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Two-dimensional instantons with bosonization and physics of adjoint two-dimensional QCD

A. V. Smilga
Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259, Russia

~Received 10 July 1996!

We evaluate partition functionsZI in topologically nontrivial~instanton! gauge sectors in the bosonized
version of the Schwinger model and in a gauged WZNW model corresponding to two-dimensional QCD
~QCD2! with adjoint fermions. We show that the bosonized model is equivalent to the fermion model only if
a particular form of the WZNW action with a gauge-invariant integrand is chosen. For the exact correspon-
dence, it is necessary to integrate over the ways the gauge group SU(N)/ZN is embedded into the full O~N

221!
group for the bosonized matter field. For evenN, one should also take into account the contributions of both
disconnected components in O~N221!. In that case,ZI}m

n0 for small fermion masses where 2n0 coincides
with the number of fermion zero modes in a particular instanton background. The Taylor expansion of
ZI /m

n0 in mass involves only even powers ofm, as it should. The physics of adjoint QCD2 is discussed. We
argue that, for oddN, the discrete chiral symmetryZ2^Z2 present in the action is broken spontaneously down
to Z2 and the fermion condensate^l̄l&0 is formed. The system undergoes a first order phase transition atTc50
so that the condensate is zero at an arbitrary small temperature. It is not yet quite clear what happens for even
N>4. @S0556-2821~96!00524-3#

PACS number~s!: 11.15.Kc, 11.15.Tk, 12.38.Aw
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I. INTRODUCTION

It has been known for a long time that the Schwing
model involves topologically nontrivial gauge field configu
rations: the instantons~see@1# and references therein!. The
reason why they appear is the nontrivialp1@U~1!#5Z. Instan-
tons are characterized by an integer topological charge

n5
1

2p E d2xF~x!, ~1.1!

whereF5F015]0A12]1A0 . Their physics is rather similar
to the physics of instantons in four-dimensional QC
~QCD4! with one light quark flavor. In particular, the fermion
condensate

u^c̄c&0u5
g

2p3/2 e
g ~1.2!

is formed~g is the coupling andg is the Euler constant!. The
path integral calculation ofu^c̄c&0u @2,3# follows closely the
’t Hooft calculation of the instanton determinant in QCD4.
The condensate is formed due to the presence of one c
plex fermion zero mode for gauge field background config
rations with unit topological chargen. It was noted recently
that topologically nontrivial configurations appear also
non-Abelian two-dimensional gauge theories with adjo
matter content@4,5#. In this paper, we will consider only the
simplest nontrivial theory of this kind which involves a mu
tiplet of adjoint real fermionsla. The Lagrangian of the
model reads

L52
1

4g2
Fmn
a Fmn

a 1
i

2
$lL

a@dab]22 f abcA2
c #lL

b

1lR
a@dab]12 f abcA1

c #lR
b%, ~1.3!

where ]65]06]1, A6
c 5A 0

c6A 1
c, and lL,R51

2~16g5!l are
the left- and right-moving components of the Majorana ferm
ion field ~the Lagrangian is written in Minkowski space be
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cause Majorana fermions cannot be defined1 in Euclidean
space@6#!. We will consider both massless model~1.3! and
the model which includes a small mass term

ml̄ala522imlL
alR

a , ~1.4!

m!g.
Adjointness of all fields in the Lagrangian is crucial for

the instantons to appear: In the standard QCD2 with funda-
mental quarks where the gauge group is SU(N),
p1@SU(N)#50 and topologically nontrivial configurations
are absent. But in the theory with adjoint matter the true
gauge group is SU(N)/ZN ~the elements of the center act
trivially on adjoint fields!. p1@SU(N)/ZN]5ZNÞ0 and in-
stantons appear.2 It was found in@5# that these configurations
involve fermion zero modes@which conforms with the analy-
sis by Kogan@11# who showed that instantons do not con-

1Note, however, that although we cannot define the Euclidea
counterpart of the Lagrangian~1.3!, the Euclidean path integral can
be easily defined as an analytic continuation of the Minkowski path
integral. In Minkowski space, integration over Majorana fermions
provides the factor which is the square root of the Dirac determi
nant. We candefinethe Euclidean path integral of the theory~1.3!
as the integral over gauge fields involving the square root of th
Euclidean Dirac determinant as a factor@7#. The extraction of
square root presents no problem here as all eigenvalues of the Dir
operator for complex adjoint fermions are doubly degenerate@5,8#.
2A nontrivial p1@SU(N)/ZN# brings about topologically nontrivial

configurations also in four-dimensional Yang-Mills theory without
quarks. But here two extra transverse dimensions are present a
these configurations are not localized and have infinite action
These planar instantons were obtained in Ref.@9# and misinter-
preted as real ‘‘walls between differentZN phases.’’ Actually, the
instantons and planar instantons are essentially Euclidean config
rations and do not exist as real physical objects in Minkowski spac
@10#.
7757 © 1996 The American Physical Society
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7758 54A. V. SMILGA
tribute in the partition function in the massless theory~1.3! in
high temperature region#. For the simplest topologically non
trivial sector their number is 2~N21!. Instantons lead to
physically observable effects~with an obvious reservation
that we are discussing a model theory which is not found
nature!. They are responsible, in particular, for finite strin
tension in fundamental Wilson loops, i.e., for confinement
heavy fundamental sources in a theory with nonzero mas
dynamic adjoint fermions~in massless theory, instantons d
couple, string tension disappears, and the sources are
confined but screened! @12#. WhenN52, instantons bring
about a nonzero fermion condensate@5#.

The latter follows also from semiheuristic argumen
based on the bosonization approach. The bosonized ver
of QCD2 with fermions in the adjoint representation of SU~2!
is the gauged Wess-Zumino-Novikov-Witten~WZNW!
model @13–18# with the matter fields presenting orthogon
matriceshab(x), the elements of O~3!. The theory involves
only massive excitations, their mass being of the order of
coupling constantg. As a result, the matter field is ‘‘frozen’’
and a nonzero vacuum expectation value^haa&0 appears. In
the fermion language, that means the appearance of non
^l̄ala&0 wherela are adjoint Majorana fermion fields. Fo
N>3, the situation is much more complicated and controv
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sial. Instantons involve ‘‘too many’’ fermion zero modes and
cannot generate a nonvanishing bilinear fermion condensa
On the other hand, the quoted bosonization arguments do n
distinguish between differentN. Say, forN53, the matter
fields present 838 adjoint SU~3! matrices and a nonzero

^l̄ala&05Cg^haa&0 ~1.5!

should appear. It is also known that the condensate is form
at infiniteN @19#.

This paradox, formulated in@5#, is akin to a similar para-
dox which pops out in four-dimensional~4D! supersymmet-
ric ~SUSY! Yang-Mills theories with higher orthogonal
groups@20# and is rather troublesome; it is not yet absolutely
clear how it is resolved. It was the main motivation for the
present study.

The main part of the paper is devoted to the analysis o
Euclidean path integrals of the gauged WZNW model in th
topologically nontrivial sectors. We show that the zero mod
suppression factor}mn0 is reproduced indeed, but only if
doing things with proper care.

The commonly used form of the gauged Euclidean
WZNW action reads
Our
l

SE@A,h#5
1

4g2 E d2x Fmn
a Fmn

a 1
1

16p E d2x Tr$]mh]mh
21%2

i

24p E
Q
d3j e i jkTr$h21] ihh

21] jhh
21]kh%

1
1

8p E d2x@Tr$A1h]2h
21%1Tr$A2h

21]1h%1Tr$A1hA2h
21%2Tr$A1A2%#

5
1

2g2 E d2x Tr Fmn
2 1NH 1

8p E d2xTr$]mu]mu
21%2

i

12p E
Q
d3j e i jkTr$u21] iuu

21] juu
21]ku%

1
1

4p E d2x@Tr$A1u]2u
21%1Tr$A2u

21]1u%1Tr$A1uA2u
21%2Tr$A1A2%#J , ~1.6!

whereh is the matrix (N221)3(N221) belonging to the adjoint representation of SU(N) andu is an associated unitary
matrix N3N,

hab52 Tr$tautbu21%, ~1.7!

Am are anti-Hermitian matricesAm5 iA m
aTa, Ta are the generators in a corresponding representation,A65A06 iA1 ,

]65]06i ]1, andQ is a three-dimensional manifold with a two-dimensional boundary where the theory actually lives.
statement is that, generally speaking, the action~1.6! iswrong. It is not gauge invariant and does not correspond to the origina
theory ~1.3!. One should rather choose the action in the form

SE~F,u!5
1

2g2 E d2x Tr Fmn
2 2

N

8p E d2x Tr$u21¹muu
21¹mu%2

iN

12p E
Q
d3j e i jkTr$u21¹ iuu

21¹ juu
21¹ku%

1
iN

8p E
Q
d3j e i jkTr$Fi j ~u

21¹ku1¹kuu
21!%, ~1.8!
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where

¹ iu5] iu1@Ai ,u#, Fi j5] iAj2] jAi1@Ai ,Aj #.

The functional~1.8! was written earlier in@17#. The actions
~1.6! and~1.8! differ by the integral of a total derivative. Fo
topologically trivial configurations, this integral is zero an
the actions~1.6! and~1.8! are equivalent, but in the instanto
sectors they are not. Actually, the action~1.6! is not gauge
invariant in the instanton sectors while the explicit invar
ance of theintegrandin Eq. ~1.8! under the gauge transfor
mations

Am→V21~Am1]m!V,

u→V21uV ~1.9!

is seen immediately.3

Adding the mass term

}m Trh52m Tr$utau21ta% ~1.10!

in the action~1.8! and evaluating the path integral, we wi
show that the factormn0 is singled out wheren0 is half the
number of fermion zero modes.4

Unfortunately, it is not yet the end of the story. We wi
see that the action~1.8! with the added mass term~1.10! does
not exactly correspond to QCD2 with massive adjoint fermi-
ons. Recall that the set ofN221 free adjoint fermion fields is
habitually bosonized with the orthogonal matrice
hPO~N221! @16#. For the theory involving gauge fields
PSU(N)/ZN , one should rather use bosonization with a
joint SU(N) matriceshabPSU(N)/ZN,O~N221! @21#. But
there are many ways to choose a subgroup SU(N)/ZN within
the large orthogonal group. It turns out that, in order to p
serve all symmetries of the fermion Lagrangian and to ge
correct mass dependence for the partition function intopo-
logically nontrivial sectors, one has to average over all thes
ways. In other words, one has to write the mass term in
form

}m Tr@hPO~N221!#52mRabTr$utbu21ta% ~1.11!

and average over allRab belonging to the coset
O~N221!/@SU(N)/ZN#.

