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Path integral for the loop representation of lattice gauge theories
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We show how the Hamiltonian latticeloop representationcan be cast straightforwardly in the path integral
formalism. The procedure is general for any gauge theory. Here we present in detail the simplest case: pure
compact QED. The lattice loop path integral approach allows us to knit together the power of statistical
algorithms with the transparency of the gauge-invariant loop description. The results produced by numerical
simulations with the loop classical action for different lattice models are discussed. We also analyze the lattice
path integral in terms of loops for the non-Abelian theory.@S0556-2821~96!05924-3#
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I. INTRODUCTION

The loop approach to Abelian quantum gauge theor
was introduced in the early 1980s@1#. Later it was general-
ized to the non-Abelian Yang-Mills gauge theory@2#. This
Hamiltonian method allows us to formulate gauge theories
terms of their gauge-invariant physical excitations: the loo
The original aim of this general description of gauge theor
was to avoid gauge redundancy by working directly in t
space of the gauge invariant excitations. However soo
was realized that the loop formalism goes far beyond
simple gauge-invariant description. The introduction by As
tekar@3# of a new set of variables that cast general relativ
in the same language as gauge theories allowed us to a
loop techniques as a natural nonperturbative description
Einstein’s theory. In particular, the loop representation a
peared as the most appealing application of the loop te
niques to this problem@4#. The covariant world sheet formu
lation of quantum gravity corresponding to the canonic
loop representation is still unknown. Though some progr
in that direction has been reported recently@5#. This version
of loop quantization would make the general fou
dimensional diffeomorphism invariance manifest and it w
be probably more suitable to tackle some crucial proble
which require a covariant description~as for instance the
black hole dynamics!.

The Hamiltonian analytical computation techniques f
gauge theories have been developed during the last de
and they provide qualitatively good results for several latt
models@6–8#. On the other hand, a Lagrangian approach
terms of loops has been elusive, due mainly to the non
nonical character of the loop algebra. This feature forbids
possibility of performing a Legendre transformation as
straightforward way to obtain the Lagrangian from th
Hamiltonian. A path integral loop formulation will allow u
to employ the more powerful statistical computation tec
niques. Gauge-invariant actions corresponding to the Vill
form of the U~1! model were proposed recently@9# and gen-
eralized to include matter fields@10#.

These actions have been used as a computational too
Metropolis Monte Carlo algorithm was implemented fixin
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the acceptance ratio, as it is usual in random surfaces analy
sis. The U~1! model was studied for different lattice sizes@9#,
imposing periodic boundary conditions. Simple thermal
cycles showed the presence of a phase transition in the
neighborhood ofbV50.639. In the case of the U~1! Higgs
model, theb-g phase diagram was mapped out@10#. In both
models, by virtue of the gauge invariance of this description,
the equilibrium configurations were reached faster than with
the ordinary gauge-variant descriptions. Furthermore, the
typical strong metastability of Monte Carlo analysis for these
models was not observed using this description. This is an-
other advantage of the method because it makes easiest th
numerical analysis of the phase transition critical exponents.

In this paper we want to address the issue of the explicit
correspondence between these actions and the Hamiltonian
loop representation using the transfer matrix techniques.

This paper is organized as follows. In Sec. II we show
how the loop description, introduced originally in the Hamil-
tonian formalism, can be cast in the lattice path integral for-
malism. We illustrate this in detail for the Abelian case
~compact electromagnetism!. The path integral of lattice
U~1! theory is expressed as a sum of the world sheets of
electric loops. We discuss the connection of this classical
loop action with the Nambu string action. In Sec. III we
consider the extension to the path integral loop formalism to
the case of non-Abelian Yang-Mills fields. In Sec. IV we
conclude with some remarks.

II. THE LATTICE PATH INTEGRAL IN TERMS OF
LOOPS: ELECTROMAGNETISM

The loop based approach of Ref.@1# describes the quan-
tum electrodynamics in terms of the gauge-invariant ho-
lonomy ~Wilson loop!

Ŵ~g!5exp@ iergÂa~y!dya#, ~1!

whereg is a spatial loop at constant timet. Êa(x) is the
conjugate electric field operator. They obey the commutation
relations
7751 © 1996 The American Physical Society



l

lar

r:

e

ith

7752 54J. M. AROCA, H. FORT, AND R. GAMBINI
@Êa~x!,Ŵ~g!#5eE
g
d~x2y!dyaŴ~g!. ~2!

