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Multiple-scale analysis of quantum systems

Carl M. Bender* and Luı́s M. A. Bettencourt
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
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Conventional weak-coupling Rayleigh-Schro¨dinger perturbation theory suffers from problems that arise
from resonant coupling of successive orders in the perturbation series. Multiple-scale analysis, a powerful and
sophisticated perturbative method that quantitatively analyzes characteristic physical behaviors occurring on
various length or time scales, avoids such problems by implicitly performing an infinite resummation of the
conventional perturbation series. Multiple-scale perturbation theory provides a good description of the classical
anharmonic oscillator. Here, it is extended to study~1! the Heisenberg operator equations of motion and~2! the
Schrödinger equation for the quantum anharmonic oscillator. In the former case, it leads to a system of coupled
operator differential equations, which is solved exactly. The solution provides an operator mass renormaliza-
tion of the theory. In the latter case, multiple-scale analysis elucidates the connection between weak-coupling
perturbative and semiclassical nonperturbative aspects of the wave function.@S0556-2821~96!00324-4#

PACS number~s!: 11.15.Bt, 02.30.Mv, 11.15.Tk
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I. INTRODUCTION

Multiple-scale perturbation theory~MSPT! is a powerful
and sophisticated perturbative technique for solving physi
problems having a small parametere @1–3#. This perturba-
tion method is generally useful for both linear and nonline
problems. In fact, it is so general that other well-known pe
turbative methods, such as WKB theory and boundary-la
theory, which are useful in more limited contexts, may
viewed as special cases of MSPT@1#.

The key idea underlying MSPT is that dynamical system
tend to exhibit distinct characteristic physical behaviors
different length or time scales. If a conventional perturbati
series is used to solve a problem, then there is often a re
nant coupling between successive orders of perturba
theory. This coupling gives rise tosecular termsin the per-
turbation series~terms that grow rapidly as functions of th
length or time variable!. These secular terms conflict with
physical requirements that the solution be finite. MSPTre-
organizesthe perturbation series to eliminate secular grow
and in doing so it gives a quantitative description of th
characteristic behaviors that occur at many scales. In the
MSPT has been used to solveclassicaldifferential equations
such as the equation of motion for the classical anharmo
oscillator. Indeed, the classical anharmonic oscillator is of
used to illustrate and explain the method of MSPT.

In this paper we generalize the ideas of MSPT to t
quantum anharmonic oscillator@4#. The quantum anhar-
monic oscillator is an excellent laboratory for the study of
variety of perturbative methods. It has been used to study
origin of the divergence of conventional weak-couplin
Rayleigh-Schro¨dinger perturbation theory@5#, Pade´ and
Borel summation of perturbation series@6#, large-order be-
havior of perturbation theory@7#, d expansions@8#, dimen-
sional expansions@9#, and strong-coupling expansions@10#.
Here, we use MSPT to study two aspects of the quant
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anharmonic oscillator, the Heisenberg operator equations of
motion in Secs. II and III and the Schro¨dinger equation in
Secs. IV and V. We illustrate the methods of MSPT in Sec.
II by applying it to the nonlinear dynamical equation of mo-
tion for the classical anharmonic oscillator~Duffing’s equa-
tion!. There, we obtain the first-order frequency shift. Then,
in Sec. III we extend the methods of MSPT to the nonlinear
Heisenberg equation for the quantum anharmonic oscillator
~the quantum version of Duffing’s equation!. To complete
the analysis it is necessary to solve a nonlinear system of
coupled operator differential equations. We find the exact
closed-form solution to this system. From this solution, we
obtain the quantum operator analogue of the frequency shift;
namely, an operator mass renormalization that expresses the
first-order shift of all energy levels.

In the next two sections we study the Schro¨dinger equa-
tion for the quantum anharmonic oscillator. Specifically, we
examine the asymptotic behavior of the wave function
c(x) for largex. We consider the problem of reconciling the
different results that one obtains from conventional
Rayleigh-Schro¨dinger perturbation theory~a formal Taylor
series in powers of a small parametere) and WKB theory~a
nonperturbative probe of the anharmonic oscillator that is
valid regardless of the size ofe). To any finite order in
conventional perturbation theory,c(x) behaves like a Gauss-
ian for large x; however, WKB theory predicts that as
x→` the wave function decays to zero like the exponential
of a cubic. In Sec. IV we resolve this discrepancy at two
different length scales by an infinite sequence of reorderings
and resummations of the conventional weak-coupling pertur-
bation series. In Sec. V we explain the origin of the disparity
by performing a direct multiple-scale analysis of the Schro¨-
dinger equation for the quantum anharmonic oscillator.

The approach used in this paper for the anharmonic oscil-
lator wave function has been applied in perturbative quantum
field theory to sum leading-logarithm divergences@11# and
leading infrared divergences@12#. It is our hope that in the
future the direct nonperturbative multivariate approach of
MSPT will provide a framework to simplify such schemes.
er-
7710 © 1996 The American Physical Society
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II. MULTIPLE-SCALE PERTURBATION THEORY
APPLIED TO THE CLASSICAL ANHARMONIC

OSCILLATOR

In this section we explain MSPT by using it to treat th
classical anharmonic oscillator, a dynamical system satis
ing the nonlinear differential equation

d2

dt2
y1y14ey350 ~e.0!, ~2.1!

which is known as Duffing’s equation. The positivity ofe
ensures that there are no unbounded runaway modes.
impose the initial conditions

y~0!51 and y8~0!50. ~2.2!

The harmonic oscillator (e50) has only one time scale
namely, the period of oscillation. However, the nonline
term in Eq.~2.1! introduces many time scales into the pro
lem. For example, wheneÞ0, one can observe on a long
time scale@ t5O(e21)# a frequency shift of ordere. One can
study the classical anharmonic oscillator on the short-ti
scalet and also on many long-time scalest5et, t15e2t,
t25e3t, and so on.

Let us first examine what happens if we attempt to so
Duffing’s equation using a conventional perturbation ser
in powers of the parametere,

y~ t !5 (
n50

`

enyn~ t !, ~2.3!

in which the initial conditions in Eq.~2.2! are contained as

y0~0!51 and y08~0!50,

yn~0!5yn8~0!50 ~n>1!. ~2.4!

Substitute Eq.~2.3! into Eq. ~2.1!. To leading order~zeroth
order in powers ofe), we have

d2

dt2
y01y050 ~2.5!

and to first order in powers ofe we have

d2

dt2
y11y1524y0

3 . ~2.6!

