
PHYSICAL REVIEW D 15 DECEMBER 1996VOLUME 54, NUMBER 12

0556-28
Two-dimensional model of dynamical fermion mass generation
in strongly coupled gauge theories
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and HLRZ c/o KFA Ju¨lich, D-52425 Ju¨lich, Germany

~Received 3 April 1996!

We generalize theNF52 Schwinger model on the lattice by adding a charged scalar field. In this so-called
xUf2 model the scalar field shields the fermion charge, and a neutral fermion, acquiring mass dynamically, is
present in the spectrum. We study numerically the mass of this fermion at various large fixed values of the
gauge coupling by varying the effective four-fermion coupling, and find an indication that its scaling behavior
is the same as that of the fermion mass in the chiral Gross-Neveu model. This suggests that thexUf2 model
is in the same universality class as the Gross-Neveu model, and thus renormalizable and asymptotic-free at
arbitrary strong gauge coupling. The model illustrates that strongly coupled gauge theories might provide an
alternative to the Higgs mechanism of mass generation.@S0556-2821~96!00124-5#

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.30.Rd
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I. INTRODUCTION

Strongly coupled gauge theories tend to break dyna
cally chiral symmetry, but fermions which acquire ma
through this mechanism are usually confined, as is the c
in the Schwinger model or in QCD. From the point of vie
of electroweak symmetry breaking in, or beyond the stand
model, a dynamical mass generation without fermion c
finement is of interest. Such a situation arises in a class
chiral symmetric strongly coupled gauge theories on the
tice, in which the gauge charge of the fermion acquiri
mass dynamically is shielded by a scalar field of the sa
charge@1#. The question is whether such models are ren
malizable at strong gauge coupling, so that the lattice cu
can be removed, and the resulting field theory might be
plicable in continuum. If so, they would be an alternative
the Higgs mechanism@1#.

In this work we consider such a lattice model with U~1!
chiral symmetry and vectorlike U~1! gauge symmetry, the
xUfd model, ind52 dimensions. It consists of a staggere
fermion fieldx, a gauge fieldUP U~1! living on the lattice
links of lengtha, and a complex scalar fieldf with frozen
length ufu51. The unconfined fermion field isF5f†x.
There is no Yukawa coupling, and the massamF of the
fermionF arises dynamically. Because of fermion doublin
the fermion number isNF52. ThexUf2 model can be seen
either as a generalization of the Schwinger model w
NF52 by adding a charged scalar field, or as the tw
dimensional~2D! scalar QED with added fermions. Simila
models have been studied nearly 20 years ago in the con
of the instanton investigations@2#.

The four-dimensionalxUf4 model, considered as a pos
sible theory with dynamical mass generation of unconfin
fermions@1#, has been investigated recently. In spite of so
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encouraging results@3,4# a clarification of its renormalizabil-
ity properties remains a difficult task. Here we demonstrate
that in a simpler case, in two dimensions, these propertie
can be investigated with remarkable clarity. Within the limits
of numerical accuracy, we find that thexUf2 model is
renormalizable at strong gauge couplingg, because it be-
longs to the universality class of the two-dimensional chira
Gross-Neveu~GN2) model withNF52.

The GN2 model is known to generate fermion mass dy-
namically at arbitrarily weak four-fermion couplingG, to be
nonperturbatively renormalizable, and asymptotically free
One of its lattice regularizations is identical to thexUf2
model in the limit of infinite gauge coupling,
b51/a2g250. In this limit the four-fermion couplingG is
an invertible functionG(k) of the hopping parameterk of
the scalar fieldf ~or, equivalently, of its bare mass! in the
xUf2 model, withG(k)→0 ask→`. The scaling behavior
associated with the asymptotic freedom, and the continuum
limit of the GN2 model, are thus obtained ask→`.

These are extremely useful facts when thexUf2 model is
investigated at a finite gauge coupling, i.e., at nonvanishin
b. The idea is to compare the scaling behavior of the
xUf2 model with that of the GN2 model, ask grows at
fixed b.0. For this purpose we introduce an effective four-
fermion couplingG̃(b,G). This is now a coupling of the
‘‘composite’’ fermionsF5f†x, and thus characterizes the
van der Waals forces arising from the fundamental interac
tions between the fields. Atb50 it coincides with the
GN2 coupling, G̃(0,G)5G. For b.0, G̃ is smaller than
G, but depends onk similarly asG(k). For the comparison
it is therefore convenient to useG instead ofk as one argu-
ment ofG̃. We investigate the scaling behavior ofamF with
decreasingG̃(b,G) at various fixedb.0, and compare it
with theb50 case.