The plan of the paper is the following. Before proceedi
with our analysis of bosonized theories, we present in Sec
a new derivation of zero mode counting rules in instant
sectors in the fermion language. Distinct topological sect
are labeled by an integerk50,1,...,N21. In Ref. @5# only
the casesk51 ~the instanton! and k5N21 ~the anti-
instanton! were analyzed. For an arbitraryk the result is

3The problem does not arise, of course, in SU(N) WZNW models
which are the most studied ones. They do not involve instant
and the action~1.6! is perfectly acceptable.
4It is half the number, not just the number, because we are dea

here with Majorana fermions and the fermion path integral provid
the factor which is the square root of the Euclidean Dirac deter
nant.
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05k~N2k!. ~1.12!

Note that we are dealing here with an index theorem of new
variety—the numbers of left- and right-handed zero modes
coincide and the conventional Atiyah-Singer index vanishes.

In Sec. III we start our analysis of bosonized theories with
a warm-up example of the Schwinger model. We will show
that correct results for the partition function in the instanton
sectors are reproduced indeed in bosonization language, but
only if choosing the gauge-invariant form for the bosonized
Lagrangian depending explicitly only on field strengthF.
We show that the partition function in the sector with topo-
logical chargen involves a factormunu, reflecting the presence
of unu zero modes in the fermion description.

In Sec. IV we analyze gauged WZNW models with the
action ~1.8!. We show that the contribution of the fields in
the topological classk in the partition function involves the
factor mk(N2k) in agreement with the fermion counting
~1.12!. It also involves, however, the factorAk(N2k) whereA
is the total area of our manifold. That implies the constant
asymptotics of the correlator ofk(N2k) scalar fermion cur-
rents at large distances and the existence of a nonzero ferm-
ion condensate which seems to be excluded byother argu-
ments.

In the first place, these are the arguments based on the
assumed extensive form of the partition function
Z} exp$2evacA% discussed earlier in@5# and anew in the end
of Sec. IV. Second, one can rigourouslyprovethat the ferm-
ion condensate is absent in the high temperature region—this
is the subject of Sec. V.

Possible ways to resolve the paradox are briefly discussed
at the end of Sec. IV and, in more detail, in Sec. VI. In
particular, an attractive possibility is that the fermion con-
densate appears atT50 due to spontaneous breaking of
Z2^Z2 symmetry which the Lagrangian~1.3! enjoys: The
transformations

lL→2lL ,

lR→2lR , ~1.13!

leaveL invariant. This discreteZ2^Z2 symmetry is the rem-
nant of U~1! chiral symmetry which would be effective in a
theory with complex fermions. A mass term~1.4! would
break this symmetry down toZ2. And the appearance of the
fermion condensate in massless theory breaks it spontane-
ously.

Spontaneous breaking of discrete symmetry would imply
a first order phase transition atTc50 ~so that the condensate
is zero at any nonzero temperature!, much like in a one-
dimensional Ising model. This picture is very much probable
at N53 and at higher oddN, but the situation at evenN>4
is not yet clear—Z2^Z2 symmetry of the Lagrangian~1.3! is
anomalousin this case, being broken explicitly by instanton
effects.

In Sec. VII, we discuss the correspondence of the fermion
and the bosonized versions of the theory in more details. We
show that the correct behavior of the fermion partition func-
tions in the instanton sector is reproduced only if integrating
the bosonized partition function over the parameter
RPO~N221!/@SU(N)/ZN# characterizing the way the
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SU(N)/ZN subgroup is embedded in the larger O~N221!
group. This is the only way to enforce the symmetry~1.13!
for oddN in the bosonized version. For evenN, one has to
take into account the contributions of both disconnec
components in O~N221!.

Possible implications of our analysis for four-dimension
supersymmetric gauge theories are discussed in the last
tion.

II. INDEX THEOREM

Instantons present a nontrivial fiber bundleAm(x) of the
gauge group SU(N)/ZN on the two-dimensional Euclidea
manifold where the theory is defined. In Ref.@5# it was con-
venient to choose the manifold to be a torus. When the s
of the torus in one of the Euclidean directions is small co
pared tog21, the quasiclassical approximation works a
path integrals in the instanton sector are saturated by field
the vicinity of a particular configuration in the instanto
class, which has a very simple Abelian form. In the case
large spatial volume and small temporal sizeb ~which physi-
cally corresponds to high temperatureT5b21@g!, the rel-
evant saddle point configuration in the topological classk51
is ~the gaugeA150 is chosen!

A0~x!5
i

N
diag~1,1,...,12N!a~x2x0!, ~2.1!

where the profile functiona(x2x0) has the same form as in
the Schwinger model@1# and the corresponding field densit
F52]A0/]x is localized at the vicinity ofx0, the instanton
center. With the solution~2.1! at hand, path integrals can b
explicitly calculated and, for example, the fermion conde
sate in the high temperature limit can be found@5,22#. In @5#
we explicitly solved the Dirac equation in the backgrou
~2.1! and foundN21 left-handed andN21 right-handed
fermion zero modes. We also showed that the eigenvalue
not shift from zero when perturbing the background~2.1! in
every order of perturbation theory. This reasoning was c
vincing enough, but did not have the rank of a rigoro
proof—one could, in principle, contemplate the presence
field configurations in the instanton class at some distanc
Hilbert space from the Abelian instanton~2.1! where the
eigenvalue is shifted from zero by nonperturbative effec
The main problem here is that a standard Atiyah-Singer
dex theorem says nothing about the presence or absenc
these zero modes. The Atiyah-Singer index is just zero h

IAtiyah-Singer5n0
L2n0

R;Tr E Fmnemnd
2x50. ~2.2!

A proof was constructed in@22# where the theory was stud
ied on a finite spatial circle at zero temperature in a Ham
tonian approach. In that case, the gaugeA050 can be chosen
and the dynamic variable isA1(x,t). The point is that the
Hamiltonian hasN classical vacua corresponding to shiftin
A1 from zero by particular finite constant matrices belongi
to a Cartan subalgebra~see Sec. V for some more details!.
The Hamiltonian has a symmetry which guarantees that
energy spectrum of the Dirac operator in all classical vac
is identical. WhenA1 interpolates smoothly between adjace
vacua, exactlyN21 left-handed levels with positive energ
ted
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cross zero and go down into the Dirac sea. Likewise,N21
right-handed levels from the sea cross zero and appear in t
physical spectrum.5 The level crossing phenomenon guaran
tees that the Euclidean Dirac operator hasN21 right-handed
and N21 complex conjugated left-handed zero modes o
any background which interpolates in Euclidean time be
tween classical vacua, i.e., on any background belonging
the instanton topological class.

Both discussed proofs are somewhat indirect, and we b
lieve it is worthwhile to give adirect proof with explicit
construction of the zero mode solution. Let us first derive th
gauge field topological classification more accurately. Topo
logically nontrivial configurations exist only on compact Eu-
clidean manifolds. There are two convenient choices:
torus as in@5,22# or a sphere. We will return on torus in Sec.
V, but currently we are moving onto sphere and will stay
there for a while. A sphere geometry appears when one co
siders the gauge fields living on the Euclidean plane whic
tend to a pure gauge at infinity:

Am~x! ——→
r→`

V21~u!]mV~u!, ~2.3!

with V~u!PSU(N)/ZN . The matrixV~u! defines a loop in
the group space. Topologically nontrivial configurations ar
described by noncontractible loops. The topological invarian
distinguishing different classes is

W~C!5
1

N
TrexpH R

C
AmdxmJ 5expH 2p ik

N J , ~2.4!

where the contourC goes around the Euclidean infinity, and
k50,...,N21. It is the same standard construction as for th
four-dimensional Yang-Mills instantons. The difference is
that in the latter case the topological invariant

I d54;E
S3
Kmnm

can be written as a four-dimensional integral of the loca
topological charge density]mKm;Tr$FmnF̃mn%. On the other
hand, the invariant~2.4! is inherently nonlocal and cannot be
presented as a two-dimensional integral of a local densit
Let us now choose a particular representative in each top
logical class. A convenient choice is

where we want to chooser;g21. This is a configuration
belonging to the class~2.4! with localized field density and
finite action. Fork51, the color structure of Eq.~2.5! is the
same as in Eq.~2.1!.

We emphasize that Eq.~2.5! is not a solution to the clas-
sical equations of motion—such a solution exists and has th

5Which levels—left handed or right handed—go down into the
sea and which go out of it depends, of course, on convention and
the direction in whichA1 is changed.
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same color structure as Eq.~2.5!, but is delocalized: The
field density is constant onS2 and very small,F;1/A ~A is
the area of the sphere!. Mathematically, this delocalized con
figuration is as good a reference point as the configura
~2.5!. The configuration~2.5! is, however, preferable from
the physical viewpoint. Considering classical solutio
makes sense only in the case when a quasiclassical des
tion holds and characteristic fields in path integrals are in
vicinity of classical saddle points. However, QCD2 at low
temperature and large spatial volume is a nontrivial non
ear theory with strong coupling and the quasiclassical
scription is not adequate. An analysis of the path integra
the instanton sector shows that characteristic field configu
tions are actually localized at distances of order of the c
relation length;g21 and resemble Eq.~2.5! in this respect6

@1#.
The field ~2.5! is defined on Euclidean plane and is si

gular at infinity. To define an instanton on the compactS2

manifold, one should either to use stereographic coordin
in which case the field would be singular at the north pole
the sphere or to go over in the singular gauge:

~the size of the sphereR is assumed to be much larger tha
r!. The field~2.6! has the same field strengthF as Eq.~2.5!,
is regular at infinity, and involves a Dirac string singulari
at x50. Obviously, a gauge where the Dirac string is plac
at any other pointx

*
on the sphere can be chosen.

