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Path integral for the loop representation of lattice gauge theories
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We show how the Hamiltonian lattideop representatiortan be cast straightforwardly in the path integral
formalism. The procedure is general for any gauge theory. Here we present in detail the simplest case: pure
compact QED. The lattice loop path integral approach allows us to knit together the power of statistical
algorithms with the transparency of the gauge-invariant loop description. The results produced by numerical
simulations with the loop classical action for different lattice models are discussed. We also analyze the lattice
path integral in terms of loops for the non-Abelian thed§0556-282(196)05924-3

PACS numbds): 11.15.Ha, 12.20.Ds

[. INTRODUCTION the acceptance ratio, as it is usual in random surfaces analy-
sis. The W1) model was studied for different lattice siZ€s,

The loop approach to Abelian quantum gauge theorie$mposing periodic boundary conditions. Simple thermal
was introduced in the early 1980%]. Later it was general- cycles showed the presence of a phase transition in the
ized to the non-Abelian Yang-Mills gauge thed®]. This  neighborhood of3,=0.639. In the case of the(l) Higgs
Hamiltonian method allows us to formulate gauge theories irmodel, theg-y phase diagram was mapped 61@]. In both
terms of their gauge-invariant physical excitations: the loopsmodels, by virtue of the gauge invariance of this description,
The original aim of this general description of gauge theorieghe equilibrium configurations were reached faster than with
was to avoid gauge redundancy by working directly in thethe ordinary gauge-variant descriptions. Furthermore, the
space of the gauge invariant excitations. However soon ffypical strong metastability of Monte Carlo analysis for these
was realized that the loop formalism goes far beyond 4nodels was not observed using this desqnpnon. This is an-
simple gauge-invariant description. The introduction by Ash-other advantage of the method because it makes easiest the
tekar[3] of a new set of variables that cast general relativitynumerical analysis of the phase transition critical exponents.
in the same language as gauge theories allowed us to apply !N this paper we want to address the issue of the explicit
loop techniques as a natural nonperturbative description dforrespondence between these actions and the Hamiltonian
Einstein’s theory. In particular, the loop representation aploOP representation using the transfer matrix techniques.
peared as the most appealing application of the loop tech- This paper is organized as follows. In Sec. Il we show
niques to this problerfd]. The covariant world sheet formu- how the loop description, introduced originally in the Hamil-
lation of quantum gravity corresponding to the canonicaltonian formalism, can be cast in the lattice path integral for-
loop representation is still unknown. Though some progresgialism. We illustrate this in detail for the Abelian case
in that direction has been reported recefiiy. This version ~ (compact electromagnetigmThe path integral of lattice
of loop quantization would make the general four-U(1) theory is expressed as a sum of the world sheets of
dimensional diffeomorphism invariance manifest and it will €lectric loops. We discuss the connection of this classical
be probably more suitable to tackle some crucial probleméo0p action with the Nambu string action. In Sec. Ill we
which require a covariant descriptidias for instance the consider the extension to the path integral loop formalism to
black hole dynamicgs the case of non-Abelian Yang-Mills fields. In Sec. IV we

The Hamiltonian analytical computation techniques forconclude with some remarks.
gauge theories have been developed during the last decade
and they provide qualitatively good results fqr several Iattige Il. THE LATTICE PATH INTEGRAL IN TERMS OF
models[6—8]. On the other har_ld, a Lagran.g|an approach in LOOPS: ELECTROMAGNETISM
terms of loops has been elusive, due mainly to the nonca-
nonical character of the loop algebra. This feature forbids the The loop based approach of Rét] describes the quan-
possibility of performing a Legendre transformation as atum electrodynamics in terms of the gauge-invariant ho-
straightforward way to obtain the Lagrangian from thelonomy (Wilson loop
Hamiltonian. A path integral loop formulation will allow us
to employ the more powerful statistical computation tech- - _ . -~ a
nigues. Gauge-invariant actions corresponding to the Villain W(y)=exdie,Aa(y)dy], D)
form of the U1) model were proposed recenfl§] and gen- R
eralized to include matter field40]. where y is a spatial loop at constant tinte E3(x) is the

These actions have been used as a computational tool. éonjugate electric field operator. They obey the commutation
Metropolis Monte Carlo algorithm was implemented fixing relations
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. . . . g2 1
[Ea(X),W(v)]=ef (x—y)dy*W(y). 2 Hz%El 2—2-% (W,p+WD). )
Y

These operators act on a space of loop dependent wave Now, starting from the path integral for the Wilsor(1)
functions(y) that may be expressed in terms of the trans-attice act|on let us show how to set up the loop path
form integral?