These operators act on a space of loop dependent w
functionsc(g) that may be expressed in terms of the tran
form

c~g!5E dm@A#^guA&^Auc&5E dm@A#c@A#

3exp@2 iergAady
a#. ~3!

This loop representation has very appealing features.~i! It
allows us to do away with the first class constraints of gau
theories and, therefore, the Gauss law is satisfied autom
cally. The formalism only involves gauge-invariant objec
i.e., no gauge redundancy.~ii ! All the gauge-invariant opera
tors have a transparent geometrical meaning when they
realized in the loop space.

When this loop representation is implemented in a latt
of spacinga, the Eqs.~1! and ~2! become

Ŵ~g!5 )
l Pg

Û~ l !, ~4!

@Êl ,Ŵ~g!#5Nl ~g!Ŵ~g!, ~5!

wherel [(x,n) denotes a lattice link leaving the lattice si
x and pointing along the unit vectorn, U l 5eieaAn(x) is an
element of the gauge group@U~1! in the present case#, Êl is
the lattice electric field operator, andNl (g) is the number of
times that the linkl appears in the closed pathg.

In this loop representation, the Wilson loop acts as
loop creation operator:

Ŵ~g8!ug&5ug8•g&. ~6!

The product ofg andg8 is the reduced composition of the
irreducible chains and one can show that the loops form
group.1

The physical meaning of a loop may be deduced fro
Eqs.~5! and ~6!, in fact,

Êl ug&5Nl ~g!ug&, ~7!

which implies thatug& is an eigenstate of the electric field
The corresponding eigenvalue is different from zero if t
link l belongs tog. Thus g represents a confined line o
electric flux.

The U~1! lattice Hamiltonian can be written in terms o
both previous fundamental operators as

1In order to define loops from a chain of lattice links which for
closed curves, a reduction process was introduced. A reduced c
was obtained by the elimination of opposite successive vect
Once a couple of vectors is removed, new collinear opposite vec
may appear and must be eliminated. The process is repeated
one gets an irreducible chain. A loopg is an irreducible closed
chain of vectors starting atn0. For more details see Ref.@1#.
ave
s-

ge
ati-
ts,
-
are

ice

te

the

ir
a

m

.
he
f

f

Ĥ5
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1

2g2(p ~Ŵp1Ŵp
†!. ~8!

Now, starting from the path integral for the Wilson U~1!
lattice action, let us show how to set up the loop path
integral:2

ZW5E
2p

p

@du l #expS b

2(p cosupD , ~9!

where the subscriptsl andp stand for the lattice links and
plaquettes, respectively,b51/e2 (e is the electric charge of
the electron! and u l is a compact variableP@2p,p# at-
tached to the links and up[umn(x)
[un(x1am̂)2um(x1an̂) is its ‘‘discrete curl.’’ Fourier ex-
panding the exp@b/2cosu# we get

ZW5E
2p

p

@du l #)
p

(
np

I np~b!einpup, ~10!

where theI n are modified Bessel functions.ZW can be writ-
ten as

ZW5(
$np%

E
2p

p

@du l #expS (
p
lnI np~b! Dei ^n,du l &, ~11!

where we use the notation of the calculus of differentia
forms on the lattice developed in Ref.@11#. In the above
expression:u is a real compact one-form defined in each link
of the latticed is the coboundary operator—which maps
k-forms into (k11)-forms—,np are integer two-forms de-
fined at the lattice plaquettes and we have used the sca
product ofp-forms ^ f ug&5(ck

f (c)g(c) where the sum runs

over thek-cells ck of the lattice (c0 sites,c1 links, and so
on!. Under this product thed operator is adjoint to the border
operatord which mapsk-forms onto (k-1!-forms and which
corresponds to minus times the usual divergence operato
i.e.,

^ f udg&5^d f ug&, ~12!

^d f ug&5^ f udg&. ~13!

Using Eq. ~13! and integrating overu l we get ad(dnp).
Then, we arrive at the following expression ofZW in terms of
the integer two-formsn:

ZW} (
$np ;dnp50%

expS (
p
lnI np~b! D , ~14!

the constraintdnp50 means that the sum is restricted to
closed two-forms. Thus the sum runs over collections of
plaquettes constituting closed surfaces.3

m
hain
ors.
tors
until

2Next we summarize the main steps to get the description of th
lattice path integral in terms of loops described in detail in Ref.@9#.
3Notice that due to the Abelian character of the U~1! gauge group,

the sum actually runs over equivalence classes of surfaces w
different routing at self-intersections.
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An alternative and more easy-to-handle lattice action th
the Wilson form is the Villain form. The partition function of
that form is given by

