PHYSICAL REVIEW D VOLUME 54, NUMBER 12 15 DECEMBER 1996
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We generalize th&l=2 Schwinger model on the lattice by adding a charged scalar field. In this so-called
xU ¢, model the scalar field shields the fermion charge, and a neutral fermion, acquiring mass dynamically, is
present in the spectrum. We study numerically the mass of this fermion at various large fixed values of the
gauge coupling by varying the effective four-fermion coupling, and find an indication that its scaling behavior
is the same as that of the fermion mass in the chiral Gross-Neveu model. This suggests ¢hbbshmodel
is in the same universality class as the Gross-Neveu model, and thus renormalizable and asymptotic-free at
arbitrary strong gauge coupling. The model illustrates that strongly coupled gauge theories might provide an
alternative to the Higgs mechanism of mass generaf®d556-282(96)00124-5

PACS numbss): 11.15.Ha, 11.10.Kk, 11.30.Rd

[. INTRODUCTION encouraging resul{s,4] a clarification of its renormalizabil-
ity properties remains a difficult task. Here we demonstrate
Strongly coupled gauge theories tend to break dynamithat in a simpler case, in two dimensions, these properties
cally chiral symmetry, but fermions which acquire masscan be investigated with remarkable clarity. Within the limits
through this mechanism are usually confined, as is the cagdf numerical accuracy, we find that theU ¢, model is
in the Schwinger model or in QCD. From the point of view renormalizable at strong gauge coupligg because it be-
of electroweak symmetry breaking in, or beyond the standaréPngs to the universality class of the two-dimensional chiral
model, a dynamical mass generation without fermion conGross-NeveuGN,) model withNg=2. .
finement is of interest. Such a situation arises in a class of T1he GN, model is known to generate fermion mass dy-

chiral symmetric strongly coupled gauge theories on the lat?@mically at arbitrarily weak four-fermion couplir@, to be
tice, in which the gauge charge of the fermion acquirmgnonperturbatlvely renormalizable, and asymptotically free.

mass dynamically is shielded by a scalar field of the samgnz (ij iFS Ia:trilce rﬁggtlarizzfitio_n?_ i_s; identical to thel gzlﬁ_z
charge[1]. The question is whether such models are renor—mg 13 2 'zn_o Ie th'lmll' 'toth |fn |n|fe gauge Igoup!ng,
malizable at strong gauge coupling, so that the lattice cutofﬁ_ a“g'=0. In this limit the four-fermion couplings is

can be removed, and the resulting field theory might be ap"Eln invertible functionG(«) of the hopping parametex of

. . . . the scalar fieldp (or, equivalently, of its bare mass the
Fggﬁlgg? ;ZZ?IZL;?S%;]‘ so, they would be an alternative tOXU ¢, model, withG(x)—0 ask— . The scaling behavior

; . . . associated with the asymptotic freedom, and the continuum
In this work we consider such a lattice model with1)) ymp

. . limit of the GN, model, are thus obtained as— .
chiral symmetry and vectorlike @) gauge symmetry, the " rpaqe are extremely useful facts when tigd, model is

xU ¢y model, ind=2 dimensions. It consists of a staggered;nestigated at a finite gauge coupling, i.e., at nonvanishing
fermion field x, a gauge field) e U(1) living on the lattice 5 The dea is to compare the scaling behavior of the
:mks r?f Ien_g;haﬂ?nd a corppk(ejx fscalgr f|?_I¢IdW|_t£_fro$en xU ¢, model with that of the GN model, ask grows at
err:gt [pl=1. ) € uncon 'lr,‘e er(rjnlohn 1eld 1 _f¢ r)]( fixed 5>0. For this purpose we introduce an effective four-
T ere 1S no Yukawa coupling, and the massy. of the o0 couplingG(B,G). This is now a coupling of the
fermion F arises dynamically. Because of fermion dOUbI'ng“composite” fermionsF= ¢y, and thus characterizes the

the fermion number ilx=2. ThexU ¢, model can be seen van der Waals forces arising from the fundamental interac-

either as a generalization of the Schwinger model with . N S )
Ne=2 by adding a charged scalar field, or as the tworjnons between the fields. AB=0 it coincides with the

dimensional(2D) scalar QED with added fermions. Similar GN, coupling, G(O’G.):.G' For 5>0, G is smaller than
models have been studied nearly 20 years ago in the conte%_' but depends o S|_m|IarIy aSG.(K)' For the comparison
of the instanton investigatior&]. itis therefore clonven'|ent to use m;tead ofx gs one argu-
The four-dimensionakU ¢, model, considered as a pos- ment of G. We investigate the scaling behaviorarin: with

sible theory with dynamical mass generation of unconfinedlecreasings(g,G) at various fixeds>0, and compare it
fermions[1], has been investigated recently. In spite of somewith the 5=0 case. _