- B
0= | QIR = [ d,IATuLAT Zw= f_w[dﬂx]exrl(gg cowp), ©

xexd —ief,Ady?]. 3 where the subscriptg’ and p stand for the lattice links and

. . . ) plaquettes, respectivelg=1/e? (e is the electric charge of
I This loop (rjepresentafuﬁnhhafs_ Venll appealing f_eatt(r;éﬁ. the electrop and 6, is a compact variables[ — 7, 7] at-
allows us to do away with the first class constraints of gau ;
y 9au9¢,ched to the links and  60,=0,,(x)

theories and, therefore, the Gauss law is satisfied automat]- 0,(x+ap) — 0,(x+ap) is its “discrete curl.” Founer ex-

cally. The formalism only involves gauge-invariant objects, ‘panding the e><{g§/2cos9] we get

i.e., no gauge redundandji.) All the gauge-invariant opera-

tors have a transparent geometrical meaning when they are o

realized in the loop space. Zw:f [da/]H 2 I, (B)e"%, (10
When this loop representation is implemented in a lattice - ponp P

of spacinga, the Eqs(1) and(2) become where thel,, are modified Bessel functiong,y can be writ-

ten as

\7vw>=/fE[ U, (4)
- Zw= 2 [de/]exp(Elnl (ﬂ)) Kndoy) (11)

[E/ \W(y)]=N,(y)W(y), ©)
where we use the notation of the calculus of differential
where/=(x,n) denotes a lattice link leaving the lattice site forms on the lattice developed in Rdfl1]. In the above
x and pointing along the unit vectar, U, =e"* ™ is an  expressiond is a real compact one-form defined in each link
element of the gauge groyp/(1) in the present cai;eE/ is  of the latticed is the coboundary operator—which maps
the lattice electric field operator, al.(y) is the number of  k-forms into k+ 1)-forms—,n, are integer two-forms de-

times that the link”” appears in the closed path fined at the lattice plaquettes and we have used the scalar
In this loop representation, the Wilson loop acts as theproduct ofp-forms(f|g)== f(c)g(c) where the sum runs
loop creation operator: over thek-cells ¢, of the Iattlce €, sites,c; links, and so
- on). Under this product thd operator is adjoint to the border
W)y =17 7). (6)  operators which mapsk-forms onto k-1)-forms and which

corresponds to minus times the usual divergence operator:
The product ofy andy’ is the reduced composition of their je,

irreducible chains and one can show that the loops form a

group? (fldg)=(5f|g), (12

The physical meaning of a loop may be deduced from
Egs.(5) and(6), in fact, (dflgy=(f|59). (13
E|v)=N]7), (7)  Using Eq.(13) and integrating ovel, we get as(ny).

Then, we arrive at the following expression4yf; in terms of

which implies thafy) is an eigenstate of the electric field. the integer two-forms:
The corresponding eigenvalue is different from zero if the

link |1 belongs toy. Thus y represents a confined line of 7o
. ex Inl 14
electric flux. w 5n o) 2 no(B) (14
The U1) lattice Hamiltonian can be written in terms of
both previous fundamental operators as the constraintén,=0 means that the sum is restricted to

closed two-forms. Thus the sum runs over collections of
plaquettes constituting closed surfaces.
YIn order to define loops from a chain of lattice links which form
closed curves, a reduction process was introduced. A reduced chain-
was obtained by the elimination of opposite successive vectors. ?Next we summarize the main steps to get the description of the
Once a couple of vectors is removed, new collinear opposite vectorgttice path integral in terms of loops described in detail in IR&f.
may appear and must be eliminated. The process is repeated untifNotice that due to the Abelian character of thél )l gauge group,
one gets an irreducible chain. A loop is an irreducible closed the sum actually runs over equivalence classes of surfaces with
chain of vectors starting at,. For more details see Rdfl]. different routing at self-intersections.



