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Sequence of duals for Sp„2N… supersymmetric gauge theories with adjoint matter
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We consider supersymmetric Sp(2N) gauge theories withF matter fields in the defining representation, one
matter field in the adjoint representation, and no superpotential. We construct a sequence of dual descriptions
of this theory using the dualities of Seiberg combined with the ‘‘deconfinement’’ method introduced by
Berkooz. Our duals hint at a new nonperturbative phenomenon that seems to be taking place at asymptotically
low energies in these theories: for smallF some of the degrees of freedom form massless, noninteracting
bound states while the theory remains in an interacting non-Abelian Coulomb phase. This phenomenon is the
result of strong coupling gauge dynamics in the original description, but has a simple classical origin in the
dual descriptions. The methods used for constructing these duals can be generalized to any model involving
arbitrary two-index tensor representations of Sp(2N), SO(N), or SU(N) groups.@S0556-2821~96!02824-X#

PACS number~s!: 11.15.Tk, 11.15.Pg
I. INTRODUCTION

Recently there has been considerable progress in un
standing nonperturbative effects in supersymmetric gau
theories ~see, for example, Refs.@1–4#!. In particular,
Seiberg@3# has argued convincingly that the low-energy d
namics of supersymmetric SU(N) QCD can be described by
a dual gauge theory with different gauge group and ma
content.@The SO(N) and Sp(2N) cases were worked out in
detail in Refs.@5# and @6#, respectively.# Dual descriptions
have since been discovered for a wide range of theories;
for example, Refs.@7–9#.

One theory that has attracted considerable attention
cently is the model with gauge group SU(N), SO(N), or
Sp(2N), containingF vectorlike ‘‘flavors’’ of matter fields
in the defining representation and one matter fieldA in the
adjoint representation@10–13#. Kutasov and Schwimmer
@10,11# have constructed dual descriptions for the SU(N)
theory with the addition of a superpotential of the form

W5tr~Ak11!. ~1.1!

The SO(N) and Sp(2N) analogues of this model were
worked out in Ref.@12# ~see also Ref.@16#!. It was found that
the size of the dual gauge group depends onk, and becomes
infinitely large ask→`. More recently, Kutasov, Schwim-
mer, and Seiberg@13# have obtained impressive detailed ev
dence for the validity of the duality presented in Refs.@10#,
@11#.

The dynamics of the theory without a superpotential
still not well understood, although there are some hints co
ing from analyzing the theory with various superpotentia
added. Using the dual descriptions of Refs.@10#, @11#, @13# it
can be shown that in the presence of the superpotential,
~1.1!, the theory is at an interacting superconformal fix
point for 2N/(2k21),F,2N. Taking the limit k→`
~which makes the superpotential arbitrarily flat at the origi!
one can argue that the low-energy dynamics of the the
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without a superpotential is described by an interacting super-
conformal fixed point for 0,F,2N @13#. This suggestion is
in accordance with the results of Ref.@14#, which studied the
theory with the addition of a superpotential

W5lQ̂AQ, ~1.2!

whereQ and Q̂ are the fundamental and antifundamental
matter fields, respectively. For finitel the theory is smoothly
connected toN52 supersymmetric QCD, which is known to
be in an Abelian Coulomb phase@15,14#. When the limit
l→0 is taken, it is found that singularities appear in the
low-energy effective action@14#, as expected if the theory is
entering a non-Abelian Coulomb phase, and the requisite
gauge bosons are becoming massless. In this paper, we fur-
ther investigate the conjecture that the theory without a su-
perpotential is at an interacting superconformal fixed point
for all 0,F,2N.

We will study the Sp(2N) version of this theory. Its prop-
erties are expected to be very similar to the SU(N) case, but
it is easier to analyze because the invariants of Sp(2N) are
simpler. Assuming that the theory is at a nontrivial supercon-
formal fixed point, we show that some massless degrees of
freedom must decouple from the superconformal fixed point
theory forF,F0 , whereF0>1/2(N11). We describe the
various possibilities for which operators decouple in the in-
frared.

We then construct a series of dual descriptions that sug-
gest that gauge-invariant operators of the formQAkQ,
k50,1,2, . . . , sequentially decouple asF is reduced. The
dual descriptions are constructed by generalizing the ‘‘de-
confinement’’ method introduced by Berkooz@8,9#. The first
dual description is a theory with gauge group Sp3SO, with
matter fields in the fundamental and adjoint representations,
and a superpotential. We then iterate the process, applying
the deconfinement method to SO and Sp groups to obtain
7815 © 1996 The American Physical Society
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more complicated dual descriptions.1

This paper is organized as follows. In Sec. II we introdu
the theory under investigation and consider some of the p
sible scenarios for the infrared physics. In Sec. III we d
scribe the construction of the first dual, and in Sec. IV w
iterate the construction to obtain additional duals that
then use to speculate about the infrared spectrum. In
Appendixes, we perform some consistency checks on th
dual descriptions and show how the deconfinement met
can be generalized to arbitrary two-index representations

II. MODEL

The theory we wish to study has gauge group Sp(2N)
with 2F matter fieldsQ in the defining representation, an
one matter fieldA in the adjoint ~symmetric second rank
tensor! representation. It has the anomaly-free global sy
metry SU(2F)3U~1!3U(1)R . The field content~with glo-
bal charges! is given in Table I.