Let us now solve the Dirac equation

gm
E$]mln1@Am ,ln#%5mnln , ~2.7!

with g 0
E5 is2 andg 1

E5 is1, mn being the eigenvalue corre
sponding to the eigenmodeln , on the background~2.6!.
Consider the matrixlata. In Euclidean space, Majorana fe
mions cannot be defined, and the fermion fields should
assumed to be complex. It is convenient to choose the c
plex basis$ta% for the Lee algebra withN21 standard diag-
onal matrices andN(N21)/21N(N21)/2 off-diagonal ma-
trices having only one nonzero component. In this basis,
Dirac operator with Abelian background~2.6! does not mix
the componentsla with different a so that each componen
can be treated separately. For some components, the com
tator of the correspondingta with the diagonal color matrix
in Eq. ~2.6! is zero, these components do not feel a ba
ground gauge field at all, and the spectrum is the same a
free fermions. An example of the component whichdoesfeel
the background is

6At high temperatureT@g quasiclassical analysis becomes po
sible which allows one to determine the value of the fermion co
densate forN52 @5,22#. The saddle point field configuration of
high-T path integral in the instanton sector presents the solution
effectiveequations of motion with account of the fermion determ
nant. It has the form~2.1! and is localized@1#.
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~T
*
1! i j5S i \ j N2k k

N2k 0
1

•••
0

•••
•••
•••

0
•••
0

k 0 0
D . ~2.8!

The Dirac equation for this component looks the same as t
Dirac equation in Schwinger model for the charged fermio
field in the background with unit Abelian topological charge
~1.1!. The standard Atiyah-Singer theorem dictates the pre
ence of a left-handed zero mode. Its particular form is

l
* L
~0!~x!5T

*
1S 10D

spin

x1

Axm
2 ~xm

21r2!
. ~2.9!

There arek(N2k) color matrices of the form~2.8! and,
correspondingly,k(N2k) left-handed zero modes. Also,
there arek(N2k) right-handed zero modes

l
* R
~0! ~x!5T

*
2S 01D

spin

x2

Axm
2 ~xm

21r2!
, ~2.10!

where

~T
*
2! i j5S i\ j N2k k

N2k 0 0

k

1
•••
0

•••
•••
•••

0
•••
0
0D , ~2.11!

etc. Up to now, we have just adapted the derivation of@5# for
the case when fields live on a sphere and generalized them
arbitraryk. In order to show explicitly the presence ofk(N
2k)1k(N2k) zero modes onany topologically nontrivial
background, we use the fact that any field belonging to th
classk can be written as

A25g21~]21A2
~0!!g,

A15g†~]11A1
~0!!~g†!21, ~2.12!

whereg is a general complexN3N matrix. For a unitaryg
it is just a gauge transformation. For a Hermitiang it is a
nontrivial non-Abelian field with a different field density, but
with the same invariant~2.4!. We restrict, however,g to be
unitary at the pointx

*
where the Dirac string is placed. To

be quite precise, it is sufficient to require that the produc
gg† commute with the matrix marking out the color direction
of the Dirac string. Otherwise, the transformed field~2.12! is
not a fiber bundle onS2

The decomposition~2.12! is widely known for topologi-
cally trivial fields @18#. It is a direct non-Abelian analog of
the decomposition

Am5Am
~0!1emn]nf1]mx ~2.13!

of a topologically nontrivial field in the Schwinger model on
S2 @2#. Substituting Eq.~2.12! in the Dirac equation~2.7!,
one can easily find the explicit expression for the zer
modes.
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~lL
~0!!g5g21lL

~0!g,

~lR
~0!!g5g†lR

~0!~g†!21, ~2.14!

wherel L,R
(0) are the zero modes~2.9! and ~2.10! for the in-

stanton representative~2.6!.

III. INSTANTONS IN BOSONIZED SCHWINGER MODEL

Our main goal is to reproduce the zero mode counting
the previous section in bosonization approach. Of cour
there is no trace of fermion zero modes in the bosoniz
theory. The proper question to ask is how the contribution
the partition function coming from instanton sectors depen
on a small~smaller than any other relevant scale! fermion
massm. In the original theory with fermions, the behavior i
Zk;mk(N2k). And the same should be true in the bosoniz
WZNW model—the bosonized version of QCD2. As a
warm-up, consider first the Abelian theory where the calc
lations can be carried out explicitly until the very end. Th
usual way to bosonize the Schwinger model is to estab
the correspondences@23#

i c̄]mgmc→ 1
2 ~]mf!2,

c̄gmc→
1

Ap
emn]nf,

c̄c→2
eg

2p3/2 g cos~A4pf!, ~3.1!

whereg is the Euler constant. Then the Euclidean action
the bosonized Schwinger model is

SE5E d2xF 1

2g2
F21

1

2
~]mf!21Am

i

Ap
emn]nf

2mg
eg

2p3/2 cos~A4pf!G , ~3.2!

whereF5emn]mAn andf is a real scalar field. Adding a full
derivative to Eq.~3.2!, one can rewrite it in the form

SE5E d2xF 1

2g2
F21

1

2
~]mf!21 iFf

1

Ap

2mg
eg

2p3/2 cos~A4pf!G . ~3.3!

Our remark is that the transformation from Eq.~3.2! to Eq.
~3.3! is innocentonly in the topologically trivial gauge sec-
tor. In instanton sectors, the integral of a full derivative pr
duces a surface term which contributes in the action a
cannotbe disregarded. To see that, it is convenient to thi
of an instanton onS2 as of a monopole. The flux~1.1! is then
associated with the flux of the monopole magnetic fie
through a sphere surrounding the magnetic charge in a fi
tious three-dimensional space, i.e., with the magnetic cha
itself. The potentialAm(x) of our instanton on monopole
should involve a singularity~the Dirac string! at some point
of
se,
ed
to
ds
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x
*
on S2. The surface term appears just due to this Dirac

string singularity and produces the term2 iA4pf(x* ) in the
action. Whenever this matters, it is the action~3.3! which
should be used, not Eq.~3.2!. Actually, the action~3.2! is not
gauge invariant in topologically nontrivial sectors. The term
2 iA4pf(x* ) by which Eq.~3.2! differs from the explicitly
invariant action~3.3! depends on the position of the Dirac
string singularity, i.e., on the gauge.7

A traditional way to handle the bosonized theory is to do
first the Gaussian integration overPdF to obtain

Sf5E d2xF12 ~]mf!21
g2

2p
f22mg

eg

2p3/2 cos~A4pf!G .
~3.4!

It is acceptable as far as we are not interested in the contr
bution of a particular gauge topological sector. In the latter
case, one should proceed more accurately. Let us consid
the theory on a compact two-dimensional Euclidean mani
fold which we choose to beS2 with large but finite areaA.
To single out the contribution of a particular instanton sector
we impose the condition~1.1!. The topological chargen is an
integer. In the original fermion theory, this follows from the
necessity to define the Dirac operator on the compact man
fold in a background gauge field. The eigenfunctions and
spectrum exist only for integern. In the bosonized language,
quantization ofn follows from an additional requirement that
the action~3.3! be invariant under the shiftf→f1Ap. Ap
is just the period of the cosine in Eq.~3.3!. We will shortly
see that even if we would allow for nonintegern’s, the con-
tribution of such fields in the partition function is zero.

Let us now expand the fieldsF(x) andf(x) in the series
over spherical harmonics

F~x!5(
lm

FlmYlm~u,w!,

f~x!5(
lm

f lmYlm~u,w!. ~3.5!

The zero harmonicF052pn/A is fixed due to Eq.~1.1!. In-
tegrating out all other harmonics of the gauge field, we ob
tain

Zn5e22p2n2/Ag2E
2Ap/2

Ap/2
df0e

inA4pf0E ) df̃~x!

3expF2E
S2
d2xS 12 ~]mf̃!21

g2

2p
f̃2

2mg
eg

2p3/2 cos@A4p~f01f̃ !# D G , ~3.6!

wheref0 is the zero harmonic of the matter field andf̃(x) is
the sum of all the rest. The interval of integration overf0 is

7Obviously, one can repeat this reasoning without invoking the
Dirac string, but describing the instanton fiber bundle with a couple
of maps which is more accurate from the mathematical viewpoint
The physical conclusion, however, is the same.
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restricted due to the periodicity of the integrand. It is instru
tive to see what happens if we sum overn. Using the dual
representation of theQ function, we obtain

Z5(
n

Zn}E
2Ap/2

Ap/2
df0 (

k52`

`

expH 2
g2A
2p

~f02kAp!2J
3E ) df̃~x!expH 2E

S2
d2xF12 ~]mf̃!21

g2

2p
f̃2

2mg
eg

2p3/2 cos@A4p~f01f̃ !#G J . ~3.7!

In the thermodynamic limitg2A→` only one term of the
sum ~3.7! survives,f0 is frozen at zero, and we reproduc
the result~3.4!. It is not difficult also to calculate the parti-
tion function in the theory with a particular nonzero vacuu
angleu:

Z~u!5(
n

Zne
inu. ~3.8!

Performing the same dual transformation for this sum as
Z~0!, we arrive at the same expression~3.7! but with the shift
f0→f01u/A4p. In that casef0 freezes at the valuef05
2u/A4p.

