obtain from this not be ignored when calculating functions. The gauge
dual? One might have hoped that our dual descriptiongroup that was naively believed to be free may even be ren-
would be free in the infrared for some rangeMfandF, so  dered relevant in the infrared via the anomalous dimensions.
that our dual gives a weakly coupled description of the low-This may occur whenever there are fields transforming under
energy physics(This happens in the dual description of su- both groups or when there are relevant superpotential cou-
persymmetric QCD foN+1<F<3/2N.) At one loop, the plings. Therefore, one must be very careful in trying to draw
SO group is infrared free foF=N+1 and the Sp group is physical conclusions from a dual description that is not
infrared free for-<1/2(N— 3). Therefore, this dual descrip- weakly coupled.
tion is never completely free in the infrare@ similar situ- Another obstacle to extracting low-energy physics from
ation holds in all of our duals.This is not surprising, since this dual is that in the deconfined theory, we introduced mas-
we expect that the theory is at an interacting superconformadive degrees of freedom in order to cancel anomalies. Once
fixed point, and such a theory cannot have a dual descriptiowe pass from the deconfined description to the dual descrip-
that is free in the infrared. tion, the fact that these degrees of freedom are irrelevant in
In the rangeN+1<F<2N the SO gauge group is infra- the infrared is no longer evident.
red free(at one loop, and the Sp gauge group has the right While keeping these points in mind, we will nonetheless
number of colors and flavor@gain at one loopto be in the  use this dual and its generalizations below to argue that the
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TABLE IV. Field content of the second “deconfined” description.

Field Sp(F +2) SO(N+5) Sp(N+2) SU(2F) u(1) U(1)r
Q O 1 1 A N+1 0
-
Mg 1 1 1 B N+1 2
F
X1 O O 1 1 1 1
2
Xp 1 O O 1 1 0
2
r 1 1 O 1 5 2
N+3
I 1 O 1 1 —N—-2 0
my 1 O 1 O N+1 1 1
F 2
m, 1 1 1 O N+1 1 5
F T2
D> O 1 1 1 1 -3
— E +N
p3 1 1 1 1 —2N 6
operatorsM, are free fields for sufficiently smak. In Ap- tr A2K_tr Af"—>trA2k, k=12,...,
pendix A we will also perform some consistency checks on
this dual description. These help convince us that the dual QQ—My—Mg,
description is correct, but by themselves they do not give us 4.3
dynamical information that we do not already know from the QAQ—mm;—My,

original description of the theory.
QA Q—m A I m—n,AS%n,, k=23, ...
IV. MORE DUAL DESCRIPTIONS
] N o _ As already stated in the previous section, both the com-

We can obtain additional dual descriptions by applyingposite operatordv,=QQ and M;=QAQ of the original
the deconfinement method again, this time to the adjoint ofheory are fundamental fields in this description. Note that
the SO group in the first dual. To this end, we introduce aVl, only interacts via the superpotential term
confining Sp group that forms a composite meson with they (%, m,)(X;M,), which has canonical dimension 5. If we
same quantum numbers as the SO adjéipt (This is pre-  ¢oyld identify a range oF where this operator is irrelevant
cisely the version of deconfinement discussed in R&f)  in the infrared, we would have shown thdt, is free in that
The field content is given in Table IV, and the superpotentiakange. For example, this would be the case if either one of

IS the two gauge groups SpF2-2) or SO(4+4) were
= —_— ~_ ~ infrared free. To see this, suppose that SE{#4) is infra-

W=MQQ+ (XzX2) XXy + My QX3 + MaQPa+ (X1P2) red free.[At one loop, we would naively conclude that this

X (X, P2) Pa+ Xol 17 5. 4.1) is the case forF<1/4(N—1).] Then the superpotential

term involvingMy can be written as the product of operators
We can now use the known dual description of SO gaugd,, X;X;, andm, that are gauge invariant under all “ac-
theory with fundamentalg3,5] to write a dual description of tive” gauge groups. These operators must each have dimen-
this theory in terms of a theory with gauge group Sp22)  sion at least 1, and so the superpotential term involving
XSO(4F+4)XSp(2N+2). Some of the fields are massive My has dimension at least 4, aid, is free in the infra-
and can be integrated out. The field content of the resultinged. This corresponds to the scenafid) of Sec. Il. Of

theory is given in Table V, and the superpotential is course, the superpotential and the other gauge interactions do
I o - affect the range oN andF for which the gauge groups are
W= M(X1M1)(X1My) + (X1X2) (X1X2) + M2P2(X1M;) infrared free. Nonetheless, because we know that some op-

erators must become free, we interpret this feature of our
dual descriptions as suggesting that scenghipis in fact
+n2’)\(’2ﬁ’]1+ n4)?1?2+ ns’ﬁ]l?z. (42) CorreCt‘ . L. L. )
Note that in the original description, the decoupling of the
The gauge-invariant chiral operators of the original theoryfield M, from the superconformal algebra is a nonperturba-
map into the second dual description as follows: tive phenomenon. In the dual descriptiqorovided we are
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TABLE V. Field content of the second dual description after integrating out massive fields.