The moduli space can be parametrized by the holom
phic gauge-invariant polynomials in the matter fields~the
‘‘chiral ring’’ !.2 In the present case, these are generated

Tk[tr A2k, k51,2,..., ~2.1!

Mk[QAkQ, k50,1,... . ~2.2!

In Ref. @12# ~following Refs.@10#, @11#! this theory is studied
with the addition of a superpotential

W5tr A2k, ~2.3!

and different dual descriptions are constructed for each va
of k>1. The dual gauge group is Sp(2Ñ), where Ñ5(2k
11)F2(N12).

We will consider the theory with no superpotential. W
will often take advantage of the simplifications of the largeN
limit ~with N/F held fixed!, but we believe that most of thes
results remain valid forN;1. The exactb function of the
theory satisfies@18#

b}2~N11!2F~12gQQ!1~N11!gAA , ~2.4!

wheregQQ and gAA are the anomalous dimensions of th
operatorsQQ and trA2, respectively. The theory is infrared
free for F>2(N11). For F just below 2(N11) the one-
loop coefficient of theb function is small and positive while

1A similar series of duals for an SU theory with an antisymmet
tensor was noted in@9#.
2This connection has been known for some time; for a proof, s

Ref. @17#.

TABLE I. Field content of the theory.

Field Sp(2N) SU(2F) U~1! U(1)R

Q h h
N11

F
1

A hh 1 21 0
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the two-loop coefficient is negative of orderN2. Arguments
due to Banks and Zaks@19# show that the gauge coupling has
a nontrivial perturbative fixed point in the infrared~at least in
the large-N limit !. At the fixed point we can calculate
anomalous dimensions in perturbation theory:

gAA52
a*
p

~N11!1O~a
*
2 !,

~2.5!

gQQ52
a*
2p SN1

1

2D1O~a
*
2 !,

wherea
*
is the gauge coupling at the fixed point, given by

a*
p

~N11!5
e

2
1O~e2!, e[22

F

N11
. ~2.6!

The superconformal algebra in the infrared includes an
anomaly-freeR symmetry whose chargesRSC are related to
the dimensions of chiral operatorsO by @20#

dim~O!5 3
2RSC~O!. ~2.7!

The RSC charges must be a linear combination of the
anomaly-free U~1! symmetries of the ultraviolet:

RSC5R2bU, ~2.8!

whereR andU denote charges under the U~1!R and U~1!,
respectively. The coefficientb is a function ofF andN that
we would like to determine, sinceb determines the scaling
dimensions of the operators in the superconformal algebra.
Near the Banks-Zaks fixed point

b5
2

3
2

e

6
1O~e2!. ~2.9!

As we decreaseF away from 2(N11) the gauge coupling at
the fixed point increases; eventually, perturbation theory
breaks down and we do not know how to determineb. How-
ever, assuming that the theory is at a conformal fixed point in
the infrared we can find limits onb by using the fact that the
dimensions of gauge-invariant chiral operators satisfy the
unitarity bound@20# dim~O!>1. The bound is saturated for
free fields. In Fig. 1 we show the values ofb ~as a function
of F! for which the operators in the chiral ring saturate the
bound:

dim~Tk!53kb51, dim~Mk!5323bSN11

F
2
k

2D51.

~2.10!

Assuming that the gauge coupling is at a fixed point in the
infrared for 0,F,2(N11), for largeN we can imagine
three qualitatively different scenarios~see Fig. 1!.

~A! b successively crosses the lines corresponding to
M0 ,M1 , . . . asF is reduced. At the valueF5F0 whereb
crosses theM0 line, the dimension ofM0 as calculated using
Eq. ~2.8! violates the unitarity bound. This implies thatM0 is
a free field@with dim(M0)51# for F<F0 . The theory can
still be at an interacting superconformal fixed point for
F,F0 , since there is an accidentalR0 symmetry in the in-
frared under which only the free field transforms. ThisR0
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54 7817SEQUENCE OF DUALS FOR Sp(2N) SUPERSYMMETRIC . . .
symmetry redefines the superconformalR charge ofM0 and
allows the dimension ofM0 to stay one. The other fields do
not transform under the accidentalR0 symmetry, and there-
fore the dimensions of all other operators in the theory a
still given by Eq. ~2.8!. We will therefore assume that the
theory remains at a superconformal fixed point. Since t
number of degrees of freedom is of orderN2, and we are
changing the number of degrees of freedom by order 1
crossing theM0 line, it is plausible thatb is continuous
across the line as shown in Fig. 1. Analogous effects occur
b crosses the lines corresponding to the operato
M1 ,M2 , . . . .