(@ (b)

FIG. 1. (a) A spatial closed path or loofb) An open surface
connecting the loopy; .

An alternative and more easy-to-handle lattice action than

the Wilson form is the Villain form. The partition function of
that form is given by

z\,=f [da]g exp(—%

do—2xs

2), (19

where|| .. .[|?2=(...,...). If we use the Poisson summa-
tion formula,

>

S

(9-3 [ agtgpemsn

and, as we integrate the continuupnvariables, we get

1
ZVZ(ZWﬁV)*Np’ZJ [d6]> ex ——(n,n)+i<n,d0)),
n 2By
(16)
whereN, in the number of plaquettes of the lattice. Again,

we can use the equalityn,dg)=(sn,d) and integrating
over # we obtain ad(én). Then, we get

2§ (2mpy) N 3

1
- 2—,6’\/<n,n)). (17)

Let us first discuss thé¢2+1)-dimensional case. When
intersecting one of the previous surfaces with=a const

plane, we get either loops or surfaces. In Fig. 1 we show two

possible situations(i) a spatial closed path or loof-ig.
1(a)] and (i) an open surface connecting the logp ob-
tained by translating the loop;_, by one temporal lattice
unit, and vy, [the shaded surface in Fig(ld]. A loop v,
living on thet slice is specified properly by the temporal

plaquettes which leave this slice. This is equivalent to sayin

that in two spatial dimensions, given the loops at titmand
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v andy,, and(iii) a closed spatial surface. The situation is
completely analogous to the path integral of a free particle
on a(2+1)-dimensional lattice, i.e., the world lines connect-
ing points at different times intersected withta const
plane give(i) points or(ii) open paths connecting the inter-
secting point of the timelike link afp;_; with surface
t= const and the poinp; and (iii) loops associated with
different choices of the previously mentioned open paths.
Now we will show that Eq(17) is really a possible ex-
pression of the path integrdl, in terms of loop variable$.
First, it is easy to prove that the creation operator of these
loops is just the creation operator of the loop representation,
namely, the Wilson loop operator. Repeating the steps from

Eqg. (15 to Eq.(17) we get, for(W(v;)),

1 ) 1
(Win))=5(2mBy) Np/2 ; ex —Z—BV<“-”>)-

(8n=)
(18

This is a sum over all surfaces bounded by the lggpi.e.,
over loop world sheets. Secondly, by means of the transfer
matrix method, let us show that we reobtain the Hamiltonian
(8) from Eq. (17). As we wish to consider the continuous
time limit of the previous lattice Euclidean space-time
theory, we introduce a different lattice spaciag for the
time direction. The couplings on timelike and spacelike
plaguettes are no longer equal in the action, i.e., we have two
coupling constants8, and 8. The temporal coupling con-
stantg, decreases witl,, whilst the spatial coupling con-
stant B increases withay. We wish to find an operatof
over the Hilbert space of loopgy)} such that it is related
with Z\°PS by

ZI\(/mpS: {2} l_t[ <’)’t+ao|T| M-
Y

Tis related, whem, is small, with the Hamiltoniai by

Torg 20 0(a0), (19

The transfer matrix between timésandt+a, in the loop
representation of ketsy) can be written as

1
2B0°p;

1
ZESPSEASHaQ

2
np,

Verag TI)= 2 n5—
{

exp(
255,

wherep, denotes temporal plaquettes, i.e., plaquettes with a
couple of temporal IinksASHa():SHao—S{HD,SH%, and
S{+ao are the minimal surfaces enclosed by the logps,,

(20

5nd 7t/+ao (the loop v, translateda, along the temporal di-

rection, respectively. Due to the fact that the surfaces are

time t+ ay, the surface which connect them is defined unam<losed, the integens;, of the temporal plaquettes which de-

biguously.

part from the loopy, at timet and arrive to the Ioop/t+ao at

In more than three space-time dimensions, the situation isme t+a, are equal to the number of times the spatial link

different; the loopsy;_, andvy; do not define a unique world

sheet connecting them. Thus if we consider the intersectiom

of one of the world-surfaces with t&= const plane, we can
get (i) a loop v;, (ii) an open surface connecting the loop