Now let us look at Eq.~3.6!. Note first of all that although
the bosonizedaction ~3.3! is complex, the path integral for
o

l

o

E

c-

e

m

for

Zn is real as it should be. Second, we see immediately that in
the massless casem50, Zn50 whennÞ0. But for small but
nonzerom, Zn is nonzero too. A finite result is obtained
when pulling down the mass term in Eq.~3.6! n times. If we
would try to calculateZn for a fractionaln, the integral over
f0 would run from 2` to `, the oscillating factor
exp$inA4pf0% could not be compensated in any order inm,
and we would get zero for any value of mass. This is the real
reason for the topological charge to be quantized: Frac-
tional topological charges just do not contribute here in the
partition function.8 In the limit mgA!1, only the leading
term in mass expansion survives~see @8,1# for a detailed
discussion! and we obtain

Zn5Cn~mgA!n, ~3.9!

with a calculable coefficient. This is exactly what we also get
in the fermion language. Forn561, the coefficient
C15C215eg/(4p3/2) just gives the value of the fermion
condensate~1.2!.

IV. INSTANTONS IN GAUGED WZNW MODEL

We have already mentioned that in topologically non-
trivial sectors it is the action~1.8! which should be used, not
Eq. ~1.6!. The action~1.8! relates to the action~1.6! exactly
in the same way as the action~3.3! to ~3.2!. The following
identity holds:
SE
Eq. ~1.8!@Am ,u#5

1

2g2 E Tr$Fmn
2 %2

N

8p E d2xTr$u21¹muu
21¹mu%2

iN

12p E
Q
d3j e i jkTr$u21] iuu

21] juu
21]ku%

1
iN

4p E
Q
d3j e i jk] iTr$uAju

21Ak1Aj~u
21]ku1]kuu

21!%. ~4.1!
Let us assume that the gauge fields have only two c
ponentsA0 andA1 and depend only on the physical coord
natesxm[t,x. The matter fieldu(xm ,a) is smooth onQ and
depends on the third coordinateaP @0,1# in such a way that
u(xm ,0)51 andu(xm,1) is the field living on our physica
two-dimensional Euclidean manifoldM: the boundary ofQ.
One can choose, for example,u(xm ,a)5exp$af~xm!% with
anti-Hermiteanf.

For topologically trivial gauge fields which are regular
M, the integral of the full derivative is reduced to two su
face terms ata50 and a51 and produces, together wit
other terms, the standard form of the action~1.6!. But in
instanton sectors, fields involve Dirac string singularities
M, which results in an additional contribution in the fu
derivative integral. For example, forN52, the relation

SEq. ~1.6!5SEq. ~1.8!12 Tr$f~x* !nata% ~4.2!

holds. Herex
*
is the position of the Dirac string andn is its

direction in the color space. Obviously, the extra term in
~4.2! is gauge dependent.
m-
i-

n
r-
h

on
ll

q.

Let us now estimate the contribution of the instanton sec-
tors in the partition function using the correct gauge-
invariant expression~1.8! for the action. An experience with
Schwinger model teaches us that the relevant factors in the
path integral appear due to integration over the zero har-
monic of the matter field. Thus we assume

u~xm ,a!5exp$ab%, ~4.3!

whereb5ibata is a constant anti-Hermitean matrix.
Consider first the simplest caseN52. The field has a

Dirac string singularity at some pointx
*
onS2. We choose a

gauge withx
*

50 and direct the Dirac string along the third
isotopic axis. The singularity at smallx can be inferred from
Eq. ~2.6!:

8We hasten to comment that, in some theories like the twisted
multiflavor Schwinger model@24# or four-dimensional Yang-Mills
theory involving only adjoint color fields@25,8#, fractional topologi-
cal chargesdo contribute. In each particular theory, a particular
study of this question is required.
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Am
sing~x!52 i t 3

emnxn

xm
2 . ~4.4!

A look at Eq.~1.8! shows that the second and third terms
the action may provide a divergent contribution}*d2x/x2 in
the action. Actually, the integral

}E
Q
d3j e i jkTr$u21¹ iuu

21¹ juu
21¹ku%

is not divergent due to the fact thatemnAm
singAn

sing50. But the
integral

}E d2xTr$u21¹muu
21¹mu%

5E d2xTr$u21@Am ,u#u21@Amu#% ~4.5!

is singular provided [Am ,u]Þ0. It would give an infinite
contribution in the action, and the corresponding contrib
tion in the partition function is suppressed. Thus we sho
restrict ourselves with the constant~xm independent! matrices
~4.3! aligned in the same color direction as the Dirac stri
in a chosen gauge. For suchu, the only nonzero contribution
in the action comes from the last term in Eq.~1.8!. We have

SE522 Tr$bt3%52 ib3 . ~4.6!

The instanton contribution in the partition function is

ZI}E
0

2p

db3exp$2 ib3%50,

as it should be in the massless case.@The range ofb3 is
restricted to be@0,2p# because changingb3 from 0 to 2p
multipliesu by the element of the center21, and we arrive
at the same associated orthogonal matrix~1.7!.# If the
fermion mass is not zero, the action involves an additio
term

Sm}mgE d2xTr h~x!}mgA@ uTr uu221#

5mgA~2 cosb311!, ~4.7!
in

u-
uld

ng

nal

whereA is the area of the manifold. Pulling the mass term
down, we get in the leading order inm

ZI}mgAE
0

2p

db3exp$2 ib3%~2 cosb311!5CmgA,

~4.8!

with a nonzero constantC. That agrees well with the results
of the analysis in the fermion language: A couple of ferm-
ion zero modes provides a factor}m in the partition func-
tion. Differentiating Eq.~4.8! over mass gives the fermion
condensate@5#.

Consider now the general color group SU(N) and the
field configuration of the type~2.6! belonging to the topo-
logical classk. For any configuration in this class, a gauge
can be chosen where the Dirac string is aligned in the direc-
tion

in the color space. As earlier, we must require that the con-
stant mode of the matter fieldu0 commute with
T*—otherwise, the second term in Eq.~1.8! would give an
infinite contribution to the action. A generalu0~a51! satis-
fying this restriction has the form

u0~1!5exp$ ib*T* %S u~N2k!

0
0
u~k!D , ~4.10!

where u(N2k)PSU(N2k) and u(k)PSU(k). We assume
u0(a)5[u0(1)]

a so thatu0~0!51. The parameterb* varies
within the limitsb*P@0,2pA2k(N2k)/N#—the shift ofb*
by 2pA2k(N2k)/N multiplies u0~1! by an element of the
center exp$2p ik/N%, which results in the same adjoint ma-
trix h. In the massless case, the only contribution in the
action comes from the last term in Eq.~1.8!. It does not
depend onu(k) andu(N2k), but only onb* and we have

ZI
k}E

0

2pA2k~N2k!/N
db* expH 2 ib*ANk~N2k!

2 J 50.

Note that the phase factor winds by 2p k(N2k) times in the
range of the integration.

The action in the massive theory involves the term
Sm}mgE d2xTr h~x!}mgA@ uTr u0u221#5mgAF uTr u~k!u21uTr u~N2k!u212 ReS Tr u~k!~Tr u~N2k!!*

3expH 2 ib*A N

2k~N2k!J D 21G . ~4.11!

To provide a nonzero contribution in the path integral forZ I
k, the mass term should be pulled down at leastk(N2k)

times—otherwise, the integral overb* gives zero. Note that not only*db* , but also group integrals overu(k) andu(N2k)

provide here nonzero factors. Thus we get an estimate

ZI
k;~mgA!k~N2k!E

0

2pA2k~N2k!/NE du~k!~Tr u~k!* !k~N2k!E du~N2k!~Tr u~N2k!!k~N2k!;~mgA!k~N2k! ~4.12!
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for smallmgA.
The factor mk(N2k) appears also in the fermion

approach—k(N2k) is just the number of the fermion zero
mode pairs.9 What is, however, new and could not be figure
out in the fermion approach is the total area dependen
}Ak(N2k). Consider, e.g., the caseN53. The instanton par-
tition function can be written as

ZI
N53;~mg!2E d2x d2y^l̄ala~x!l̄ala~y!&;~mgA!2.

~4.13!

The appearance of the factorA2 in this expression means
that the correlator̂ l̄ala(x)l̄ala(y)& tends to a nonzero
constant at large Euclidean distancesux2yu, i.e., that the
fermion condensatêl̄ala& is formed.

Thus a bosonization estimate forZ I
k presented in this sec-

tion has confirmed the existence ofk(N2k)1k(N2k)
fermion zero modes in the path integral and, on the oth
hand, confirmed the appearance of the fermion condens
for anyN, which also follows from simplistic bosonization
arguments of Ref.@5#. This is rather remarkable, but unfor-
tunately does not mean yet that the physical situation is no
absolutely clear and a final resolution of the paradox me
tioned in@5# @the conflicting results of the bosonized analysi
and the fermion analysis of the theory~1.3! for higher gauge
groups# is achieved.

The paradox displays itself if recalling the fact that th
spectrum of the theory~1.3! does not involve massless par-
ticles. That means that in the limitAg2@1, when the size of
the Euclidean box is much larger than the characteristic i
verse mass scale;g21, the partition function must enjoy the
extensive property

Z}exp$2evac~m,g!A% ~4.14!

and the finite volume corrections~the boundary effects!
should be exponentially suppressed@26#. At small m!g,
evac(m,g) should involve the linear in mass term—the cor
responding coefficient just gives the fermion condensa
521/A]/]m ln Z, the existence of which is dictated by the
estimates~4.12! and ~4.13! for the instanton contribution in
the partition function.10

The property~4.14! should hold both in the true thermo-
dynamic limitmgA@1 and also in the regionmgA!1 pro-
vided the conditionAg2@1 is fulfilled. But, on the other
hand, forN>3, no known contribution in the partition func-
tion involves the linear term}mgA and the expansion ofZ
in smallmgA starts with the term;mN21.

There are only two ways out of this obvious contradiction
~1! Perhaps, for some reason, topological classificatio

does not hold in this case and, besides instantons, there
someother contributions in the partition function which in-
volve a linear in mass term and would be responsible for th
formation of the fermion condensate in the limitmgA!1.

9As has already been mentioned in the Introduction, the bosoniz
theory with the action~1.8! still does not exactly correspond to the
original fermion theory. It is convenient for us to postpone th
discussion of this issue until Sec. VII.
10For a related discussion in QCD4 , see@8#.
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These nondescript contributions would play the same role as
the toron~or meron or fracton! contributions which are re-
sponsible for the formation of the gluino condensate in
SU(N) supersymmetric 4D Yang-Mills theory@25# and the
formation of the fermion condensate in multiflavor
Schwinger model in finite volume with twisted boundary
conditions@24#. This is the possibility advocated for in@5#.