The solution to Eq.~2.5! satisfying the initial conditions
in Eq. ~2.4! is

y0~ t !5cost. ~2.7!

When we introduce this solution into Eq.~2.6!, we obtain

d2

dt2
y11y152cos~3t !23cost. ~2.8!

Equation~2.8! represents a forced harmonic oscillator who
driving term has frequencies 3 and 1. When a harmonic
e
fy-
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cillator is driven at its natural frequency, which in this case is
1, we have the phenomenon of resonance. As a result, the
solution

y1~ t !5
1

8
cos~3t !2

1

8
cost2

3

2
tsint ~2.9!

contains a secular term that grows linearly with increasing
time t. Equation~2.9! cannot be valid for long times because
the exact solution to Duffing’s equation remains bounded for
all t @1#. Hence, the conventional perturbation expansion is
sensible only for short timest!e21. How then does the
conventional perturbation series determine the behavior of
y(t) for long times, say of ordere21?

One way to answer this question is to identify the struc-
ture of the most secular~highest power int) term to all
orders in perturbation theory. One can easily verify@1# that
for all n the most secular term inyn(t) has the form

1

2

tn

n! F S 3i2 D neit1S 2
3i

2 D ne2 i t G . ~2.10!

Since the expression in Eq.~2.10! is multiplied byen, if we
make the approximation of retaining only the most secular
term in every order, then we obtain a series in powers of the
long-time variablet5et. Evidently, we can sum the most
secular terms in this series to all orders ine, and since the
result is a cosine function, it remains bounded for all times
t:

1

2(n50

`
entn

n! F S 3i2 D neit1S 2
3i

2 D ne2 i t G5cosF S 11
3

2
e D t G .

~2.11!

We interpret this result to mean that on the long-time scale
t there is afrequency shiftin the oscillator of order32 e. Of
course, this result is not exact; there are less secular terms to
all orders in the perturbation expansion, and these terms give
rise to frequency shifts of ordere2, e3, and so on.

We will now show how MSPT directly reproduces the
result in Eq.~2.11!. To avoid the complicated procedure of
summing the conventional perturbation series to all orders in
powers of e, MSPT uses a sophisticated perturbative ap-
proach that prevents secular terms from appearing in the per-
turbation expansion. Multiple-scale analysis assumesa priori
the existence of many time scales (t,t,t1 ,t2 , . . . ) in the
problem, which can be temporarily treated asindependent
variables. Here, we illustrate by performing just a first-order
calculation. We use only the two variablest andt5et and
seek a perturbative solution to Eq.~2.1! of the form

y~ t !5Y0~ t,t!1eY1~ t,t!1O~e2!. ~2.12!

Using the chain rule and the identity]t/]t5e, we con-
vert Eq.~2.1! to a sequence ofpartial differential equations
for the dependent variablesY0, Y1, . . . . The first two equa-

tions read

]2

]t2
Y01Y050, ~2.13!
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]2

]t2
Y11Y1524Y0

322
]2

]t]t
Y0 . ~2.14!

The general solution to Eq.~2.13! is

Y0~ t,t!5A~t!cost1B~t!sint, ~2.15!

whereA(t) andB(t) are as yet unknown functions oft. We
determine these functions by imposing the condition that
secular terms appear inY1. That is, we use the functiona
freedom in the choice ofA(t) and B(t) to eliminate the
resonant coupling between zeroth and first order in pertur
tion theory. We substituteY0(t,t) in Eq. ~2.15! into the right
side of Eq.~2.14! and expand the resulting expression usi
the trigonometric identities

cos3t5
1

4
cos~3t !1

3

4
cost,

sin3t52
1

4
sin~3t !1

3

4
sint,

cos2t sint5
1

4
sin~3t !1

1

4
sint,

sin2t cost52
1

4
cos~3t !1

1

4
cost. ~2.16!

To eliminate secularity we require that the coefficient
cost and sint vanish. This gives the pair of equations

2
dB

dt
523A323AB2

and

2
dA

dt
53B313A2B. ~2.17!

To solve this system we multiply the first equation b
B(t) and the second equation byA(t). Adding the resulting
equations gives

d

dt
C~t!50, ~2.18!

where

C~t!5
1

2
@A~t!#21

1

2
@B~t!#2. ~2.19!

Hence C(t) is independent oft and we may take
C(t)5C(0).

Substituting this result back into Eq.~2.17! gives the el-
ementary linear system

d

dt
B523C~0!A and

d

dt
A53C~0!B. ~2.20!

When we solve this system and then impose the initial co

ditions, we obtainC(0)5 1
2 and
no
l

ba-

ng

of

y

n-

Y0~ t,t!5cosF S 11
3

2
e D t G , ~2.21!

where we have usedt5et. We have thus reproduced the
approximate solution in Eq.~2.11! that is valid for long
times. Note that while conventional perturbation theory is
only valid for t!e21, the multiple-scale solution is valid for
times satisfyingt!e22. This multivariate approach can, in
principle, be performed tonth order in powers ofe for any
n.

III. MULTIPLE-SCALE PERTURBATION THEORY
APPLIED TO THE QUANTUM ANHARMONIC

OSCILLATOR

In this section we extend the multiple-scale approach de-
scribed in Sec. II to the quantum anharmonic oscillator. This
is a nontrivial generalization of the usual multiple-scale tech-
niques because it requires that we solveoperatordifferential
equations@13#.

The quantum anharmonic oscillator is defined by the
Hamiltonian@14#

H~p,q!5
1

2
p21

1

2
q21eq4 ~e.0!, ~3.1!

wherep andq are operators satisfying the canonical equal-
time commutation relation

@q~ t !,p~ t !#5 i\. ~3.2!

The positivity ofe ensures thatH(p,q) is bounded below.
The Heisenberg operator equations of motion are

d

dt
q5

1

i\
@q,H~p,q!#5p, ~3.3!

d

dt
p5

1

i\
@p,H~p,q!#52q~ t !24e@q~ t !#3. ~3.4!

These equations combine to give

d2

dt2
q~ t !1q~ t !14e@q~ t !#350, ~3.5!

which is the quantum analog of Duffing’s classical differen-
tial equation~2.1!. Since p(t) and q(t) are operators, we
cannot impose numerical initial conditions like those in Eq.
~2.2!; rather, we enforce a general operator initial condition
at t50:

q~0!5q0 and p~0!5p0 . ~3.6!

