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Two-dimensional instantons with bosonization and physics of adjoint two-dimensional QCD
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We evaluate partition functiong, in topologically nontrivial (instanton gauge sectors in the bosonized
version of the Schwinger model and in a gauged WZNW model corresponding to two-dimensional QCD
(QCD,) with adjoint fermions. We show that the bosonized model is equivalent to the fermion model only if
a particular form of the WZNW action with a gauge-invariant integrand is chosen. For the exact correspon-
dence, it is necessary to integrate over the ways the gauge groty) Si(is embedded into the full ?—1)
group for the bosonized matter field. For ewgnone should also take into account the contributions of both
disconnected components iN\F—1). In that caseZ,om™ for small fermion masses whereng coincides
with the number of fermion zero modes in a particular instanton background. The Taylor expansion of
Z,/m" in mass involves only even powers iof, as it should. The physics of adjoint QG discussed. We
argue that, for oddN, the discrete chiral symmet&,® Z, present in the action is broken spontaneously down
to Z, and the fermion condensate\), is formed. The system undergoes a first order phase transitiby
so that the condensate is zero at an arbitrary small temperature. It is not yet quite clear what happens for even
N=4. [S0556-282(96)00524-3

PACS numbsgs): 11.15.Kc, 11.15.Tk, 12.38.Aw

[. INTRODUCTION cause Majorana fermions cannot be defined Euclidean
space]6]). We will consider both massless modél3) and

It has been known for a long time that the Schwingerthe model which includes a small mass term
model involves topologically nontrivial gauge field configu-

H ay a
rations: the instantonsee[1] and references therginThe MAPA®=—2imALAR, (14
reason why they appear is the nontrivig[U(1)]=Z. Instan- m<g.
tons are characterized by an integer topalogical charge Adjointness of all fields in the Lagrangian is crucial for
1 the instantons to appear: In the standard Q@ih funda-
V=5 f d2xF(x), (1.) mental quarks where the gauge group is BY(

m[SU(N)]=0 and topologically nontrivial configurations
are absent. But in the theory with adjoint matter the true
gauge group is SW)/Zy (the elements of the center act
trivially on adjoint fields. ;[SU(N)/Zy]=2Z\#0 and in-
stantons appearit was found in[5] that these configurations
— g involve fermion zero modesvhich conforms with the analy-
[{srihol = 2732 e’ 12 s by Kogan[11] who showed that instantons do not con-

is formed(g is the coupling and is the Euler constaptThe

path integral calculation df )| [2,3] follows closely the

't Hooft calculation of the instanton determinant in Q€D INote, however, that although we cannot define the Euclidean
The condensate is formed due to the presence of one corBounterpart of the Lagrangiaf.d), the Euclidean path integral can
plex fermion zero mode for gauge field background configube easily defined as an analytic continuation of the Minkowski path
rations with unit topological charge. It was noted recently integral. In Minkowski space, integration over Majorana fermions
that topologically nontrivial configurations appear also inprovides the factor which is the square root of the Dirac determi-
non-Abelian two-dimensional gauge theories with adjointnant. We cardefinethe Euclidean path integral of the thedd.3)
matter contenf4,5]. In this paper, we will consider only the as the integral over gauge fields involving the square root of the
simplest nontrivial theory of this kind which involves a mul- Euclidean Dirac determinant as a facof]. The extraction of

tiplet of adjoint real fermions\®. The Lagrangian of the sguare root presents no problem here as all eigenvalues of the Dirac
model reads operator for complex adjoint fermions are doubly degendiz&.

whereF=Fy,=3doA;— d1Aq. Their physics is rather similar
to the physics of instantons in four-dimensional QCD
(QCD,) with one light quark flavor. In particular, the fermion
condensate

1 i 2A nontrivial ;[ SU(N)/Z,] brings about topologically nontrivial
L=——>F2% F2 + 5 (N[ 6%P9_— fabcAC_])\E configurations also in four-dimensional Yang-Mills theory without

2 . .
4g9°  KvRY quarks. But here two extra transverse dimensions are present and
ar sab, _ ¢abcaC 1y b these configurations are not localized and have infinite action.

HAR[6%9, — AT NG}, 1.3 These planar instantons were obtained in Ref. and misinter-

preted as real “walls between differerf, phases.” Actually, the
where d.=dy*d;, AS=AGEAS, and \ g=3(1% )\ are  instantons and planar instantons are essentially Euclidean configu-
the left- and right-moving components of the Majorana ferm-rations and do not exist as real physical objects in Minkowski space
ion field (the Lagrangian is written in Minkowski space be- [10].
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tribute in the partition function in the massless thedng) in sial. Instantons involve “too many” fermion zero modes and
high temperature regignFor the simplest topologically non- cannot generate a nonvanishing bilinear fermion condensate.
trivial sector their number is (RI—1). Instantons lead to On the other hand, the quoted bosonization arguments do not
physically observable effectavith an obvious reservation distinguish between differertl. Say, forN=3, the matter
that we are discussing a model theory which is not found irfields present 88 adjoint SU3) matrices and a nonzero
naturg. They are responsible, in particular, for finite string
tension in fundamental Wilson loops, i.e., for confinement of
heavy fundamental sources in a theory with nonzero mass of
dynamic adjoint fermiongin massless theory, instantons de-
couple, string tension disappears, and the sources are nsiould appear. It is also known that the condensate is formed
confined but screengd12]. When N=2, instantons bring at infinite N [19].
about a nonzero fermion condensfig This paradox, formulated ifb], is akin to a similar para-
The latter follows also from semiheuristic argumentsdox which pops out in four-dimension&D) supersymmet-
based on the bosonization approach. The bosonized versigit (SUSY) Yang-Mills theories with higher orthogonal
of QCD, with fermions in the adjoint representation of @J  groups[20] and is rather troublesome; it is not yet absolutely
is the gauged Wess-Zumino-Novikov-Witte@WZNW) clear how it is resolved. It was the main motivation for the
model[13-1§ with the matter fields presenting orthogonal present study.
matricesh?®(x), the elements of @). The theory involves The main part of the paper is devoted to the analysis of
only massive excitations, their mass being of the order of th&uclidean path integrals of the gauged WZNW model in the
coupling constang. As a result, the matter field is “frozen” topologically nontrivial sectors. We show that the zero mode
and a nonzero vacuum expectation va{bd®), appears. In  suppression factorm™ is reproduced indeed, but only if
the fermion language, that means the appearance of nonzedoing things with proper care.
(NN where\? are adjoint Majorana fermion fields. For ~ The commonly used form of the gauged Euclidean
N=3, the situation is much more complicated and controverWZNW action reads

(N2 o=Cg(h?), (1.5

1
SE[A,h]=WJd2x Ff‘wFfLﬁ——fdzx Tr{3,ha,h~ 1} - i fd3g e*Tr{h~g;hh~*9,hh~1g¢h}
1 2 -1 -1 -1
+8_77 dx[Tr{A;hd_h™}+Tr{A_h™ 9, h}+Tr{A hA_h™}-Tr{A,A_}]
2 2 1 2 -1 i 34 _ijk -1 -1 -1
572 | dXTrF;,+N e d“xTr{d,ud,u }_E nge Tr{u™*guu™“d;uu “geu}

1
+EJdzx[Tr{A+u(9,u‘1}+Tr{A,u‘1ﬁ+u}+Tr{A+uA,u‘1}—Tr{A+A,}] , (1.6

whereh is the matrix N>—1)X (N?—1) belonging to the adjoint representation of Sly(andu is an associated unitary
matrix NX N,

hab=2 Tr{t3utPu1}, 1.7

A, are anti-Hermitian matriced\,=iA5T? T2 are the generators in a corresponding representaflars Ag*iA,
d+=dyxid,, andQ is a three-dimensional manifold with a two-dimensional boundary where the theory actually lives. Our
statement is that, generally speaking, the actio6) is wrong It is not gauge invariant and does not correspond to the original
theory (1.3). One should rather choose the action in the form

iN .
Se(F,u) J’dzx TrF2,— o f d? Tr{u™ 'V, ,uu™V u} - —— o de3§ e*Tr{u~V,uu'V,uutv,u}

IN 3¢ ik -1 -1
+§ ngeJTr{Fij(u Vi u+Vuuu )}, 1.8
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where nd=n%=k(N—k). (1.12