~2! Another possibility is that the topological classifica-
tion is good, the ‘‘fracton’’ contributions are absent, and the
partition functiondoesnot have an extensive form~4.14! for
small mgA. But that necessarily implies the existence of
massless states in the spectrum. As there are no massless
particles, the only choice is that the vacuum state involves a
discrete degeneracy which is lifted by a small fermion mass.
Then thephysicalpartition function presents the sum of two
extensive exponentials

Z;exp$2@e02Cmg1O~m2!#A%

1exp$2@e01Cmg1O~m2!#A% ~4.15!

and the linear in mass term cancels out.
At present, we do not know what the answer is. We will

discuss these two options in detail in Sec. VI and in the last
section. But before that, let us discuss the physics of the
theory~1.3! at finite temperatures wheredefiniteconclusions
can be done.

V. ADJOINT QCD 2 AT HIGH TEMPERATURE

The main subject of this paper is analyzing the dynamics
of adjoint QCD2 in the bosonization approach. However, it is
difficult to do at finite temperature. The reason is that, in
contrast toS2, a torus where a finite temperature theory is
defined does not present a simply connected manifold, there
are no smooth three-dimensional manifolds parametrized by
a parameteraP@0,1# such that the valuea50 corresponds to
a single point on the manifold, and the valuea51 corre-
sponds to the boundary, which is torus. That brings about
problems with defining the Wess-Zumino term@15#. Thus we
have to use the original fermion language.

The dynamics of the theory~1.3! at high temperature
T@g for N52,3 was discussed at length in@5#. In @22# the
same theory was studied atT50, but on a small spatial circle
L!g21 in the Hamiltonian approach. In the Euclidean ap-
proach the first theory is defined on a cylinder 0<t<b5T21,
2`,x,` ~for the theory to be completely regularized in the
infrared, one may restrict also the range ofx, 2L<x<L, but
the length of the boxL should be assumed to be very large,
larger than any relevant physical parameter!, while the sec-
ond theory is defined on a cylinder2`,t,`, 0<x<L.
Obviously, both cases are completely equivalent up to the
interchangex↔t.

Let us briefly summarize the results of these studies. We
will use mainly the Hamiltonian finite spatial circle lan-
guage, which is a little more transparent physically. Eventu-
ally, however, we are going to translate the results obtained
in the finite temperature language.

Consider first the simplest caseN52. Choose the gauge
A050. The dynamic variables areA1(x). In finite spatial
volume, the zero Fourier modeA1

~0! of the fieldA1(x) plays

ed

e
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a crucial role. Actually, in the limitgL!1, all other compo-
nents and the fermion fields present the ‘‘fast variables’’
the Born-Oppenheimer approach, which have high charac
istic excitation energies and can be integrated out. We
left with the effective potentialVeff~A1

~0!! depending on the
slow variableA1

~0! . Veff does not depend on isotopic orien
tation of A1

~0! . For definiteness, we may direct it along th
third isotopic axis: A 1

(0)5 iA 1
3t3. The effective potential

has the form@27,11#

Veff~A1
3!5

L

2p F S A1
31

p

L D
mod 2p/L

2
p

L G2. ~5.1!

It is periodic inA1
3 with the period 2p/L and has minima at

A 1
352pn/L with integer n. The points A1

350 and
A 1

352p/L can be related by a gauge transformation

i
2p

L
t35V†~x!]xV~x!, V~x!5expH 2p ix

L
t3J .

~5.2!

The unitary matrixV(x) is changed fromV~0!51 to V(L)
521. The associated adjoint matrixPSO~3! @recall that for
the theory involving only adjoint fields the true gauge grou
is SU~2!/Z2 rather than just SU~2!# makes a closed loop in
the group which cannot be contracted to zero. Thus Eq.~5.2!
is a large gauge transformation which cannot be contin
ously deformed to zero and the pointA 1

352p/L presents a
topologically nontrivial classical vacuum. Note that the co
figurationA 1

354p/L corresponds to a gauge transformatio
V(x)5exp$4p ixt3/L%, which can be continuously deforme
to zero and is atrivial gauge copy ofA1

350.
The physical picture is very much similar to the vacuu

structure in QCD4 @28#. The only difference is that here we
have not infinitely many, but just two topologically distinc
vacua. An Euclidean field configuration which interpolat
smoothly betweenA1

350 at t52` to A 1
352p/L at t5`

presents the instanton we were talking about before. It
one left-handed and one right-handed fermion zero mo
which give rise to a nonvanishing fermion condensate.
accurate calculation@5,22# gives

u^l̄ala&u5
8p3/2

gL2
expH 2

p3/2

gL J . ~5.3!

This explicit formula is valid in the regiongL!1 when the
Euclidean tunneling trajectory in the potential~5.1! has large
actionp3/2/gL and the quasiclassical approximation work
But a nonvanishing fermion condensate exists at anyL ~at
any temperature!. At L5` ~T50! it is estimated to be of
orderg. The condensate depends smoothly onL ~on T!, and
there is no phase transition.

The large gauge transformation presents an extra disc
symmetry of the Hamiltonian. Like in QCD4, the proper way
of handling the theory is to impose a superselection rule a
divide the Hilbert space of the systems into two sectors
volving the states which are symmetric under such a tra
formation and the states which are antisymmetric. The pa
tion functions in these sectors are
in
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Z15Ztriv1ZI ,

Z25Ztriv2ZI . ~5.4!

This is quite analogous to choosing a particular value ofu in
QCD4; only in this case, with only two classical vacuum
states, the parameteru can acquire only two discrete values
u50 andu5p. The fermion condensate has opposite sign in
these two sectors. Let us turn now to the simplest paradoxi-
cal theory withN53. Again, in the limit gL!1, the low
energy dynamics of the theory can be described by the ef-
fective potentialVeff~A1

~0!!. The constant modeA1
~0! can be

chosen to be a diagonal matrix

A15 i diag~a1 ,a2 ,a3!, (
i
ai50. ~5.5!

The potential has the form@27,11#

Veff~ai !5
L

2p (
i. j

3 F S ai2aj1
p

L D
mod 2p/L

2
p

L G2.
~5.6!

The pattern of its minima is shown in Fig. 1. First, there
are global minima divided in three topological classes~they
are marked out by circles, boxes, and triangles in Fig. 1!.
Each circle is gauge equivalent to any other circle with a
topologically trivial gauge transformation. The same is true
for boxes and triangles. The minima of different types are
also gauge equivalent, but with a topologically nontrivial
large gauge transformation. A Euclidean field configuration
interpolating, say, from A150 at t52` to
A15(2p i /3L)diag~1,1,22! at t5` presents an instanton. It
has two left-handed and two right-handed zero modes, which
is too much for the fermion condensate to be formed. Like in
the caseN52 and like in QCD4, the Hilbert state of the
system can be separated now inthreesectors:

Z~u!5 (
k50,1,2

Zkexp$ iku%, ~5.7!

whereu52pn/3 andn50,1,2. ~Generally, there areN sec-
tors with un52pn/N, n50,1,...,N21.!

It was observed in@22# that, besides global minima, the
potential ~5.6! has alsolocal minima marked out with dia-

FIG. 1. Pattern of global minima.
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monds in Fig. 1. The value of the potential at diamond poin
is

VL5
2p

3L
. ~5.8!

We will shortly see that this value has some physical r
evance.

The conclusions about the fermion condensate~its pres-
ence atN52 and its absence atN>3! can be also reached in
a slightly different way of reasoning which does not invok
instantons at all. Consider the correlator

C~t!5^l̄ala~t! l̄ala~0!&L ~5.9!

at very larget. In the limit of largeg2A and forNÞ3, it is
given by the path integral where gauge fields aretopologi-
cally trivial ~see@2# for a detailed related discussion in th
Schwinger model!. ForN53, also instanton sectors contrib
ute in the correlator. But as we will shortly see, the instant
contributions can be analyzed along the same lines as
topologically trivial contribution, and their behavior is als
the same. Consider first the caseN52. At smallgL the qua-
siclassical approximation is valid and the correlator is main
determined by the saddle point of the path integral. T
saddle point presents anAbelianconfiguration

A1~t8!5 i f ~t8!t3. ~5.10!

~It can, of course, be also rotated by a global gauge trans
mation, and it is important to take into account in a prec
calculation, but for our purposes it is irrelevant.! The prime
is put to distinguish the running argumentt8 of the profile
function from the pointt where the second fermion scala
current is defined and on which the correlator~5.9!
depends. The calculation of the correlator~5.9! on Abelian
background~5.10! is a simple problem. The point is that th
componentl3 does not feel the background and the ter
^l̄3l3~t! l̄3l3~0!& in the correlator~5.9! is just the free ferm-
ion correlator. In a finite box it decays exponentially11 at
larget,

Cfree~t!}expH 2
2pt

L J , ~5.11!

and is irrelevant at larget. The componentsl1 andl2 behave
as a real and imaginary parts of the Dirac fermion field ha
ing the Abelian chargeg in an Abelian gauge field back-
groundA1(t8)5 f (t8). Thus the problem is reduced to th
Abelian Schwinger model problem. The behavior of th
fermion correlator in the Schwinger model on the circle
well known. At larget, it tends to a constant. By cluste
decomposition, one can infer from this that a fermion co
densate is formed both in the Schwinger model12 and in ad-
joint QCD2.