Field Sp(F+2) SO(&F +4) Sp(N+2) SU(2F) u@) U(1)r
N+1
Mo 1 1 1 q 5 2
F
%1 O O 1 1 -1 0
n, N 1 1 1 1 2
X, 1 O O 1 3 1
A, 1 1 N 1 -1 0
my 1 O 1 O . N+1 0
TTE
M, 1 1 1 N N+1 2
2——-1
F
n, 1 1 O O N+1 1
F
ns 1 1 1 1 -2N-4 0
n, O 1 1 -N-3 1
Ns 1 1 1 O N+1
F 2
m, 1 1 1 O N+1 5
P> O 1 1 1 -I+N -3
P3 1 1 1 1 —-2N 6
T, 1 O 1 1 N+2 1

interpreting it correctly, it simply corresponds to the fact cal dimensions. In the range & where the dual gauge
that M, couples only through a term in the superpotentialgroup is free these terms are irrelevant, andNhebecome
with high dimension and the fact thit is free is a simple
classical effect. In this sense, our dual descriptions give a One can continue constructing duals in this fashion. We
weakly coupled description of a strong coupling phenom-have constructed the third dual, and we summarize the mat-

enon in the original theory.

free fields.

ter content of the original theory and the first three duals in

This feature also appears in the duals constructed byable VI.
Kutasov and Schwimme10,11,13 for the theory with a
superpotential Eq(1.1). While the T, never appear as fun- n+1 gauge groups with the following operator maps:
damental fields in their duals, thil, do, and they only

couple through terms in the superpotential with high canoni-

TABLE VI. Matter content of all the first three dualé indi-

cates an adjoint.

Dual Gauge group Matter
Sp(2N) 2F+A

1 Sp(F +2) 2F+2N+6
SO(2N+5) AF+2+A

2 Sp(F +2) AF+6+A
SO(4F+4) 4F+2N+5

Sp(2N+2) 6F +4+A

3 Sp(F+2) AF+6+A
SO(4F+4) 8F+ 10+A
Sp(6F +6) 6F +2N+12

SO(2N+7) 8F+6+A

A simple pattern emerges in these duals: Tilledual has

tr A tr A k=1.2,...,
QAQ—M, k=1,...n—1. (4.9

The fieldsM, for k<n—1 only interact via terms in the
superpotential that have large canonical dimensions. It is
therefore plausible that for sufficiently small such terms

are irrelevant in the infraredAs above, one can show that
this is the case provided that at least one of the gauge groups
is infrared free). As discussed above, this provides evidence
that the operator$/, successively become free Bsis re-
duced.

V. CONCLUSIONS

We have constructed the first three of an infinite sequence
of dual descriptions of an Spl\p supersymmetric gauge
theory with matter fields transforming as an adjoint d&nd
flavors, with no superpotential. In theth dual description,
the operatorsVl,=QAQ appear as fundamental fields for
k<n, and theM, couple only through superpotential inter-
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actions that have large canonical dimensions and are likely to 2. Integrating out flavors
be irrelevant in the infrared. This supports the scenario that apnother important check is to add a mass term for some

the operatorsVig,My, .. . sequentially become free mass- ¢ 1o s and see that this gives consistent results in the
less fields in the infrared dsis reduced from the asymptotic original and dual descriptions. Consider adding a superpo-

freedom limitF=2(N+1). In the original theory this pic- tantia| that gives masses to two of the quarks in the original
ture arises from nonperturbative quantum effects, while th‘fheory:

g;r?:edp?ﬁ;gi?:tslc.ms give a simple classical description of the SW=mQr_ 100 . (A2)
It would be very important to understand for which ranges, the first dual this is mapped to

of N andF the various gauge groups of our duals are weakly

coupled, so that our results could be put on firmer ground. SW—m((Mg)2r_1.20— (Mg)2F 25— 1). (A3)

Unfortunately, this appears to be a difficult problem, partly

due to the interplay of the various different gauge groups, bufhe M, equation of motion then reqUingzFflaazF to

also because of the additional massive degrees of freedofhve vacuum expectation values, breaking $p(2

that we had to introduce in the “deconfinement” in order to 4 2)_,5p(2F). Also, some of the components of the other

match U1)'s. ~ fields become massive, and we find that the low-energy
The extension of these results to SU gauge theories igheory is precisely the first dual description of a theory with

straightforward using the “deconfinement modules” dis- F —1 flavors, as required for consistency. We see the famil-

cussed in Appendix B. iar pattern that integrating out a flavor in the original theory
corresponds to spontaneously breaking the gauge group in
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APPENDIX A: CONSISTENCY CHECKS