A determination ofG̃(k,b) directly by means of the four-
point function of the composite field would be very expen-
sive. Instead, we introduce it in an indirect way: we make the
assumption that the scaling behavior ofamF in the xUf2
model atb.0 is described by the truncated Schwinger-
7741 © 1996 The American Physical Society
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Dyson~SD! equations of the same structure as atb50 in the
GN2 model. The only change is the replacement ofG by
G̃(G,b). Our numerical study of thexUf2 model atb.0
is mainly concerned with the verification of this assumptio

The use of the SD equations serves further purposes. O
is to provide an analytic framework in which the numerica
results obtained at small but nonzero bare fermion ma
am0 can be related to the chiral limit case,m050, we are
actually interested in. Simulations atm050 are too time con-
suming on larger lattices, and the scaling behavior has to
studied atam0.0 by varying bothG and am0. The SD
equations suggest how to vary both parameters simu
neously, approaching the critical point,G5am050, and
how to extrapolate to the chiral limitm050. We test this
strategy carefully atb50, exploiting the knowledge of the
chiral limit there, and find it remarkably successful. Sma
deviations, not accounted for by the SD equations within t
used truncation scheme, and present at very smallam0, do
not influence the correct scaling behavior following from th
asymptotic freedom.

Further benefit of the use of SD equations is the control
the finite size effects. Following Ref.@5#, we solve these
equations on lattices of the same sizes and boundary co
tions as those on which numerical data are obtained. T
allows a suitable choice of the data points in the parame
space, as well as an extrapolation to the infinite volume lim

Finally, the SD equations allow us to describe the pr
asymptotic behavior of the data, obtained for correlatio
lengths limited by the lattice size, and to infer the genuin
scaling behavior for diverging correlation length. Atb50,
we have verified that when the SD equations are used for
extrapolation, then from those data the correct scaling beh
ior with G→0 is obtained.

We find that in thexUf2 model with b<1 the pre-
asymptotic behavior, and thus presumably also the scal
behavior of the fermion massamF is described quite well by
the same SD equations as in the chiral GN2 model, now with
G̃(b,G) replacingG. The same scaling behavior as in th
GN2 model is indicated, withG̃→0 ask→`.

On the basis of this evidence we suggest that thexUf2
model belongs, along the critical line atk5`, to the same
universality class as the GN2 model, and is thus nonpertur-
batively renormalizable. ThexUf2 model is therefore an
example of a renormalizable quantum field theory in whic
the fermion mass is generated dynamically at strong gau
coupling by the shielded gauge mechanism suggested in R
@1#.

In the following section we define thexUf2 model and
explain its relationship to the GN2 model atb50. In Sec. III
the phase diagram is described. The SD equations, and
the determination of the effective four-fermion couplin
G̃(b,G) by means of their inversion, are discussed in Se
IV. In Sec. V we test these equations, and the accuracy of
determination ofG̃ at b50. In Sec. VI we then apply the
same method of analysis to the data foramF at 0,b<1,
demonstrate the applicability of the same SD equations as
b50 and determineG̃(b,G). The scaling behavior of the
data is illustrated in Sec. VII. We conclude in Sec. VIII with
some remarks about the meaning of our results.
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II. THE xUf2 MODEL AND ITS GN 2 LIMIT

The action of thexUf2 model consists of three parts:

SxUf5Sx1SU1Sf , ~2.1!

where

Sx5
1

2(x x̄x(
m51

2

hxm~Ux,mxx1m2Ux2m,m
† xx2m!

1am0(
x

x̄xxx ,

SU5b(
P

~12ReUP!,

Sf52k(
x

(
m51

2

~fx
†Ux,mfx1m1H.c.!.

Here,x andx1m denote lattice sites and their nearest neigh-
bors, respectively, andx is a staggered fermion field,hxm
being the usual phase factors. The link variablesUx,mP U~1!
represent a compact abelian gauge field with coupling
b51/a2g2, andf is a complex scalar field with the con-
straint ufxu51. The fermion and scalar fields have the same
unit charge. The bare fermion massm0 is introduced for
technical reasons, and we are interested in the limitm050,
where the action has a global U~1! chiral symmetry. The
phase diagram of this model is shown in Fig. 1.

In the limit caseb50, one can perform the Lee-Shrock
transformation@6#, in which the scalar and gauge fields are
integrated out and a four-fermion term appears. This leads to
the action

FIG. 1. Phase diagram of thexUf2 model for m050. The
well-understood limit cases are described. The dashed line indicates
a possible topological phase transition. The fermion massamF is
nonzero everywhere except on the bold-marked boundaries.



s

s

a
e

54 7743TWO-DIMENSIONAL MODEL OF DYNAMICAL FERMION . . .
S4f52(
x

(
m51

2 SGx̄xxxx̄x1mxx1m

2
1

2
hxm@x̄xxx1m2x̄x1mxx# D1

am0

r (
x

x̄xxx ,

~2.2!

with

G5G~k!5
12r 2

4r 2
, ~2.3!

r being related tok by means of modified Bessel functions

r5
I 1~2k!