ZV5E @du#(
s
expS 2

bV

2 UUdu22psUU2D , ~15!

whereuu . . . uu25^ . . . , . . .&. If we use the Poisson summa
tion formula,

(
s

f ~s!5(
n
E

2`

`

df f ~f!e2p ifn

and, as we integrate the continuumf variables, we get

ZV5~2pbV!2Np/2E @du#(
n

expS 2
1

2bV
^n,n&1 i ^n,du& D ,

~16!

whereNp in the number of plaquettes of the lattice. Again
we can use the equality:̂n,du&5^dn,u& and integrating
over u we obtain ad(dn). Then, we get

ZV
loops5~2pbV!2Np/2 (

$n;dn50%
expS 2

1

2bV
^n,n& D . ~17!

Let us first discuss the~211!-dimensional case. When
intersecting one of the previous surfaces with at5 const
plane, we get either loops or surfaces. In Fig. 1 we show tw
possible situations:~i! a spatial closed path or loop@Fig.
1~a!# and ~ii ! an open surface connecting the loopg t8 ob-
tained by translating the loopg t21 by one temporal lattice
unit, and g t @the shaded surface in Fig. 1~b!#. A loop g t
living on the t slice is specified properly by the tempora
plaquettes which leave this slice. This is equivalent to sayi
that in two spatial dimensions, given the loops at timet and
time t1a0, the surface which connect them is defined unam
biguously.

In more than three space-time dimensions, the situation
different; the loopsg t21 andg t do not define a unique world
sheet connecting them. Thus if we consider the intersect
of one of the world-surfaces with at5 const plane, we can
get ~i! a loop g t , ~ii ! an open surface connecting the loo

FIG. 1. ~a! A spatial closed path or loop.~b! An open surface
connecting the loopg t8 .
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g t8 andg t , and~iii ! a closed spatial surface. The situation is
completely analogous to the path integral of a free particle
on a~211!-dimensional lattice, i.e., the world lines connect-
ing points at different times intersected with at5 const
plane give~i! points or~ii ! open paths connecting the inter-
secting point of the timelike link atpt21 with surface
t5 const and the pointpt and ~iii ! loops associated with
different choices of the previously mentioned open paths.

Now we will show that Eq.~17! is really a possible ex-
pression of the path integralZV in terms of loop variables.4

First, it is easy to prove that the creation operator of these
loops is just the creation operator of the loop representation
namely, the Wilson loop operator. Repeating the steps from
Eq. ~15! to Eq. ~17! we get, for^Ŵ(g t)&,

^W~g t!&5
1

Z
~2pbV!2Np/2 (

n
~dn5g t!

expS 2
1

2bV
^n,n& D .

~18!

This is a sum over all surfaces bounded by the loopg t , i.e.,
over loop world sheets. Secondly, by means of the transfe
matrix method, let us show that we reobtain the Hamiltonian
~8! from Eq. ~17!. As we wish to consider the continuous
time limit of the previous lattice Euclidean space-time
theory, we introduce a different lattice spacinga0 for the
time direction. The couplings on timelike and spacelike
plaquettes are no longer equal in the action, i.e., we have two
coupling constants:b0 andbs . The temporal coupling con-
stantb0 decreases witha0, whilst the spatial coupling con-
stantbs increases witha0. We wish to find an operatorT̂
over the Hilbert space of loops$ug&% such that it is related
with ZV

loops by

ZV
loops5(

$g%
)
t

^g t1a0
uT̂ug t&.

T̂ is related, whena0 is small, with the HamiltonianĤ by

T̂}e2a0Ĥ1O~a0
2
!. ~19!

The transfer matrix between timest and t1a0 in the loop
representation of ketsug& can be written as

^g t1a0
uT̂ug t&5 (

$DSt1a0
%
expS 1

2b0
(
pt

np
22

1

2bs
(

psPDSt1a0

np
2D ,
~20!

wherept denotes temporal plaquettes, i.e., plaquettes with a
couple of temporal links,DSt1a0

5St1a0
2St1a0

8 ,St1a0
, and

St1a0
8 are the minimal surfaces enclosed by the loopsg t1a0

andg t1a0
8 ~the loopg t translateda0 along the temporal di-

rection!, respectively. Due to the fact that the surfaces are
closed, the integersnp of the temporal plaquettes which de-
part from the loopg t at timet and arrive to the loopg t1a0

at

time t1a0 are equal to the number of times the spatial link

4Another possible path integral in terms of loops is given by Eq.
~14!.
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l t appears in the loopg t , Nl . $DSt1a0
% are all the possible

modifications between the surfaces enclosed by the lo
g t1a0

andg t1a0
8 , i.e., it denotes the set of possible config

rations $np% of integers attached to the plaquettesp
PDSt1a0

. Therefore the Eq.~20! can be rewritten as

^g t1a0
uT̂ug t&5 (

$DSt1a0
%
expS 2

1

2b0
(
l

Nl
2 ~g t!