~B! b crosses the lines corresponding toT1 ,T2 , . . . asF
is reduced. In this scenario the operatorsTk sequentially de-
couple in a similar fashion as in scenario~A! above.

~C! b crosses lines corresponding to both types of ope
torsMk andTk .

Without further information we cannot decide which o
these scenarios is correct. In the next sections we will co
struct dual descriptions that we will use to argue in favor
the first scenario. The operatorsMk appear as fundamenta
fields in the duals and there appear to be values ofF andN
where they are free fields.

III. CONSTRUCTION OF THE FIRST DUAL

We can find another supersymmetric gauge theory th
has the same low-energy dynamics using the ‘‘deconfin
ment’’ method of Berkooz@8,9#. ~In fact this method is quite
general and can be used to write a dual description of alm
any supersymmetric gauge theory. See Appendix B.! The
idea is to replace the adjoint by a composite ‘‘meson’’ op
erator of a strongly-interacting SO(N8) group:

Aab→xaa8xba8, ~3.1!

wherea,b are Sp(2N) indices anda8 is an SO(N8) index.
N8 can be chosen so that SO(N8) confines without chiral

FIG. 1. The scenarios (A), (B), and (C) for the behavior of the
coefficientb that determines the superconformalRSC charges as a
function of F/(N11), for large, fixedN. The curves meet at
F52(N11), where the position and slope can be calculated
perturbation theory. ForF near zero it presumably does not mak
sense to plotb as a continuous function. The lines labele
M0 ,M1 , . . . andT1 ,T2 , . . . indicate the region where the corre
sponding operators have scaling dimensions of a free field.
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symmetry breaking3 @2,5#. The problem with a straightfor-
ward application of this idea is that the Sp(2N)3SO(N8)
theory has one less anomaly-free U~1! symmetry, since there
is an additional constraint that the U~1! symmetries have no
SO(N8) anomaly. This problem can be circumvented by in-
troducing additional fields that transform under SO(N8) and
adding terms to the superpotential in the deconfined descrip
tion. The matter content of the model that accomplishes this
is displayed in Table II. The superpotential in the deconfined
description is

W5x1p1p21p1p1p3 . ~3.2!

~We have set the coefficients of the superpotential to11 by
rescaling the fields.! The purpose of the superpotential is to
give masses to the unwanted ‘‘meson’’ states (x1p1) and
(p1p1) that appear when the SO(N8) group confines.4 With
this matter content, we takeN852N15. Note that the U~1!
charges are uniquely determined by the following con-
straints: They agree with the U~1! charges in the original
theory, they are anomaly free, and the superpotential is in
variant. We explicitly check that all anomalies of the original
theory match those of the dual in Appendix A.

We can now use the known dual description of Sp(2N)
gauge theory with fundamentals@3,6# to write a dual descrip-
tion of this theory in terms of a gauge theory with gauge
group Sp(2F12)3SO(2N15). The field content is given
in Table III; the dual has superpotential

W5M0Q̃Q̃1A1x̃1x̃11m1Q̃x̃11m2Q̃p̃21m3x̃1p̃2

1m3p11p1p1p3 . ~3.3!

We can integrate out the massive fieldsm3 andp1 , leaving
the superpotential~after field rescaling!

W5M0Q̃Q̃1A1x̃1x̃11m1Q̃x̃11m2Q̃p̃21~ x̃1p̃2!~ x̃1p̃2!p3 .
~3.4!

3The branch of the SO(N8) theory that generates a dynamical
superpotential is eliminated because it has no vacuum.
4In generalizations of this deconfinement method to other groups

the confining gauge group generates a dynamical superpotential fo
the composite fields. In these cases, the analogues of the superp
tential terms discussed above also serve to eliminate this superpo
tential via their equations of motion. See Appendix B.

in

TABLE II. Field content of the first ‘‘deconfined’’ theory.

Field Sp(2N) SO(2N15) SU(2F) U~1! U(1)R

Q h 1 h
N11

F
1

x1 h h 1 2
1

2
0

p1 1 h 1 N 22

p2 h 1 1
1

2
2N 4

p3 1 1 1 22N 6



7818 54MARKUS A. LUTY, MARTIN SCHMALTZ, AND JOHN TERNING
TABLE III. Field content of the first dual description.