A determination ofG(«,B) directly by means of the four-

point function of the composite field would be very expen-

“Electronic address: wfranzki@hlrz.kfa-juelich.de sive. Instead, we introduce it in an indirect way: we make the
Electronic address: jersak@physik.rwth-aachen.de assumption that the scaling behaviorai: in the yU ¢,
*Present address: AMS, Am Seestern 1, 4054gsBldorf. model at >0 is described by the truncated Schwinger-
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Dyson(SD) equations of the same structure agat0 in the free fermions, amp = 0

GN, model. The only change is the replacementGfby frozen boson fields

G(G,B). Our numerical study of thgU ¢, model at3>0

is mainly concerned with the verification of this assumption.
The use of the SD equations serves further purposes. One

0

= l
is to provide an analytic framework in which the numerical § 3 §
results obtained at small but nonzero bare fermion mass G « |z glg
amy can be related to the chiral limit cas@,=0, we are z ? o]}
actually interested in. Simulationsrat= 0 are too time con- g e Y &
suming on larger lattices, and the scaling behavior has to be °c T "] &

studied atamy>0 by varying bothG and amy. The SD
equations suggest how to vary both parameters simulta-
neously, approaching the critical poing=am,=0, and
how to extrapolate to the chiral limihy=0. We test this
strategy carefully ap=0, exploiting the knowledge of the
chiral limit there, and find it remarkably successful. Small ~ FIG. 1. Phase diagram of theU¢, model forme=0. The
deviations, not accounted for by the SD equations within thé(vell-un_derstood Ilmlt cases are des_c_rlbed. The das_hed line |r_1d|cates
used truncation scheme, and present at very saray, do a possible topological phase transition. The fermion masﬁ is

not influence the correct scaling behavior following from the "O"7€"© everywhere except on the bold-marked boundaries.
asymptotic freedom.

Further benefit of the use of SD equations is the control of Il. THE xU¢, MODEL AND ITS GN , LIMIT
the finite size effects. Following Ref5], we solve these The action of theyU ¢, model consists of three parts:
equations on lattices of the same sizes and boundary condi-
tions as those on which numerical data are obtained. This
allows a suitable choice of the data points in the parameter S,
space, as well as an extrapolation to the infinite volume limit.

Finally, the SD equations allow us to describe the pre-
asymptotic behavior of the data, obtained for correlationvhere
lengths limited by the lattice size, and to infer the genuine
scaling behavior for diverging correlation length. At=0, 1 2
we have verified that when the SD equations are used for the N _yt
extrapolation, then from those data tr?e correct scaling behav- S 22 2 U= Ui )
ior with G—0 is obtained.

We find that in theyU ¢, model with <1 the pre- +amOE YoXxs
asymptotic behavior, and thus presumably also the scaling X
behavior of the fermion massmg is described quite well by
the same SD equations as in the chiral GNodel, now with
G(B,G) replacingG. The same scaling behavior as in the
GN, model is indicated, wittG—0 asxk— .

On the basis of this evidence we suggest thatythies,
model belongs, along the critical line at=, to the same )
universality class as the GNmodel, and is thus nonpertur-
batively renormalizable. TheU ¢, model is therefore an Sy=— k2 21 (dxUx st H-C).
example of a renormalizable quantum field theory in which s
the fermion mass is generated dynamically at strong gauge

coupling by the shielded gauge mechanism suggested in Refiere x andx+ 4 denote lattice sites and their nearest neigh-
[1] bors, respectively, ang is a staggered fermion fieldy,,

In the following section we define theU ¢, model and  peing the usual phase factors. The link varialdgs, € U(1)
explain its relationship to the GNmodel at3=0. In Sec. llI represent a compact abelian gauge field with coupling

the phase diagram is described. The SD equations, and algg 1/a%g?, and ¢ is a complex scalar field with the con-
the determination of the effective four-fermion coupling graint| ¢, |=1. The fermion and scalar fields have the same
G(B,G) by means of their inversion, are discussed in Secynjt charge. The bare fermion masg, is introduced for

IV. In Sec. V we test these equations, and the accuracy of thg.chnical reasons, and we are interested in the lngit0,
determination ofG at =0. In Sec. VI we then apply the where the action has a global(1) chiral symmetry. The
same method of analysis to the data &om: at 0<B<1, phase diagram of this model is shown in Fig. 1.
demonstrate the applicability of the same SD equations as at |n the limit caseB=0, one can perform the Lee-Shrock
B=0 and determing5(3,G). The scaling behavior of the transformation{6], in which the scalar and gauge fields are
data is illustrated in Sec. VII. We conclude in Sec. VIII with integrated out and a four-fermion term appears. This leads to
some remarks about the meaning of our results. the action