Bearing in mind the generalizations which follow shortl
let us give a brief sketch how the result about the const

11If going over in the finite temperature interpretationt is substi-
tuted byx and the factor 2p/L[2pT in the exponent is just twice
the lowest fermion Matsubara frequency.
12It is exactly the way the expression~1.2! for the fermion con-

densate in the Schwinger model was originally derived@29#.
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asymptotics of the fermion correlator in the Schwinger
model is obtained~see, e.g.,@1–3# for more details!. Use the
decomposition~2.13!. In the topologically trivial sector,
Am

~0!50. The gauge-dependent part]mx is also irrelevant. The
field f(x) is a nontrivial gauge-independent degree of free-
dom and is called aprepotential. In two dimensions, there
exists an exact formula for the fermion Green’s function in
an arbitrary backgroundf(x):

Sf~x,y!5^c̄~x!c~y!&

5exp$2gg5f~x!%S0~x2y!exp$2gg5f~y!%,

~5.12!

whereS0(x2y) is the free fermion Green’s function. Using
Eq. ~5.12!, we get

CSM~x!5^c̄c~x!c̄c~0!&

}Cfree~x!) df

3expH 2
1

2 E f~D22m2D!fd2yJ
3cosh$2g@f~x!2f~0!#%, ~5.13!

wherem25g2/p is the mass of the physical scalar particle in
the spectrum~which may also be called heavy photon!. Per-
forming the Gaussian integration overPdf(x), we obtain,
for the correlator at large Euclidean timet in the theory
defined on a cylinder with small spatial sizeL,

CSM~t!5Cfree~t!exp$4g2@G~0!2G~t!#%, ~5.14!

whereG(x) is the Green’s function of the operatorD22m2D
on a cylinder. The free correlator falls down exponentially at
larget according to Eq.~5.11!, while the second factor rises:

exp$4g2@G~0!2G~t!#%}expH 2g2m2 t/LJ 5exp$2pt/L%.

~5.15!

We see that the exponential decay of the free correlator is
exactly compensated by the rising factor~5.15! and the cor-
relator tends to a constant at larget.

Consider now the correlator~5.9! in the theory withN53.
Again, for smallgL the quasiclassical approximation works
and the path integral for the correlator is saturated by its
saddle point, which is Abelian. A global SU~3! rotation
brings the potentialA1~t! in a diagonal-color-matrix form.
Saddle points appear in different color directions, which are
actually just the symmetry axes of the effective potential
~5.6! and can be easily inferred from Fig. 1. Two essentially
different options are A1

saddle~t8!5i f (t8)t3 and
A1
saddle~t8!5ig(t8)t8.
Consider first the second case. If the gauge field is di-

rected along the eighth color axis, the fermion components
l1,2,3,8do not feel the field at all and the corresponding cor-
relator has asymptotics~5.11! and is suppressed compared to
the contribution of other components. The componentsl46 i5
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andl66 i7 interact with the backgroundA8~t! as two complex
fermions of chargeg)/2 with an Abelian gauge field back
ground. Thus the correlatorC~t! behaves at larget exactly in
the same way as the fermion correlator in the Schwing
model with two flavors of equal charge. The behavior of t
latter is also well known. Again, the expressions~5.14! and
~5.15! are valid with the only difference that now we hav
m252~g)/2!2/p—the two flavor loops contribute in the
heavy photon mass on equal footing@and the parameterg in
Eqs. ~5.12!–~5.15! should, of course, be substituted b
g)/2#. We see that the rising factor~5.15! now compensates
the exponential falloff of the free correlator only partially
and we have

C8~t!}exp$2pt/L%, ~5.16!

where the subscript 8 indicates the chosen color direction
the gauge field background.

Consider now the case when the gauge field is direc
along the third color axis. The componentsl3,8 are free, and
the componentsl16 i2, l46 i5, andl66 i7 behave in the same
way as complex fermions of chargeg, g/2, andg/2, corre-
spondingly. The problem is reduced to the Schwinger mo
with three flavors of inequal charge. Consider the correla
^l̄1l1~t! l̄1l1~0!&. It has the same form as before; only th
factor 2g2/m2 acquires now the value

2g2

g2/p1~g/2!2/p1~g/2!2/p
5
4p

3
,

rather than 2p as in the standard Schwinger model orp as in
the Schwinger model with two flavors of equal charge. W
have

C3~t!5expH 2
2pt

3L J . ~5.17!

For the componentsl46 i5 andl66 i7, the correlator decays
faster}exp$25pt/(3L)% and their contribution in the corr-
elator ~5.9! can be safely neglected.13 Let us compare now

13The behavior of the correlator on the Euclidean plane can
found along the same lines. In the Schwinger model with seve
flavors of arbitrary charges, the factor~5.15! rises as apower at
large distances. That compensates partially the falloff;x22 of the
free correlator, and the full correlator for the fermion with chargegi
behaves asx22D i with D i512g i

2/(pm2)512g i
2/( ig i

2. The term
g i
2/~pm2! is nothing else but the anomalous dimension of the o

eratorc̄ ic i . A corresponding conformal theory where this operat
appears naturally as a primary field can be formulated. For exam
for two flavors of equal charge, it is the primary operat
cos(A2px) ~or, better to say, a couple of operator
exp$6iA2px% corresponding toc̄1Lc1R, c̄1Rc1L or, equivalently,
to c̄2Rc2L, c̄2Lc2R! in the conformal theory of the real massles
scalar fieldx @30#. It is no wonder thereby that one and the sam
factorD determines the power asymptotics of the correlator on
Euclidean plane and the exponential asymptotics of the correl
on the cylinder. One can map the complex plane on the str
0<x<L, 2`,t,`, by a conformal transformation, after which
the power behavior of the correlator at large distances is tra
formed to the exponential one~see, e.g.,@31#!.
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the contributions~5.16! and~5.17!. Both decay exponentially
at larget, but the value of exponent in Eq.~5.17! is smaller
than that in Eq.~5.16! and, at larget, the leading asymptotics
of the correlator~5.9! is determined by the gauge field back-
ground aligned along the third color axis and is given by Eq
~5.17!.

Notice now that the same result could be obtained fro
the Hamiltonian analysis of Ref.@22#: Equation~5.17! can be
interpreted as

C~t!5exp$2VLt%,

whereVL is the energy~5.8! of the fourth local minimum of
the potential ~5.6! discussed before. Indeed, an accurat
treatment shows that the profile functionf ~t8! defined in Eq.
~5.10! for the saddle point field configuration saturating th
path integral for Eq.~5.9! rises from 0 to 4p/(3L) in the
regiont8;0 ~the width of this region is of orderg21!, stays
at this value for a while untilt8 approaches the pointt, and
goes down to zero in the regiont8;t. But the point

A1
35

4p

3L
, A1

850

is exactly the point where one of the diamond minima of th
potential sits. We have, for larget,

C~t!5u^oul̄alauL&u2 exp$2VLt%, ~5.18!

which coincides with Eq.~5.17!.
The instanton~anti-instanton! contribution to the correla-

tor C~t! has the same asymptotic behavior. The releva
saddle point configuration starts from the central circle i
Fig. 1 att852`. Then att8;0 the field rises in, say, thet3

color direction to the diamond point, stays there for a while
and that provides the exponentVLt in the asymptotics of
the correlator, after which it does not go back to origin a
t8;t as in the topologically trivial case, but moves farther to
the closest triangle or box along the color direction~1,0,21!
or ~0,21,1! ~the symmetry axes of the effective potentia
which are equivalent tot3 and correspond to other roots of
Lee algebra!.

The advantage of the method suggested here is that it c
be easily generalized for higherN>4 where, working in the
Hamiltonian approach, we should have studied an intrica
multidimensional structure of the effective potential.14 It
turns out that for anyN the leading asymptotics of the corr-
elator ~5.9! is due to the Abelian saddle point field configu-
ration ~5.10!. In this background, off-diagonal components
la are ‘‘organized’’ in a complex fermion fieldl16 i2 of the
chargeg and 2~N22! complex fermion fields of the charge
g/2. The correlator ofl16 i2 components gives the factor

2g2

pm2 5
4

N

be
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p-
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s
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e
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14We have performed such a study forN54. The pattern of the
minima of the effective potential presents an interesting thre
dimensional lattice akin to the lattice of diamond. But as it bear
little relevance for the main question studied in this paper, we wi
not distract ourselves here for this issue.
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in the exponent, and the correlator decays as

CN~t!}expH 2
2~N22!

N

pt

L J . ~5.19!

Rotating the cylinder where the theory is defined byp/2, we
arrive at the conclusion that forN>3 at high temperatures
T@g, the spatial correlator

C~x!5^l̄ala~x!l̄ala~0!&T ~5.20!

decays exponentially at large distances. By cluster decom
sition, that certainly implies that

^l̄ala&T@g,N>350. ~5.21!

VI. PHASE TRANSITION

The bosonization analysis of Sec. IV suggests the pr
ence of the fermion condensate in the theory~1.3! atT50 for
anyN in the thermodynamic limitA→`, while the fermion
massm is kept small but fixed. On the other hand, as lnZ
does not involve a linear term in mass expansion, the c
densate is zero in the chiral limitm→0 when the total area of
the manifold,A, is kept large but fixed. Also, we have see
in the previous section that forN>3 the condensate is absen
at high temperatureT@g even in the limit when the length
of the spatial boxL is sent to infinity in the first place. Two
options to resolve this controversy were mentioned at the
of Sec. IV.

One of them postulates the relevance of some nonto
logical field configurations which have only a pair of fermio
zero modes and provide for a nonzero fermion condensat
the chiral limit. It is a possible way out, but it has two obv
ous weak points. First, we have no idea on what these n
topological field configurations are. Second, assuming th
existence, we do not understand why they disappear at fi
temperature.

Another option is that the condensate appears atT50 as
an order parameter of a spontaneously broken symmetry
that case, the limits~i! A→`,m fixed and~ii ! m→0,A fixed
need not commute. The partition function presents the s
of two exponentials~4.15!, and the linear term}mgA in the
expansion ofZ(m) cancels out.