Field Sp(2F12) SO(2N15) SU(2F) U~1! U~1!R

Q̃ h 1 h̄ 2
N11

F
0

M0 1 1
h
h 2

N11

F
2

x̃1 h h 1
1

2
1

A1 1
h
h 1 21 0

m1 1 h h
N11

F
2
1

2
1

m2 1 1 h
N11

F
1
1

2
2N 5

p̃2 h 1 1 2
1

2
1N 23

p3 1 1 1 22N 6
p1 1 h 1 N 22
m3 1 h 1 2N 4
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The anomaly matching is guaranteed to work by the anom
matching of the Sp duality used in the construction. T
gauge-invariant chiral operators of the original theory m
into the dual description as follows:

tr A2k→tr A1
2k , k51,2 . . . ,

QQ→M0 , ~3.5!

QAkQ→m1A1
k21m1 , k51,2, . . . .

Note that the composite operatorM0[QQ of the original
theory is a fundamental field in the dual description. This
similar to Seiberg’s dual description of supersymmetric QC
@3#. However, the theory we are considering here has a m
more complicated structure; there are many operators in
chiral ring that do not map onto elementary fields in the fi
dual. We will see in the following section that the operato
Mk[QAkQ map onto fundamental fields in thenth dual for
n.k, while operators of the formTk[tr A2k never appear as
fundamental fields in our duals.

What dynamical information can we obtain from th
dual? One might have hoped that our dual descriptio
would be free in the infrared for some range ofN andF, so
that our dual gives a weakly coupled description of the lo
energy physics.~This happens in the dual description of s
persymmetric QCD forN11,F,3/2N.! At one loop, the
SO group is infrared free forF>N11 and the Sp group is
infrared free forF<1/2(N23). Therefore, this dual descrip
tion is never completely free in the infrared.~A similar situ-
ation holds in all of our duals.! This is not surprising, since
we expect that the theory is at an interacting superconfor
fixed point, and such a theory cannot have a dual descrip
that is free in the infrared.

In the rangeN11<F,2N the SO gauge group is infra
red free~at one loop!, and the Sp gauge group has the rig
number of colors and flavors~again at one loop! to be in the
aly
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‘‘conformal window’’ where there is an interacting super
conformal fixed point @3,6#. The one-loop calculation
amounts to neglecting the contributions of the anomalo
dimensions to theb function in Eq.~2.4!; this gives qualita-
tively wrong results when the anomalous dimensions a
large due to relevant interactions in the superpotential
strong gauge interactions. An example of such a situation
our dual for F&2N. The ~incorrect! one-loop calculation
suggests that the SO interactions can be ignored in the in
red. Ignoring SO we would find that the Sp gauge group
near the end of its ‘‘conformal window’’ and the anomalou
dimension of the Sp-gauge-invariant operatorx̃1x̃1 would be
near 1 in analogy to supersymmetric QCD. Then the releva
term in the superpotentialA1x̃1x̃1 would force the dimension
of A1 to be near 2. But by the operator map, trA 1

2k corre-
sponds to the operator trA2k in the original description, and
the dimension ofA is close to 1 at the Banks-Zaks fixed
point, thus contradicting our naive interpretation of the dua

This example illustrates that a one-loop calculation ofb
functions is not reliable. The reason is that relevant superp
tential couplings and strong gauge groups contribute lar
anomalous dimensions to the fields of the theory which ca
not be ignored when calculatingb functions. The gauge
group that was naively believed to be free may even be re
dered relevant in the infrared via the anomalous dimensio
This may occur whenever there are fields transforming und
both groups or when there are relevant superpotential c
plings. Therefore, one must be very careful in trying to dra
physical conclusions from a dual description that is n
weakly coupled.

Another obstacle to extracting low-energy physics fro
this dual is that in the deconfined theory, we introduced ma
sive degrees of freedom in order to cancel anomalies. On
we pass from the deconfined description to the dual descr
tion, the fact that these degrees of freedom are irrelevant
the infrared is no longer evident.

While keeping these points in mind, we will nonetheles
use this dual and its generalizations below to argue that
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TABLE IV. Field content of the second ‘‘deconfined’’ description.

Field Sp(2F12) SO(2N15) Sp(2N12) SU(2F) U~1! U~1!R

Q̃ h 1 1 h
h 2

N11

F

0

M0 1 1 1 h
h 2

N11

F

2

x̃1 h h 1 1 1

2

1

x2 1 h h 1
2
1

2

0

r 1 1 1 h 1
N1

5

2

2

r 2 1 h 1 1 2N22 0

m1 1 h 1 h N11

F
2
1

2

1

m2 1 1 1 h N11

F
1
1

2
2N

5

p̃2 h 1 1 1
2
1

2
1N

23

p3 1 1 1 1 22N 6
o
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operatorsMk are free fields for sufficiently smallF. In Ap-
pendix A we will also perform some consistency checks
this dual description. These help convince us that the d
description is correct, but by themselves they do not give
dynamical information that we do not already know from th
original description of the theory.