Here,p0 andq0 are fundamental time-independent operators
obeying the Heisenberg algebra

@q0 ,p0#5 i\. ~3.7!

Rather than seeking a solution to Eq.~3.5! as a conven-
tional perturbation series in powers ofe, we perform a
multiple-scale analysis. We assume thatq(t) exhibits char-
acteristic behavior on the short-time scalet and on the long-
time scalet5et and we write
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q~ t !5Q~ t,t!5Q0~ t,t!1eQ1~ t,t!1O~e2!. ~3.8!

This equation is analogous to Eq.~2.12! but hereQ0 and
Q1 areoperator-valuedfunctions.

There is an associated expression for the momentum
eratorp(t):

p~ t !5P0~ t,t!1eP1~ t,t!1O~e2!. ~3.9!

Furthermore, since the momentum operator is the time
rivative of the position operator@see Eq.~3.3!#, the chain rule
gives

p~ t !5
]

]t
Q01eS ]

]t
Q01

]

]t
Q1D1O~e2!. ~3.10!

We substitute the expression forq(t) in Eq. ~3.8! into Eq.
~3.5!, collect the coefficients ofe0 ande1, and obtain opera-
tor differential equations analogous to Eqs.~2.13! and~2.14!:

]2

]t2
Q01Q050, ~3.11!

]2

]t2
Q11Q1524Q0

322
]2

]t]t
Q0 . ~3.12!

Because Eq.~3.11! is linear it is easy to find its genera
solution:

Q0~ t,t!5A~t!cost1B~t!sint, ~3.13!

from this result we obtain

P0~ t,t!5B~t!cost2A~t!sint. ~3.14!

It is now necessary to find the coefficient function
A(t) andB(t), which are operators. The canonical comm
tation relations in Eq.~3.2! imply that these operators mus
satisfy

@A~t!,B~t!#5 i\. ~3.15!

Also, the initial conditions in Eq.~3.6! give

A~0!5q0 and B~0!5p0 . ~3.16!

To determine thet dependence of the functionsA(t) and
B(t), we must eliminate secular behavior. To do so we e
amine the right side of Eq.~3.12!, which is

24@A~t!cost1B~t!sint#3

22F2
d

dt
A~t!sint1

d

dt
B~t!cost G . ~3.17!

Next, we expand the cubic term, taking care to preserve
order of operator multiplication, and we use the trigonom
ric identities in Eq.~2.16!. We eliminate secularity by setting
the coefficients of cost and sint to zero and obtain

2
dB
dt

523A32BAB2BBA2ABB

and
op-

de-

l

s
u-
t

x-

the
et-

2
dA
dt

53B31ABA1AAB1BAA. ~3.18!

This system of operator-valued differential equations is the
quantum analog of Eq.~2.17!.

To solve the system~3.18! we begin by multiplying the
first equation on the left and on the right byB(t) and the
second equation on the left and on the right byA(t). Adding
the resulting four equations and simplifying, we get

d

dt
H50, ~3.19!

where

H[
1

2
A21

1

2
B2. ~3.20!

Equation~3.19! is the quantum analog ofdC/dt50 in Eq.
~2.18!. By construction, the operatorH is independent of the
short-time variablet. However, Eq.~3.19! shows thatH is
also independent of the long-time variablet. Therefore, Eq.
~3.16! allows us to expressH in terms of the fundamental
operatorsp0 andq0:

H5
1

2
p0
21

1

2
q0
2 . ~3.21!

Next we use Eq.~3.15! to rewrite Eq.~3.18! in manifestly
Hermitian form:

d

dt
B52

3

2
~HA1AH!

and

d

dt
A5

3

2
~HB1BH!. ~3.22!

Suppose for a moment that we could replaceH by the
numerical constantC(0). Wewould then obtain the elemen-
tary classical system of coupled differential equations in Eq.
~2.20!. Because this system islinear we could treat these
operator differential equations classically and ignore opera-
tor ordering. The solution to this system that satisfies the
initial conditions in Eq.~3.16! would then be

A~t!5q0cos@3C~0!t#1p0sin@3C~0!t#

and

B~t!5p0cos@3C~0!t#2q0sin@3C~0!t#. ~3.23!

This solution suggests the structure of the exact solution
to theoperatordifferential equation system~3.22!. The for-
mal solution is a natural quantum operator generalization of
Eq. ~3.23! using Weyl ordered products of operators:

A~t!5W@q0cos~3Ht!#1W@p0sin~3Ht!#,

B~t!5W@p0cos~3Ht!#2W@q0sin~3Ht!#. ~3.24!
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The notationW@q0f (Ht)# represents an operator orderin
defined as follows: First, expand the functionf (Ht) as a
Taylor series in powers of the operatorHt. Then Weyl order
the Taylor series term by term:

W~q0Hn![
1

2n
@~0

n!q0Hn1~1
n!Hq0Hn21

1~2
n!H2q0Hn221•••1~n

n!Hnq0#.

~3.25!

Using this definition it is straightforward to verify that Eq
~3.24! is indeed theexact operator solutionto Eq. ~3.22!
satisfying the initial conditions in Eq.~3.16!.

Our objective is now to simplify the formal solution in
Eq. ~3.24! and to reexpress it in closed form. Since sines a
cosines are linear combinations of exponential functions,
consider first the general problem of simplifying the Wey
ordered product

W~q0e
Ht!5WFq0S 11Ht1

1

2!
~Ht!21

1

3!
~Ht!3

1••• D G . ~3.26!

For each power oft we reorder the operators by commutin
q0 symmetrically to the left and to the right to maintain th
Hermitian form

W~q0!5q05
1

2
~q01q0!,

W~q0H!5
1

2
~q0H1Hq0!5

\

2S q0H\ 1
H
\
q0D ,

W~q0H2!5
1

4
~q0H212Hq0H1H2q0!

5
\2

2 Fq0SH2

\2 2
1

4D1SH2

\2 2
1

4Dq0G ,
W~q0H3!5

1

8
~q0H313Hq0H213H2q0H1H3q0!

5
\3

2 Fq0SH3

\3 2
3

4

H
\ D1SH3

\3 2
3

4

H
\ Dq0G ,

W~q0H4!5
1

16
~q0H414Hq0H316H2q0H2

14H3q0H1H4q0!