Viu=diut[Ai,ul, Fij=aiA— A +[ALA(] Note that we are dealing here with an index theorem of new
] . o ) variety—the numbers of left- and right-handed zero modes
The functional(1.8) was written earlier if17]. The actions  coincide and the conventional Atiyah-Singer index vanishes.
(1.6 and(1.8) differ by the integral of a total derivative. For |5 Sec. 11l we start our analysis of bosonized theories with
topologically trivial configurations, this integral is zero and g warm-up example of the Schwinger model. We will show
the actiong1.6) and(1.8) are equivalent, but in the instanton tnat correct results for the partition function in the instanton
sectors they are not. Actually, the actiGh6) is not gauge sectors are reproduced indeed in bosonization language, but
invariant in the |nstqnton sectors while the explicit invari- only if choosing the gauge-invariant form for the bosonized
ance of thentegrandin Eq. (1.8) under the gauge transfor- Lagrangian depending explicitly only on field strengh
mations We show that the partition function in the sector with topo-
_, logical chargev involves a factom'”, reflecting the presence
A= (Ay+,)0, of |v| zero modes in the fermion description.
In Sec. IV we analyze gauged WZNW models with the
u—Q uQ (1.9 action (1.8). We show that the contribution of the fields in
the topological clasg in the partition function involves the
is seen immediately. factor m*N~K in agreement with the fermion counting
Adding the mass term (1.12. It also involves, however, the factet“N ¥ where 4
is the total area of our manifold. That implies the constant
«em Trh=2m Tr{uttu 1t} (1.10  asymptotics of the correlator &{N—k) scalar fermion cur-
rents at large distances and the existence of a nonzero ferm-
in the action(1.8) and evaluating the path integral, we will ion condensate which seems to be excludedther argu-
show that the factom™ is singled out wherey is half the  ments.
number of fermion zero modés. In the first place, these are the arguments based on the
Unfortunately, it is not yet the end of the story. We will assumed extensive form of the partition function
see that the actiof1.8) with the added mass ter(h.10 does  Z« exp{—¢,,.A} discussed earlier ifb] and anew in the end
not exactly correspond to QGIvith massive adjoint fermi- of Sec. IV. Second, one can rigourougisovethat the ferm-
ons. Recall that the set &f—1 free adjoint fermion fields is ion condensate is absent in the high temperature region—this
habitually bosonized with the orthogonal matricesis the subject of Sec. V.
heO(N?-1) [16]. For the theory involving gauge fields Possible ways to resolve the paradox are briefly discussed
eSU(N)/Zy, one should rather use bosonization with ad-at the end of Sec. IV and, in more detail, in Sec. VI. In
joint SU(N) matricesh?®e SU(N)/Z,CO(N?—1) [21]. But  particular, an attractive possibility is that the fermion con-
there are many ways to choose a subgroupNUZ,, within densate appears dt=0 due to spontaneous breaking of
the large orthogonal group. It turns out that, in order to preZ,®Z, symmetry which the Lagrangiafl.3) enjoys: The
serve all symmetries of the fermion Lagrangian and to get d&ransformations
correct mass dependence for the partition functiomojpo-

logically nontrivial sectorsone has to average over all these A==,
ways. In other words, one has to write the mass term in the
form Ar— — AR, (1.13

cm Trithe O(N?~1)]=2mR*Tr{ut’u™ 1% (1.1)  |eave£ invariant. This discret&,®Z, symmetry is the rem-
nant of U1) chiral symmetry which would be effective in a
and average over allR®® belonging to the coset theory with complex fermions. A mass terfi.4) would
O(N2=1)[[SU(N)/Zy]. break this symmetry down td,. And the appearance of the
The plan of the paper is the following. Before proceedingfermion condensate in massless theory breaks it spontane-
with our analysis of bosonized theories, we present in Sec. lbusly.
a new derivation of zero mode counting rules in instanton Spontaneous breaking of discrete symmetry would imply
sectors in the fermion language. Distinct topological sectors first order phase transition =0 (so that the condensate
are labeled by an integér=0,1,...N—1. In Ref.[5] only  is zero at any nonzero temperatyrenuch like in a one-
the casesk=1 (the instanton and k=N—1 (the anti- dimensional Ising model. This picture is very much probable
instanton were analyzed. For an arbitrakythe result is atN=3 and at higher odt, but the situation at eveN=4
is not yet clear—Z£,®Z, symmetry of the Lagrangiafi.3 is
anomaloudn this case, being broken explicitly by instanton

3The problem does not arise, of course, in SYWZNW models  €ffects. _ _
which are the most studied ones. They do not involve instantons N Sec. VII, we discuss the correspondence of the fermion
and the actior(1.6) is perfectly acceptable. and the bosonized versions of the theory in more details. We

41t is half the number, not just the number, because we are dealin§how that the correct behavior of the fermion partition func-
here with Majorana fermions and the fermion path integral providedions in the instanton sector is reproduced only if integrating
the factor which is the square root of the Euclidean Dirac determithe bosonized partition function over the parameter
nant. ReO(N?—1)/[SU(N)/Zy] characterizing the way the
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SU(N)/Z, subgroup is embedded in the largefN3—1) cross zero and go down into the Dirac sea. Likewide;1
group. This is the only way to enforce the symmettyl3 right-handed levels from the sea cross zero and appear in the
for odd N in the bosonized version. For evéh one has to  physical spectrum.The level crossing phenomenon guaran-
take into account the contributions of both disconnectedees that the Euclidean Dirac operator h&sl right-handed
components in (N?-1). and N—1 complex conjugated left-handed zero modes on
Possible implications of our analysis for four-dimensionalany background which interpolates in Euclidean time be-
supersymmetric gauge theories are discussed in the last sdweseen classical vacua, i.e., on any background belonging to
tion. the instanton topological class.
Both discussed proofs are somewhat indirect, and we be-
Il. INDEX THEOREM lieve it is worthwhile to give adirect proof with explicit
L construction of the zero mode solution. Let us first derive the
Instantons present a nontrivial fiber bundig(x) of the  gayge field topological classification more accurately. Topo-
gauge group SW)/Zy on the two-dimensional Euclidean |qgically nontrivial configurations exist only on compact Eu-
manifold where the theory is defined. In RE8] it was con-  ¢jigean manifolds. There are two convenient choices: a
venient to choose the manifold to be a torus. When the sizg, s as i5,22] or a sphere. We will return on torus in Sec.
of the torus in one of the Euclidean directions is small com-, pt currently we are moving onto sphere and will stay
pared tog ™, the quasiclassical approximation works andhere for a while. A sphere geometry appears when one con-

path integrals in the instanton sector are saturated by fields gjders the gauge fields living on the Euclidean plane which
the vicinity of a particular configuration in the instanton teng to a pure gauge at infinity:

class, which has a very simple Abelian form. In the case of

large spatial volume and small temporal siéwhich physi- r—o

cally corresponds to high temperatufe= 3~ 1), the rel- A, (X) —— QY 60)d,Q(0), (2.3
evant saddle point configuration in the topological clasd ) . ] ]
is (the gaugeA,=0 is chosen with (6) e SU(N)/Zy . The matrix()(6) defines a loop in

the group space. Topologically nontrivial configurations are
described by noncontractible loops. The topological invariant

i
Ao(X) = diagd L1,....E=N)a(x—Xo), (2.1 distinguishing different classes is
. : ; 1 2mik
where the profile functiom(x—Xxg) has the same form as in W(C)= = Trex % A dx ' =ex 24
the Schwinger moddlL] and the corresponding field density © N c HH N |’ @4

F=—0A/dx is localized at the vicinity ok,, the instanton

center. With the solutiori2.1) at hand, path integrals can be Where the contou€ goes around the Euclidean infinity, and

exp|icit|y calculated and, for examp|e, the fermion Conden_kzo,...,N— 1. It is the same standard construction as for the
sate in the high temperature limit can be foys2]. In [5] four-dimensional Yang-Mills instantons. The difference is
we explicitly solved the Dirac equation in the backgroundthat in the latter case the topological invariant

(2.1) and foundN—1 left-handed andN—1 right-handed

fermion zero modes. We also showed that the eigenvalues do |d:4~f K n
not shift from zero when perturbing the backgrou@d) in S
every order of perturbation theory. This reasoning was con- . . . .
vincing enough, but did not have the rank of a rigorouscan be written as a four-dimensional_integral of the local

prooi_one coud, nprincipe, coremplat the presence oftPO00CY ChOE Sensg . I E ) Onte et
field configurations in the instanton class at some distance in~_ ' : y

Hilbert space from the Abelian instantq@.1) where the presented as a two-dimer_15iona| integral Of_ a I.Ocal density.
eigenvalue is shifted from zero by nonperturbative effectsLet us now choose a particular representative in each topo-

The main problem here is that a standard Atiyah-Singer inloglcal class. A convenient choice is

dex theorem says nothing about the presence or absence OfA(O)kzi diag(k,... k. k—N.... k=N €urty
these zero modes. The Atiyah-Singer index is just zero here: "' # N 1881, ks e ) (x§#+p2) ’
N-k k
| Atyah-Singet. b nX Ty J FL€.,0°x=0. (2.2 (2.5)

A proof was constructed if22] where the theory was stud- Where we want to choosp~g g This is a configuration
ied on a finite spatial circle at zero temperature in a Hamil-2€longing to the clas&.4) with localized field density and
tonian approach. In that case, the gasge-0 can be chosen finite action. Fork=1, the color structure of Eq2.5) is the

and the dynamic variable i8,(x,t). The point is that the Sa@me as in Eq2.1). _ _

Hamiltonian hasN classical vacua corresponding to shifting . W& emphasize that E€2.9) is nota solution to the clas-

A, from zero by particular finite constant matrices belongings'cal equations of motion—such a solution exists and has the
to a Cartan subalgebi@ee Sec. V for some more details

The Hamiltonian has a symmetry which guarantees that the

energy spectrum of the Dirac operator in all classical vacua Swhich levels—left handed or right handed—go down into the
is identical. WherA, interpolates smoothly between adjacentsea and which go out of it depends, of course, on convention and on
vacua, exactlyN—1 left-handed levels with positive energy the direction in whichA; is changed.
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same color structure as E.5), but is delocalized: The iNj |N—k k
field density is constant 08 and very smallF~1/A4 (A is
the area of the sphereMathematically, this delocalized con- 1 ... 0
figuration is as good a reference point as the configuration (T:)ij: N—k 0

(2.5. The configuration2.5) is, however, preferable from 0o --- 0
the physical viewpoint. Considering classical solutions

makes sense only in the case when a quasiclassical descrip- k O O

tion holds and characteristic fields in path integrals are in the . ) .

vicinity of classical saddle points. However, QEBt low The Dirac equation for this component looks the same as the

temperature and large spatial volume is a nontrivial nonlinDirac equation in Schwinger model for the charged fermion
ear theory with strong coupling and the quasiclassical defield in the background with unit Abelian topological charge
scription is not adequate. An analysis of the path integral irf1-1)- The standard Atiyah-Singer theorem dictates the pres-
the instanton sector shows that characteristic field configurs&nce of a left-handed zero mode. Its particular form is

tions are actually localized at distances of order of the cor-

(2.8

relation length~g~* and resemble Eq2.5) in this respe& ANQx)=T; 1) X+ _ 2.9
[1] * “10 spin in(xi+P2)