IV. MORE DUAL DESCRIPTIONS

We can obtain additional dual descriptions by applyin
the deconfinement method again, this time to the adjoint
the SO group in the first dual. To this end, we introduce
confining Sp group that forms a composite meson with t
same quantum numbers as the SO adjointA1 . ~This is pre-
cisely the version of deconfinement discussed in Ref.@9#.!
The field content is given in Table IV, and the superpotent
is

W5M0Q̃Q̃1~x2x2!x̃1x̃11m1Q̃x̃11m2Q̃p̃21~ x̃1p̃2!

3~ x̃1p̃2!p31x2r 1r 2 . ~4.1!

We can now use the known dual description of SO gau
theory with fundamentals@3,5# to write a dual description of
this theory in terms of a theory with gauge group Sp(2F12)
3SO(4F14)3Sp(2N12). Some of the fields are massiv
and can be integrated out. The field content of the result
theory is given in Table V, and the superpotential is

W5M0~x5 1m̃1!~x5 1m̃1!1~x5 1x̃2!~x5 1x̃2!1m2p̃2~x5 1m̃1!

1n1p̃2
2p31n1x5 1x5 11A2x̃2x̃21M1m̃1m̃11n3r̃ 2r̃ 2

1n2x̃2m̃11n4x5 1r̃ 21n5m̃1r̃ 2 . ~4.2!

The gauge-invariant chiral operators of the original theo
map into the second dual description as follows:
n
ual
us
e

g
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a
he
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ry

tr A2k→tr A1
2k→trA2

2k , k51,2, . . . ,

QQ→M0→M0 ,
~4.3!

QAQ→m1m1→M1 ,

QAkQ→m1A1
k21m1→n2A2

k22n2 , k52,3, . . . .

As already stated in the previous section, both the com
posite operatorsM05QQ and M15QAQ of the original
theory are fundamental fields in this description. Note tha
M0 only interacts via the superpotential term
M0(x5 1m̃1)(x5 1m̃1), which has canonical dimension 5. If we
could identify a range ofF where this operator is irrelevant
in the infrared, we would have shown thatM0 is free in that
range. For example, this would be the case if either one o
the two gauge groups Sp(2F12) or SO(4F14) were
infrared free. To see this, suppose that SO(4F14) is infra-
red free.@At one loop, we would naively conclude that this
is the case forF<1/4(N21).# Then the superpotential
term involvingM 0 can be written as the product of operators
M0 , x5 1x5 1 , and m̃1 that are gauge invariant under all ‘‘ac-
tive’’ gauge groups. These operators must each have dime
sion at least 1, and so the superpotential term involving
M0 has dimension at least 4, andM0 is free in the infra-
red. This corresponds to the scenario~A! of Sec. II. Of
course, the superpotential and the other gauge interactions
affect the range ofN andF for which the gauge groups are
infrared free. Nonetheless, because we know that some o
erators must become free, we interpret this feature of ou
dual descriptions as suggesting that scenario~A! is in fact
correct.

Note that in the original description, the decoupling of the
field M0 from the superconformal algebra is a nonperturba
tive phenomenon. In the dual description~provided we are
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TABLE V. Field content of the second dual description after integrating out massive fields.

Field Sp(2F12) SO(4F14) Sp(2N12) SU(2F) U~1! U~1!R

M0 1 1 1 h
h 2

N11
F

2

x5 1 h h 1 1 2
1
2 0

n1 hh 1 1 1 1 2

x̃2 1 h h 1 1
2 1

A2 1 1 hh 1 21 0

m̃1 1 h 1 h̄ 1
22

N11
F

0

M1 1 1 1 hh
2
N11
F

21
2

n2 1 1 h h N11
F

21
1

n3 1 1 1 1 22N24 0

n4 h 1 1 1 2N2
3
2 1

n5 1 1 1 h N11
F

2
5
22N

1

m2 1 1 1 h N11
F

1
1
22N

5

p̃2 h 1 1 1 2
1
21N 23

p3 1 1 1 1 22N 6

r̃ 2 1 h 1 1 N12 1
e
at-
in

is

ps
e

ce
interpreting it correctly!, it simply corresponds to the fact
that M0 couples only through a term in the superpotenti
with high dimension and the fact thatM0 is free is a simple
classical effect. In this sense, our dual descriptions give
weakly coupled description of a strong coupling phenom
enon in the original theory.

This feature also appears in the duals constructed
Kutasov and Schwimmer@10,11,13# for the theory with a
superpotential Eq.~1.1!. While theTk never appear as fun-
damental fields in their duals, theMk do, and they only
couple through terms in the superpotential with high cano

TABLE VI. Matter content of all the first three duals.A indi-
cates an adjoint.