4Another possible path integral in terms of loops is given by Eq.
(14).
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/'t appears in the loopy, N,. {AS, , } are all the possible 1. THE NON-ABELIAN LOOP ACTION

modifications beree_n the surfaces enclosed_ by the _Ioops Let us see how the path integral loop description can be
Yt+a, and 7{+a0, i.e., it denotes the set of possible configu- extended to the non-Abelian case of Yang-Mills theory. The

rations {n,} of integers attached to the plaquettgs Path integral for the Wilson action for a general non-Abelian

€AS;, 4, Therefore the Eq20) can be rewritten as compact gauge group is given by
- 1 )
<')’t+a0|T|7t>:{ > exp - 2—/302 NZ (%) zwzf [dU,Jex B% Re( trU,) |, (28)
+a0 :
1
- ng) ) (21)  where thel ,e G andU,=11,.,U . Equation(28) reduces
ZﬁspseASHaD to Eq. (9) for the cases= U(1). The analogous of the Fou-

rier expansion for the non-Abelian case is tferacterex-
The kets| y;.4,) and|y,) are connected by pansion. The characteng (U) of the irreducible(unitary)
representation of dimensiond,, defined as the traces of

_ ~ g these representations, are an orthonormal basis fotlé#ss
[7iag) pel_s[mo W'l (22 functions of the group: i.e[14],
Using Eqgs.(6), (7), (22), and(25), we get
f dUx,(U)xs (U)=6;s, (29
- - 1 - 1
T= Wnpexr{ - =—> E2-_—-n?|.
{A%ao} PEl-_S-[HaO P ZBOE/: ‘ 2,83 P

(23) 2 dx (UVH=8(U,V). (30)

To obtain a proper continuum limit, we should take

a In particular, as a useful consequence we have

Bo= 2", (24
9739
1 1 drf dUXs(U)Xr(Uvil): OrsXr (V). (31)
Ps=3 In(2g2ala,)’ (25

By means of the character expansion, we can express
wherea continues to denote the spacelike spacing. This im-
plies that fora, small, the operator is given by

:I':exp{ _ao

i.e., we recover the Hamiltoniai®). This confirms definitely
that, Eq.(17) is the expression of the path integral of com- Cr:f dUxy (U)exp(Bx(V)). (33
pact electrodynamics in terms of the world sheets of loops:
the loop (Lagrangian representation.

From Eq.(17) we can observe that the loop action is
proportional to thequadratic area A:

exp[ﬁ% Re[x(upn}:l;[ Z cxi(Up), (32

2
9 r2 1 A il
e Eot Zagzg (Wy+W))

+0<aS>J,

For instance, in the case &= SU(2) the gauge fields
can be parametrized as

1 1 1 ol pti -l <<
S == — A= —— n,%:——(n:“): 27 U=cos; 0+io,n,sin6, 0<6<4,
Bv Bvpes Bv

i.e., the sum of the squares of the multiplicitieg of
plaquettes which constitute the loop’s world shéetlt is
interesting to note the similarity of this action with the con-
tinuous Nambu action or its lattice version, the Weingarten

action[12] which are proportional to the area swept out by sin(j+3)6
the bosonic string. Xj =

and the corresponding irreducible representations are classi-
fied by a non-negative integer or half-integer spini.e.,
r=j and the characters are given by

— (34)
sinz 6

*The relation between the surfaces of the Wilson action and thos& direct application of Eq.(33) yields thec; in terms of
of Weingarten action has been analyzed by Kazadbal. in Ref.  modified Bessel functions, and, therefore, we can express
[13]. Eqg. (28) as
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needs to develop the lattice Hamiltonian formulation of
ZW:] [de/]]_[ 2 2(2j,+1) Yang-Mills theory in terms of spin networks.
P ip We also can generalize the Villain form of the action for
any gauge group using theat kernelaction[17,18:

xlzj-pu(/?) sin(j+3)6,

exp(ﬂsHK)=1;[ Z d.x;(Up)exd — C,(2)INB],

B - Op
sin>- (36)
Lo +1(B) whereC,(2) is the quadratic Casimir invariant for the rep-
:2 H 2(2j,+ 1)1”—) f [dU/]H resentatiorr. For G= SU(2) the heat kernel action reads
it p B " sinj + 116
. 2
sin(j,+ )6 expBSu=11 > @i+1)——0Fp—
p2/%p p j=01/2,... . Yp
x—e . (35 sm?
sin?p
xexd —j(j+1)/28], (37)