I 0~2k!
. ~2.4!

Form050 the transformed action~2.2! is that of the chiral
GN2 model in a certain lattice regularization. Within the
uncertainty of interpretation of a continuum limit of stag
gered fermions with a strong gauge coupling it can be po
sibly interpreted also as a lattice formulation of the Thirrin
model @7#. The GN2 model has a critical point atG50,
where the fermion mass vanishes forG→0 like

amF}e2p/8G. ~2.5!

The four-fermion couplingG(k) is a function ofk shown
in Fig. 2. From the point of view of the scaling behavio
~2.5!, the use ofG(k) as a parameter instead ofk is very
convenient, and we therefore adopt such a reparametriza
even atb.0. ThereG is not a four-fermion coupling any
more, it only replaces the hopping parameterk according to
Eq. ~2.3!. Also r , Eq. ~2.4!, will be understood as a function
of G from now on, satisfyingr (G)→1 asG→0.

We note that the bare massam0 /r in the action~2.2! of
the GN2 model is different from that of thexUf2 model
~2.1!, as the fieldx has been rescaled byAr in the course of
the Lee-Shrock transformation. We useam0 of the xUf2
model, and the bare mass in the SD equations for the G2
model is therefore slightlyG dependent at fixedam0.

FIG. 2. Relation between the four-fermion couplingG andk at
b50.
:

-
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We perform the hybrid Monte Carlo simulations on
V5L2 lattices, with periodic and antiperiodic boundary con-
ditions in first and second (m5t) directions, respectively.
The fermion massamF is obtained from the gauge invariant
propagator̂ fx

†xxfyx̄y& by inverting the fermion matrixM
and calculating

PAB~k!ukW505
1

VU(x,y ei ~k1pA!xfxMxy
21fy

†e2 i ~k1pB!yU
kW50

.

~2.6!

HerepA denotes the usual momentum shifts in the Brillouin
zone. The massamF , and also the fermion renormalization
constantZ result from the fit in momentum space to

Tr G tP~kt!5Z
24isinkt

sin2kt1~amF!2
, ~2.7!

whereG t is the Golterman-Smit matrix (Gm5t)AB @8#. This
procedure is chiral invariant.

III. OTHER LIMIT CASES AND THE PHASE DIAGRAM

The schematic phase diagram form050 is shown in Fig.
1. At k50, when the scalar field is decoupled, thexUf2
model with m050 reduces to the lattice regularized
Schwinger model (d52 QED! with NF52. As is well
known, this model is anomaly free, confines fermions at all
b,`, and possesses only massive bosonic states. Thu
amF→` as k→0. The continuum limit is expected at the
UV fixed point atb5`, and there is no critical point at
b,`.

At k5`, both the scalar and the gauge fields are frozen.1

As is seen in the unitary gauge, the fermion field is decou-
pled andamF5am0. At am050, the linek5` is thus a
critical line at which the fermion massamF vanishes. The
b50 point of this line is the critical point of the GN2 model.

In the limit b5`, when the gauge coupling vanishes, the
fermion field is decoupled again, andamF5am0. Thus, in
the chiral limit, the lineb5` is a critical line with vanishing
fermion mass, too. The scalar field variables can be seen a
spin variables, and the corresponding two-dimensional XY2
model is known to have a topological phase transition at
k5kc

XY.0.56.
Let us now consider the inside of the phase diagram in

Fig. 1. Old investigations suggest that the model possesses
massive fermion in some parameter region accessible to th
dilute instanton gas@2#. As follows from the convergence of
the strong coupling expansion, at small nonvanishingb, the
model should have the same properties as atb50. This im-
plies analyticity and nonvanishingamF for k,` at small
b.

The fate of the topological transition atb5`, asb gets
finite, is not completely clear. We have investigated numeri-

1This is meant in a sense avoiding the Mermin-Wagner-Coleman
theorem: the limitk→` is taken before an external ‘‘magnetic’’
field, required for a definition of the spontaneous symmetry break-
ing, is switched off. We thank G. Roepstorff for a discussion on this
point.
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cally the spectrum of the model in the vicinity of the dashe
line shown in Fig. 1. This line is observable at largeb as a
shallow dip in the masses of the scalar and vector boso
which can be constructed from gauge invariant products
the typefx

†Ux,mfx1m . But amF shows no sensitivity when
the dashed line is crossed, and we have found no state, n
ther bosonic nor fermionic, indicating a vanishing of th
mass in lattice units on this line atb,`. The dynamical
fermion mass generation atb,` is thus not influenced by
the remnant of the Kosterlitz-Thoules transition. Presumab
a critical behavior on this remnant, if any, appears only i
some topologically nontrivial observables@9#. The mass
amF stays finite, and the fermionF gets infinitely heavy in
physical units in any conceivable continuum limit taken o
this line atb,`.