Dual Gauge group Matter

Sp(2N) 2F1A

1 Sp(2F12) 2F12N16
SO(2N15) 4F121A

2 Sp(2F12) 4F161A
SO(4F14) 4F12N15
Sp(2N12) 6F141A

3 Sp(2F12) 4F161A
SO(4F14) 8F1101A
Sp(6F16) 6F12N112
SO(2N17) 8F161A
al

a
-

by

ni-

cal dimensions. In the range ofF where the dual gauge
group is free these terms are irrelevant, and theMk become
free fields.

One can continue constructing duals in this fashion. W
have constructed the third dual, and we summarize the m
ter content of the original theory and the first three duals
Table VI.

A simple pattern emerges in these duals: Thenth dual has
n11 gauge groups with the following operator maps:

tr A2k→tr An
2k , k51,2, . . . ,

~4.4!QAkQ→Mk k51, . . . ,n21.

The fieldsMk for k,n21 only interact via terms in the
superpotential that have large canonical dimensions. It
therefore plausible that for sufficiently smallF such terms
are irrelevant in the infrared.~As above, one can show that
this is the case provided that at least one of the gauge grou
is infrared free.! As discussed above, this provides evidenc
that the operatorsMk successively become free asF is re-
duced.

V. CONCLUSIONS

We have constructed the first three of an infinite sequen
of dual descriptions of an Sp(2N) supersymmetric gauge
theory with matter fields transforming as an adjoint andF
flavors, with no superpotential. In thenth dual description,
the operatorsMk[QAkQ appear as fundamental fields for
k,n, and theMk couple only through superpotential inter-
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actions that have large canonical dimensions and are likel
be irrelevant in the infrared. This supports the scenario t
the operatorsM0 ,M1 , . . . sequentially become free mas
less fields in the infrared asF is reduced from the asymptoti
freedom limitF52(N11). In the original theory this pic-
ture arises from nonperturbative quantum effects, while
dual descriptions give a simple classical description of
same physics.

It would be very important to understand for which rang
of N andF the various gauge groups of our duals are wea
coupled, so that our results could be put on firmer grou
Unfortunately, this appears to be a difficult problem, par
due to the interplay of the various different gauge groups,
also because of the additional massive degrees of free
that we had to introduce in the ‘‘deconfinement’’ in order
match U~1!’s.

The extension of these results to SU gauge theorie
straightforward using the ‘‘deconfinement modules’’ di
cussed in Appendix B.
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APPENDIX A: CONSISTENCY CHECKS

In this appendix, we consider some consistency checks
the dual descriptions constructed in the main text.

1. Anomaly matching

The dual descriptions were derived from known dualitie
and so the anomalies are guaranteed to match. For comp
ness and to check our algebra, we explicitly computed
anomalies in the original description and all of the dual d
scriptions discussed above, with the following results:

SU~2F !3:2N,

U~1!RSU~2F !2:0,

U~1!R :0,

U~1!R
3:0,

U~1!SU~2F !2:
2N~N11!

F
, ~A1!

U~1!:N~2N13!,

U~1!3:
4N~N11!3

F
2N~2N11!,

U~1!U~1!R
2:2N~2N11!,

U~1!2U~1!R :2N~2N11!.
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2. Integrating out flavors

Another important check is to add a mass term for some
of the Q’s and see that this gives consistent results in the
original and dual descriptions. Consider adding a superpo-
tential that gives masses to two of the quarks in the original
theory:

dW5mQ2F21Q2F . ~A2!

In the first dual this is mapped to

dW→m„~M0!2F21,2F2~M0!2F,2F21…. ~A3!

The M0 equation of motion then requiresQ̃2F21,Q̃2F to
have vacuum expectation values, breaking Sp(2F
12)→Sp(2F). Also, some of the components of the other
fields become massive, and we find that the low-energy
theory is precisely the first dual description of a theory with
F21 flavors, as required for consistency. We see the famil-
iar pattern that integrating out a flavor in the original theory
corresponds to spontaneously breaking the gauge group in
the dual description.

In the second dual, the discussion is somewhat more com-
plicated. The mass term in the original theory again maps to
m(M0)2F21,2F. The equations of motion require vacuum ex-
pectation values forx5 1 and m̃1 , which break Sp(2F
12)→Sp(2F) and SO(4F14)→SO(4F). Again, some of
the components become massive, and one can show that th
resulting low-energy theory is precisely the second dual for
F21 flavors.

Another potential check on our dual descriptions would
be to add a mass term for the adjoint field in the superpoten-
tial. However, in our duals this yields a theory that is
strongly coupled for all values ofN andF, and so it does not
provide an additional consistency check.