5
\4

2 Fq0SH4

\4 2
3

2

H2

\2 1
5

16D
1SH4

\4 2
3

2

H2

\2 1
5

16Dq0G , ~3.27!

and so on. This process defines a set of polynomials in
variableH/\ @15#:
g

.

nd
we
l-

g
e

the

1,

H
\
,
H2

\2 2
1

4
,

H3

\3 2
3

4

H
\
,

H4

\4 2
3

2

H2

\2 1
5

16
,

H5

\5 2
5

2

H3

\3 1
25

16

H
\
,

H6

\6 2
15

4

H4

\4 1
75

16

H2

\2 2
61

64
. ~3.28!

We identify these polynomials as Euler polynomials@16# in

which the argument is shifted by 1/2:En(5H/\1 1
2). The

generating function for these nonorthogonal polynomials is
given by

2e~H/\ 1 1/2!t

et11
5 (

n50

`
tn

n!
EnSH\ 1

1

2D ~ utu,p!.

~3.29!

This generating function allows us to express the following
Weyl-ordered product compactly:

W~q0e
Ht!5

q0e
Ht1eHtq0

2cosh~t\/2!
. ~3.30!

Using Eq. ~3.30! the cosines and sines of our quantum
solution in Eq.~3.24! can also be written in compact form
when we take combinations of complex exponentials:

W@q0cos~3Ht!#5
q0cos~3Ht!1cos~3Ht!q0

2cos~3t\/2!
,

W@q0sin~3Ht!#5
q0sin~3Ht!1sin~3Ht!q0

2cos~3t\/2!
.

~3.31!

Last, we substitute this result into the zeroth-order solu-
tion in Eq. ~3.13! and obtain

Q0~ t,t!5
q0cos~ t13Ht!1cos~ t13Ht!q0

2cos~3t\/2!

1
p0sin~ t13Ht!1sin~ t13Ht!p0

2cos~3t\/2!

5
q0cos~ t13Het !1cos~ t13Het !q0

2cos~3et\/2!

1
p0sin~ t13Het !1sin~ t13Het !p0

2cos~3et\/2!
,

~3.32!
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where we have replacedt by et. The result in Eq.~3.32! is
the objective of our multiple-scale analysis. It is the quant
operator analog of Eq.~2.21!. Indeed, in the limit as\→0,
we recover the classical multiple-scale approximation in
~2.21!. @To obtain this result we impose the classical init
conditions p050 and q051, which from Eq. ~3.2! give

H5 1
2.#

We interpret this multiple-scale approximation to the o
erator q as follows: In the classical case we identify t
coefficient of the time variablet as a first-order approxima
tion to the frequency shift. However, here the coefficient
t in Eq. ~3.32! is an operator. Thus, we have derived a
operator form of mass renormalization.

To understand this operator mass renormalization
must take the expectation value of Eq.~3.32! between states
um

Eq.
ial

p-
he
-
of
n

we
.

Then by examining the time dependence of this matrix ele
ment we can read off the energy-level differences of the
quantum system. It is easy to construct a set of states becau
the operatorsq0 and p0 satisfy the commutation relation
~3.7!. Hence, appropriate linear combinations ofq0 and p0
may be used as raising and lowering operators to generate
Fock space consisting of the statesun&. By construction,
these states are eigenstates of the operatorH:

Hun&5S n1
1

2D\un&. ~3.33!

Let us take the expectation value of Eq.~3.32! between
the stateŝn21u and un&. Allowing the operatorH to act to
the left and the right using Eq.~3.33!, we obtain
^n21uQ0un&5^n21uq0un&
cos@ t13~n1 1

2 !\et#1cos@ t13~n2 1
2 !\et#

2cos~3et\/2!

1^n21up0un&
sin@ t13~n1 1

2 !\et#1sin@ t13~n2 1
2 !\et#

2cos~3et\/2!

5^n21uq0un&cos@ t~113n\e!#1^n21up0un&sin@ t~113n\e!#, ~3.34!
-

and we can see that the energy-level differences of the qu
tum oscillator are 113n\e.

Let us verify this result. If we sete50 in Eq. ~3.1!, we
obtain the harmonic oscillator, whose coordinate-spa
eigenfunctionscn(x) and corresponding energy eigenvalu
En are

cn~x!5e2~1/4!x2Hen~x! and En5n1
1

2
, ~3.35!

where Hen(x) represents the Hermite polynomial. The firs
order perturbative correction to the energy eigenvalues is
tained by computing the expectation value of the perturb
tion term in the HamiltonianH:

En5n1
1

2
1

e\

4

*2`
` dxe2~1/2!x2@Hen~x!#2x4

*2`
` dxe2~1/2!x2@Hen~x!#2

5n1
1

2
1
3

4
e\~2n212n11!1O~e2!. ~3.36!

If we now calculate the energy differenceEn2En21 from
Eq. ~3.36!, we obtain

En2En215113n\e1O~e2!, ~3.37!

which verifies the result in Eq.~3.34!.
an-

ce
es

t-
ob-
a-

IV. RESUMMATION OF THE CONVENTIONAL
PERTURBATION SERIES FOR THE QUANTUM

ANHARMONIC OSCILLATOR

Now we turn our attention from the Heisenberg equations
of motion to the Schro¨dinger equation and examine the be-
havior of the wave function. The ground-state wave function
c(x) for the quantum anharmonic oscillator satisfies the
Schrödinger equation

S 2
d2

dx2
1
1

4
x21

1

4
ex42E~e! Dc~x!50 ~4.1!

and obeys the boundary conditions

c~6`!50. ~4.2!

We can use WKB analysis to find the large-x asymptotic
behavior of the wave functionc(x). A geometrical-optics
approximation gives the controlling factor~the exponential
component of the leading asymptotic behavior! as

e2Aeuxu3/6. ~4.3!

This result is nonperturbative in the sense that WKB is valid
independent of the size of the parametere. The question
addressed in this section is whether it is possible to repro
duce this result using perturbation theory.

The conventional approach to solving Eq.~4.1! using
Rayleigh-Schro¨dinger perturbation theory@5,7# represents
both the eigenfunction and eigenvalue as power series ine:
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c~x!; (
n50

`

enyn~x! and E~e!; (
n50

`

enEn . ~4.4!

Note that we use the asymptotic symbol; because, as is
well known, the conventional perturbation series for the a
harmonic oscillator diverges.

Equations~4.1! and~4.2! are homogeneous, so we are fre
to adopt the normalization conditionc(0)51, which trans-
lates into

y0~0!51 and yn~0!50 ~n.0!. ~4.5!

