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Multiple-scale analysis of quantum systems
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Conventional weak-coupling Rayleigh-ScHiger perturbation theory suffers from problems that arise
from resonant coupling of successive orders in the perturbation series. Multiple-scale analysis, a powerful and
sophisticated perturbative method that quantitatively analyzes characteristic physical behaviors occurring on
various length or time scales, avoids such problems by implicitly performing an infinite resummation of the
conventional perturbation series. Multiple-scale perturbation theory provides a good description of the classical
anharmonic oscillator. Here, it is extended to st(tlythe Heisenberg operator equations of motion @ydhe
Schralinger equation for the quantum anharmonic oscillator. In the former case, it leads to a system of coupled
operator differential equations, which is solved exactly. The solution provides an operator mass renormaliza-
tion of the theory. In the latter case, multiple-scale analysis elucidates the connection between weak-coupling
perturbative and semiclassical nonperturbative aspects of the wave fui&&Eh6-282196)00324-4

PACS numbgs): 11.15.Bt, 02.30.Mv, 11.15.Tk

[. INTRODUCTION anharmonic oscillator, the Heisenberg operator equations of
motion in Secs. Il and Il and the Schiimger equation in
Multiple-scale perturbation theofMSPT) is a powerful ~ Secs. IV and V. We illustrate the methods of MSPT in Sec.
and sophisticated perturbative technique for solving physicall by applying it to the nonlinear dynamical equation of mo-
problems having a small parametef1-3]. This perturba- tion for the classical anharmonic oscillatd@uffing’s equa-
tion method is generally useful for both linear and nonlineartion). There, we obtain the first-order frequency shift. Then,
problems. In fact, it is so general that other well-known per-in Sec. Il we extend the methods of MSPT to the nonlinear
turbative methods, such as WKB theory and boundary-layeHeisenberg equation for the quantum anharmonic oscillator
theory, which are useful in more limited contexts, may be(the quantum version of Duffing’s equatioriTo complete
viewed as special cases of MSPII. _ the analysis it is necessary to solve a nonlinear system of
The key idea underlying MSPT is that dynamical systems;oypled operator differential equations. We find the exact
tend to exhibit distinct characteristic physical behaviors aty|gsed-form solution to this system. From this solution, we
different length or time scales. If a conventional perturbationobwin the quantum operator analogue of the frequency shift:

SErIes 1S us_ed t0 solve a problem_, then there is often a re.s?l'amely, an operator mass renormalization that expresses the
nant coupling between successive orders of perturbat'oﬂrst-order shift of all energy levels

theory. This poupllng gives rise meqular termsn_the per- In the next two sections we study the Sdfirmer equa-
turbation seriegterms that grow rapidly as functions of the . . . o
tion for the quantum anharmonic oscillator. Specifically, we

length or time variable These secular terms conflict with e th totic behavi £ 1h funci
physical requirements that the solution be finite. MSBT examine the asymplolic benhavior of the wave function

organizeshe perturbation series to eliminate secular growth,#(X) for largex. We consider the problem of reconciling the
and in doing so it gives a quantitative description of thedifferent results that one obtains from conventional
characteristic behaviors that occur at many scales. In the paS@yleigh-Schrdinger perturbation theorya formal Taylor
MSPT has been used to solelassicaldifferential equations ~ Series in powers of a small parame&rand WKB theory(a
such as the equation of motion for the classical anharmonigonperturbative probe of the anharmonic oscillator that is
oscillator. Indeed, the classical anharmonic oscillator is oftervalid regardless of the size of). To any finite order in
used to illustrate and explain the method of MSPT. conventional perturbation theory(x) behaves like a Gauss-

In this paper we generalize the ideas of MSPT to thaan for large x; however, WKB theory predicts that as
quantum anharmonic oscillatof4]. The quantum anhar- x—o the wave function decays to zero like the exponential
monic oscillator is an excellent laboratory for the study of aof a cubic. In Sec. IV we resolve this discrepancy at two
variety of perturbative methods. It has been used to study theifferent length scales by an infinite sequence of reorderings
origin of the divergence of conventional weak-coupling and resummations of the conventional weak-coupling pertur-
Rayleigh-Schrdinger perturbation theonf5], Pade and bation series. In Sec. V we explain the origin of the disparity
Borel summation of perturbation serig8], large-order be- by performing a direct multiple-scale analysis of the Sehro
havior of perturbation theor{/7], 5 expansiong8], dimen-  dinger equation for the quantum anharmonic oscillator.
sional expansionf9], and strong-coupling expansiofis0]. The approach used in this paper for the anharmonic oscil-
Here, we use MSPT to study two aspects of the gquanturfator wave function has been applied in perturbative quantum

field theory to sum leading-logarithm divergenddd]| and
leading infrared divergencd42]. It is our hope that in the
“Permanent address: Department of Physics, Washington Univefuture the direct nonperturbative multivariate approach of
sity, St. Louis, MO 63130. MSPT will provide a framework to simplify such schemes.
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[l. MULTIPLE-SCALE PERTURBATION THEORY cillator is driven at its natural frequency, which in this case is
APPLIED TO THE CLASSICAL ANHARMONIC 1, we have the phenomenon of resonance. As a result, the
OSCILLATOR solution