3. Moduli space

We can also check that the moduli spaces are the same in
the original and the dual descriptions. For example, consider
a direction in moduli space corresponding to^A&Þ0, ^Q&
50. Imposing theD-flatness condition, the simplest possi-
bility is

^A&5S as3

0

�

0

D . ~A4!

TABLE VII. Field content of the deconfinement module for an
antisymmetric tensor.

Field G Sp(2N8) SU(K)

X h
h

x h h 1
p1 1 h h

p2 h̄ 1 h̄

p3 1 1 h
h
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This breaks the gauge symmetry Sp(2N)→Sp(2N22)
3U~1!, and the massless fields transform under the unbro
gauge symmetry as 2F fundamentals, an adjoint, and 4F11
singlets. The fundamentals and adjoint are neutral under
U~1! gauge symmetry, and so the theory breaks up into th
decoupled sectors in the far infrared: The first is identical
the original theory withN reduced by one~and F un-
changed!, the second has a U~1! gauge group with 2F pairs
of oppositely charged matter fields, and the third is a sin
free chiral superfield. There is no superpotential in this d
scription.

In the first dual description, this vacuum corresponds
^A1&Þ0, which breaks SO(2N15)→SO(2N13)3U~1!. It
is easy to check that the low-energy theory again consist
three sectors: The first is exactly the dual description of
Sp sector described above, and the second and third are i
tical to the corresponding sectors above. Note that in t
dual, the physics of this vacuum is described by spontane
breaking of the gauge group in both the original and the d
description.

One can consider more complicated vacua where^A& has
more nonzero eigenvalues by iterating the analysis abo
One might worry about the fact that the fieldA1 in the dual
description apparently hasN12 degrees of freedom along
theD-flat direction, while the fieldA in the original descrip-
tion has onlyN degrees of freedom. However, it is easy
see that giving nonzero vacuum expectation values toN
components ofA1 in the dual leads to a confining theor
which does not have any additional flat directions corr
sponding to adjoint vacuum expectation values~VEV’s!; the
apparent extra flat directions of the dual have been lifted
strong gauge dynamics.

As another example, consider a direction in moduli spa
corresponding tôQ&Þ0, ^A&50 in the original description
of the theory. Imposing theD-flatness condition, the simples
possibility is

^Q&5S a12 0

�

0

D . ~A5!
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This breaks the gauge symmetry Sp(2N)→Sp(2N22), and
the massless fields decompose under Sp(2N22) as an ad-
joint, 2F fundamentals, and 4F singlets. There is no super-
potential.

In the first dual description, this vacuum corresponds
to ^M0&Þ0. This breaks the flavor symmetry SU(2F)
→SU(2F22)3SU~2!, and some of the fieldsQ̃ become
massive. The gauge group is not broken in this theory, but
the theory is more strongly coupled because there are fewer
matter fields. This description is not obviously dual to the
one discussed in the previous paragraph. To see that they are
equivalent, take the dual of the Sp(2F12) gauge group in
this description. We then obtain a theory that is similar to the
deconfined description of the theory. The SO gauge group of
this description is confining, and writing the low-energy
theory of the SO mesons we recover the description above.

We can analyze more complicated vacuum expectation
values forQ by iterating the above analysis. We therefore
have a consistency check that can be written diagrammati-
cally as

TABLE VIII. Field content of the deconfinement module for an
SU(N) adjoint.

Field SU(N) SU(N8) SU(K) SU(K)8

X A
x h h 1 1
x̄ h̄ h̄ 1 1

p1 1 h h 1
p̄1 1 h̄ 1 h̄

p2 1 1 1 1
p3 h̄ 1 1 h

p̄3 h 1 h̄ 1

p4 1 1 h̄ h

p5 h 1 1 1
p̄5 h̄ 1 1 1

p6 1 1 h 1
p̄6 1 1 1 h̄
original → deconfined → dual

↓ ↓ ~A6!

original with VEV ← deconfined with VEV← dual with VEV
o

n-
ht
-

where the horizontal arrows denote duality or~de!confine-
ment transformations, and the vertical arrows denote tak
VEV’s corresponding to a given direction in moduli space

4. N50

An amusing consistency check is to consider the the
with N50. In this case the original theory is trivial, but ou
ing
.

ry
r

dual descriptions appear at first sight to be nontrivial. Co
sider the first dual. In this theory, the Sp group has the rig
number of flavors to confine without breaking chiral symme
try @3,6#. The fieldsQ̃, x̃1 , and p̃2 confine into mesons that
combine withM0 , A1 , m1 , andm2 to become massive. This
leaves an effective theory with the fieldp3 and a meson field
M5 x̃1p̃2 , with superpotential
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W5p3M
2. ~A7!

p3 is a singlet under SO~5!, while M transforms in the de-
fining representation. An SO~5! gauge theory with one flavor
confines without breaking chiral symmetry@5#, and so the
low-energy theory can be written in terms of the compos
mesonN5M2. The superpotential then gives a mass toN
and p3 , leaving a low-energy theory with no massless d
grees of freedom. This is exactly what is required for co
sistency with the original theory.