The unperturbed~harmonic-oscillator! solutions corre-
sponding toe50 are

y0~x!5e2x2/4 and E05
1

2
. ~4.6!

In Ref. @5# it is shown that for alln, yn(x) is a product of
the zeroth-order approximation to the wave functiony0(x)
given in Eq.~4.6! multiplied by a polynomialPn(x):
n-

e

yn5e2x2/4Pn~x!. ~4.7!

Substituting Eq.~4.7! into Eq. ~4.1!, we obtain the recursion
formula for the polynomials:

Pn9~x!2xPn8~x!5
1

4
x4Pn21~x!2 (

j50

n21

Pj~x!En2 j .

~4.8!

The form of this recursion relation is generic. It is a typical
recursive structure that arises in all perturbative calculations;
to wit, the homogeneous part of this recursion relation is the
same for alln while the inhomogeneous part contains all
previous polynomials. It is this kind of recursive structure
that is responsible for successive orders of perturbation
theory being resonantly coupled. Here, the resonant coupling
causes the degree of the polynomials to grow withn;
Pn(x) is a polynomial of degree 2n in the variablex2:
P0~x!51,

P1~x!52
3

2 S x2D
2

2S x2D
4

,

P2~x!5
21

4 S x2D
2

1
31

8 S x2D
4

1
13

6 S x2D
6

1
1

2 S x2D
8

,

P3~x!52
333

8 S x2D
2

2
243

8 S x2D
4

2
271

16 S x2D
6

2
47

8 S x2D
8

2
17

12S x2D
10

2
1

6 S x2D
12

,

P4~x!5
30 885

64 S x2D
2

1
2777

8 S x2D
4

1
18 461

96 S x2D
6

1
9195

128 S x2D
8

1
979

48 S x2D
10

1
599

144S x2D
12

1
7

12S x2D
14

1
1

24S x2D
16

,

P5~x!52
916 731

128 S x2D
2

2
651 363

128 S x2D
4

2
89 673

32 S x2D
6

2
69 107

64 S x2D
8

2
250 183

768 S x2D
10

2
29 177

384 S x2D
12

2
1325

96 S x2D
14

2
269

144S x2D
16

2
25

144S x2D
18

2
1

120S x2D
20

,

P6~x!5
65 518 401

512 S x2D
2

1
23 046 319

256 S x2D
4

1
75 770 813

1536 S x2D
6

1
2 476 011

128 S x2D
8

1
9 259 481

1536 S x2D
10

1
13 796 435

9216 S x2D
12

1
77 173

256 S x2D
14

1
112 483

2304 S x2D
16

1
4055

648 S x2D
18

1
349

576S x2D
20

1
29

720S x2D
22

1
1

720S x2D
24

. ~4.9!
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For n.0 the general form of the polynomial is

Pn~x!5 (
k51

2n

Cn,kS 2
1

2
x2D k. ~4.10!

Note that by virtue of Eq.~4.5! the polynomialsPn(x) have
no constant term whenn.0.

We can derive a formula forEn and a recursion relation
for the coefficientsCn,k by substituting Eq.~4.10! into Eq.
~4.8! to obtain, forn.0,

Cn,15En ,

2kCn,k1Cn21,k2252~k11!~2k11!Cn,k11

1 (
j51

n21

Cj ,kCn2 j ,1 . ~4.11!

The coefficientsCn,k form a triangular array in the sens
that the degree of the polynomials increases withn. The
convolution in Eq. ~4.11! makes this recursion relation
highly nontrivial. However, for alln it is possible to find
Cn,2n , the coefficient of thehighest powerof x. This is an
exact analog of finding the coefficient of the highest pow
of t ~most secular term! in nth order in perturbation theory
for the classical anharmonic oscillator. By settingk52n in
Eq. ~4.11!, we see thatCn,2n satisfies the simple linear recur
sion relation

4nCn,2n1Cn21,2n2250, ~4.12!

whose solution is

Cn,2n5S 2
1

4D
n 1

n!
. ~4.13!

To study the behavior of the wave functionc(x) for large
x, we approximatec(x) by resumming the perturbation se
ries in Eq.~4.4! and keeping just thehighest powerof x in
every order. Using Eq.~4.13! we obtain a simple exponentia
approximation toc(x):

(
n50

`

ene2x2/4
~21!n

n!16n
x4n5e2x2/4e2ex4/16. ~4.14!

For the classical anharmonic oscillator this approach a
gives an exponential approximation@see Eq.~2.11!#. How-
e

er

-

-

l

lso

ever, the classical and quantum anharmonic oscillators are
evidently quite different; although we have summed the most
secular terms to all orders in perturbation theory, the result in
Eq. ~4.14! is not the correct behavior of the wave function
c(x) for largex because it decays to zero too rapidly. The
correct behavior from WKB theory is an exponential of a
cubic @see Eq.~4.3!# and not an exponential of a quartic.

Can we improve our estimate ofc(x) by including
Cn,2n21, the coefficient of thenext highest powerof x, in our
summation? This coefficient satisfies the inhomogeneous dif-
ference equation obtained by settingk52n21 in Eq.~4.11!:

~4n22!Cn,2n211Cn21,2n23522n~4n21!Cn,2n

522n~4n21!S 2
1

4D
n 1

n!
.

~4.15!

The solution to this inhomogeneous equation is

Cn,2n2152S 2
1

4D
n 1

n!

n

3
~4n15!. ~4.16!

If we include this formula in the resummation to all orders,
we obtain the result in Eq.~4.14! now multiplied by a poly-
nomial:

e2x2/4e2ex4/16S 12
3

8
ex21

1

96
e2x6D . ~4.17!

We have again failed to obtain the correct large-x behav-
ior of c(x). Nevertheless, let us continue to reorganize the
perturbation series. Settingk52n22 in Eq. ~4.11!, we get

~4n24!Cn,2n221Cn21,2n2452~2n21!~4n23!Cn,2n21

1
3

4
Cn21,2n22 , ~4.18!

whose solution is

Cn,2n225S 2
1

4D
n 1

n!

n~n21!

18
~16n2164n187!.

~4.19!

The next few coefficients are
Cn,2n2352S 2
1

4D
n 1

n!

n~n21!

162
~64n41400n31764n22433n1390!, ~4.20!

Cn,2n245S 2
1

4D
n 1

n!

n~n21!~n22!