2
1

2bs
(

psPDSt1a0

np
2D . ~21!

The ketsug t1a0
& and ug t& are connected by

ug t1a0
&5 )

pPDSt1a0

Ŵp
npug t&. ~22!

Using Eqs.~6!, ~7!, ~22!, and~25!, we get

T̂5 (
$DSt1a0

%
)

pPDSt1a0

Ŵp
npexpS 2

1

2b0
(
l

Êl
22

1

2bs
np
2D .

~23!

To obtain a proper continuum limit, we should take

b05
a

g2a0
, ~24!

bs5
1

2

1

ln~2g2a/a0!
, ~25!

wherea continues to denote the spacelike spacing. This i
plies that fora0 small, the operatorT̂ is given by

T̂5expH 2a0F g22a(l Êl
21

1

2ag2(p ~Ŵp1Ŵp
†!G1O~a0

2!J ,
~26!

i.e., we recover the Hamiltonian~8!. This confirms definitely
that, Eq.~17! is the expression of the path integral of com
pact electrodynamics in terms of the world sheets of loo
the loop ~Lagrangian! representation.

From Eq. ~17! we can observe that the loop action
proportional to thequadratic area A2:

SL52
1

bV
A252

1

bV
(
pPS

np
252

1

bV
^n,n&, ~27!

i.e., the sum of the squares of the multiplicitiesnp of
plaquettes which constitute the loop’s world sheetS. It is
interesting to note the similarity of this action with the con
tinuous Nambu action or its lattice version, the Weingart
action @12# which are proportional to the area swept out b
the bosonic string.5

5The relation between the surfaces of the Wilson action and th
of Weingarten action has been analyzed by Kazakovet al. in Ref.
@13#.
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III. THE NON-ABELIAN LOOP ACTION

Let us see how the path integral loop description can b
extended to the non-Abelian case of Yang-Mills theory. Th
path integral for the Wilson action for a general non-Abelian
compact gauge groupG is given by

ZW5E @dUl #expFb(
p

Re~ trUp!G , ~28!

where theU l PG andUp5) l PpU l . Equation~28! reduces
to Eq. ~9! for the caseG[ U~1!. The analogous of the Fou-
rier expansion for the non-Abelian case is thecharacterex-
pansion. The charactersx r(U) of the irreducible~unitary!
representationr of dimensiondr , defined as the traces of
these representations, are an orthonormal basis for theclass
functions of the group: i.e.,@14#,

E dUx r~U !xs* ~U !5d rs , ~29!

(
r
drx r~UV

21!5d~U,V!. ~30!

In particular, as a useful consequence we have

drE dUxs~U !x r~UV
21!5d rsx r~V!. ~31!

By means of the character expansion, we can express

expH b(
p

Re@x~Up!#J 5)
p

(
r
crx r~Up!, ~32!

with

cr5E dUx r* ~U !exp„bx~U !…. ~33!

For instance, in the case ofG[ SU~2! the gauge fields
can be parametrized as

U5cos12u1 isanasin
1
2u, 0<u<4p,

and the corresponding irreducible representations are clas
fied by a non-negative integer or half-integer spinj , i.e.,
r[ j and the characters are given by

x j~U !5
sin~ j1 1

2 !u

sin12u
. ~34!

A direct application of Eq.~33! yields thecj in terms of
modified Bessel functions, and, therefore, we can expre
Eq. ~28! as

ose
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ZW5E @du l #)
p S (

j p
2~2 j p11!

3
I 2 j p11~b!

b

sin~ j1 1
2 !up

sin
up

2
D

5(
$ j p%

)
p

S 2~2 j p11!
I 2 j p11~b!

b
D E @dUl #)

p

3
sin~ j p1

1
2 !up

sin
up

2

. ~35!