We have checked that there is no indication of any oth
phase transition, not even of some change of behavior
some local observable, anywhere else in the phase diagr
of thexUf2 model. Our data thus indicate that the fermion
massamF is nonzero for any finiteb and k. It decreases
when any of these parameters increases and one of
boundaries bold-marked in Fig. 1 is approached. As in th
GN2 model, the fermion mass generation takes place witho
spontaneous chiral symmetry breaking, which is forbidde
by the Mermin-Wagner-Coleman theorem. A continuum
limit taken on the lineb5` might lead to an interesting
generalization of the Schwinger model in the continuum. I
this work, we concentrate on the scaling behavior ofamF
when the linek5` is approached.

IV. SCHWINGER-DYSON EQUATIONS
FOR THE GN 2 MODEL

The Schwinger-Dyson~SD! equations for the fermion
propagator in a four-fermion theory, truncated afterO(G),
can be represented graphically as

~4.1!

On a finite lattice they read~see, e.g.,@5#!

N5
am0

r ~G!
1
4G

V (
k

N

(nFn
2@sin~kna!#21N2 , ~4.2!

Fm511
2G

V (
k

Fm@sin~kma!#2

(nFn
2@sin~kna!#21N2 . ~4.3!

These are three coupled equations forN andFm which we
solve numerically. Then

amF5N/Ft , ~4.4!

Z5
1

rF t
~4.5!
s,
f

ei-

y,

r
of
am

the
e
ut
n

n

are determined. If the term~b! in ~4.1! is neglected, one
obtains the gap equation withFm51 andamF5N.

In the infinite volume, whenF15F25F, and for small
G, the approximate analytic solution of the SD equations is

N5
am0

r
2
8GN

pF2 lnS 2NpF D , ~4.6!

F5
1

2
1
1

2
A11G. ~4.7!

For m050, one obtains the scaling behavior~2.5! as
G→0.

The idea of the combined limitG→0 andam0→0 is to
makeam0 /r a function ofG in such a way that Eq.~4.6! is
solvable, and thatam0(G)→0 asG→0. We choose

am0~G,s!

r ~G!
5~12s!

pF

2
e2pF2s/8G, ~4.8!

using the approximate solution~4.7! for F. Heres is a free
parameter obeying 0,s<1. For this choice ofam0 the so-
lution of Eq. ~4.6! is

N5
pF

2
e2pF2s/8G, ~4.9!

and thus

amF5
N

F
5

p

2
e2pF2s/8G. ~4.10!

The asymptotic scaling law along the lines of constants is

amF5
p

2
e2ps/8G, ~4.11!

amF

am0
5

1

12s
, ~4.12!

where we have usedrF→1 asG→0. Obviously, the ratio
m0 /mF does not vanish except ifs51. For s,1, a con-
tinuum GN2 model with nonvanishing bare mass is obtained.
We therefore distinguish between the chiral limit,m050 for
any a, and the statementam050, which at a critical point
with amF50 allowsa50, m0 /mFÞ0.

It may appear strange that the scaling behavior~4.11! de-
pends ons, i.e., on the path, though the same critical point is
approached. But this is similar to the well-understood gen-
eral properties of critical end points in magnetic systems.
When in such systems the external fieldh ~corresponding to
am0 /r ) and the reduced temperaturet ~corresponding to
G) are varied simultaneously, the scaling behavior is de-
scribed by the equation of state

h5M d f S t

M1/bD . ~4.13!

For example, on curved paths

h5c•tp, p<bd, ~4.14!
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the scaling behavior isp dependent,

M}tp/d. ~4.15!

In our case the scaling is described by an essential singula
instead of the power law Eq.~4.15!, but the dependence on
the path arises in a similar way. Needless to say, the
equations reproduce correctly the first coefficient of theb
function of the GN2 model with nonvanishing bare mas
since the one-loop contribution is taken into account co
rectly.

The truncated SD equations cannot be expected to
scribe the data correctly at very smallam0, because the con-
tributions of the neglected fermion loops increase with d
creasingam0. Then only the exponential scaling behavio
Eq. ~4.11!, but not the value of the constant prefactor in E
~4.11!, and thus of the ratio~4.12!, are predicted correctly.
We shall take this discrepancy into account by relying in o
determination ofG̃ in Sec. VI on the results at larger value
of am0 ~mostlyam050.4).