The field (2.5) is defined on Euclidean plane and is sin-
gular at infinity. To define an instanton on the compatt There arek(N—k) color matrices of the form2.8) and,
manifold, one should either to use stereographic coordinategrrespondingly,k(N—k) left-handed zero modes. Also,
in which case the field would be singular at the north pole ofthere arek(N—k) right-handed zero modes

the sphere or to go over in the singular gauge:

0 X_
. 2 (0) .
Aﬁf)"=—ﬁdlag(k,...,k,k—N,...,k—N)m&_ﬁ FE T G RO+ )
—_— XX,
N-k k where
(2.6)

i\j N—k

(the size of the spherR is assumed to be much larger than - N—k O
p). The field(2.6) has the same field strengfhas Eq.(2.5), (TY)ij= 1 - 0 , (211
is regular at infinity, and involves a Dirac string singularity K
atx=0. Obviously, a gauge where the Dirac string is placed

Ol =~

o - 0

at any other poink, on the sphere can be chosen.
Let us now solve the Dirac equation etc. Up to now, we have just adapted the derivatiofspfor
the case when fields live on a sphere and generalized them to
VE{au)‘n“L[Au Anlb= ks, (2.7 arbitrary k. In order to show explicitly the presence kfN

—k)+k(N—Kk) zero modes orany topologically nontrivial
background, we use the fact that any field belonging to the

; E_; 2 E_; 1 ; ; _
with yg=io andy1=i0", u, being the eigenvalue corre classk can be written as

sponding to the eigenmodg,, on the background2.6).

Consider the matrix 2t?. In Euclidean space, Majorana fer- A_=g Yd_+AY)g,
mions cannot be defined, and the fermion fields should be
assumed to be complex. It is convenient to choose the com- A, =g" (9, +A?)(g"H L, (2.12

plex basis{t?} for the Lee algebra wittN—1 standard diag-

onal matrices andl(N—1)/2+N(N—1)/2 off-diagonal ma- Whereg is a general compleX x N matrix. For a unitaryg
trices having only one nonzero component. In this basis, thé is just a gauge transformation. For a Hermitigrit is a
Dirac operator with Abelian backgrour(@.6) does not mix  nontrivial non-Abelian field with a different field density, but
the componenta? with differenta so that each component With the same invarian®2.4). We restrict, howeverg to be
can be treated separately. For some components, the comnHpitary at the pointx, where the Dirac string is placed. To
tator of the corresponding® with the diagonal color matrix Pe quite precise, it is sufficient to require that the product
in Eq. (2.6) is zero, these components do not feel a back99 commute with the matrix marking out the color direction
ground gauge field at all, and the spectrum is the same as f&f the Dirac string. Otherwise, the transformed fi&d12) is

free fermions. An example of the component whitdesfeel ~ not a fiber bundle or§?
the background is The decompositiori2.12) is widely known for topologi-

cally trivial fields[18]. It is a direct non-Abelian analog of
the decomposition

BAt high temperaturel>g quasiclassical analysis becomes pos- AleAL"-’)Jr €,,0,b+ 3 ,x (2.13
sible which allows one to determine the value of the fermion con-
densate folN=2 [5,27). The saddle point field configuration of a Of a topologically nontrivial field in the Schwinger model on
high-T path integral in the instanton sector presents the solution o6” [2]. Substituting Eq.(2.12) in the Dirac equatior(2.7),
effectiveequations of motion with account of the fermion determi- one can easily find the explicit expression for the zero
nant. It has the forni2.1) and is localized1]. modes.
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A y=g ]\ % X, on S% The surface term appears just due to this Dirac
L /g L Y . . . . .

string singularity and produces the term 4w ¢(x, ) in the
()\(R0>)g:g‘r)\g0>(g‘r)*l, (2.14  action. Whenever this matters, it is the acti@3) which

should be used, not E¢B.2). Actually, the action3.2) is not
Where)\(L% are the zero mode®.9) and (2.10 for the in-  gauge invariant in topologically nontrivial sectors. The term

stanton representativ@.6). —iva4m$(x,) by which Eq.(3.2) differs from the explicitly
invariant action(3.3) depends on the position of the Dirac
I1l. INSTANTONS IN BOSONIZED SCHWINGER MODEL string singularity, i.e., on the gauée.

_ . _ A traditional way to handle the bosonized theory is to do
Our main goal is to reproduce the zero mode counting Of;t the Gaussian integration ovErdF to obtain
the previous section in bosonization approach. Of course,

there is no trace of fermion zero modes in the bosonized 1 9° e’

theory. The proper question to ask is how the contribution to Sg= f dx| 5 (0,¢)%+ > $*—mg 53 Cog \/E@}-

the partition function coming from instanton sectors depends (3.4

on a small(smaller than any other relevant sgafermion

massm. In the original theory with fermions, the behavior is It is acceptable as far as we are not interested in the contri-
Z,~m*™~%_And the same should be true in the bosonizedoution of a particular gauge topological sector. In the latter
WZNW model—the bosonized version of QEGDAs a case, one should proceed more accurately. Let us consider
warm-up, consider first the Abelian theory where the calcuthe theory on a compact two-dimensional Euclidean mani-
lations can be carried out explicitly until the very end. Thefold which we choose to b&? with large but finite aread.
usual way to bosonize the Schwinger model is to establisiTo single out the contribution of a particular instanton sector,

the correspondencég3] we impose the conditiofiL.1). The topological chargeis an
— integer. In the original fermion theory, this follows from the
"/’%7#‘#_’%(‘9#‘1’)21 necessity to define the Dirac operator on the compact mani-
fold in a background gauge field. The eigenfunctions and
— 1 spectrum exist only for integer. In the bosonized language,
byu¥— \/_; €urdv, guantization ofv follows from an additional requirement that

the action(3.3) be invariant under the shitp— ¢++/7.
_ e? is just the period of the cosine in E(B.3). We will shortly
Yip— — ——=p gcog Vame), (3.1 see that even if we would allow for noninteges, the con-
2T ) . . . . ; !
tribution of such fields in the partition function is zero.
wherey is the Euler constant. Then the Euclidean action of L&t us now expand the field(x) and ¢(x) in the series
the bosonized Schwinger model is over spherical harmonics

F<x>=% FimYim(6,¢),

2 1 2 1 2
Se= dXZ—ng +§(&M¢) +A

i
" \/_; E/U/avd)

Y —
Mg g cos AT | 3.2 $)=2 bimYin(0,9). (35

The zero harmoni& =271/ A is fixed due to Eq(1.1). In-

whereF=¢,,d,A, and¢ is a real scalar field. Adding a full - tg5rating out all other harmonics of the gauge field, we ob-

derivative to Eq.(3.2), one can rewrite it in the form

tain
SE:J' ey _12 e (0,8)2+iF ¢ 1 z :e*ZWZVZ/AQZJWZ de e”“‘mbof [T dox
29 2 Jr g e °
e” — L3 9 5
_mgm cos VAm) . 3.3 Xex;{ - jszdzx(i ((9,u¢)2+ > (bz
' ) e? ~
Our remark is that the transformation from E§.2) to Eq. —mg == co§ VA (ot $)1| |, (3.6
(3.9 is innocentonly in the topologically trivial gauge sec- 2m ’

tor. In instanton sectors, the integral of a full derivative pro- ) ] i ~
duces a surface term which contributes in the action and/heredy is the zero harmonic of the matter field agdx) is
cannotbe disregarded. To see that, it is convenient to thinkhe sum of all the rest. The interval of integration ovgris

of an instanton or$? as of a monopole. The flud.1) is then

associated with the flux of the monopole magnetic field

through a sphere surrounding the magnetic charge in a ficti-’Opviously, one can repeat this reasoning without invoking the
tious three-dimensional space, i.e., with the magnetic chargpirac string, but describing the instanton fiber bundle with a couple
itself. The potentialA ,(x) of our instanton on monopole of maps which is more accurate from the mathematical viewpoint.
should involve a singularitythe Dirac stringj at some point  The physical conclusion, however, is the same.
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restricted due to the periodicity of the integrand. It is instruc-Z,, is real as it should be. Second, we see immediately that in
tive to see what happens if we sum owerUsing the dual the massless case=0, Z,=0 whenv+#0. But for small but
representation of th® function, we obtain nonzerom, Z, is nonzero too. A finite result is obtained
. 24 when pulling down the mass term in E®.6) v times. If we
Jwl2 g would try to calculateZ,, for a fractionaly, the integral over
Z:EV Z,% J_ ﬁ/zdd’ok;m 20 Iy (¢0—k\/;)2] ¢y would run from — to «, the oscillating factor
. , expliv\4m o} could not be compensated in any ordemin
~ ~ g and we would get zero for any value of mass. This is the real
Xf 11 dqﬁ(x)exp[ —fszdzx 2 (‘9M¢)2+§ ¢ reason for the topological charge to be quantized: Frac-
tional topological charges just do not contribute here in the
e’ ~ partition function® In the limit mgA<1, only the leading
—Mg 5 —3p COY Vam(o+ )1 |- (37 term in mass expansion survivésee[8,1] for a detailed
discussioh and we obtain

In the thermodynamic limig24— only one term of the

sum (3.7) survives, ¢y is frozen at zero, and we reproduce Z,=C,(mgA)”, (3.9

the result(3.4). It is not difficult also to calculate the parti-

tion function in the theory with a particular nonzero vacuumwith a calculable coefficient. This is exactly what we also get

angle ¢ in the fermion language. Forv=x1, the -coefficient
C,=C_,=e"(47%?% just gives the value of the fermion

Z(6)= 2 Z,,ei vo. (3.9 condensaté¢l.2).