Schwinger model with Ny =2
0 8 o)

oo 0

U¢:SX+SU+S¢1 (21)

su=ﬂ§ (1-ReUp),



54 TWO-DIMENSIONAL MODEL OF DYNAMICAL FERMION . .. 7743

Gl)=(1-1%)/4r%  r(x)=1,(2c)/1o(2x) We perform the hybrid Monte Carlo simulations on
o0 T T T T T T ] V=L2 lattices, with periodic and antiperiodic boundary con-
‘ ] ditions in first and secondi{=t) directions, respectively.
The fermion massamg is obtained from the gauge invariant
propagator ¢)T(Xx¢y)(_y) by inverting the fermion matrixvi
and calculating

0.35 [
0.30 [

025 [

© 020 | 1 ) )
: Pas(K)li=o=y| 2 X ™ p Myl ple (K o)y
0.15 [ \ X,y k=0
0.10 — (2.6)
0.05 — ] Here 7, denotes the usual momentum shifts in the Brillouin
S S S S S R zone. The masamg, and also the fermion renormalization
0 1 2 3 4 5 6 7 constantZ result from the fit in momentum space to
Tt TP (k) = 2 o hSink 2
' _fermi i r =7Z— , .
B_IBIG. 2. Relation between the four-fermion coupli@gand « at tP(ky) mﬁ 2.7

) wherel'; is the Golterman-Smit matrixI{,—) ag [8]. This
- procedure is chiral invariant.
S4f:_§x: 21 GXxXxXx+,uXx+,u.
=
Il. OTHER LIMIT CASES AND THE PHASE DIAGRAM
1 _ _
2 77x,u[XxXx+,u_Xx+,uXx]

a _
+ TmOZ XxXx s The schematic phase diagram fog=0 is shown in Fig.
X 1. At k=0, when the scalar field is decoupled, th& ¢,

(2.2 model with my=0 reduces to the lattice regularized
Schwinger model =2 QED) with Ng=2. As is well

with known, this model is anomaly free, confines fermions at all
5 B<x, and possesses only massive bosonic states. Thus
G=G(k)= 1-r (2.3 @M= as x—0. The continuum limit is expected at the
4r2 ' UV fixed point at 8=, and there is no critical point at
B<.

r being related toc by means of modified Bessel functions: At k=, both the scalar and the gauge fields are frdzen.
As is seen in the unitary gauge, the fermion field is decou-
~ 11(2k) pled andamg=am,. At amy=0, the linexk=% is thus a
= lo(2K)" critical line at which the fermion masamg vanishes. The
B=0 point of this line is the critical point of the GNmodel.
For my=0 the transformed actio(R.2) is that of the chiral In the limit 8=, when the gauge coupling vanishes, the
GN, model in a certain lattice regularization. Within the fermion field is decoupled again, amdnz=amy. Thus, in
uncertainty of interpretation of a continuum limit of stag- the chiral limit, the ling8= is a critical line with vanishing
gered fermions with a strong gauge coupling it can be posfermion mass, too. The scalar field variables can be seen as
sibly interpreted also as a lattice formulation of the Thirringspin variables, and the corresponding two-dimensiona} XY
model [7]. The GN, model has a critical point a&=0, model is known to have a topological phase transition at

(2.9

where the fermion mass vanishes @0 like k=K, "=0.56.
Let us now consider the inside of the phase diagram in
amgce” ™96, (2.9 Fig. 1. Old investigations suggest that the model possesses a

massive fermion in some parameter region accessible to the

The four-fermion couplings(«) is a function ofk shown  dilute instanton gaf2]. As follows from the convergence of
in Fig. 2. From the point of view of the scaling behavior the strong coupling expansion, at small nonvanishnghe
(2.5), the use ofG(«) as a parameter instead efis very  model should have the same properties a8-aD. This im-
convenient, and we therefore adopt such a reparametrizatigilies analyticity and nonvanishingmg for k<o at small
even atB>0. ThereG is not a four-fermion coupling any g.
more, it only replaces the hopping parametesiccording to The fate of the topological transition @=, asg gets
Eq.(2.3. Alsor, Eq.(2.4), will be understood as a function finite, is not completely clear. We have investigated numeri-
of G from now on, satisfying (G)—1 asG—0.