An important step in our data analysis atb.0 is the use
of the inverse SD equations. For a chosenb, s, andam0, the
fermion massamF , obtained on a certain lattice, is inserte
into the corresponding SD equations~4.2! and~4.3! by using
Eq. ~4.4!. The four-fermion coupling is considered as a fre
parameterG. It is determined by solving the three equation
~4.2! and ~4.3!, taken as equations determiningG andFm :

amFFt5
am0

r ~G!
1
4G

V (
k

amFFt

(nFn
2@sin~kna!#21~amFFt!

2 ,

~4.16!

Fm511
2G

V (
k

Fm@sin~kma!#2

(nFn
2@sin~kna!#21~amFFt!

2 .

~4.17!

The resulting values ofG can, in principle, depend on all the
parameters,G5G(b,G,am0 ,V).

V. TEST OF THE SD EQUATIONS IN THE GN 2 LIMIT

The aim of this section is to investigate how the know
scaling behavior~2.5! of the GN2 model can be confirmed
by the data foramF obtained in numerical simulation of the
xUf2 model atb50. The fermion matrix inversion has
turned out to be very slow atm050 on large lattices
(>322), and the simulations have to be performed at fini
am0. We have made several attempts to extrapolate
m050 the values ofamF obtained for severalam0 at fixed
G. However, using, e.g., a power law, which is frequent
applied in higher dimensions, we failed to reproduce reliab
the values obtained by long simulations directly atm050.
Apparently in two dimensions the approach to the chir
limit at a fixed distance from the critical point is more com
plex.

Therefore we have adopted the strategy of the combin
approach to the critical pointG5am050, in whichG and
am0 vary simultaneously, choosing the pathss5const, Eq.
~4.8!, suggested by the SD equations. The chosen values
s are s50.2,0.3, . . . ,0.7. The simulations have been per
formed at the values ofam0 andG satisfying the relation
rity

D

r-

e-

-
,
.

r

e
s

n

e
to

y
ly

l
-

ed

of
-

~4.8!, and chosen such that the value ofamF predicted by the
SD equations satisfies

1

amF
,
L

4
. ~5.1!

This restriction turned out to be necessary in order to avoid a
finite size dependence both of the predicted and measured
values ofamF .

In Fig. 3 we show the semilogarithmic plot of the data for
amF against 1/G, and compare them with the prediction of
the SD equations~4.2! and~4.3! on the 322 and 642 lattices.
It demonstrates that the SD equations describe the data for
smallers very well, and for largers, s50.6,0.7, still quite
well, though for theses the bare mass is very small. But one
cannot see that the data are still far from the asymptotic
scaling behavior~4.11!, and that the seemingly linear de-
crease does not have the right slope. Also the size of the
error bars is barely visible on the logarithmic scale.

Therefore, in Fig. 4 we show the data as ratios

FIG. 3. The data foramF at b50 for various fixeds compared
with the predictions of the SD equations.

FIG. 4. The ratioamF /am0 at b50 for various fixeds com-
pared with the SD equations on the 322 (s<0.5) and 642

(s>0.5) lattices~full lines!, and the 10242 lattice ~dotted lines!.
The dashed horizontal lines represent the expected asymptotic be-
havior.
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amF /am0 plotted on the linear scale. The curves are the
predictions for this ratio on the 322 and 642 lattices ~full
lines! and the 10242 lattice~dotted lines!, whereas the dashe
horizontal lines represent the expected asymptotic sca
behavior, Eq.~4.12!. The benefits of the SD equations b
come manifest: For smallers the agreement with the data i
within the tiny but now visible error bars. With increasin
s the agreement gets worse, as expected for decrea
am0. Nevertheless, the SD equations still reproduce
1/G dependence qualitatively. They predict the onset of fin
size effects, manifested by a downward bend of the curv
These effects set on at larger 1/G on larger lattices. We have
checked that the data not satisfying the restriction~5.1! be-
have in a similar way. Furthermore, one can observe the n
apparent difference from the asymptotic scaling behav
~4.12!, with an indication how this behavior would be slow
achieved on huge lattices~dotted lines!. We find that the SD
equations describe the data fors<0.5 long before the asymp
totic scaling sets on. This allows us to extrapolate the d
obtained on achievable lattices to large 1/G, and to interpret
them as an evidence for the asymptotic scaling~4.11! and
~4.12!, expected for the GN2 model with nonzero bare mass

We expect that the discrepancies observed ats50.6 and
0.7 are due to the truncation, and thus do not indicate
deviation from the asymptotic scaling. This is further su
ported by the observation that the agreement between
data and the SD equations is improved even at largers, if we
plot the data foramF /am0Z, with Z measured by means o
the relation~2.7!, and compare them with the SD equatio
using Eq.~4.5! ~see Fig. 3 in Ref.@12#!. Because the mea
sured values ofZ are consistent withZ→1 for G→0, as
follows also from Eq.~4.5!, the asymptotic behavior is no
changed, and we now see how it is approached even
largers.