Performing the same dual transformation for this sum as for IV INSTANTONS IN GAUGED WZNW MODEL

Z(0), we arrive at the same expressi@i7) but with the shift We have already mentioned that in topologically non-
do— do+ 0/\4m. In that casep, freezes at the valuey= trivial sectors it is the actiofil.8) which should be used, not
—6/\4. Eqg. (1.6). The action(1.9) relates to the actiofil.6) exactly

Now let us look at Eq(3.6). Note first of all that although in the same way as the actid8.3) to (3.2). The following
the bosonizediction (3.3) is complex, the path integral for identity holds:

1 N iN .
SE¢ (1'8)[Aﬂ,u]=z—ng Tr{Ffw}—g f d2xTr{u’1VMuu’lVMu}—E Qd3§ €*Tr{u™tguuto;uu Lo u}

iN 3¢ _ijk -1 -1 -1
+E ngé &iTr{UAJ'U Ak+Aj(U au+duu )} (41)

Let us assume that the gauge fields have only two com- Let us now estimate the contribution of the instanton sec-
ponentsAy and A; and depend only on the physical coordi- tors in the partition function using the correct gauge-
natesx, = 7,x. The matter fieldi(x,, ,a) is smooth orQ and invariant expressiofil.8) for the action. An experience with
depends on the third coordinate= [0,1] in such a way that Schwinger model teaches us that the relevant factors in the
u(x,,0)=1 andu(x,,1) is the field living on our physical path integral appear due to integration over the zero har-
two-dimensional Euclidean manifolé1: the boundary o). monic of the matter field. Thus we assume
One can choose, for example(x , ,a) =explad(x,,)} with
anti-Hermiteand. PO ) extadhoo ) u(x,,a)=expap}, (4.3

For topologically trivial gauge fields which are regular on yhere g=i 822 is a constant anti-Hermitean matrix.

M, the integral of the full derivative is reduced to two sur-  consider first the simplest cagé=2. The field has a
face terms ate=0 and =1 and produces, together with pjrac string singularity at some point, on S%. We choose a
other terms, the standard form of the acti@ing. But in  gauge withx, =0 and direct the Dirac string along the third

M, which results in an additional contribution in the full gq (2 6)

derivative integral. For example, fdd=2, the relation

Eq. (1.6) — qEq. (1.9 ara
S S +2TH (%, )Nt} (4.2 8We hasten to comment that, in some theories like the twisted

multiflavor Schwinger mod€]24] or four-dimensional Yang-Mills
holds. Herex, is the position of the Dirac string andis its  theory involving only adjoint color fieldg25,8], fractional topologi-
direction in the color space. Obviously, the extra term in Eqcal chargesdo contribute. In each particular theory, a particular
(4.2) is gauge dependent. study of this question is required.
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where A is the area of the manifold. Pulling the mass term

i . € VXV
ASMx) = —it? sz— (4.4 down, we get in the leading order m
"

2m
A look at Eq.(1.8) shows that the second and third terms in ~ Z,cmgA | dBszexp{—iB3}(2 copBz+1)=CmgA,
the action may provide a divergent contributi®fid®x/x? in 0

the action. Actually, the integral (4.9
with a nonzero constar@. That agrees well with the results
ocf d3¢ €XTr{u~V,uuV,uu~tv,u} of the analysis in the fermion language: A couple of ferm-
Q . ion zero modes provides a factem in the partition func-

. ) o tion. Differentiating Eq.(4.8) over mass gives the fermion
is not divergent due to the fact thaf, AZ"AS"=0. But the  condensaté5].
integral Consider now the general color group $)(and the
field configuration of the typ€2.6) belonging to the topo-
fxf d2 Tr{u~ 1V ,uu~v u} logical classk. For any configuration in this class, a gauge
a K’ can be chosen where the Dirac string is aligned in the direc-
tion
:J d2xTr{u—1[A#,u]u‘1[AMu]} (4.5 - 1 gl Kk Novs k=) @9)
= ————— diag(%,....,k,k—N,....k— 2
V2Nk(N—k) gw_&_,__d

is singular provided A, ,u] #0. It would give an infinite Nek B

contribution in the action, and the corresponding contribu-

tion in the partition function is suppressed. Thus we shouldn the color space. As earlier, we must require that the con-
restrict ourselves with the constami, independentmatrices  stant mode of the matter fieldu, commute with
(4.3 aligned in the same color direction as the Dirac stringT*—otherwise, the second term in E{..8) would give an

in a chosen gauge. For suahthe only nonzero contribution infinite contribution to the action. A general(a=1) satis-

in the action comes from the last term in Ef.8). We have fying this restriction has the form

- L (N=K)
Se= -2 T Bt} =—ips;. (4.6 uo(l):exmﬁw*}(“ 0 u?k))’ (4.10

The instanton contribution in the partition function is
where uN" W eSUN-k) and u®eSUK). We assume

2m ) Ug(a) =[ug(1)]* so thatuy(0)=1. The parameteg* varies
Z)x . dBzexp —ipBs}t=0, within the limits 8* e[ 0,27 2k(N—k)/N]—the shift of 8*
by 27v2k(N—k)/N multiplies uy(1) by an element of the
as it should be in the massless Ca@'ﬁ]e range ofﬁ3 is center epoWik/N}, which results in the same adjoint ma-
restricted to be0,277] because changing; from 0 to 2r  trix h. In the massless case, the only contribution in the
multiplies u by the element of the center1, and we arrive action comes from the last term in E@L.8). It does not
at the same associated orthogonal matix?).] If the  depend oru™ andu®™~¥, but only ong* and we have

fermion mass is not zero, the action involves an additional
term i [2mVKN=KN . Nk(N—Kk)
Zjx . dB*exp —iB — =0.

Sm“mgf d?x Tr h(x)mgA[ | Tr u[?—1] Note that the phase factor winds byr&(N—k) times in the
range of the integration.
=mgA(2 coBz+1), 4.7 The action in the massive theory involves the term

Smocmgf d?x Tr h(x)ocmgA[|Tr uo|2—1]=mgA[|Tr u®2+|TruN=0j24 2 Re( Tr u®(Tr uN-k)*

[N
Xexp{—lﬁ m]>—l

To provide a nonzero contribution in the path integral #f, the mass term should be pulled down at lela@¥— k)
times—otherwise, the integral ovg* gives zero. Note that not onlfdB*, but also group integrals over anduN~*
provide here nonzero factors. Thus we get an estimate

. (4.11

k__ K(N—k) [ 27V2KIN=K/N (k) (k)% yk(N—K) (N—K) (N=K)\k(N—K) _ k(N—K)
Z/~(mgA) du™(Tr u'*) du (Tru ) (mgA) (4.12

0
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for smallmgA. These nondescript contributions would play the same role as
The factor mN~K appears also in the fermion the toron(or meron or fractoncontributions which are re-

approach—k(N—Kk) is just the number of the fermion zero sponsible for the formation of the gluino condensate in

mode pairs. What is, however, new and could not be figured SU(N) supersymmetric 4D Yang-Mills theofy25] and the

out in the fermion approach is the total area dependenclrmation of the fermion condensate in multiflavor

x AXN-K Consider, e.g., the ca®é=3. The instanton par- Schwinger model in finite volume with twisted boundary

tition function can be written as conditions[24]. This is the possibility advocated for [5].
(2) Another possibility is that the topological classifica-
N=3__ 2| 42y 420 /3 8% /vy Ay A 2 tion is good, the “fracton” contributions are absent, and the

Zi (mg) f dX EYROONA(Y)) ~ (Mg A)~ partition functiondoesnot have an extensive forfd.14) for

(4.13 small mgA. But that necessarily implies the existence of
massless states in the spectrum. As there are no massless
particles the only choice is that the vacuum state involves a
discrete degeneracy which is lifted by a small fermion mass.
Then thephysicalpartition function presents the sum of two
extensive exponentials

The appearance of the factot? in this expression means
that the correlatok A\*A#(x)A*\%(y)) tends to a nonzero
constant at large Euclidean distandes-y|, i.e., that the

fermion condensaté\®\?) is formed.

Thus a bosonization estimate fBf presented in this sec-
tion has confirmed the existence &{N—k)+k(N—K) )
fermion zero modes in the path integral and, on the other Z~exp{—[e—Cmg+O(m?)] A}
hand, confirmed the appearance of the fermion condensate _ 2
for any N, which also follows from simplistic bosonization e ~leot Cmgt Om) A} (4.19
arguments of Refl5]. This is rather remarkable, but unfor- . _
tunately does not mean et that the physical situation is nov@nd the linear in mass term cancels out. , _
absolutely clear and a final resolution of the paradox men-_ At present, we do not know what the answer is. We will
tioned in[5] [the conflicting results of the bosonized analysisdiScuss these two options in detail in Sec. VI and in the last
and the fermion analysis of the thedt.3 for higher gauge section. But bgfpre that, let us dlscuss't'he phyS|c§ of the
groupd is achieved. theory (1.3 at finite temperatures whedefiniteconclusions