1944
~256n512816n4111 744n3118 304n2134 209n170 029!,
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Cn,2n2552S 2
1

4D
n 1

n!

n~n21!~n22!

29 160
~1024n7114 592n6174 368n51106 080n4145 316n3

1143 073n222 392 803n13 967 380!,

Cn,2n265S 2
1

4D
n 1

n!

n~n21!~n22!~n23!

524 880
~4096n8186 016n71718 080n6

12 799 360n516 702 384n4116 486 704n3

116 745 975n21180 087 585n1415 966 860!.

Evidently, the coefficientCn,2n2 j has the general form of a polynomial inn of degree 2j multiplied by (24)2n/n!.
When we sum these coefficients to all orders, we obtain a totally new sequence of polynomials~displayed below in square

brackets! in the variableex4:

e2x2/4e2ex4/16H 11F2
3

2
eS x2D

2

1
2

3
e2S x2D

6G1F318 e2S x2D
4

22e3S x2D
8

1
2

9
e4S x2D

12G
1F214 e2S x2D

2

2
187

16
e3S x2D

6

1
73

12
e4S x2D

10

2e5S x2D
14

1
4

81
e6S x2D

18G1F2
243

8
e3S x2D

4

1
5307

128
e4S x2D

8

2
58

3
e5S x2D

12

1
133

36
e6S x2D

16

2
8

27
e7S x2D

20

1
2

243
e8S x2D

24G1F2
333

8
e3S x2D

2

1
14 465

96
e4S x2D

6

2
39 493

256
e5S x2D

10

1
12 463

192
e6S x2D

14

2
313

24
e7S x2D

18

1
211

162
e8S x2D

22

2
5

81
e9S x2D

26

1
4

3645
e10S x2D

30G
1F27778

e4S x2D
4

2
46 891

64
e5S x2D

8

1
5 444 579

9216
e6S x2D

12

2
14 497

64
e7S x2D

16

1
79 357

1728
e8S x2D

20

2
833

162
e9S x2D

24

1
307

972
e10S x2D

28

2
4

405
e11S x2D

32

1
4

32 805
e12S x2D

36G1•••J . ~4.21!

The original form of the perturbation series in Eqs.~4.4! and ~4.7! has undergone a remarkable transmutation. The original
polynomialsPn(x) have been absorbed and the wave functionc(x) is now represented as a more elaborate exponential
multiplying a new class of polynomials.@We can, of course, generate these polynomials directly from the Schro¨dinger equation
~4.1! using a recursion relation similar to that in Eq.~4.8!.#

Let us perform a further resummation procedure. That is, for this new set of polynomials we determine the coefficient of
highest power ofx,

S 23D
nS x2D

6n 1

n!
e2n, ~4.22!

the coefficient of the second-highest power ofx,

2
9

4 S 23D
nS x2D

6n24 1

n!
e2n21n2, ~4.23!

the coefficient of the third-highest power ofx,

9

32S 23D
nS x2D

6n28 1

n!
e2n22n~n21!~9n223n11!, ~4.24!

the coefficient of the fourth-highest power ofx,

2
27

128S 23D
nS x2D

6n212 1

n!
e2n23n~n21!~n22!~9n329n217n14!, ~4.25!

and so on.
Having discovered these formulas we can now sum overn. This further reorganization of the perturbation series gives a

newapproximation toc(x) as an exponential multiplied by yet another set of polynomials, this time in the variablee2x6:
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e2x2/4e2ex4/16ee2x6/96H 12F32eS x2D
2

1e3S x2D
8G1F318 e2S x2D

4

1
7

2
e4S x2D

10

1
1

2
e6S x2D

16G
2F18716 e3S x2D

6

1
277

24
e5S x2D

12

1
11

4
e7S x2D

18

1
1

6
e9S x2D

24G1•••J . ~4.26!

For these new polynomials the term containing the highest power ofx has the form

~21!nS x2D
8n 1

n!
e3n, ~4.27!

and the term containing the second-highest power ofx has the form

1

2
~21!nS x2D

8n26 1

n!
e3n22n~4n21!. ~4.28!

Again, we reorganize the perturbation series by summing over alln. This resummation gives yet another representation fo
c(x) as an exponential multiplied by a new set of polynomials, this time in the variablee3x8:

e2x2/4e2ex4/16ee2x6/96e2e3x8/256H 11F2
3

2
eS x2D

2

12e4S x2D
10G1•••J . ~4.29!
For these polynomials we identify the term containing t
highest power ofx,

2nS x2D
10n 1

n!
e4n, ~4.30!

and we reorganize the perturbation series again by summ
over alln. This resummation gives a new exponential and
new set of polynomials, this time in the variablee4x10:

e2x2/4e2ex4/16ee2x6/96e2e3x8/256ee4x10/512$11•••%.
~4.31!

We can continue this process indefinitely. With each
erative reorganization of the perturbation series we gene
a new exponential multiplied by new polynomials. Howeve
we have not attained our original goal of deriving the exp
nential behavior in Eq.~4.3! from the weak-coupling pertur-
bation series in powers ofe. Indeed, it seems impossible fo
our approach to succeed because at each stage in the re
nization of the perturbation series the variablex appears only
in evenpowers. How can we ever obtain the exponential o
cubic?

There is a simple and direct answer to this question.
merely recognize that the exponent in Eq.~4.31! is the be-
ginning of a binomial series:

2
x2

4
2

1

16
ex41

1

96
e2x62

1

256
e3x81

1

512
e4x101•••

5
1

6e
@12~11ex2!3/2#. ~4.32!

If we now letx be large (ex2@1), we recover the asymptotic
behavior in Eq.~4.3!:
he

ing
a

it-
rate
r,
o-

r
orga-

f a

We

expH 1

6e
@12~11ex2!3/2#J ;e2Aeuxu3/6 ~ uxu→`!.

~4.33!

Let us examine more deeply what happens at each reor-
ganization of the perturbation series. At the first resumma-
tion we sum over terms of the formenx4n and treatex4 as
small. Thus, whilex may be large compared with 1, it cannot
be too large;x must satisfy the asymptotic boundx!e21/4.
At the next reorganization we sum over terms of the form
e2nx6n and treate2x6 as small. This resummation is valid in
the larger regionx!e21/3. At the next level we sum over
terms of the forme3nx8n and treate3x8 as small. Hence, this
resummation is valid in a still larger region,x!e23/8. At the
j th iteration the range ofx increases tox!e j /(2 j12).
Clearly, asj→`, we obtain an estimate of the wave function
c(x) that is valid forx as large ase21/2. It is only whenx is
this large that theex4 term in the Schro¨dinger equation~4.1!
becomes comparable in size to thex2 term. Thus, after a
finite number of reorderings of the perturbation series, we
cannot expect to reproduce exactly the exponential behavior
in Eq. ~4.3!.