We note that the bare maasn,/r in the action(2.2) of
the GN, model is different from that of theU ¢, model This is meant in a sense avoiding the Mermin-Wagner-Coleman
(2.1), as the fieldy has been rescaled by in the course of  theorem: the limitc— o is taken before an external “magnetic”
the Lee-Shrock transformation. We uaen, of the yU ¢, field, required for a definition of the spontaneous symmetry break-
model, and the bare mass in the SD equations for the GNing, is switched off. We thank G. Roepstorff for a discussion on this
model is therefore slightl{s dependent at fixedmy. point.
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cally the spectrum of the model in the vicinity of the dashedare determined. If the terntb) in (4.1) is neglected, one
line shown in Fig. 1. This line is observable at lareas a  obtains the gap equation wifh, =1 andamg=N.

shallow dip in the masses of the scalar and vector bosons, In the infinite volume, wherF;=F,=F, and for small
which can be constructed from gauge invariant products oG, the approximate analytic solution of the SD equations is
the type U, , dx+ . Butamg shows no sensitivity when

the dashed line is crossed, and we have found no state, nei- N 2o _ 8GN n<2_N> .6
ther bosonic nor fermionic, indicating a vanishing of the r aF2 "\ wF)’ '
mass in lattice units on this line @<e. The dynamical

fermion mass generation @< is thus not influenced by 1 1

the remnant of the Kosterlitz-Thoules transition. Presumably, F= >t3 1+G. (4.7)

a critical behavior on this remnant, if any, appears only in
some topologically nontrivial observabld®]. The mass
amg stays finite, and the fermioR gets infinitely heavy in
physical units in any conceivable continuum limit taken on  The idea of the combined lim&—0 andamy,—0 is to
this line atg<<e. makeamy/r a function ofG in such a way that Eq4.6) is
We have checked that there is no indication of any othesolvable, and thaam,(G)—0 asG—0. We choose
phase transition, not even of some change of behavior of
some local observable, anywhere else in the phase diagram
of the YU ¢, model. Our data thus indicate that the fermion
massamg is nonzero for any finite8 and «. It decreases
when any of these parameters increases and one of thiing the approximate solutid@.?) for F. Heres is a free
boundaries bold-marked in Fig. 1 is approached. As in thgparameter obeying<9s=<1. For this choice oim, the so-
GN, model, the fermion mass generation takes place withouution of Eq. (4.6) is
spontaneous chiral symmetry breaking, which is forbidden

For my=0, one obtains the scaling behavigR.5 as
G—0.

amy(G,s)

Q) 4.9

T I 2
_ —wF“s/8G
= (1 S) 2 e ,

by the Mermin-Wagner-Coleman theorem. A continuum mF
e 5 . . . N= —e wF<s/8G (49)
limit taken on the lineB= might lead to an interesting 2 ' '
generalization of the Schwinger model in the continuum. In
this work, we concentrate on the scaling behavioraaf: and thus
when the linex=o is approached.
N =«
amp=—=—g 7F 580, (4.10
IV. SCHWINGER-DYSON EQUATIONS F 2

FOR THE GN , MODEL . . . .
The asymptotic scaling law along the lines of constaig

The Schwinger-Dyson(SD) equations for the fermion

propagator in a four-fermion theory, truncated af@(G), T asisG 411
can be represented graphically as ame= 2 € ' )
amg 1 412
® - - i.‘ + _.@._._ amp 1-s’ .
(@ ® where we have usedF —1 asG—0. Obviously, the ratio
mg/mg does not vanish except 8=1. For s<1, a con-
(4.1  tinuum GN, model with nonvanishing bare mass is obtained.
o _ We therefore distinguish between the chiral linmilg=0 for
On a finite lattice they reatsee, e.g.[5]) any a, and the statemertmy=0, which at a critical point
with amz=0 allowsa=0, mg/mgz#0.
_amyg 4GE N 5 It may appear strange that the scaling behafdot 1) de-
N= r(G) + V< > F2[sin(k,a)]?+N?’ 4.2 pends ors, i.e., on the path, though the same critical point is

2G2 F[sin(k,a)]?

=1+ .
Fu=1 >, F2[sin(k,a)]?+ N2

© V £

4.3

These are three coupled equations lfoand F, which we
solve numerically. Then

ame=N/F, (4.9
Z= ! 4
=E, (4.9

approached. But this is similar to the well-understood gen-
eral properties of critical end points in magnetic systems.
When in such systems the external fibldcorresponding to
amy/r) and the reduced temperatute(corresponding to
G) are varied simultaneously, the scaling behavior is de-
scribed by the equation of state

t
h=M5f(W). (4.13
For example, on curved paths
h=c-t?, p=<ps4, (4.14
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the scaling behavior ip dependent,
100

MoctP/d, (4.15

In our case the scaling is described by an essential singularity
instead of the power law Ed@4.15, but the dependence on
the path arises in a similar way. Needless to say, the SD
equations reproduce correctly the first coefficient of the £
function of the GN model with nonvanishing bare mass af
since the one-loop contribution is taken into account cor-
rectly.