The paradox displays itself if recalling the fact that the €N be done.
spectrum of the theoryl.3) does not involve massless par-
ticles. That means that in the |imj492>l, when the size of V. ADJOINT QCD , AT HIGH TEMPERATURE
the Euclidean box is much larger than the characteristic in-
verse mass scateg %, the partition function must enjoy the ~ The main subject of this paper is analyzing the dynamics

extensive property of adjoint QCD in the bosonization approach. However, it is
difficult to do at finite temperature. The reason is that, in
Zoeexp — €,ad M, g) A} (4.14  contrast toS?, a torus where a finite temperature theory is

o ] defined does not present a simply connected manifold, there
and the finite volume correctionéthe boundary effecls are no smooth three-dimensional manifolds parametrized by
should be exponentially suppressg2b]. At small m<g, 3 parametere[0,1] such that the value=0 corresponds to
€,adM,g) should involve the linear in mass term—the cor- 5 single point on the manifold, and the value=1 corre-
responding coefficient just gives the fermion condensatgponds to the boundary, which is torus. That brings about
=—1/Ad/omIn Z, the existence of which is dictated by the prob|ems with defining the Wess-Zumino te['ms] Thus we
estimateg4.12 and (4.13 for the instanton contribution in  have to use the original fermion language.
the partition function? The dynamics of the theoryl.3) at high temperature

The property(4.14 should hold both in the true thermo- Tsg for N=2,3 was discussed at length[i§]. In [22] the
dynamic limitmgA>1 and also in the regiomgA<1 pro-  same theory was studied Bt=0, but on a small spatial circle
vided the ConditionAgz>l is fulfilled. But, on the other L<gfl in the Hamiltonian approach. In the Euclidean ap-
hand, forN=3, no known contribution in the partition func- proach the first theory is defined on a cylindes 8<8=T "1,
tion involves the linear termrmgA and the expansion &  —oo<x< (for the theory to be completely regularized in the
in smallmgA starts with the term-m"~", infrared, one may restrict also the rangexpf-L<x<L, but

There are only two ways out of this obvious contradiction.ihe length of the box. should be assumed to be very large,

(1) Perhaps, for some reason, topological classificationarger than any relevant physical paramgterhile the sec-
does not hold in this case and, besides instantons, there aggg theory is defined on a cylindero<r<oo, O<x<L.

Someother Contl’ibutions in the partition fUnCtion Wh|Ch in- Obvious|y’ both cases are Comp|ete|y equiva'ent up to the

volve a linear in mass term and would be responsible for thenterchangex« r.

formation of the fermion condensate in the linnitgA<1. Let us briefly summarize the results of these studies. We
will use mainly the Hamiltonian finite spatial circle lan-
guage, which is a little more transparent physically. Eventu-

9As has already been mentioned in the Introduction, the bosonize@lly, however, we are going to translate the results obtained

theory with the actior(1.8) still does not exactly correspond to the in the finite temperature language.
original fermion theory. It is convenient for us to postpone the —Consider first the simplest casé=2. Choose the gauge

discussion of this issue until Sec. VII. Ay=0. The dynamic variables ar@&;(x). In finite spatial
190 a related discussion in QGDsee[8]. volume, the zero Fourier mod&\” of the fieldA,(x) plays
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a crucial role. Actually, in the limigL<1, all other compo-

nents and the fermion fields present the “fast variables” in A

the Born-Oppenheimer approach, which have high character-

istic excitation energies and can be integrated out. We are AN

left with the effective potentiaV®"(A'”) depending on the O olo O

slow variableA?. Ve does not depend on isotopic orien-

tation of ALY, For definiteness, we may direct it along the e P

third isotopic axis: A{Y=iA3t3. The effective potential A ole &

has the forn{27,11] i 5 o a

veff(A?’):L (5.1) PO NS
Vo om

ar
Ad+ —
L

} 2
mod 2m/L

It is periodic inA3 with the period 2/L and has minima at
A3=2zn/L with integer n. The points A3=0 and

A3=27/L can be related by a gauge transformation FIG. 1. Pattern of global minima.
2w 3 2mix 3 Z,=ZyytZ,
i — t3=07(x)9,Q(x), Q(x)=ex t3}.
L L Z_=Zww—Z . (5.4

(5.2
This is quite analogous to choosing a particular valué iof

The unitary matrix)(x) is changed from2(0)=1 to Q(L) QCD;; only in this case, with _only two clas_sical vacuum
=—1. The associated adjoint matrixSQ(3) [recall that for states, the paramet@rcan acquire only wo dlscretg va]ue;
the theory involving only adjoint fields the true gauge group?=2 andg=a. The fermion condensate has opposite sign in
is SU2)/Z, rather than just S(2)] makes a closed loop in these two sectors. Let us turn now to the simplest paradoxi-

the group which cannot be contracted to zero. Thus(&Eg) cal theodry With N:?' r,]’-\gari]n, in the Iki)mi'ijg L<'1b, tdhi Iovr\]/ f
is a large gauge transformation which cannot be continu-ENErgy dynamics of the theory can be described by the ef-

: A seffr a (0) (0)
ously deformed to zero and the poif=27/L presents a fective potentialV=(A1"). The constant modé;” can be

topologically nontrivial classical vacuum. Note that the con-chosen to be a diagonal matrix
figurationA$=4=/L corresponds to a gauge transformation
Q(x)=exp{4mixt3/L}, which can be continuously deformed A, =i diaga;,a,,a3), > a=0. (5.9
to zero and is drivial gauge copy oA3=0. '

The physical picture is very much similar to the vacuumThe potential has the forfi27,11]
structure in QCR [28]. The only difference is that here we
have not infinitely many, but just two topologically distinct off L 2
vacua. An Euclidean field configuration which interpolates VZi(ay) = o .2
smoothly betweerA3=0 at =—x to A3=27x/L at = :
presents the instanton we were talking about before. It has (5.6
one left-handed and one right-handed fermion zero mode, The pattern of its minima is shown in Fig. 1. First, there

which give rise to a nonvanishing fermion condensate. Arare global minima divided in three topological classgey

71_2

r
ai—aj+t

mod 2m/L

accurate calculatiofb,22] gives are marked out by circles, boxes, and triangles in Fig. 1
Each circle is gauge equivalent to any other circle with a

— L w32 topologically trivial gauge transformation. The same is true

[N = gL2 eXP{ - g_L} (5.3 for boxes and triangles. The minima of different types are

also gauge equivalent, but with a topologically nontrivial
large gauge transformation. A Euclidean field configuration
interpolating, say, from A;=0 at 7=-% to
A;=(2=i/3L)diag1l,1,—-2) at 7=« presents an instanton. It
has two left-handed and two right-handed zero modes, which
is too much for the fermion condensate to be formed. Like in
the caseN=2 and like in QCL, the Hilbert state of the
system can be separated nowtlimee sectors:

This explicit formula is valid in the regiogL<1 when the
Euclidean tunneling trajectory in the potenti&ll) has large
action 7~%/gL and the quasiclassical approximation works.
But a nonvanishing fermion condensate exists at lanyat
any temperatupe At L=o (T=0) it is estimated to be of
orderg. The condensate depends smoothlyLofon T), and
there is no phase transition.

The large gauge transformation presents an extra discrete )
symmetry of the Hamiltonian. Like in QCthe proper way Z(a):k:%l szeXp{'ke}7 5.7
of handling the theory is to impose a superselection rule and o
divide the Hilbert space of the systems into two sectors inwhere =27n/3 andn=0,1,2.(Generally, there ar®l sec-
volving the states which are symmetric under such a trangtors with 6,=27n/N, n=0,1,...N—1))
formation and the states which are antisymmetric. The parti- It was observed i22] that, besides global minima, the
tion functions in these sectors are potential (5.6) has alsolocal minima marked out with dia-
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monds in Fig. 1. The value of the potential at diamond pointsasymptotics of the fermion correlator in the Schwinger
is o model is obtainedsee, e.g.[1—3] for more details Use the
Vo=om. (5.  decomposition(2.13. In the topologically trivial sector,
3L AP=0. The gauge-dependent payl is also irrelevant. The

i ) ) field ¢(x) is a nontrivial gauge-independent degree of free-
We will shortly see that this value has some physical rel-yom and is called prepotential In two dimensions, there

evance. , , , exists an exact formula for the fermion Green’s function in
The conclusions about the fermion condend@epres- arbitrary backgroung(x):

ence atN=2 and its absence &=3) can be also reached in
a slightly different way of reasoning which does not invoke

instantons at all. Consider the correlator S,,,(x,y)=<¢//(x)z//(y))

NENA(7) AR =exp(— 97’ ¢ ()} So(x—y)exp{ —g¥°h(y)},
C(r)=(A\3(7) A3\(0)), (5.9 K—97°¢(x)} K-gy (; N

at very larger. In the limit of largeg®A4 and forN+3, it is

gi\/en by the path integra| where gauge fields m]m)]ogp WhereSO(x—y) is the free fermion Green'’s function. Using
cally trivial (see[2] for a detailed related discussion in the Ed. (5.12, we get

Schwinger modgl For N=3, also instanton sectors contrib-

ute in the correlator. But as we will shortly see, the instanton CSM(x)= (@(x)@(O))
contributions can be analyzed along the same lines as the
topologically trivial contribution, and their behavior is also “Cfree(X)H do

the same. Consider first the cdde-2. At smallgL the qua-
siclassical approximation is valid and the correlator is mainly

determined by the saddle point of the path integral. This ><exp{ _E f H(A2— 12A) pd2y
saddle point presents abelian configuration 2
Ai(7")=if (')t%, (5.10 x cosH{2g[ ¢(x) — $(0) ]}, (5.13

(It can, of course, be also rotated by a global gauge transfowhereu®=g%/m is the mass of the physical scalar particle in
mation, and it is important to take into account in a precisen€ spectrumwhich may also be called heavy phojoRer-
calculation, but for our purposes it is irrelevarithe prime ~ forming the Gaussian integration ovEd#(x), we obtain,

is put to distinguish the running argumerit of the profile ~ for the correlator at large Euclidean timein the theory
function from the pointr where the second fermion scalar defined on a cylinder with small spatial size

current is defined and on which the correlat(.9)

depends. The calculation of the correlatér9) on Abelian CM(7)=Cyred 7)eXR497G(0)~G(7) T},  (5.14
background’5.10 is a simple problem. The point is that the

component\? does not feel the background and the termwhereG(x) is the Green’s function of the operataf—u’A
(33 A3\3(0)) in the correlator(5.9) is just the free ferm-  on a cylinder. The free correlator falls down exponentially at
ion correlator. In a finite box it decays exponenti&iyat largeraccording to Eq(5.11), while the second factor rises:

large 7,
2

(5.1 exp(49?[G(0)— G( T)]}ocexp[ % T/L} =exp{2mw7/L}.