We will argue now that, at least for oddN, this second
possibility is rather probable, indeed. First, there is a discr
symmetry~1.13! to be broken. It remains the exact symmet
of the Lagrangian also on the quantum level because ins
tons involve a couple of left-right pairs of zero modes, a
the induced ’t Hooft term in the effective Lagrangia
;(l L

al R
a)2 ~we will first consider the simplest caseN53!

respects the symmetry~1.13!.
Spontaneous breaking ofcontinuoussymmetries is ex-

cluded in ~111!-dimensional systems due to the Colema
theorem@32#, but adiscretesymmetry can well be broken
spontaneously. The only important restriction is that t
symmetry should be restored at any finite temperature.
ally, a physical picture of spontaneously broken discre
symmetry involves the presence of the domain walls b
tween two different ordered phases. If only one spatial
mension is there, these ‘‘walls’’ present solitons; the cor
sponding quantum states have a finite energy. It is obvi
po-
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that at finite temperature, however small it is, the heat bath
involves some number of these ‘‘walls.’’ And that exactly
means that the vacuum is disordered.

A classical example of a theory involving spontaneous
breaking ofZ2 symmetry is one-dimensional Ising model15

@33#. The theory has the Hamiltonian

H52J (
i52N

N

s is i11 , ~6.1!

N→` in the thermodynamic limit. The vacuum state of Eq.
~6.1! is doubly degenerate:^s&51 or ^s&521. At any non-
zero temperature, the domain walls~the states withsi521
at i<n0 andsi51 at i.n0! appear in the heat bath. Their
characteristic density is;exp$2J/T%. Thereby, the state is
not ordered anymore and the correlator^s is i1M& tends to
zero atM→`, although the spatial correlation length~a char-
acteristic value ofM when the spin correlator starts to die
away! is exponentially large;exp$J/T% when the tempera-
ture is small. The system has a first order phase transition a
T50.16

Our suggestion is that the same happens in adjoint QCD2
at N53, the fermion condensatêl L

al R
a& being the order

parameter of the symmetry~1.13! and playing the role of̂s&.
A number of nontrivial physical consequencies follow from
this assumption.

First, it implies that the correlation lengthl of Eq. ~5.20!
rapidly grows as the temperature goes down and become
exponentially large;exp$g/T% in the regionT!g. No ana-
lytic calculation in the regionT!g is possible. It would be
rather interesting, however, working still in the regionT@g
where the quasiclassical approximation applies, to find ou
what are thecorrections to the leading Born-Oppenheimer
result @cf. Eq. ~5.17!#.

l T@g5
3

2pT
. ~6.2!

If the first nonleading correction turns out to be positive, it
could serve as an argument in favor of the scenario that the
corrections become overwhelmingly large atT!g.

The second very interesting corollary is that the spectrum
of the Hamiltonian should involve ‘‘walls,’’ the states inter-
polating from the vacuum with negative^l̄ala& on the left to
the vacuum with positivê l̄ala& on the right. If the wall
states do not exist, but only the states presenting excitation
over the vacuum witĥl̄ala&.0 or the excitations over the
vacuum with^l̄ala&,0, we cannot talk about spontaneous
symmetry breaking in the physical meaning of the word. The
whole Hilbert state of the system would be separated into
two subspaces which do not know of each other, and a su

15One-dimensional statistical systems correspond to~111!-
dimensional field theories.
16Note that second order phase transitions atT50 associated with

would-be spontaneous breaking of a continuous symmetry are als
possible in~111!-dimensional systems. It is exactly what happens
in multiflavor Schwinger model@34#. But as the order parameter is
zero at the phase transition point and, ifTc50, there is nothing
below, the Coleman theorem is not violated.
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perselection rule singling out one of these subspaces co
be imposed. The situation would be the same as with inst
tons in QCD4 @28# or as with adjoint QCD2 at N52 @5#. It
would imply the presence of ‘‘fractons’’ like in@24# and, as
was mentioned, it would be difficult to explain where th
condensate is gone atTÞ0.

Presently, we donot know whether such wall states exist
The spectrum of adjoint QCD2 was studied with some care
only in the limit N→` @35#, but not at finiteN53.17

The reasoning of this section can be relatively easily ge
eralized for higher oddN. The common point is that whenN
is odd, the number of zero modes~1.12! is alwayseven, the
symmetry~1.13! is not anomalous, and can be broken spo
taneously atT50. The partition function presents a sum
~4.15! of two extensive exponentials as before. A little b
troublesome point, however, is that, say, forN55, the in-
stanton contributions first show up only in the quartic term
the expansion of Eq.~4.15! in mgA. ForN5137, they first
appear in the term ;~mgA!136. The terms
;~mgA!2, . . . ,;~mgA!134 should come from the path inte-
gral in the topologically trivial sector. Well, it is somewha
unusual, but at least not paradoxical.

The situation with evenN>4 is more complicated. The
matter is that in this case the symmetry~1.13! is anomalous.
For example, forN54, the field configurations in the topo-
logical classk51 involve three pairs of zero modes, and th
corresponding ’t Hooft effective Lagrangian;(l L

al R
a)3 is

odd under the transformation~1.13!. Generally, the partition
function in the topological sectork acquires the factor~21!k.
If there is no symmetry, one cannot talk about its spontan
ous breaking. There should bea uniquephysical vacuum
state~in a sector with a particular value of discreteu brought
about by instantons! and Eq.~4.15! cannot be written. Thus
the physics of the theory with oddN>3 differs essentially
from the theory with evenN>4 ~cf. @36#!. In the first case,
the hypothesis about spontaneousZ2 symmetry breaking re-
solves the paradox rather satisfactory~with all reservations
given!. For large evenN, the paradox is still there, and, at the
current level of understanding, we do not dare to specul
more in this direction.

VII. O „N221… AND DISCONNECTED COMPONENTS

As far as oddN are concerned, the suggested pictu
looks rather self-consistent and nice, and I am ready to b

17However, it is not a hopeless problem to study the spectrum
the theory on lattices. The ‘‘lattice experimental evidence’’ in favo
or against our hypothesis is highly desirable. Actually, two
dimensional systems are a lot simpler than four-dimensional QC
where the efforts of lattice people are mostly applied. One can o
express a wish that the fashion would change some time and m
lattice works on two-dimensional systems including fermion
would be done. The field involves many unsolved but easily so
able problems for the experts. In the first place, a number of ex
nontrivial results in the Abelian theory~see @34# and references
therein! should be checked. If theoretical predictions for the spe
trum and correlators are reproduced in the Abelian case, one co
proceed with two-dimensional non-Abelian theories. Also, if nu
merical lattice calculations would reproduce the exact theoreti
results in two dimensions, there would be more trust in lattice c
culations in QCD4 with dynamic fermions.
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lieve that Z2 symmetry in the theory withN53,5, . . . is
broken spontaneously, indeed. There is, however, a theoret
cal problem which is not yet fully understood and we are in
a position to discuss it.

The arguments in favor of the existence of fermion con-
densates atT50 come from the bosonization analysis. We
have interpreted the condensate as the order parameter of t
spontaneously broken symmetry~1.13!. The symmetry
~1.13! clearly displays itself in the fermion language. In
bosonization language, the corresponding symmetry is

hab→2hab. ~7.1!

At first sight, the action~1.8! is invariant under the transfor-
mation ~7.1!, indeed. The problem is, however, that the ma-
trix 2hab does not belong to the adjoint representation of
SU(N) if the matrixhab does. In particular, the equation

2dab52 Tr$utau†tb%

has no solution ~it is best seen using the identity
Tr h5uTr uu221>21!. Notice now that the symmetry~7.1!
could be reinforced if assuminghPO~N221! ~as Witten
originally suggested forfree fermions!. If bosonizing the
theory withh belonging to the adjoint representation of the
gauge group SU(N)/ZN , the transformation~7.1! relates not
the variables in one and the same bosonized theory, but re
lates different theories corresponding to different subgroups
of O~N221!. But we may equally well multiplyh by any
matrix of the coset O~N221!/@SU(N)/ZN#. All such theories
come on equal footing. We are thus arriving at Eq.~1.11!:
The partition function of QCD2 with massive Majorana fer-
mions is equal to the sum~the integral! of the partition func-
tions Z(R) in all possible bosonized theories characterized
by a matrixR.

We cannotprove now the validity of this recipe. How-
ever, we canshowthat the bosonized partition function with
a particularR has wrong analytic properties as a function of
mass. If summing over allR with a particular sign prescrip-
tion ~see below!, the correct analytic properties are repro-
duced.

Consider first the theory withN53. Let us concentrate on
the instanton sector and putRab5dab at first. We have seen
in Sec. IV that the leading term in the mass expansion ofZI
is ;~mgA!2. Consider now the next term}m3. It appears
when pulling down the mass term in the action thrice. Pro-
ceeding along the same lines as in Sec. IV~i.e., taking into
account only the zero Fourier harmonicu0 and imposing the
requirement [u0 ,T* ]50!, we obtain

ZI
N535C2~mgA!21C3~mgA!3E du~2!uTr u~2!u2~Tr u~2!!2

1O~m4!. ~7.2!

The group integral in Eq.~7.2! is nonzero, and we get a
nonzero cubic term in the expansion ofZI in mass.

However, the cubic term is absent in the original fermion
theory. Really, the mass dependence comes from the fermio
determinant
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DetMajorana
N53 i iD”1mi5@DetDirac

N53i iD”1mi #1/2

;m2)
n

8~m21ln
2!, ~7.3!

where the product runs over all nonzero eigenvalues of t
Euclidean Dirac operator, only one eigenvalue of each do
bly degenerate pair being taken into account@5#. The deter-
minant ~7.3! involves only even powers ofm.

It is easy to see that, if allowing for an arbitrary
RPO~8!/@SU~3!/Z3# and integrating overR, the expression

ZI
true5E dR ZI~R! ~7.4!

also involves only even powers. For eachR, the theory with
R852R also contributes in the integral. But the mass term
~1.11! in these two theories have opposite sign.

Consider now a theory with evenN. The caseN52 is
already nontrivial. The symmetry~7.1! is realized on the full
O~3! group involving two disconnected components SO~3!
where the bosonized theory~1.8! is formulated. We have to
take into account the contributions of both components in th
partition function. But in contrast toN53, it would be incor-
rect just to sum up the corresponding contributions. Speaki
precisely, it is correct in the topological trivial sector, but no
in the instanton sector.