The truncated SD equations cannot be expected to de- 10
scribe the data correctly at very smaling, because the con-
tributions of the neglected fermion loops increase with de- TN IR T W R B N I T
creasingam,. Then only the exponential scaling behavior, 5 to 15 20 25 30 35 40
Eq. (4.11), but not the value of the constant prefactor in Eq. e
(4.12), and thus of the rati®4.12), are predicted correctly. . )
We shall take this discrepancy into accpount by relying inyour _FIG. 3. The data foam at =0 for various fixeds compared

. =~ . with the predictions of the SD equations.
determination ofG in Sec. VI on the results at larger values
of amg (mostly am,=0.4). _ _ (4.8, and chosen such that the valueasf- predicted by the

An important step in our data analysis@t0 is the use gp equations satisfies
of the inverse SD equations. For a choggrs, andamy, the
fermion massamg, obtained on a certain lattice, is inserted 1 L
into the corresponding SD equatiof#s2) and(4.3) by using a_mF<Z' (5.7)

Eq. (4.4). The four-fermion coupling is considered as a free
parametell’. It is determined by solving the three equationsThis restriction turned out to be necessary in order to avoid a

S - SR
T

sl

(4.2) and (4.3, taken as equations determinifigandF , : finite size dependence both of the predicted and measured
values ofamg.
amp 4 amgF, In Fig. 3 we show the semilogarithmic plot of the data for

am':Ft:r(l“) * VEK > Fsin(k,a)]?+(amgF)?’ amg against 165, and compare them with the prediction of

(4.16  the SD equation$4.2) and(4.3) on the 32 and 64 lattices.
It demonstrates that the SD equations describe the data for
2r Fﬂ[sin(kﬂa)]2 smallers very well, and for largess, s=0.6,0.7, still quite
Fu=1+ VEk: > Fsink,a) ]2+ (ameF )2 well, though for theses the bare mass is very small. But one
o ’ ot (4.17 cannot see that the data are still far from the asymptotic
scaling behavior(4.11), and that the seemingly linear de-
The resulting values df can, in principle, depend on all the crease does not have the right slope. Also the size of the
parameters]'=I'(3,G,amy,V). error bars is barely visible on the logarithmic scale.
Therefore, in Fig. 4 we show the data as ratios

V. TEST OF THE SD EQUATIONS IN THE GN , LIMIT

=0.0
The aim of this section is to investigate how the known .5 . E. ——r ]
scaling behaviof2.5) of the GN, model can be confirmed 32* sf 057 1
by the data foramg obtained in numerical simulation of the .0 a 06 1
xUd¢, model at3=0. The fermion matrix inversion has x 05 ]
turned out to be very slow amy=0 on large lattices R . s e *.04 ]

(=32%), and the simulations have to be performed at finite
amy,. We have made several attempts to extrapolate tog
my=0 the values ofaimg obtained for severadm, at fixed

G. However, using, e.g., a power law, which is frequently C
applied in higher dimensions, we failed to reproduce reliably ~ 2°}
the values obtained by long simulations directlynaj=0. - s -
Apparently in two dimensions the approach to the chiral U Py S ompn e e ;

amg/am,

limit at a fixed distance from the critical point is more com- qo bt b b b L b L
5 10 15 20 25 30 35 40
plex. . /G
Therefore we have adopted the strategy of the combined
approach to the critical poirt=amy=0, in whichG and FIG. 4. The ratioame/am, at =0 for various fixeds com-

amg vary simultaneously, choosing the patiisconst, Eq.  pared with the SD equations on the 232s<0.5) and 64
(4.8), suggested by the SD equations. The chosen values @é=0.5) lattices(full lines), and the 1024 lattice (dotted lines.

s are s=0.2,0.3...,0.7. The simulations have been per- The dashed horizontal lines represent the expected asymptotic be-
formed at the values odm, and G satisfying the relation havior.
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r(8,G.mo,64%),  £=0.0 pared with the expected value of the couplidg0,G)=G.
020 T T T T A We observe that for a rather large bare masg,= 0.4, the
018 [ g gj 0:0.15 agreement is excellent. The fit(0,G,0.4V)=cGP gives,
016 [ g nom for V=322 and 64, results consistent witt=p=1 (see
0.14 [ T w006 Table ). o -
012 - R 1 00 For smalleram,, deviations ofl’ from the true coupling
' ] moos G are observable. Of course, these deviations are of the same
Coowr o origin as those in Figs. 3 and 4: they reflect the inaccuracy of
0.08 1 the SD equations for larges; and thus for smalleam,,. For
0.08 qr=ere? a quantitative comparison with the SD equations it is there-
004 F S eirind fore advantageous to perform simulations at not too small
002 I Je=0.90(a) amy. Nevertheless, even for smallam, the deviations re-
N S ]p=0.99(2) main small. The degree of agreement betwEeand G at
0 0.05 0.10 0.15 B=0 can serve gB8>0 as an estimate for the accuracy, with