(5.19
and is irrelevant at large The components® and\? behave

as a real and imaginary parts of the Dirac fermion field havyye see that the exponential decay of the free correlator is

ing the Abelian chargg in an Abelian gauge field back- exactly compensated by the rising factér15 and the cor-
groundA(7")="f(7"). Thus the problem is reduced to the rg|ator tends to a constant at large

Abelian Schwinger model problem. The behavior of the  consider now the correlatd®.9) in the theory withN=3.

fermion correlator in the SChWinger model on the circle iSAgain’ for Sma”gL the quasiclassical approximation works

well known. At large, it tends to a constant. By cluster and the path integral for the correlator is saturated by its

decomposition, one can infer from this that a fermion con-ggqgle point, which is Abelian. A global $8) rotation

densate is formed both in the Schwinger motlehd in ad-  prings the potential,(7) in a diagonal-color-matrix form.

jont QCh,. o . Saddle points appear in different color directions, which are

Bearing in mind the generalizations which follow shortly, actually just the symmetry axes of the effective potential

let us give a brief sketch how the result about the constants 6) and can be easily inferred from Fig. 1. Two essentially
different  options are A{7)=if(+)t* and
AiaddITT')=ig(T/)t8.

27T
Cfree(T)“eXp{_ L ]:

f going over in the finite temperature interpretatiois substi- Consider first the second case. If the gauge field is di-
tuted byx and the factor 2/L=2=T in the exponent is just twice rected along the eighth color axis, the fermion components
the lowest fermion Matsubara frequency. \1238do not feel the field at all and the corresponding cor-

121t is exactly the way the expressidf.2) for the fermion con-  relator has asymptotid$.11) and is suppressed compared to
densate in the Schwinger model was originally deri{/28]. the contribution of other components. The componafts®
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and\%*'7 interact with the backgrount®(7) as two complex  the contributiong5.16) and(5.17). Both decay exponentially
fermions of charggv3/2 with an Abelian gauge field back- at larger, but the value of exponent in E¢.17) is smaller
ground. Thus the correlat@(7) behaves at largeexactly in  than that in Eq(5.16) and, at larger, the leading asymptotics
the same way as the fermion correlator in the Schwingeof the correlato(5.9) is determined by the gauge field back-
model with two flavors of equal charge. The behavior of theground aligned along the third color axis and is given by Eq.
latter is also well known. Again, the expressidisl4 and  (5.17).

(5.19 are valid with the only difference that now we have Notice now that the same result could be obtained from
w?=2(gv3/2)*lm—the two flavor loops contribute in the the Hamiltonian analysis of Rdi22]: Equation(5.17) can be
heavy photon mass on equal footifand the parametey in interpreted as

Egs. (5.12—(5.19 should, of course, be substituted by

gv3/2]. We see that the rising fact@.15 now compensates C(r)=ex{—Vor1h

the exponential falloff of the free correlator only partially,

and we have whereV, is the energy5.8) of the fourth local minimum of

the potential (5.6) discussed before. Indeed, an accurate
Cg(7)cexp(— m/L}, (5.16 treatment shows that the profile functib(x’) defined in Eq.
(5.10 for the saddle point field configuration saturating the
where the subscript 8 indicates the chosen color direction dpath integral for Eq(5.9) rises from 0 to 4/(3L) in the
the gauge field background. region 7 ~0 (the width of this region is of ordey 1), stays
Consider now the case when the gauge field is directedt this value for a while untit’ approaches the point and
along the third color axis. The components® are free, and goes down to zero in the regior~7. But the point
the componenta®*'2, \**1% and\5*'7 behave in the same
way as complex fermions of chargg g/2, andg/2, corre- A3:4_7T A8=0
spondingly. The problem is reduced to the Schwinger model 3L !

with three flavors of inequal charge. Consider the correlator i i o
O AINY0)). It has the same form as before; only the IS exactly the point where one of the diamond minima of the

factor 29%/u? acquires now the value potential sits. We have, for large
2?2 4nm C(n)=(o\AY O)2 exp[-Vorl, (5.1
9%/ m+(9/2)°Im+(g/2)*m 3" which coincides with Eq(5.17).

. . . The instantonanti-instantom contribution to the correla-
rather than z as in the standard Schwinger modelmas in tor C(r) has the same asymptotic behavior. The relevant

Lha(?/eSchwmger model with two flavors of equal charge. Wesaddle point configuration starts from the central circle in

Fig. 1 at7 =—o. Then at” ~O0 the field rises in, say, th&
color direction to the diamond point, stays there for a while,
(5.17) and that provides the expone¥it, = in the asymptotics of
the correlator, after which it does not go back to origin at
7 ~7as in the topologically trivial case, but moves farther to
the closest triangle or box along the color directi@D,—1)
or (0,—1,1) (the symmetry axes of the effective potential
which are equivalent to® and correspond to other roots of
Lee algebra
The advantage of the method suggested here is that it can
3The behavior of the correlator on the Euclidean plane can bée easily generalized for highdr=4 where, working in the
found along the same lines. In the Schwinger model with severaHamiltonian approach, we should have studied an intricate
flavors of arbitrary charges, the fact.19 rises as gpowerat  multidimensional structure of the effective potentiallt
large distances. That compensates partially the fatloff 2 of the  turns out that for an\ the leading asymptotics of the corr-
free correlator, and the full correlator for the fermion with chagge  elator (5.9) is due to the Abelian saddle point field configu-
behaves ag~?% with Aj=1-g?/(mu®)=1-gf/2,g7. The term  ration (5.10. In this background, off-diagonal components
g?/(mu?) is nothing else but the anomalous dimension of the op-\2 gre “organized” in a complex fermion field1*2 of the
eratory; ¢; . A corresponding conformal theory where this operator chargeg and ZN—2) complex fermion fields of the charge

appears naturally as a primary field can be formulated. For exampleg/z_ The correlator of\1*/2 components gives the factor
for two flavors of equal charge, it is the primary operator

cos2mwy) (or, better to _say, a_ couple of operators 292 4
exp{*iy2my} corresponding tajy, #1r, Y1riyL OF, equivalently, —=
to YorioL, ¥y or) In the conformal theory of the real massless
scalar fieldy [30]. It is no wonder thereby that one and the same
factor A determines the power asymptotics of the correlator on the
Euclidean plane and the exponential asymptotics of the correlator *We have performed such a study fde=4. The pattern of the
on the cylinder. One can map the complex plane on the stripeninima of the effective potential presents an interesting three-
O=x=<L, —<r<e, by a conformal transformation, after which dimensional lattice akin to the lattice of diamond. But as it bears
the power behavior of the correlator at large distances is trandittle relevance for the main question studied in this paper, we will
formed to the exponential or(see, e.g.[31]). not distract ourselves here for this issue.

C3(T)=exp{ _T .

For the componenta**'® and \6*'7, the correlator decays
faster cexp{—577/(3L)} and their contribution in the corr-
elator (5.9) can be safely neglectéd.Let us compare now
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in the exponent, and the correlator decays as that at finite temperature, however small it is, the heat bath
involves some number of these “walls.” And that exactly
CN(r)ocexp[ ~2(N-2) W_T] (519 means that the vacuum is disordered.
N L ' A classical example of a theory involving spontaneous

breaking ofZ, symmetry is one-dimensional Ising motfel
Rotating the cylinder where the theory is defined#®, we  [33]. The theory has the Hamiltonian
arrive at the conclusion that fdd=3 at high temperatures

T>g, the spatial correlator N

_ H=-32 001, 6.
C(x) = (NN (X)NN3(0))r (5.20 I=-N
decays exponentially at large distances. By cluster decomp®—> in the thermodynamic limit. The vacuum state of Eq.
sition, that certainly implies that (6.1) is doubly degenerate:(o)=1 or (o)=—1. At any non-
zero temperature, the domain wafthe states withr;=—1
(A 1o g n=3=0. (5.2) atisngando;=1 ati>no) appear in the heat bath. Their

characteristic density is-exp{—J/T}. Thereby, the state is
not ordered anymore and the correlatot,o; ) tends to
zero atM — o, although the spatial correlation leng#hchar-

The bosonization analysis of Sec. IV suggests the pregacteristic value oM when the spin correlator starts to die
ence of the fermion condensate in the thedr) at T=0for ~ away is exponentially large~exp{J/T} when the tempera-
any N in the thermodynamic limitd—a, while the fermion  ture is small. The system has a first order phase transition at
massm is kept small but fixed. On the other hand, aZIn T=01°
does not involve a linear term in mass expansion, the con- Our suggestion is that the same happens in adjoint QCD
densate is zero in the chiral linit—0 when the total area of at N=3, the fermion condensat@\ ?A g) being the order
the manifold, A, is kept large but fixed. Also, we have seen parameter of the symmetfg.13 and playing the role ofo).
in the previous section that fé¢=3 the condensate is absent A number of nontrivial physical consequencies follow from
at high temperatur@>g even in the limit when the length this assumption.
of the spatial bost is sent to infinity in the first place. Two  First, it implies that the correlation lengthof Eq. (5.20
options to resolve this controversy were mentioned at the eng@pidly grows as the temperature goes down and becomes
of Sec. IV. exponentially large~exp{g/T} in the regionT<g. No ana-