A given subset of plaquettes carryig#0 is homeomor-  while only integers values gfare used for the S@) group.
phic to a simple surface if any link bounds at most two

plaquettes of this subset. The links bounding exactly one
plaquette make up the boundary of this surfédo@meomor-
phic to a set of simple closed curyeény configuration of As it was mentioned, the loop space provides a common
plaquettes can be decomposed as a set of maximal simpéeenario for a nonlocal description of gauge theories and
surfaces by cutting it along the links bounding more than twoquantum gravity. The loop approach is no more exclusively
plaquettes. In principle, there are two possibilities for theHamiltonian; its Lagrangian counterpart is now available. A
boundary curves(a) either a true free boundary, bounding path integral action for the Yang-Mills theory in terms of
only one simple surface db) a singular branch line along loop variables is very valuable because it combines the geo-
which more than two simple surfaces meet. In fact, relatiormetrical transparency and economy of the loop description
(29) forbids the existence of free boundaries for nontrivialwith the versatility to perform calculus. We have presented
configurations contributing to the path integftiie integra- the state of the art in that program, which still is an open
tion over the gauge group on the links belonging to the freassue.
boundaries gives a vanishing contribution The path integral approach to quantum gravity has very
The integration over the internal links of the simple sur-appealing features. In particular, it may provide a more suit-
faces is performed using E(1). Note that the plaquettes of able framework for the development of useful approximation
a simple surface component should carry the same grougchemes for the study of black hole physics and it may allow
representation. After integrating over all the inner links ofus to analyze issues such as the computation of the probabili-
the simple components, one gets an expression involvinges for a change of the spatial topology that seem to be very
only the links of the boundary, i.e., something proportionaldifficult to formulate in the canonical approach. Even though
to the connection of the canonical loop representation of quan-
tum gravity and the path integral approach is still an open
problem, the determination of the explicit form of the loop
boundariesxr(UboundarQ- gctions in. gauge theories is an important step in this direc-
tion. An important remark is that the lattice framework
) ) ) ] seems to be unavoidable in order to have well-defined loop
~ What follows is the integration of gauge fields along theactions. In fact, in spite of the similarities with the Nambu
singular branches which gives rise to the Clebsch-Gordagctions, the loop actions for gauge theories involve quadratic
coefficients coupling the different representations of the consyrface elements that are not well defined in the continuum.
sidered gauge grou@. For instance, imagine that there is  Finally, concerning the lattice loop action as a computa-
only one singular closed branch line which is the commononal tool, we mentioned already that the results produced
boundary shared by simple surfaces with representations py numerical simulations for different models are very en-
ri,r2, ... r'h. The integration over gauge fields produces acouraging. In Ref[9], the loop actior(27) corresponding to
factor N, ., which counts the number of times the villain form of U(1) model was considered. The extension of
trivial representation is contained in the productthe Lagrangianoop description in such a way to include
M®r®:--Qr,. matter fields also was simulat¢dl0]. The lattice path inte-
Cases in which different singular branch lines meet in agral of U(1) Higgs model is expressed as a sum over closed
point are considered in Ref5]. Each point of intersection as much as open surfaces. These surfaces correspond to
involves a Racah-Wigner symbol. Thus one can see that thaorld sheets of looplike pure electric flux excitations and
Hamiltonian formulation associated to this action will be open electric flux tubes carrying matter fields at their ends.
given in terms of a spin network of colored loods,16. A This representation is connected by a duality transformation
rigorous proof of this fact using the transfer matrix techniquewith the topological representation of the path integr@h
is still required. This is not straightforward because one stiliterms of world sheets of Nielsen-Olesen strijd9] both

IV. CONCLUSIONS
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