¢ which one can determine the effective coupliég(,B,G)

from the values of'(8,G,am,,V) obtained by the inversion

FIG.5. Th I oF (B,G, ,V) obtained by the i i .
e values oF (8,G,amy,V) obtained by the inversion of the SD equations.

of the SD equations g8=0 for V=642. The full line representing
the fit by means of Eq6.2) to theamy= 0.4 data nearly coincides
with the diagonaldashedl line. VI. EFFECTIVE FOUR-FERMION COUPLING AT pB>0

The experience gained gt=0 makes it clear that also at
amg/amg plotted on the linear scale. The curves are the SDg>0 the simulations have to be performedaat,™>0, and
predictions for this ratio on the 82and 64 lattices (full  that on lattices of affordable sizes there is no chance to ob-
lines) and the 102%lattice (dotted line$, whereas the dashed serve the asymptotic scaling directly. Therefore, we investi-
horizontal lines represent the expected asymptotic scalingate the scaling behavior of the fermion mass: at 3>0
behavior, Eq.(4.12. The benefits of the SD equations be- by means of the following strategy.
come manifest: For smallerthe agreement with the data is (1) The conjecture that thgU ¢, model at3>0 belongs
within the tiny but now visible error bars. With increasing to the same universality class as the GiNodel suggests the
s the agreement gets worse, as expected for decreasinge of the same SD equations ag3at0 for the description
amy. Nevertheless, the SD equations still reproduce thef the nonasymptotic data fame. The only foreseen dif-
1/G dependence qualitatively. They predict the onset of finiteference is the value of the effective four-fermion coupling
size effects, manifested by a downward bend of the curvess (g, G), which is not any more a known functid®.3) of
These effects set on at largefGlon larger lattices. We have . ‘bt has to be determined from the data. A similar idea was
checked that the data not satisfying the restrictibrl) be-  yery syccessful in the earlier study of the universality class
have in a similar way. Furthermore, one can observe the ot the two-dimensional Yukawa modgL0].
apparent difference from the asymptotic scaling behavior () For each value oame, obtained at somg, G, and
(4.12, with an indication how this behavior would be slowly am, on a lattice of volumeV, we invert the SD equations
achieved on huge latticédotted lines. We find that the SD (4.16 and (4.17), obtainingl'(3,G,amy, V).
equations describe the data &% 0.5 long before the asymp- —(3) of course, in principle, the effective coupling should
totic scaling sets on. This allows us to extrapolate the datgg independent aim, andV. Because of the limited accu-
obtained on achievable lattices to larg&land to interpret 50y of the truncated SD equations, some dependence of
them as an evidence for the asymptotic scaliad.l) and I'(8,G,am,,V) onam, remains, however. On the basis of
(4.12, expected for the Ghimodel with nonzero bare mass. ihe observation that @=0 the values ol andG are con-

We expect that the discrepancies observed=ad.6 and  gjgient foram,=0.4, we assume that also@t-0 the values
0.7 are due to the truncation, and thus do not indicate anys é(ﬂ G) can be obtained for thiamy, and define

deviation from the asymptotic scaling. This is further sup-
ported by the observation that the agreement between the
data and the SD equations is improved even at lasgémwe
plot the data fomm:/amyZ, with Z measured by means of
the relation(2.7), and compare them with the SD equation . . .
using Eq.(4.5 (see Fig. 3 in Ref[12]). Because the mea- pendent, provided is suff|C|entI_y large.
sured values ofZ are consistent wittt—1 for G—0, as ~ (4) At egch p, we determine theG dependence of
follows also from Eq.(4.5), the asymptotic behavior is not G(8,G), which turns out to be consistent with a power law
changed, and we now see how it is approached even for -
largers. G(B.G)=c(B)GPP. (6.2

As a preparation for the studies gt0, it is illustrative _
to test, at3=0, also the inversion of the SD equations ac- (5 If G(,G) were known prior to the numerical calcu-
cording to Eqgs(4.16 and (4.17). The above data foamg lations ofamg at 8>0, one would choose the data points so
have been used as input to these equations, aridat in the @my,G) plane they lie on lines similar to Eg.
I'(0,G,amy,V) has been obtained by their numerical solu-(4.8), with G replaced byG(8,G). The same simple com-
tion. The results are shown in Fig. 5, where they are comparison with the expected scaling behaviérll), now with