Nevertheless, at each stage of the resummation process
we observe precursors of the exponential behavior in Eq.
~4.3!. To demonstrate this, we examine the structure of the
exponent in Eq.~4.31!, in which we factor out the first term:

2
x2

4 S 11
1

4
ex22

1

24
e2x41

1

64
e3x62

1

128
e4x81 . . . D .

~4.34!

At the first iteration, which is valid forx!e21/4, we neglect
all terms in Eq.~4.34! beyond1

4ex
2 ~because they are small

compared with 1! and replace this series by
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2
x2

4 S 11
1

2
ex2D 1/2. ~4.35!

At the second iteration, which is valid forx!e21/3, we ne-
glect all terms in Eq.~4.34! beyond21/24e2x4 and replace
the series by

2
x2

4 S 11ex21
5

24
e2x4D 1/4. ~4.36!

At the next two iterations we have

2
x2

4 S 11
3

2
ex21

11

16
e2x41

3

32
e3x6D 1/6 ~4.37!

and

2
x2

4 S 112ex21
17

12
e2x41

5

12
e3x61

47

1152
e4x8D 1/8.

~4.38!

Now, let x be large. In each of the above formulas w
obtain a cubic inx. Moreover, this cubic is multiplied by
2Ae and the numerical coefficients of the cubic approa
1
6:

1

4A2
5

1

5.656 85
,

1

4~24/5!1/4
5

1

5.920 66
,

1

4~32/3!1/6
5

1

5.934 69
,

e

ch

1

4~1152/47!1/8
5

1

5.966 63
. ~4.39!

It is now clear how it is possible to obtain a cubic inx from
only even powers ofx.

Having given a detailed discussion of the exponential
prefactor that emerges at each stage of the resummation pro
cess, we conclude this section by describing the structures of
the polynomials that arise at every stage. LetN represent the
number of resummations that we have performed. Then for
each value ofN we can express the wave functionc(x) as
an exponential multiplied by a sum over polynomials. We
have established that afterN resummations the exponential
factor has the form

expF2
x2

4 (
n50

N
G~3/2!

G~3/22n!~n11!!
~ex2!nG . ~4.40!

At each stageN in the resummation process the argument of
the polynomials changes so we denote the argument byzN ,
where

zN[eNS x24 D N11

. ~4.41!

In general, the wave function is a product of the exponential
factor multiplied by a power series in the variable

y[
1

4
ex2. ~4.42!

We represent the coefficient ofyn at theNth resummation by
the notationPn(N)(zN). Thus,
c~x!5expF2
x2

4 (
n50

N G~ 3
2 !

G~ 3
2 2n!~n11!!

~ex2!nG (
n50

`

ynPn~N!~zN!. ~4.43!

We now describe the structure ofPn(N)(zN). For sufficiently largeN, N.n22,Pn(N) is a polynomial of degreen. However,
when N<n22, negative powers are present. The largest negative power ofzN is zN

2(n2N21) . Thus, in the range from
N50 to N5n22, Pn(N)(zN) contains all powers ofzN from zN

2(n2N21) to zN
n . But whenN.n22, Pn(N)(zN) contains all

powers ofzN from zN
0 to zN

n .
We now give some formulas for the functionsPn(N) . For allN, P0(N) is extremely simple:

P0~N!~zN!51. ~4.44!

We have found a closed-form general expression forP1(N) valid for all N:

P1~N!~zN!52
3

2
22~21!N

~2N!!

N! ~N12!!
zN . ~4.45!

The closed-form expression forP2(N) is more complicated:

P2~N!~zN!5H 21

4
z0

211
31

8
1
13

6
z01

1

2
z0
2 ~N50!,

31

8
2~21!N

~11N113!~2N!!

N! ~N13!!
zN12F ~2N!!

N! ~N12!! G
2

zN
2 ~N.0!.

~4.46!
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The expression forP3(N) is still more complicated:

P3~N!~zN!55
2
333

8
z0

222
243

8
z0

212
271

16
2
47

8
z02

17

12
z0
22

1

6
z0
3 ~N50!,

21

4
z1

212
187

16
1
73

12
z12z1

21
4

81
z1
3 ~N51!,

2
187

16
1bNzN1cNzN

22~21!N
4

3 F ~2N!!

N! ~N12!! G
3

zN
3 ~N.1!,

~4.47!
wherebN andcN are rational numbers.
Ginsburg and Montroll@17# attempted to approximate the

wave function for the anharmonic oscillator by a sequence
exponentials of fractional powers of polynomials. In this re
spect their work is superficially similar to ours. However
they did not generate these polynomials from the Rayleig
Schrödinger perturbation series; rather, they attempted tofit
the small-e and large-x behaviors ofc(x) and then to deduce
formulas for the eigenvalues. Their work represented th
wave function c(x) by an exponential function only,
whereas in our work there are always polynomialsP multi-
plying the exponential structure. These polynomials wi
never disappear, even after an infinite number of resumm
tions, because they express thephysical-opticscorrection to
the geometrical-optics approximation to the wave functio
The exponential in Eq.~4.3! is only the geometrical-optics
approximation.

V. MULTIPLE-SCALE PERTURBATION THEORY
APPLIED TO THE SCHRÖ DINGER EQUATION

FOR THE ANHARMONIC OSCILLATOR

In this section we attempt to obtain the large-x asymptotic
behavior of the wave functionc(x) by applying MSPT di-
rectly to the Schro¨dinger equation~4.1!. We will see that
multiple-scale analysis gives the results of the previous se
tion but it avoids the need to resum the perturbation serie

Recall that in Sec. IV we showed that the asymptotic form
of the wave function as the exponential of a cubic could on
be obtained after an infinite number of resummations. Sin
multiple-scale analysis is equivalent to resumming the mo
secular terms in the perturbation series, we expect that
every order of MSPT we will find a result similar in structure
to the forms of the previous section. Thus, we expect th
leading-order MSPT based on just two scales will fail t
generate the correct cubic asymptotic behavior of the wav
function in Eq.~4.3!. However, we expect that as we include
more and more scales in the MSPT we will obtain a serie
like that in Eqs.~4.32! and ~4.33!.