The contribution of the component with Detihi51 in the
partition function in the instanton sector is

ZI
N52~1 !5C1mgA1C2~mgA!21O~m3!, ~7.5!

with a nonzeroC2 given by the integral

C2}E
0

2p

db3exp$2 ib3%~2 cosb311!2Þ0.

Like in the previous case, it has wrong analytic propertie
involving both odd and even powers of mass. The mass d
pendence ofZI in the fermion theory comes from the Majo-
rana fermion determinant, which involves, forN52, only
odd powers,

DetMajorana
N52 i iD”1mi;m)

n
8~m21ln

2!.

To reproduce this behavior, we have tosubtract the contri-
bution Z I

N52~2! of the odd SO~3! component with Detihi
521 from Eq.~7.5!. The corresponding theory differs from
the theory of the even SO~3! component only by the sign of
the mass term~1.11!. The expansion ofZ I

N52~2! in mass
has exactly the same form as Eq.~7.5! up to the opposite
sign of odd powers. We are defining now

ZI
N52~ true!5ZI

N52~1 !2ZI
N52~2 !. ~7.6!

Z I
N52~true! involves only odd powers of mass. Our hypoth

esis is that it exactly corresponds to the instanton partitio
function of the fermion theory.

Consider now a general case. Let firstN be odd. The
number of zero mode pairsk(N2k) is even for anyk, and
the expansion of the partition function in mass in the topo
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logical sectork starts withmk(N2k) and involves only even
powers ofm. The expansion of the partition functionZk in
the bosonized theory~1.8! with the mass term~1.10! also
starts withmk(N2k) @see Eq.~4.12!#, but includes both even
and odd powers. For oddN, the group O~N221! includes
only one connected component. The same arguments as fo
the caseN53 considered before show that the odd powers of
mass cancel out in the integral~7.4! over the theories with
differentR. This integral should correspond to the partition
functionZk in the original fermion theory.

Let now N be even. The valuek(N2k) may be odd or
even depending onk. For example, forN54, the sectors
k51,3 involve three pairs of fermion zero modes, and the
sectork52 involves four such pairs. In the former case, the
expansion ofZk

ferm involves only odd powers of mass and in
the latter case only even powers. On the other hand, the mass
expansion ofZk in the bosonized theory with the mass term
~1.10! includes both even and odd powers for anyk. Note
now that the group O~N221! includes two disconnected
components for evenN. Our recipe reads

Zk
N even~ true!5E dR1Zk

N even~R1!

1~21!kE dR2Zk
N even~R2!. ~7.7!

The odd~even! powers of mass cancel out in the integrated
partition function ~7.7! with even ~odd! k and the correct
analytic properties ofZk are reproduced.

Again, we see the distinction between odd and evenN.
Obviously, there is a relation between the existence of two
disconnected components in O~N221! for evenN and the
fact that the symmetry~1.13! is anomalous. Indeed, the par-
tition function ~7.7! is invariant over the bosonic counterpart
of this symmetry, the transformationh→2h, for evenk, but
not for oddk.

VIII. DISCUSSION

The main physical signature of the suggested scenario
with spontaneous breaking of discreteZ2 symmetry is the
presence of the domain wall solitons—the states which inter-
polate between different vacua—in the spectrum of the
theory. If the domain walls are absent, different vacua are
completely unrelated to each other and belong to the differ-
ent sectors of Hilbert space. In that case, a superselection
rule which selects a particular sector once and forever in the
whole physical space should be imposed. Then there is no
spontaneous symmetry breaking in the physical meaning of
this word. This is the situation in standard QCD4 @the
vacuum involves a continuous degeneracy inu, but one can-
not talk of the spontaneous breaking of U~1! symmetry be-
cause the physical signature of this breaking—the massless
Goldstone boson which is singlet in flavor—is absent#. This
is also a situation in pure Yang-Mills theory at high tempera-
ture where the physical domain walls interpolating between
differentZN ‘‘phases’’ are absent and one cannot talk about
spontaneous breaking ofZN discrete symmetry@10#. And
this is the situation in adjoint QCD2 with N52 where two
sectors~5.4! are not physically related and there are no walls.

The fact that we cannot at present establish the existence
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of domain walls in adjoint QCD2 with N>3 explicitly is the
main reason why we are still talking about the possibility
spontaneous breaking ofZ2 symmetry in this theory@even
for odd N where the symmetry~1.13! to be broken is re-
tained on the quantum level# without complete certainty.

The two-dimensional model considered in this paper p
sents an interest on its own, but the main point of interes
the lessons one can learn from the analysis of this model
four-dimensional supersymmetric Yang-Mills theorie
These theories attracted recently a considerable attention
ter appearance of the paper of Witten and Seiberg who
culated exactly the spectrum of physical states inN52 su-
persymmetric Yang-Mills theory@37#.

There is a long-standing unresolved problem in a mo
simple N51 supersymmetric Yang-Mills theory involving
only gluons and gluinos. Supersymmetric Ward identiti
display the constant~x-independent! behavior of the fermion
correlator

^la
alaa~x1!•••la

alaa~xN!&5const ~8.1!

@for SU(N) gauge group#. Instanton calculations~which are
valid at small uxi2xj u! show that this constant is nonzer
@38#. That implies the presence of gluino condensate. Ho
ever, standard instantons involve 2N fermion zero modes
and, assuming that only instantons contribute and the ex
sive form ~4.14! of the physical partition function with only
one physical vacuum state is valid, we are led to the sa
contradiction as in adjoint QCD2 at N>3 considered in this
paper, that the linear in mass term in the Taylor expansion
the partition function, which should be there due to the pr
ence of a nonzero linear term in the Taylor expansion
evac(m)[the fermion condensate, cannot be reproduced.

Just as in adjoint QCD2, there are only two ways out
Either we should assume thatZ2N symmetry in the super
Yang-Mills ~SYM! Lagrangian@a remnant of U~1! symmetry
after taking anomaly into account# is broken spontaneously
down toZ2 or that an additional superselection rule shou
be imposed. It amounts to allowing theu parameter to vary
within the interval

uP~0,2pN!. ~8.2!

In the first case, the physical domain walls separating diff
entZN phases should be present in the theory. In the sec
case, the ‘‘phases’’ should be completely unrelated and
domain walls must be absent.

As far as SYM theory with SU(N) gauge group is con-
cerned, we favor more the second possibility. After all,
least in toroidal geometry, the Euclidean configurations w
fractional topological charge}1/N appear on an equal foot
ing with instantons@25# and an additional superselection ru
with respect to a large gauge transformation changing
Chern-Simons number by 1/N arises quite naturally. Actu-
ally, one can explicitly calculate the toron contribution in th
partition function of the theory at finite volume@8#. There are
also additional arguments coming from the analysis of t
pure Yang-Mills theory in large-N limit. If no fermions are
there, the partition function is a nontrivial function ofu. At
largeN, a smoothu dependence of the partition function ca
be achieved only if allowingu to vary within the interval
~8.2! @8#. All together that makes us believe that the sup
of
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selection rule leading to the classification~8.2! should be
imposed, and that there are no walls and no spontaneo
symmetry breaking.

For a proper balance, we should also mention countera
guments to this scenario.

~1! Toron configurations can be written in a finite toroidal
box but not inS4 or S33R geometry. If we do not restrict
ourselves to fiber bundles on compact manifolds, meron s
lutions with fractional topological charge which live inR4

and have a singular field strength at one point can be writte
@39#. They have an infinite action, but still may be relevan
for physics@40#. Torons on tori are not similar to merons in
flat space and to the absence of anything on a sphere. T
physics, however, should not depend on boundary condition
if the box is large enough.

~2! In contrast to instantons, toron configurations are de
localized. Again, we cannot visualize at present how thes
delocalized configurations manage to contribute in loca
physical quantities.18

~3! An argument in favor of existence of the walls in
SU(N) theory can be put forward if considering theN51
theory with matter fields~supersymmetric QCD!. When the
mass of quarks and squarks is small, the theory is in wea
coupling Higgs phase~see e.g.,@41#!. The different ZN
phases are associated with different values of the Higgs a
erage and the domain wall solitons with finite energy densit
interpolating between different Higgs phases probably exis
One can send then the mass of matter fields to infinity afte
which they decouple. A renormalization group analysis
seems to show that the energy density of these walls remai
finite also in this limit which means the existence of physica
walls also in pure SYM theory@42#.

As I already mentioned, my own guess is that the argu
mentspro overweigh in this case the argumentscontra and
the walls are not really there in SU(N) theory. But this guess
does not have the rank of a statement. Obviously, more stu
of the question is necessary.

The situation is, however, different in theories with higher
orthogonal and exceptional gauge groups. Again, supersym
metric Ward identities and instanton calculations imply tha
the d-point function of several fermion scalar densities like
Eq. ~8.1! ~d is the Dynkin index of the group; for higher
orthogonal groups SO~N>5!, d5N22! is a nonzero con-
stant@20#. That implies the presence of the fermion conden
sate, but in contrast to theories with unitary groups, no toro
configurations with fractional topological charge which
could generate the condensate explicitly are known. In th
case, the option involving spontaneous breaking ofZd sym-
metry looks much more probable. The domain walls shoul
exist.

18A counterargument to this counterargument can also be su
gested. Really,classicalinstanton solutions in the Schwinger model
are also delocalized, but still instantons contribute to local observ
ables like the fermion condensate@1–3#. Anyway, we understand
the mechanism of that in the Schwinger model—after taking int
account the fermion determinant, a relevant saddle point of th
corresponding path integral presents a localized vortex like config
ration@1# @cf. Eq.~2.5! and the discussion thereafter#. But we do not
understand it in the four-dimensional~SYM! theory which we
would like to.
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We think that the further study of adjoint QCD2 for N>3
would make a lot of sense. This 2D theory is much simp
than 4D SYM theories. One can hope that a definite ans
to the question whether domain walls exist in two dime
sions ~we believe they do! would be obtained reasonabl
soon. The resolution of this question could provide cruc
insight into what happens in four dimensions.
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