A given subset of plaquettes carryingj pÞ0 is homeomor-
phic to a simple surface if any link bounds at most tw
plaquettes of this subset. The links bounding exactly o
plaquette make up the boundary of this surface~homeomor-
phic to a set of simple closed curves!. Any configuration of
plaquettes can be decomposed as a set of maximal sim
surfaces by cutting it along the links bounding more than t
plaquettes. In principle, there are two possibilities for t
boundary curves:~a! either a true free boundary, boundin
only one simple surface or~b! a singular branch line along
which more than two simple surfaces meet. In fact, relat
~29! forbids the existence of free boundaries for nontriv
configurations contributing to the path integral~the integra-
tion over the gauge group on the links belonging to the f
boundaries gives a vanishing contribution!.

The integration over the internal links of the simple su
faces is performed using Eq.~31!. Note that the plaquettes o
a simple surface component should carry the same gr
representation. After integrating over all the inner links
the simple components, one gets an expression involv
only the links of the boundary, i.e., something proportion
to

)
boundaries

x r~Uboundary!.

What follows is the integration of gauge fields along t
singular branches which gives rise to the Clebsch-Gor
coefficients coupling the different representations of the c
sidered gauge groupG. For instance, imagine that there
only one singular closed branch line which is the comm
boundary shared byn simple surfaces with representation
r 1 ,r 2 , . . . ,r n . The integration over gauge fields produces
factor Nr1 , . . . ,r n

, which counts the number of times th
trivial representation is contained in the produ
r 1^ r 2^ •••^ r p .

Cases in which different singular branch lines meet in
point are considered in Ref.@5#. Each point of intersection
involves a Racah-Wigner symbol. Thus one can see that
Hamiltonian formulation associated to this action will b
given in terms of a spin network of colored loops@15,16#. A
rigorous proof of this fact using the transfer matrix techniq
is still required. This is not straightforward because one s
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needs to develop the lattice Hamiltonian formulation o
Yang-Mills theory in terms of spin networks.

We also can generalize the Villain form of the action for
any gauge group using theheat kernelaction @17,18#:

exp~bSHK!5)
p

(
r
drx r~Up!exp@2Cr~2!/Nb#,

~36!

whereCr(2) is the quadratic Casimir invariant for the rep-
resentationr . ForG[ SU~2! the heat kernel action reads

exp~bSHK!5)
p

(
j50,1/2, . . .

~2 j11!
sin~ j1 1

2 !up

sin
up

2

3exp@2 j ~ j11!/2b#, ~37!

while only integers values ofj are used for the SO~3! group.

IV. CONCLUSIONS

As it was mentioned, the loop space provides a commo
scenario for a nonlocal description of gauge theories an
quantum gravity. The loop approach is no more exclusivel
Hamiltonian; its Lagrangian counterpart is now available. A
path integral action for the Yang-Mills theory in terms of
loop variables is very valuable because it combines the ge
metrical transparency and economy of the loop descriptio
with the versatility to perform calculus. We have presente
the state of the art in that program, which still is an open
issue.

The path integral approach to quantum gravity has ver
appealing features. In particular, it may provide a more sui
able framework for the development of useful approximation
schemes for the study of black hole physics and it may allow
us to analyze issues such as the computation of the probab
ties for a change of the spatial topology that seem to be ve
difficult to formulate in the canonical approach. Even though
the connection of the canonical loop representation of qua
tum gravity and the path integral approach is still an ope
problem, the determination of the explicit form of the loop
actions in gauge theories is an important step in this direc
tion. An important remark is that the lattice framework
seems to be unavoidable in order to have well-defined loo
actions. In fact, in spite of the similarities with the Nambu
actions, the loop actions for gauge theories involve quadrat
surface elements that are not well defined in the continuum

Finally, concerning the lattice loop action as a computa
tional tool, we mentioned already that the results produce
by numerical simulations for different models are very en
couraging. In Ref.@9#, the loop action~27! corresponding to
Villain form of U~1! model was considered. The extension o
the Lagrangianloop description in such a way to include
matter fields also was simulated@10#. The lattice path inte-
gral of U~1! Higgs model is expressed as a sum over close
as much as open surfaces. These surfaces correspond
world sheets of looplike pure electric flux excitations and
open electric flux tubes carrying matter fields at their ends
This representation is connected by a duality transformatio
with the topological representation of the path integral~in
terms of world sheets of Nielsen-Olesen strings@19# both
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closed and open connecting pairs of magnetic monopol!.
Simulating numerically, the loop action corresponding to t
Villain form, the two-coupling phase diagram of this mod
was mapped out. The gauge invariance of the loop desc
tion bears the advantages of economy in computational t
and the absence of the strong metastability observed pr
ously in the ordinary Monte Carlo analysis.
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