As a preparation for the studies atb.0, it is illustrative
to test, atb50, also the inversion of the SD equations a
cording to Eqs.~4.16! and ~4.17!. The above data foramF
have been used as input to these equations,
G(0,G,am0 ,V) has been obtained by their numerical sol
tion. The results are shown in Fig. 5, where they are co

FIG. 5. The values ofG(b,G,am0 ,V) obtained by the inversion
of the SD equations atb50 for V5642. The full line representing
the fit by means of Eq.~6.2! to theam050.4 data nearly coincides
with the diagonal~dashed! line.
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pared with the expected value of the couplingG̃(0,G)5G.
We observe that for a rather large bare mass,am050.4, the
agreement is excellent. The fitG(0,G,0.4,V)5cGp gives,
for V5322 and 642, results consistent withc5p51 ~see
Table I!.

For smalleram0, deviations ofG from the true coupling
G are observable. Of course, these deviations are of the sam
origin as those in Figs. 3 and 4: they reflect the inaccuracy o
the SD equations for largers, and thus for smalleram0. For
a quantitative comparison with the SD equations it is there
fore advantageous to perform simulations at not too sma
am0. Nevertheless, even for smalleram0 the deviations re-
main small. The degree of agreement betweenG andG at
b50 can serve atb.0 as an estimate for the accuracy, with
which one can determine the effective couplingG̃(b,G)
from the values ofG(b,G,am0 ,V) obtained by the inversion
of the SD equations.

VI. EFFECTIVE FOUR-FERMION COUPLING AT b>0

The experience gained atb50 makes it clear that also at
b.0 the simulations have to be performed atam0.0, and
that on lattices of affordable sizes there is no chance to ob
serve the asymptotic scaling directly. Therefore, we investi
gate the scaling behavior of the fermion massamF at b.0
by means of the following strategy.

~1! The conjecture that thexUf2 model atb.0 belongs
to the same universality class as the GN2 model suggests the
use of the same SD equations as atb50 for the description
of the nonasymptotic data foramF . The only foreseen dif-
ference is the value of the effective four-fermion coupling
G̃(b,G), which is not any more a known function~2.3! of
k, but has to be determined from the data. A similar idea wa
very successful in the earlier study of the universality class
of the two-dimensional Yukawa model@10#.

~2! For each value ofamF , obtained at someb, G, and
am0 on a lattice of volumeV, we invert the SD equations
~4.16! and ~4.17!, obtainingG(b,G,am0 ,V).

~3! Of course, in principle, the effective coupling should
be independent ofam0 andV. Because of the limited accu-
racy of the truncated SD equations, some dependence
G(b,G,am0 ,V) on am0 remains, however. On the basis of
the observation that atb50 the values ofG andG are con-
sistent foram050.4, we assume that also atb.0 the values
of G̃(b,G) can be obtained for thisam0, and define

G̃~b,G!5G~b,G,am050.4,V!. ~6.1!

This effective four-fermion coupling turns out to beV inde-
pendent, providedV is sufficiently large.

~4! At each b, we determine theG dependence of
G̃(b,G), which turns out to be consistent with a power law

G̃~b,G!5c~b!Gp~b!. ~6.2!

~5! If G̃(b,G) were known prior to the numerical calcu-
lations ofamF atb.0, one would choose the data points so
that in the (am0 ,G) plane they lie on lines similar to Eq.
~4.8!, with G replaced byG̃(b,G). The same simple com-
parison with the expected scaling behavior~4.11!, now with
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FIG. 6. The values ofG(b,G,am0 ,V) at
b50.3 andb51.0. The full lines are fits by
means of Eq.~6.2! to the am050.4 data. They
represent the obtained effective coupling
G̃(b,G).
G̃(b,G), would then be possible. Without this knowledge
we have decided to acquire the data on the same lines
constants, Eq. ~4.8!, as atb50. As will be explained in the
next section, one can then recalculate the predictions of
SD equations withG̃(b,G) to the liness5const, and ob-
serve the approach to the scaling behavior, though these li
are now less suitable for this purpose.

We have determinedamF at b50.2,0.3,0.5,0.7,1.0 on
the 322 lattice fors50.2, 0.3, 0.4, 0.5, and atb50.3 also on
the 642 lattice for s50.4,0.5,0.6,0.7. The intervals of the
G andam0 values have been chosen such that the fermi
mass is consistent with the requirement~5.1!. As expected,
the fermion massamF decreases with increasingb at con-
stantG, because of the decreasing gauge coupling.