G(B,G)=T(B,G,amy=0.4\). 6.1

This effective four-fermion coupling turns out to beinde-
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G(B,G), would then be possible. Without this knowledge, fit parametersc(B) and p(B). The indicated errors come
we have decided to acquire the data on the same lines dfom the Minuit fit for G(8,G) by means of Eq6.2). As the

constans, Eq.(4.8), as at3=0. As will be explained in the yajues of G(3,G) result from a data analysis in several
next section, one can then recalculate the predictions of thgeps, these errors are too naive. A more realistic error esti-
SD equations withG(B3,G) to the liness=const, and ob- mate might be the difference between the results dnadel
serve the approach to the scaling behavior, though these lings |attices a3=0, where we know that these results should

are now less suitable for this purpose. be consistent. This suggests the error sixesc=0.05 and
We have determineém at 8=0.2,0.3,0.5,0.7,1.0 on Ap/p=0.03.

the 3§Iattice fors=0.2, 0.3, 0.4, 0.5, and @=0.3 also on
the 64 lattice for s=0.4,0.5,0.6,0.7. The intervals of the . . I~
G andam, values have been chosen such that the fermioﬁem'w.e four-fermmn couplinds(f,G) by means of _the SD
mass is consistent with the requiremetl). As expected, equa.tlonns_ is sensible. In other words, qne can .fmd such a
the fermion massmg decreases with increasing at con- function G(B,G); that the data are consistent with the SD
stantG, because of the decreasing gauge coupling. equations wherG(3,G) is used as a coupling. Assuming
For 8>1 the massamg is measurable only in a small now that this is true also at small€& andamy, i.e., beyond
G interval below or in the vicinity of the dashed line in Fig. the intervals we could investigate, we can deduce the scaling
1. Nevertheless, one can see that is insensitive to this  behavior ofamg with 6(,3,(3) from these SD equations.

line. The power law dependend®.2) of G(3,G) on G is

_In Fig. 6 we show the results fol'(B,G,amp,V) at g estionable for very sma because of the singular behav-
B=0.3 ands=1. They cluster for eac along, or slightlly jor ot G=0. Kondo has investigated in the continuum a

below, a simple curve. This curve is the power law fit, Ed. ,,qe| quite similar to theU ¢, model, both ind=4 [7]

(6.2, to the values of5(3,G), determined according to Eq. angd=2[11]. Recently, he has obtaineddi-2, by solving
(6.1) atamy=0.4. The results for small@my, do not deviate the SD equations for the fulyU ¢, model, the effective
from this curve more than in thg=0 case(Fig. 5. For  ¢or fermion couplingG as a series i [11]. This would

Othlsi;sﬁ k;/yalrﬂzz r:rs]eo;etfllem;o?\: grvlg% ;)in;ilairc;ribe the data at contradict Eq.(6.2. We have checked that our results for
amy=0.4 very well. In Table | we present the results for theG can be described by a polynomial @ too, but the coef-

ficients of the higher powers @ are large and unstable, and

. such an analytic description is therefore not supported by our
TABLE I. The values of the parameters determining the effec-data in the studied range &f. Naturally, we cannot exclude

tive coupling G(5,G) by means of Eq(6.2. See the text for a ot for much smalles the power law holds. The depen-

discussion of the errors. ~ .
dence ofG on G for small G thus remains to be a very

These results demonstrate that the introduction of the ef-

32 642 interesting open question.
B c p c p
0.0 1.0387) 1.0164) 0.994) 0.992) VII. SCALING BEHAVIOR AT >0
0.2 0.7679) 0.9405) _ _ _ _
0.3 0.67%5) 0.9133) 0.621) 0.841) According to the results presented in the previous section,
05 0.5126) 0.8444) the SD equations witls replaced byG(3,G) describe the
0.7 0.4223) 0.8062) data forame for largeram, values. These equations also
1.0 0.3212) 0.7472) predict the behavior odm/amy as G andam, approach

zero along the lines
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(7.1 This is the same scaling behavior as in the SNodel with

in the (am,,G) plane. Along these lines the asymptotic scal-2Me=0, whenG is replaced byG. From Egs.(2.3), (2.4),

ing behavior is analogous to EG.11):