APPENDIX B: DECONFINING ARBITRARY
TWO-INDEX TENSORS

The methods we have used can be extended to write d
descriptions of any gauge theory with SU, SO, or Sp gau
groups containing at most two-index tensor representatio
Note that supersymmetric gauge theories with matter
three-index tensor representations are not asymptotically
for large N @specifically, N.5 for Sp(2N), N.8 for
SO(N), andN.12 for SU(N)#.

In this sense, these methods allow us to construct d
descriptions of ‘‘almost all’’ supersymmetric gauge theori
with tensor representations.

As discussed in the main text, the idea is to ‘‘deconfine
all the two-index tensors by introducing new confining gau
interactions whose low-energy dynamics is a theory of m
sons. The simplest approach is to introduce only those fie
required to produce the two-index tensor as a bound st
but then the numbers of anomaly free U~1! symmetries do
not match because there is an extra anomaly cancella
constraint from the confining gauge group. Also, if the co
fining gauge group is Sp or SU, the mesons have an
wanted dynamical superpotential. These problems are so
simultaneously by adding additional fields that are fund
mentals under the confining gauge group, together with so
singlets and a superpotential to make the additional mes
massive. The result is a gauge theory containing only fun
mental representations of all gauge groups, and one can
ply known dualities to obtain dual descriptions from this.

For an antisymmetric two-index tensorXab with a,b
51, . . . ,N transforming under some gauge groupG, one
introduces an additional Sp(2N8) gauge group with matter
fields

~x!aa8, ~p1!
a8 j , j51, . . . ,K, ~B1!

for someK. In addition, one introduces Sp(2N8) singlets

~p2!a, j , ~p3! jk , ~B2!

with superpotential couplings

dW5xp1p21p1p1p3 , ~B3!
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where all indices are contracted in the obvious way. The
fields with their transformation properties are displayed in
Table VII.

If we takeN851/2(N1K)22 ~choosingK so thatN8 is
an integer!, then this theory confines and gives rise to a low-
energy theory with of a single meson field, which can be
identified as

Xab5ea8b8~x!aa8~x!bb8. ~B4!

Note that forK.1, there is an additional global SU(K) sym-
metry in the ultraviolet, but the only fields that transform
under this symmetry are not present in the low-energy
theory. We can now write a dual description by applying the
known duality for theories with matter only in the fundamen-
tal representation to the groupG.

Symmetric two-index tensors are treated in detail in Sec.
III, and so the only case left to discuss is an adjointXb

a of
SU(N). ~Adjoint representations of SO are antisymmetric
tensors.! We ‘‘deconfine’’ the adjoint by introducing a new
SU(N8) gauge group with matter fields

~x!aa8, ~ x̄!aa8 , ~p1!
a8 j , ~ p̄1!a8 j 8 . ~B5!

~Note the overbar does not indicate complex conjugation.! If
we chooseN85N1K21, then this theory confines and
gives rise to a low-energy effective theory consisting of com-
posite mesons and baryons and a nonperturbative superp
tential. To eliminate the unwanted states and the nonpertur
bative superpotential we add the fields

p2 , ~p3!a
j 8 , ~ p̄3! j

a , ~p4! j
j 8 ,

~p5!
a, ~ p̄5!a , ~p6!

j , ~ p̄6! j 8 , ~B6!

and tree-level superpotential

dW5p2xx̄1p3xp̄11 p̄3x̄p11p4p1p̄11p5~x!N21~p1!
K

1 p̄5~ x̄!N21~ p̄1!
K1p6~x!N~p1!

K211 p̄6~ x̄!N~ p̄1!
K21.

~B7!

The termp2xx̄ eliminates the trace of the meson field (xx̄) b
a

as a dynamical field at low energies. The fieldsp3 , p̄3 , and
p4 eliminate other unwanted mesons, andp5 , p̄5 , p6 , andp̄6
eliminate the baryons from the low-energy spectrum. The
only massless degree of freedom left is the composite field
Xb

a ~with no superpotential!, as desired. We can now write a
dual description by applying the duality of Seiberg to the
gauge group corresponding to the indicesa,b, . . . . In this
way, we can write dual descriptions for the SU(N) Kutasov-
Schwimmer model~with no tree-level superpotential! similar
to the ones constructed above in the Sp(2N) case~see Table
VIII !. The analysis of these duals proceeds in direct analogy
with that in the main body of the paper, and will not be given
here.
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