For b.1 the massamF is measurable only in a small
G interval below or in the vicinity of the dashed line in Fig
1. Nevertheless, one can see thatamF is insensitive to this
line.

In Fig. 6 we show the results forG(b,G,am0 ,V) at
b50.3 andb51. They cluster for eachb along, or slightly
below, a simple curve. This curve is the power law fit, E
~6.2!, to the values ofG̃(b,G), determined according to Eq.
~6.1! atam050.4. The results for smalleram0 do not deviate
from this curve more than in theb50 case~Fig. 5!. For
otherb values the results are very similar.

Fits by means of the power law~6.2! describe the data at
am050.4 very well. In Table I we present the results for th

TABLE I. The values of the parameters determining the effe
tive coupling G̃(b,G) by means of Eq.~6.2!. See the text for a
discussion of the errors.

322 642

b c p c p

0.0 1.038~7! 1.016~4! 0.99~4! 0.99~2!

0.2 0.767~9! 0.940~5!

0.3 0.675~5! 0.913~3! 0.62~1! 0.88~1!

0.5 0.512~6! 0.844~4!

0.7 0.422~3! 0.806~2!

1.0 0.321~2! 0.747~2!
,
of

the

nes

on

.

q.

e

fit parametersc(b) and p(b). The indicated errors come
from the Minuit fit for G̃(b,G) by means of Eq.~6.2!. As the
values of G̃(b,G) result from a data analysis in several
steps, these errors are too naive. A more realistic error esti-
mate might be the difference between the results on 322 and
642 lattices atb50, where we know that these results should
be consistent. This suggests the error sizesDc/c.0.05 and
Dp/p.0.03.

These results demonstrate that the introduction of the ef-
fective four-fermion couplingG̃(b,G) by means of the SD
equations is sensible. In other words, one can find such a
function G̃(b,G), that the data are consistent with the SD
equations whenG̃(b,G) is used as a coupling. Assuming
now that this is true also at smallerG andam0, i.e., beyond
the intervals we could investigate, we can deduce the scaling
behavior ofamF with G̃(b,G) from these SD equations.

The power law dependence~6.2! of G̃(b,G) on G is
questionable for very smallG because of the singular behav-
ior at G50. Kondo has investigated in the continuum a
model quite similar to thexUf2 model, both ind54 @7#
andd52 @11#. Recently, he has obtained ind52, by solving
the SD equations for the fullxUf2 model, the effective
four-fermion couplingG̃ as a series inG @11#. This would
contradict Eq.~6.2!. We have checked that our results for
G̃ can be described by a polynomial inG, too, but the coef-
ficients of the higher powers ofG are large and unstable, and
such an analytic description is therefore not supported by our
data in the studied range ofG. Naturally, we cannot exclude
that for much smallerG the power law holds. The depen-
dence ofG̃ on G for small G thus remains to be a very
interesting open question.

VII. SCALING BEHAVIOR AT b>0

According to the results presented in the previous section,
the SD equations withG replaced byG̃(b,G) describe the
data foramF for larger am0 values. These equations also
predict the behavior ofamF /am0 as G̃ and am0 approach
zero along the lines

c-
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FIG. 7. The ratioamF /am0 along the lines
s5const, Eq.~4.8!, at b50.3, 0.5, and 1.0. The
full lines are predictions of the SD equations with
G̃(b,G) described by Eq.~6.2!.
1

r ~G̃!
am0~G̃,s̃!5~12 s̃!

pF

2
e2pF2 s̃/8G̃,

s̃5const, ~7.1!

in the (am0,G̃) plane. Along these lines the asymptotic sca
ing behavior is analogous to Eq.~4.11!:
l-

amF5
p

2
e2p s̃ /8G̃,

amF

am0
5

1

12 s̃
. ~7.2!

This is the same scaling behavior as in the GN2 model with
am0>0, whenG is replaced byG̃. From Eqs.~2.3!, ~2.4!,
and~6.2! it follows that G̃(b,G)→0 ask→`. The success-
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ful analysis of the data foramF atb.0 by means of the SD
equations with G̃(b,G) is thus an indication that the
xUf2 model atb.0 belongs to the same universality clas
as the GN2 model, when the critical linek5` is ap-
proached. In the chiral limit, the scaling behavior predict
by the SD equations withG̃(b,G) is

amF}e2p/8G̃5e2p/8cGp, ~7.3!

to be compared with Eq.~2.5! at b50.
Of course, our data with rather largeam0 andamF do not

show directly this asymptotic scaling, but only an approa
to it, as predicted by the SD equations. To illustrate this,
Fig. 7 we compare the data obtained on liness5const, Eq.
~4.8!, with the predictions for these lines of the SD equatio
with G̃(b,G). As in Fig. 4, we plot the ratioamF /am0, and
the full lines are the numerical solutions of the SD equatio
with G̃(b,G). As atb50, Fig. 4, we observe a very goo
agreement for smallers ~largeram0), whereas at largers at
least a qualitative behavior of the data is reproduced.