We will see that the application of MSPT to the Schro¨-
dinger equation~2.1! is not straightforward. MSPT is con-
ventionally applied to systems that reduce to classical ha
monic oscillators when the perturbation parameter vanish
so that long scales are equal to the short scale multiplied
increasing powers of the perturbation parametere. The
multiple-scale analysis that we perform here is unusual b
cause, as we have already see in Sec. IV, the long scales
now proportional to increasing powers ofx2 as well ase. In
of
-
,
h-

e

ll
a-

n.

c-
s.

ly
ce
st
at

at
o
e-

s

r-
es
by

e-
are

the following generalization of MSPT we will show how the
definition of the long scales relative to the short scalex can
be deduced from the formalism and that secularity has a
natural analogue in the behavior of the wave function for
largex.

To illustrate our procedure we begin by performing a
multiple-scale analysis involving only two scales.~A higher-
order analysis will be given later on.! We assume a pertur-
bative solution to Eq.~4.1! of the form

c~x!5G0~x,j1!1eG1~x,j1!1O~e2!, ~5.1!

where the short scale isx and the long scalej1 is an un-
knownfunction ofx: j15e f 1(x). ~We use the subscript 1 to
indicate that this is thefirst of a hierarchy of longer and
longer scales.! This assumption is reminiscent of the method
of stretched coordinates@3#.

Using the chain rule we calculate the first two derivatives
of c(x):

dc

dx
5

]G0

]x
1eS ]G0

]j1

d f1
dx

1
]G1

]x D1O~e2!,

d2c

dx2
5

]2G0

]x2
1eS ]2G0

]j1]x

d f1
dx

1
]G0

]j1

d2f 1
dx2

1
]2G1

]x2 D1O~e2!.

~5.2!

Next, we substitute Eqs.~5.1! and ~5.2! into the Schro¨-
dinger equation and collect coefficients of powers ofe. To
ordere0 we obtain the Schro¨dinger equation for the quantum
harmonic oscillator:

2
]2G0

]x2
1S 14 x22 1

2DG050. ~5.3!

The solution to this equation that is normalizable is

G0~x,j1!5A~j1!e
2~1/4!x2, ~5.4!

whereA(j1) is an unknown function of the long scalej1.
To ordere1 we obtain

2
]2G1

]x2
1S 14 x22 1

2DG152
]2G0

]j1]x

d f1
dx

1
]G0

]j1

d2f 1
dx2

2
1

4
x4G01E1G0 , ~5.5!



7722 54CARL M. BENDER AND LUÍS M. A. BETTENCOURT
whereE1 is the first-order correction to the energy eige
value.

Substituting the solution forG0 into Eq. ~5.5! gives

2
]2G1

]x2
1S 14 x22 1

2DG1

5e2 ~1/4! x2F2
dA

dj1
S x d f1dx

2
d2f 1
dx2 D2AS 14 x42E1D G .

~5.6!

We now make the crucial argument in this procedure.
analogy with conventional MSPT we do not wantG1 to sat-
isfy an inhomogeneous equation driven by its homogene
solutionG0 because this will give a contribution toG1 that
may decay less quickly thanG0 for largex. For example, if
the square bracket in Eq.~5.6! were a constant, thenG1
would grow likeG0lnx for largex. We thus require that the
square bracket on the right side of Eq.~5.6! vanish identi-
cally. Of course, one cannot give a logical argument that t
expression must vanish. Rather, we exploit the functio
degree of freedom that we introduced in Eq.~5.1! when we
replaced a function of one variable by a function of tw
variables and simplydemand that the square bracket vanis
identically.

We proceed as one does when performing a separatio
variables for a partial differential equation. The vanishing
the expression in square brackets givestwo ordinary differ-
ential equations, one forf 1 and one forA. Apart from con-
stants of integration that are irrelevant because they sc
out, we obtain

f 1~x!5
1

16
x41

3

8
x2 and E15

3

4
, ~5.7!

which fully defines the scalej15e( 1
16x

41 3
8x

2). Note that
E1 computed here is the usual perturbative correction to
eigenvalue determined from Eq.~4.8!. Also, we have

A~j1!5e2j1. ~5.8!

Finally, we use the expression forj1 in terms ofx to rewrite
the solution forG0:

G05e2~1/4!x2[11~3/2!e]2~1/16!ex4. ~5.9!

Observe that this generalized multiple-scale procedure le
to a solution that incorporates not only the next term in t
expansion of the exponent@see Eq.~4.32!# but also contains
a correction to the14x

2 term. If we expand the exponent, w
see that this correction gives theconstant termin the poly-
nomialP1(N)(zN) in Eq. ~4.45!.

We now perform the multiple-scale approximation
higher order. We will see that our multiple-scale procedu
determines the new long-scale variables required to desc
the behavior of the wave function for largex. Moreover, the
higher-order calculation predicts exactly the higher-ord
corrections to the energy eigenvalue. We generalize the fi
order calculation by introducing more long-scale variabl
n-

By

ous

his
nal

o
h

n of
of

ale

the

ads
he

e

to
re
ribe

er
rst-
es

j25e2f 2(x), j35e3f 3(x), and so on. The functionsf n are
determined from the requirement that the right side of the
differential equation forGn vanish. This requirement yields
the new dependence ofG0 on jn .

To ordere2 this procedure yields

j25e2S 196x61 11

64
x41

21

8
x2D and E252

21

8
,

~5.10!

and

G0~x!5expF14 x2S 11
3

2
e2

21

4
e2D

2
1

16
ex4S 12

11

4
e D1

1

96
e2x6G . ~5.11!

To ordere3 we have

j35e3S 1

256
x81

21

192
x61

45

32
x41

333

32
x2D

and

E35
333

16
, ~5.12!

and

G0~x!5expF2
1

4
x2S 11

3

2
e2

21

4
e21

333

8
e3D

2
1

16
ex4S 12

11

4
e1

45

2
e2D

1
1

96
e2x6S 12

21

2
e D2

1

256
e3x8G . ~5.13!

Observe the pattern that develops. Every new order in MSPT
reproduces a new term in the expansion of the exponent in
Eq. ~4.32! together withx-dependent corrections to the wave
function in the exponential. To recover the sequence polyno-
mialsP1, P2, P3, . . . , which are discussed in Sec. IV one
need only expand the exponentials.
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