and(6.2) it follows that G(8,G) —0 ask—c. The success-
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ful analysis of the data foame at 5>0 by means of the SD  within the limits of a numerical approach, this model is de-
equations with G(B,G) is thus an indication that the scribed by the same SD equations as the chiral, Giddel
xU ¢, model at3>0 belongs to the same universality classwith couplingG replaced byG. The scaling behavior, when
as the GN model, when the critical linex=c is ap- G0, is thus the same as in the GNhodel in theG—0
proached. In the chiral limit, the scaling behavior predictedimit. This is an indication that theU ¢, model belongs to
by the SD equations witls(B3,G) is the universality class of the GNmodel.
I8 18eGP From this we tentatively conclude that th& ¢, model is
ame>e =€ , (7.3 nonperturbatively renormalizable and, though defined on the
to be compared with Eq2.5) at 8=0. lattice, possesses a well-defined continuum Iim_it. Itis t_hus an
Of course, our data with rather largen, andamg do not ~ €X@mPple of a strongly coupled gauge theory with continuous
show directly this asymptotic scaling, but only an approactfhiral symmetry, in which the fermion mass is generated
to it, as predicted by the SD equations. To illustrate this, indynamically and the massive fermions are not confined. At
Fig. 7 we compare the data obtained on lisesconst, Eq.  '€ast in two dimensions the shielded gauge mechanism of
(4.8), with the predictions for these lines of the SD equationsfermion mass generation, suggested in Ref, exists. The
with G(8,G). As in Fig. 4, we plot the ratiame /amy, and XY ¢2 model nicely illustrates this mechanism.
the full lines are the numerical solutions of the SD equations ©On the other hand, thgU#, model is presumably too
with G(8,G). As at =0, Fig. 4, we observe a very good Simple to provide useful hints how to approach ithe 4
agreement for smalles (largeramy), whereas at larges at ~ €@se. Our results suggest that the complexity of xhip,
least a qualitative behavior of the data is reproduced. model and the composite structure of the fermfom ¢'x
The data a3>0 have been taken on the lines 4.8, are effects not surviving the continuum limit. The possibility
which are not as convenient as the lines Bql) would be.  of describing the scaling properties in terms of the van der
Nevertheless, one can obtain the asymptotic behavior on th&aals force, represented by the effective four-fermion cou-
lines Eq.(4.9) as follows: comparing Eq$4.8) and(7.1) we  pling, shows that in the renormalized theory the inner struc-
eliminateam,, obtaining a relation between the pairs of pa-ture of the fermion, acquiring its mass dynamically, is irrel-

rameters G,s) and G, ), evant.
- The study of the renormalizability properties of the
(1—s)e (78C)s= (1 -§)e (78S, (7.4  strongly coupledyU ¢, model has been made relatively easy

) ] o ] ] in d=2 by its neighborhood to the well-understood &N
Using this relation in Eq(7.2) we obtain, for smallG (i.e.,  model. still, the applicability of the SD equations long be-
settingr=F ,=1), fore the onset of asymptotic scaling has been a surprise, even
in the GN, model. The use of these equations has been cru-

T 1-s
amg=- ﬁe*”’g@)s, (7.5  cial, since an asymptotic scaling behavior is evidently not
S(B.G.s) obtainable in numerical simulations, and a method of ex-
wheres is now understood as a functi@is, G, s). trapolation to the scaling limit and to the limit of chiral sym-

This functions(B,G,s) can be determined at eaghfrom metry is required. . .
the now knownG dependencé6.2) of G(B,G). We have A plausible explanation why theU$, model is well
observed that, for sma#, the values oF are nearly inde- described by the SD equations of the &Model might be as
pendent ofam,, and thus ofG. This explains why thes f0||OWSZ Integrating Ol_,lt t_he gauge aljd scalar fleld,_ one_ends
dependence of the data in Fig. 7 looks very similar to the”P With @ pure fermionic theory with many multifermion
G dependence of the data A0, Fig. 4, up to a, nearly f:ouphngs. Thgse fermlqns cor'respond to our fermﬂéngs
constant, factor (+s)/(1-73). This similarity is easily ob- N the 8=0 limit. The universality of multifermion couplings
servableg12], as no determination Gi(G,s) is required, and N d=2, observed, e.g., in the studies of ttie-2 Yukawa
thus constitutes a simpler comparisonaofi: in the yU¢,  model[10], suggests that the four-fermion coupling is domi-
model at3>0 with the predictions of the SD equations with nant and sufficient to describe the data.
G. Provided that the¢U ¢, model at3>0 really belongs to
The observed agreement between the nonasymptotic dat@e GN, universality class, the most interesting question left
and the SD equations of the GNhodel withG suggests that ©OPen is the dependence of the effective four-fermion cou-
also the asymptotic scaling behavior of thel ¢, model at  pling G onG and . We hope that our data f@(3,G) will
B>0 is described by these equations, and the model thustimulate its theoretical investigation.
belongs to the same universality class. But, of course, this is
only a conjecture, as the region investigated is limited by the
applicability of the truncated SD equations, as well as by the ACKNOWLEDGMENTS

constraints of a numerical approach. .
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