1. Anomaly matching

The dual descriptions were derived from known dualities, 3. Moduli space

and so the anomalies are guaranteed to match. For complete- We can also check that the moduli spaces are the same in
ness and to check our algebra, we explicitly computed théhe original and the dual descriptions. For example, consider
anomalies in the original description and all of the dual de-a direction in moduli space corresponding (#)+#0, (Q)

scriptions discussed above, with the following results: =0. Imposing theD-flatness condition, the simplest possi-
bility is
SU(2F)3:2N,
a.0'3
U(1)rSU(2F)?:0, 0
(A)= , . (A4)
U(1)g:O, §
0
u(1)3:0,
IN(N+1) TABLE VII. Field content of the deconfinement module for an
+ , _
U(l)SU(ZF)Z:T' (A1) antisymmetric tensor.
U(1):N(2N+3), » ¥
AN(N+1)3
U(1)32¥—N(2N+1), X 0 - L
F P1 1 d O
il 1 U
U(1)U(1)Z: —N(2N+1), P2 O o
P3 1 1 E

U(1)2U(1)g: —N(2N+1).
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This breaks the gauge symmetry Sp()2-Sp(2N—2) TABLE VIII. Field content of the deconfinement module for an
XU(1), and the massless fields transform under the unbrokeBU(N) adjoint.
gauge symmetry asR2fundamentals, an adjoint, and-4- 1
singlets. The fundamentals and adjoint are neutral under thigeld SUN) SU(N') SU(K) SUK)'
U(1) gauge symmetry, and so the theory breaks up into threg
decoupled sectors in the far infrared: The first is identical to
the original theory withN reduced by onegand F un- —
changed, the second has a(l) gauge group with B pairs
of oppositely charged matter fields, and the third is a singlé®1
free chiral superfield. There is no superpotential in this deP:1
scription. P,
In the first dual description, this vacuum corresponds top,
(A)#0, which breaks SO(®+5)—SO(2N+3)xU(1). It _—
is easy to check that the low-energy theory again consists dfs
three sectors: The first is exactly the dual description of thep,
Sp sector described above, and the second and third are ideg-
tical to the corresponding sectors above. Note that in thi .
dual, the physics of this vacuum is described by spontaneous
breaking of the gauge group in both the original and the duaPs
description. Pe
One can consider more complicated vacua whiéjehas
more nonzero eigenvalues by iterating the analysis above.
One might worry about the fact that the fietd in the dual  This breaks the gauge symmetry Sp2-Sp(2N—2), and
description apparently had+2 degrees of freedom along the massless fields decompose under 8p{2) as an ad-
the D-flat direction, while the field? in the original descrip- joint, 2F fundamentals, andF singlets. There is no super-
tion has onlyN degrees of freedom. However, it is easy to potential.
see that giving nonzero vacuum expectation values\to In the first dual description, this vacuum corresponds
components ofA; in the dual leads to a confining theory to (Mg)#0. This breaks the flavor symmetry SWKR
which does not have any additional flat directions corre-—SU(2F —2)xSU(2), and some of the field® become
sponding to adjoint vacuum expectation val(¢g\V’s); the  massive. The gauge group is not broken in this theory, but
apparent extra flat directions of the dual have been lifted byhe theory is more strongly coupled because there are fewer
strong gauge dynamics. matter fields. This description is not obviously dual to the
As another example, consider a direction in moduli spac@ne discussed in the previous paragraph. To see that they are
corresponding t¢Q)# 0, (A)=0 in the original description equivalent, take the dual of the Sg{2 2) gauge group in
of the theory. Imposing thB-flatness condition, the simplest this description. We then obtain a theory that is similar to the
possibility is deconfined description of the theory. The SO gauge group of
this description is confining, and writing the low-energy
al, theory of the SO mesons we recover the description above.
0 We can analyze more complicated vacuum expectation
(Q)= . . (A5)  values forQ by iterating the above analysis. We therefore
N have a consistency check that can be written diagrammati-
0 cally as

00 =0 »=00%>
PP PR e P P 0000

O 00 R »0 Pk
O e O O-0F =

original — deconfined — dual

! ! (A6)

original with VEV «— deconfined with VEV«+ dual with VEV

where the horizontal arrows denote duality (de)confine-  dual descriptions appear at first sight to be nontrivial. Con-
ment transformations, and the vertical arrows denote takingider the first dual. In this theory, the Sp group has the right
VEV's corresponding to a given direction in moduli space. number of flavors to confine without breaking chiral symme-
try [3,6]. The fieldsQ, X;, andp, confine into mesons that
4.N=0 combine withM 4, A;, m;, andm, to become massive. This