One of them postulates the relevance of some nontopdytic calculation in the regiol<g is possible. It would be
logical field configurations which have only a pair of fermion rather interesting, however, working still in the regideg
zero modes and provide for a nonzero fermion condensate iyhere the quasiclassical approximation applies, to find out
the chiral limit. It is a possible way out, but it has two obvi- What are thecorrectionsto the leading Born-Oppenheimer
ous weak points. First, we have no idea on what these norfesult[cf. Eq. (5.17)].
topological field configurations are. Second, assuming their
existence, we do not understand why they disappear at finite | :i 6.2
temperature. =07 27" '

Another option is that the condensate appears-ad as
an order parameter of a spontaneously broken symmetry. It the first nonleading correction turns out to be positive, it
that case, the limit§) A—o~, m fixed and(ii) m—0, A fixed  could serve as an argument in favor of the scenario that the
need not commute. The partition function presents the surgorrections become overwhelmingly largeTa€g.
of two exponential$4.15, and the linear terrxmgA in the The second very interesting corollary is that the spectrum
expansion oZ(m) cancels out. of the Hamiltonian should involve “walls,” the states inter-

We will argue now that, at least for odd, this second polating from the vacuum with negativa*\#) on the left to
possibility is rather probable, indeed. First, there is a discretéhe vacuum with positivé\*\#) on the right. If the wall
symmetry(1.13 to be broken. It remains the exact symmetry states do not exist, but only the states presenting excitations
of the Lagrangian also on the quantum level because insta@ver the vacuum witfA*\%) >0 or the excitations over the
tons involve a couple of left-right pairs of zero modes, andvacuum with(A*\#) <0, we cannot talk about spontaneous
the induced 't Hooft term in the effective Lagrangian Symmetry breaking in the physical meaning of the word. The
~(N 3\ 2)2 (we will first consider the simplest cag¢é=3)  whole Hilbert state of the system would be separated into
respects the symmetiit.13. two subspaces which do not know of each other, and a su-

Spontaneous breaking aontinuoussymmetries is ex-
cluded in(1+1)-dimensional systems due to the Coleman
theorem([32], but adiscrete.symmetry can ,W?” b? broken 150ne-dimensional statistical systems correspond (1e-1)-
spontaneously. The only important restriction is that thegimensional field theories.

symmetry should be restored at any finite temperature. Re-16\qte that second order phase transitions a0 associated with
ally, a physical picture of spontaneously broken discret&yould-be spontaneous breaking of a continuous symmetry are also
symmetry involves the presence of the domain walls bepossible in(1+1)-dimensional systems. It is exactly what happens
tween two different ordered phases. If only one spatial diin multiflavor Schwinger modé€l34]. But as the order parameter is
mension is there, these “walls” present solitons; the correzero at the phase transition point and,Tif=0, there is nothing
sponding quantum states have a finite energy. It is obviouskelow, the Coleman theorem is not violated.

VI. PHASE TRANSITION
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perselection rule singling out one of these subspaces couléeve thatZ, symmetry in the theory witiN=35, ... is

be imposed. The situation would be the same as with instarbroken spontaneously, indeed. There is, however, a theoreti-

tons in QCD), [28] or as with adjoint QCRat N=2 [5]. It ~ cal problem which is not yet fully understood and we are in

would imply the presence of “fractons” like ifi24] and, as  a position to discuss it.

was mentioned, it would be difficult to explain where the  The arguments in favor of the existence of fermion con-

condensate is gone at+0. . densates aT=0 come from the bosonization analysis. We
Presently, we dmotknow whether such wall states exist. haye interpreted the condensate as the order parameter of the

The _spectru_m_of adjoint QCpDwas stud_le_d with %ome care spontaneously broken symmetrfl.13. The symmetry

only in the limit N—e° [35], but not at finiteN =3. (1.13 clearly displays itself in the fermion language. In

The reasoning of this section can be relatively easily gen nization lan h T ndin mmetry i
eralized for higher od@l. The common point is that whe¥ bosonization language, the corresponding symmetry is

is odd, the number of zero modd4.12) is alwayseven the ab ab

symmetry(1.13 is not anomalous, and can be broken spon- h*— —h". 7.1
taneously atT=0. The partition function presents a sum

(4.19 of two extensive exponentials as before. A little bit At first sight, the actior(1.8) is invariant under the transfor-
troublesome point, however, is that, say, /5, the in-  mation(7.1), indeed. The problem is, however, that the ma-
stanton contributions first show up only in the quartic term oftrix —h3® does not belong to the adjoint representation of

the expansion of Eq4.19 in mgA. For N=137, they first  sy(N) if the matrix h®® does. In particular, the equation
appear in the term ~(mgA)®¢ The terms

~(mgA)? ... ~(mgA)** should come from the path inte-
gral in the topologically trivial sector. Well, it is somewhat
unusual, but at least not paradoxical.

The situation with everN=4 is more complicated. The has no solution (it is best seen using the identity
matter is that in this case the symmety13 is anomalous. Trh=|Tr u[’*~1=-1). Notice now that the symmetr{7.1)
For example, foN=4, the field configurations in the topo- could be reinforced if assumingeO(N*~1) (as Witten
logical classk=1 involve three pairs of zero modes, and theoriginally suggested foffree fermions. If bosonizing the
corresponding 't Hooft effective Lagrangian(\ &\ 2)2 is theory withh belonging to the adjoint representation of the
odd under the transformatiqii.13. Generally, the partiton gauge group SU{)/Zy, the transformatiorf7.1) relates not
function in the topological sectdracquires the factor—1). the variables in one and the same bosonized theory, but re-
If there is no symmetry, one cannot talk about its spontanelates different theories corresponding to different subgroups
ous breaking. There should e unique physical vacuum Of O(N?~1). But we may equally well multiplyh by any
state(in a sector with a particular value of discretérought ~ matrix of the coset @N*~1)/[SU(N)/Zy]. All such theories
about by instantonsand Eq.(4.15 cannot be written. Thus come on equal footing. We are thus arriving at Eb11):
the physics of the theory with odN=3 differs essentially ~The partition function of QCBwith massive Majorana fer-
from the theory with evemN=4 (cf. [36]). In the first case, mions is equal to the suitthe integral of the partition func-
the hypothesis about Spontane(ﬂ&ssymmetry breaking re- tions Z(R) in all pOSSible bosonized theories characterized
solves the paradox rather satisfactgwith all reservations by @ matrixR.
given). For large eveiN, the paradox is still there, and, atthe ~ We cannotprove now the validity of this recipe. How-
current level of understanding, we do not dare to speculat@ver, we carshowthat the bosonized partition function with

— 6%°=2 T{ut?u't’}

more in this direction. a particularR has wrong analytic properties as a function of
mass. If summing over aR with a particular sign prescrip-
VII. O (N°~1) AND DISCONNECTED COMPONENTS tion (see beloy, the correct analytic properties are repro-

) duced.
As far as oddN are concerned, the suggested picture  cqngjder first the theory witN=3. Let us concentrate on
looks rather self-consistent and nice, and | am ready to beq instanton sector and pREP= 52° at first. We have seen

in Sec. IV that the leading term in the mass expansio#, of
is ~(mgA)2 Consider now the next termm?. It appears
However, it is not a hopeless problem to study the spectrum ofvhen pulling down the mass term in the action thrice. Pro-

the theory on lattices. The “lattice experimental evidence” in favor ceeding along the same lines as in Sec.(il¥., taking into
or against our hypothesis is highly desirable. Actually, two-account only the zero Fourier harmonig and imposing the
dimensional systems are a lot simpler than four-dimensional QCQequirement QO,T*] =0), we obtain
where the efforts of lattice people are mostly applied. One can only
express a wish that the fashion would change some time and more
lattice works on twq-dimensional systems including fe_rmions Z:\':3=C2(mgA)2+ Cg(mgA)3J du(2)|Tr u(2)|2(Tr u(2))2
would be done. The field involves many unsolved but easily solv-
able problems for the experts. In the first place, a number of exact +0O(m?). (7.2
nontrivial results in the Abelian theorgsee[34] and references
therein should be checked. If theoretical predictions for the spec-
trum and correlators are reproduced in the Abelian case, one coulih€ group integral in Eq(7.2) is nonzero, and we get a
proceed with two-dimensional non-Abelian theories. Also, if nu-Nonzero cubic term in the expansion4fin mass.
merical lattice calculations would reproduce the exact theoretical However, the cubic term is absent in the original fermion
results in two dimensions, there would be more trust in lattice caltheory. Really, the mass dependence comes from the fermion
culations in QCQ with dynamic fermions. determinant
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Defaiorandi D+ M| =[ Dety 3 D+ m|| 142 logical sectork starts withm*N=K and involves only even
powers ofm. The expansion of the partition functiay, in

the bosonized theoryl.8) with the mass tern(1.10 also
starts withm“N~% [see Eq.(4.12], but includes both even
and odd powers. For od, the group @N?—1) includes
where the product runs over all nonzero eigenvalues of thenly one connected component. The same arguments as for
Euclidean Dirac operator, only one eigenvalue of each douthe caséN=3 considered before show that the odd powers of
bly degenerate pair being taken into accollijt The deter- mass cancel out in the integréd.4) over the theories with

~m?[] "(m?+)\2), (7.3

minant(7.3) involves only even powers ah. different R. This integral should correspond to the partition
It is easy to see that, if allowing for an arbitrary functionZ, in the original fermion theory.
ReO(8)/[SU(3)/Z5] and integrating oveR, the expression Let now N be even. The valu&(N—k) may be odd or
even depending ok. For example, forlN=4, the sectors
true_ k=1,3 involve three pairs of fermion zero modes, and the
Z _j dR Z(R) 74 sectork=2 involves four such pairs. In the former case, the