The data atb.0 have been taken on the lines Eq.~4.8!,
which are not as convenient as the lines Eq.~7.1! would be.
Nevertheless, one can obtain the asymptotic behavior on
lines Eq.~4.8! as follows: comparing Eqs.~4.8! and~7.1! we
eliminateam0, obtaining a relation between the pairs of p
rameters (G,s) and (G̃,b),

~12s!e2~p/8G!s5~12 s̃!e2~p/8G̃! s̃. ~7.4!

Using this relation in Eq.~7.2! we obtain, for smallG ~i.e.,
settingr5Fm51),

amF5
p

2

12s

12 s̃~b,G,s!
e2~p/8G!s, ~7.5!

wheres̃ is now understood as a functions̃(b,G,s).
This functions̃(b,G,s) can be determined at eachb from

the now knownG dependence~6.2! of G̃(b,G). We have
observed that, for smalls, the values ofs̃ are nearly inde-
pendent ofam0, and thus ofG. This explains why theG̃
dependence of the data in Fig. 7 looks very similar to t
G dependence of the data atb50, Fig. 4, up to a, nearly
constant, factor (12s)/(12 s̃). This similarity is easily ob-
servable@12#, as no determination ofs̃(G,s) is required, and
thus constitutes a simpler comparison ofamF in the xUf2
model atb.0 with the predictions of the SD equations wit
G̃.

The observed agreement between the nonasymptotic
and the SD equations of the GN2 model withG̃ suggests that
also the asymptotic scaling behavior of thexUf2 model at
b.0 is described by these equations, and the model t
belongs to the same universality class. But, of course, thi
only a conjecture, as the region investigated is limited by
applicability of the truncated SD equations, as well as by
constraints of a numerical approach.

VIII. CONCLUSIONS AND DISCUSSION

By introducing an effective four-fermion coupling
G̃(b,G) in the xUf2 model atb.0 we have found that,
s
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h
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the
the

within the limits of a numerical approach, this model is de-
scribed by the same SD equations as the chiral GN2 model
with couplingG replaced byG̃. The scaling behavior, when
G̃→0, is thus the same as in the GN2 model in theG→0
limit. This is an indication that thexUf2 model belongs to
the universality class of the GN2 model.

From this we tentatively conclude that thexUf2 model is
nonperturbatively renormalizable and, though defined on the
lattice, possesses a well-defined continuum limit. It is thus an
example of a strongly coupled gauge theory with continuous
chiral symmetry, in which the fermion mass is generated
dynamically and the massive fermions are not confined. At
least in two dimensions the shielded gauge mechanism o
fermion mass generation, suggested in Ref.@1#, exists. The
xUf2 model nicely illustrates this mechanism.

On the other hand, thexUf2 model is presumably too
simple to provide useful hints how to approach thed54
case. Our results suggest that the complexity of thexUf2

model and the composite structure of the fermionF5f†x
are effects not surviving the continuum limit. The possibility
of describing the scaling properties in terms of the van der
Waals force, represented by the effective four-fermion cou-
pling, shows that in the renormalized theory the inner struc-
ture of the fermion, acquiring its mass dynamically, is irrel-
evant.

The study of the renormalizability properties of the
strongly coupledxUf2 model has been made relatively easy
in d52 by its neighborhood to the well-understood GN2

model. Still, the applicability of the SD equations long be-
fore the onset of asymptotic scaling has been a surprise, eve
in the GN2 model. The use of these equations has been cru-
cial, since an asymptotic scaling behavior is evidently not
obtainable in numerical simulations, and a method of ex-
trapolation to the scaling limit and to the limit of chiral sym-
metry is required.

A plausible explanation why thexUf2 model is well
described by the SD equations of the GN2 model might be as
follows: Integrating out the gauge and scalar field, one ends
up with a pure fermionic theory with many multifermion
couplings. These fermions correspond to our fermionsF, as
in theb50 limit. The universality of multifermion couplings
in d52, observed, e.g., in the studies of thed52 Yukawa
model@10#, suggests that the four-fermion coupling is domi-
nant and sufficient to describe the data.

Provided that thexUf2 model atb.0 really belongs to
the GN2 universality class, the most interesting question left
open is the dependence of the effective four-fermion cou-
pling G̃ onG andb. We hope that our data forG̃(b,G) will
stimulate its theoretical investigation.
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