An amusing consistency check is to consider the theoryeaves an effective theory with the figtd and a meson field
with N=0. In this case the original theory is trivial, but our M =X1P2, with superpotential
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W= p3|\/|2_ (A7) where all indices are contracted in the obvious way. The
fields with their transformation properties are displayed in

ps is a singlet under SG), while M transforms in the de- Table VILI.
fining representation. An S6) gauge theory with one flavor If we takeN’=1/2(N+K)—2 (choosingK so thatN' is
confines without breaking chiral symmetf§], and so the an intege), then this theory confines and gives rise to a low-
low-energy theory can be written in terms of the compositeenergy theory with of a single meson field, which can be
mesonN=M?2. The superpotential then gives a mass\to identified as
and p;, leaving a low-energy theory with no massless de-

ab_ aa’ bb’
grees of freedom. This is exactly what is required for con- XP=€arp (X)72 (X)) (B4)
sistency with the original theory. Note that fork >1, there is an additional global SKIf sym-
metry in the ultraviolet, but the only fields that transform
APPENDIX B: DECONFINING ARBITRARY under this symmetry are not present in the low-energy
TWO-INDEX TENSORS theory. We can now write a dual description by applying the

) known duality for theories with matter only in the fundamen-

The methods we have used can be extended to write dugd| representation to the group.
descriptions of any gauge theory with SU, SO, or Sp gauge Symmetric two-index tensors are treated in detail in Sec.
groups containing at most two-index tensor representationsil, and so the only case left to discuss is an adjofrft of
Note that supersymmetric gauge theories with matter IrSU(N). (Adjoint representations of SO are antisymmetric
three-index tensor representations are not asymptotically freensors. We “deconfine” the adjoint by introducing a new
for large N [specifically, N>5 for Sp(2N), N>8 for  SU(N’) gauge group with matter fields
SO(N), andN>12 for SUN)]. . s _

In this sense, these methods allow us to construct dual (x)%, (Xaar» (P, (PDarjr - (B5)

dgicrlptlons of “almost'all” supersymmetric gauge theorles(Note the overbar does not indicate complex conjugatidn.
W'tA tedr!sm repcrje_ser;]tatlons. he idea | “d p ,we chooseN’'=N+K—1, then this theory confines and
s discussed In the main text, the idea Is to “deconfine” o o rise to a low-energy effective theory consisting of com-

.a” the t\_/vo—index tensors by introducing new confining gaugeposite mesons and baryons and a nonperturbative superpo-
interactions whose low-energy dynamics is a theory of Metgia) T4 eliminate the unwanted states and the nonpertur-

sons. The simplest approach is to introduce only those ﬁeldﬁative superpotential we add the fields
required to produce the two-index tensor as a bound state,

but then the numbers of anomaly fre€¢1) symmetries do P, (ps)i/ . (p)?, (p4)j/ ,
not match because there is an extra anomaly cancellation 2 ! )
constraint from the confining gauge group. Also, if the con- (p5)%, (Ps)a,  (Pe)s  (Po)jr (B6)

fining gauge group is Sp or SU, the mesons have an un- )

wanted dynamical superpotential. These problems are solved'd tree-level superpotential

simultaneously by adding additional fields that are funda- sp/— 0 vy i n.vo 4 wn N N-1 K

mentals under the confining gauge group, together with someéw P2XX+ PgXPy+ PsXP1+ PaP1P1t Ps(X)™ (P

singlets and a superpotential to make the additional mesons  + ps(X)N"1(p1) X+ pe(X)N(p) K 1+ ps()N(p) < L.

massive. The result is a gauge theory containing only funda- (B7)

mental representations of all gauge groups, and one can ap-

ply known dualities to obtain dual descriptions from this.  The termp,xx eliminates the trace of the meson fiekk] &
For an antisymmetric two-index tensot®® with a,b  as a dynamical field at low energies. The fieftls ps, and

=1, ... N transforming under some gauge gro@ one p, eliminate other unwanted mesons, and ps, Pg, andpg
introduces an additional SpZ) gauge group with matter eliminate the baryons from the low-energy spectrum. The
fields only massless degree of freedom left is the composite field
, . X§ (with no superpotential as desired. We can now write a
)%, (p)?!, j=1,... K, (B1)  dual description by applying the duality of Seiberg to the
. , i gauge group corresponding to the indigs, . .. . Inthis
for someK. In addition, one introduces Sp2) singlets way, we can write dual descriptions for the SJ(Kutasov-

(B2) Schwimmer mode{with no tree-level superpotentjaimilar

(P2aj:  (P)jk to the ones constructed above in the 9p)Zase(see Table

with superpotential couplings VIII). The analysis of these duals proceeds in direct analogy
with that in the main body of the paper, and will not be given
OW=Xp1p2+P1P1P3, (B3)  here.
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