. _ expansion o™ involves only odd powers of mass and in
al:so involves only even powers. For edhthe theory with e |atter case only even powers. On the other hand, the mass
R’=—Ralso contributes in the integral. But the mass termsyypansion ofz, in the bosonized theory with the mass term
(1.1D) in these two theories have opposite sign. _ (1.10 includes both even and odd powers for dnyNote

Consider now a theory with eveN. The caseN=2is oy that the group ON?—1) includes two disconnected
already nontrivial. The symmeti§y.1) is realized on the full components for eveN. Our recipe reads
O(3) group involving two disconnected components (S0
where the bosonized theo($.8) is formulated. We have to N eve N eve
take into account the contributions of both components in the Zy ’(true):f dR.Z; “°1R;)
partition function. But in contrast thl=3, it would be incor-
rect just to sum up the corresponding contributions. Speaking N eve
precisely, it is correct in the topological trivial sector, but not +(_1)kJ dR-z, ®*1R-). (7.7
in the instanton sector.
The contribution of the component with jaf=1 in the ~ The odd(even powers of mass cancel out in the integrated

partition function in the instanton sector is partition function(7.7) with even (odd k and the correct
analytic properties oZ, are reproduced.
Z,N:2(+):C1mgA+ C,(mgA)2+0o(m?), (7.5 Again, we see the distinction between odd and eMen
Obviously, there is a relation between the existence of two
with a nonzeraC, given by the integral disconnected components in(NF—1) for evenN and the
) fact that the symmetryl.13 is anomalous. Indeed, the par-
i i 2 tition function (7.7) is invariant over the bosonic counterpart
szf dBsexp~1fs}H(2 cost1)7#0. of this symmetry, the transformatidn— — h, for evenk, bu?

not for oddk.
Like in the previous case, it has wrong analytic properties

involving both odd and even powers of mass. The mass de- VIIl. DISCUSSION

pendence o, in the fermion theory comes from the Majo-

rana fermion determinant, which involves, fdf=2, only The main physical signature of the suggested scenario
odd powers, with spontaneous breaking of discrefg symmetry is the

presence of the domain wall solitons—the states which inter-
polate between different vacua—in the spectrum of the

theory. If the domain walls are absent, different vacua are

completely unrelated to each other and belong to the differ-

To reproduce this behavior, we havesobtractthe contri- ~ €nt sectors of Hilbert space. In that case, a superselection
bution ZN=?(—) of the odd S@) component with Déh||  rule which selects a particular sector once and forever in the
=—1 from Eq.(7.5). The corresponding theory differs from Whole physical space should be imposed. Then there is no
the theory of the even SB) component only by the sign of SPontaneous symmetry breaking in the physical meaning of
the mass tern-(ll]) The expansion OZ|N:2(_) in mass this word. This is the situation in standard leﬂhe

has exactly the same form as H.5 up to the opposite vacuum involves a continuous degeneracy,ibut one can-

Deajorandi D+ mil=mL ] " (m?+ 5.

sign of odd powers. We are defining now not talk of the spontaneous breaking of1)J symmetry be-
cause the physical signature of this breaking—the massless
ZN 2 (true =24 (+) -2V 73 (—). (7.6)  Goldstone boson which is singlet in flavor—is abgefhis

is also a situation in pure Yang-Mills theory at high tempera-
Z N=2(true) involves only odd powers of mass. Our hypoth- ture where the physical domain walls interpolating between
esis is that it exactly corresponds to the instanton partitioifferent Zy “phases” are absent and one cannot talk about
function of the fermion theory. spontaneous breaking & discrete symmetry10]. And
Consider now a general case. Let fildtbe odd. The this is the situation in adjoint QCDwith N=2 where two
number of zero mode paitd N—k) is even for anyk, and  sectorg5.4) are not physically related and there are no walls.
the expansion of the partition function in mass in the topo- The fact that we cannot at present establish the existence
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of domain walls in adjoint QCPwith N=3 explicitly is the  selection rule leading to the classificati¢®.2) should be
main reason why we are still talking about the possibility ofimposed, and that there are no walls and no spontaneous
spontaneous breaking @, symmetry in this theorjeven symmetry breaking.

for odd N where the symmetry1.13 to be broken is re- For a proper balance, we should also mention counterar-
tained on the quantum leelithout complete certainty. guments to this scenario. S .

The two-dimensional model considered in this paper pre- (1) Toron Conflgurastlons can be written in a finite toroidal
sents an interest on its own, but the main point of interest iP0X but not inS* or S°x R geometry. If we do not restrict
the lessons one can learn from the analysis of this model fdpUrselves to fiber bundles on compact manifolds, meron so-
four-dimensional  supersymmetric  Yang-Mills  theories. lutions with fractional topological charge which live R

These theories attracted recently a considerable attention é‘% h_l"f‘r\]/ € ahsingular .fi‘]ilthtre'lgth ag otnetllpl)oint c?)n belwritt(in
ter appearance of the paper of Witten and Seiberg who ca}l= ™" ey have an infinite action, but Stili may be relievan

. or physics[40]. Torons on tori are not similar to merons in
culated exactly the spectrum of physical states\in2 su- fIatpsp);ce gnc} to the absence of anything on a sphere. The
persymmetric Yang-Mills theor}37]. :

There is a long-standing unresolved problem in a mor‘#hysms, however, should not depend on boundary conditions

imple V=1 tric Y Mills th ivolvi the box is large enough.
simple V=1 supersymmetric Yang-WVilis theory invoving (2) In contrast to instantons, toron configurations are de-
only gluons and gluinos. Supersymmetric Ward |dent|t|e§OC

: . . : alized. Again, we cannot visualize at present how these
gg?ﬁ;’tg;e constarik-independentbehavior of the fermion delocalized configurations manage to contribute in local

physical quantities®
8.1) (3) An argument in favor of existence of the walls in
' SU(N) theory can be put forward if considering thé=1

[for SU(N) gauge group Instanton calculationévhich are  theory with matter field¢supersymmetric QCD When the
valid at small|x;—x;|) show that this constant is nonzero Mmass of quarks and squarks is small, the theory is in weak
[38]. That implies the presence of gluino condensate. How€0oUPling Higgs phasdsee e.g.[41]). The different Zy
ever, standard instantons involvéN 2fermion zero modes Phases are associated with different values of the Higgs av-
and, assuming that only instantons contribute and the extefrage and the domain wall solitons with finite energy density
sive form (4.14) of the physical partition function with only interpolating between different Higgs phases probably exist.
one physical vacuum state is valid, we are led to the sam@ne can send then the mass of matter fields to infinity after
contradiction as in adjoint QCPat N=3 considered in this Which they decouple. A renormalization group analysis
paper, that the linear in mass term in the Taylor expansion 0§€€ms to show that the energy density of these walls remains
the partition function, which should be there due to the presfinite also in this limit which means the existence of physical
ence of a nonzero linear term in the Taylor expansion ofvalls also in pure SYM theorj42]. _
€,a{ M) =the fermion condensate, cannot be reproduced. As | already mentioned, my own guess is that the argu-
Just as in adjoint QCR) there are only two ways out. Mentspro overweigh in this case the argumentntra and
Either we should assume th#ky symmetry in the super the walls are not really there in SNJ theory. But this guess
Yang-Mills (SYM) Lagrangiaria remnant of (1) symmetry does not ha\_/e the rank of a statement. Obviously, more study
after taking anomaly into accolinis broken spontaneously ©f the question is necessary. _ _ -
down toZ, or that an additional superselection rule should The situation is, however, different in theories with higher

be imposed. It amounts to allowing tifeparameter to vary ©rthogonal and exceptional gauge groups. Again, supersym-
within the interval metric Ward identities and instanton calculations imply that

the d-point function of several fermion scalar densities like
0e(0,2rN). (8.2 Eqg. (8.1) (d is the Dynkin index of the group; for higher
orthogonal groups S@=5), d=N-2) is a nonzero con-
In the first case, the physical domain walls separating differstant[20]. That implies the presence of the fermion conden-
entZy phases should be present in the theory. In the secorshte, but in contrast to theories with unitary groups, no toron
case, the “phases” should be completely unrelated and theonfigurations with fractional topological charge which
domain walls must be absent. could generate the condensate explicitly are known. In that
As far as SYM theory with SU{) gauge group is con- case, the option involving spontaneous breaking@ psym-
cerned, we favor more the second possibility. After all, atmetry looks much more probable. The domain walls should
least in toroidal geometry, the Euclidean configurations withexist.
fractional topological charge1/N appear on an equal foot-
ing with instanton$25] and an additional superselection rule
with respect to a large gauge transformation changing the;
Chern-Simons number by N/arises quite naturally. Actu-

(NBNA%(Xq) - - NENA%(xy)) = const

8A counterargument to this counterargument can also be sug-

I licitl lcul h ibution in th gested. Reallyslassicalinstanton solutions in the Schwinger model
ally, one can explicitly calculate the toron contribution in t €are also delocalized, but still instantons contribute to local observ-

partition function of the theory at finite volunj8]. Therg are  aples like the fermion condensdte—3). Anyway, we understand
also additional arguments coming from the analysis of thgne mechanism of that in the Schwinger model—after taking into
pure Yang-Mills theory in largé¢ limit. If no fermions are  4ccount the fermion determinant, a relevant saddle point of the
there, the partition function is a nontrivial function 8f At corresponding path integral presents a localized vortex like configu-
largeN, a smoothd dependence of the partition function can ration[1] [cf. Eq.(2.5) and the discussion thereafteBut we do not

be achieved only if allowing to vary within the interval understand it in the four-dimension&YM) theory which we
(8.2 [8]. All together that makes us believe that the superwould like to.
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