In this section we explain MSPT by using it to treat the 1 1 3
classical anharmonic oscillator, a dynamical system satisfy- y1(t)= =cog3t) — -cog — ~tsint (2.9
ing the nonlinear differential equation 8 8 2

g2 contains a secular term that grows linearly with increasing

Wer y+4ey?=0 (e>0), (2.1 time t. Equation(2.9) cannot be valid for long times because
the exact solution to Duffing’s equation remains bounded for

all t [1]. Hence, the conventional perturbation expansion is

nsible only for short times<e . How then does the

conventional perturbation series determine the behavior of

y(t) for long times, say of orde¢ 1?

y(0)=1 and y'(0)=0. 2.2 One way to answer this question is to identify the struc-

which is known as Duffing’s equation. The positivity ef
ensures that there are no unbounded runaway modes.
impose the initial conditions

n
elt+

n
e—it

5 (2.10

ture of the most seculathighest power int) term to all
The harmonic oscillatord=0) has only one time scale, ordersin perturbation theory. O.ne can easily verjfl] that

namely, the period of oscillation. However, the nonlinearfor all n the most secular term ig,(t) has the form

term in Eq.(2.1) introduces many time scales into the prob- N )

lem. For example, whea+ 0, one can observe on a long- Et_ (ﬂ

time scaldt=0(e 1)] a frequency shift of ordet. One can 2nl\ 2

study the classical anharmonic oscillator on the short-time

scalet and also on many long-time scaleset, 7;=¢€%,  Since the expression in E(.10 is multiplied by €", if we

m,=€%t, and so on. make the approximation of retaining only the most secular
Let us first examine what happens if we attempt to solvé€rm in every order, then we obtain a series in powers of the

Duffing’s equation using a conventional perturbation seriedong-time variabler=et. Evidently, we can sum the most

in powers of the parametex; secular terms in this series to all ordersepand since the
result is a cosine function, it remains bounded for all times
* t:
Y= 2, €n(t), (2.3
" 1o (3" [ 3i\" 3
: . " . _ > —ll 5] €| — 5] e |=cog| 1+ Je|t|.
in which the initial conditions in Eq(2.2) are contained as 2:=0 n! 2 2 2
(2.1)
Yo(0)=1 and yg(0)=0, . . :
We interpret this result to mean that on the long-time scale
y(0)=y'(0)=0 (n=1) (2.9 7 there is afrequency shifin the oscillator of ordege. Of
n n =) .

course, this result is not exact; there are less secular terms to
Substitute Eq(2.3) into Eq. (2.1). To leading ordexzeroth a}ll orders in the pertl_eration expansion, and these terms give
order in powers of), we have rise to frequency shifts of ordes, €3, and so on.
We will now show how MSPT directly reproduces the

d2 result in Eq.(2.11). To avoid the complicated procedure of
Wy(ﬁyo:o (2.5 summing the conventional perturbation series to all orders in

powers ofe, MSPT uses a sophisticated perturbative ap-
proach that prevents secular terms from appearing in the per-
turbation expansion. Multiple-scale analysis assuanpsori
d? the existence of many time scale§#, 71,7, ...) in the
Py1+yl:_4yg, (2.6) proplem, which can be temporarily trea}ted_|adep¢ndent
variables. Here, we illustrate by performing just a first-order
calculation. We use only the two variablesind 7= et and
seek a perturbative solution to E@.1) of the form

and to first order in powers of we have

The solution to Eq(2.5) satisfying the initial conditions
in Eq.(2.4) is

t)=Yo(t,7)+ €Y4(t,7)+O(€?). 2.1
yo(D)=cod. @7 YO =Yo(t,)+eYs(t,)+0(e). (212
Using the chain rule and the identityr/dt= €, we con-

When we introduce this solution into E(.6), we obtain vert Eq.(2.1) to a sequence gfartial differential equations

2 for the dependent variablég), Y4, ... . The first two equa-
2
Equation(2.8) represents a forced harmonic oscillator whose (?—Y 1Y.=0 2.13
driving term has frequencies 3 and 1. When a harmonic os- gtz 0" o '
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92 & 3
e 3— — = —
S Y1t Yi=—4Yg-2-—Y,. (2.14 Yo(t,7) cos{ 1+ et (2.20)
The general solution to E@2.13) is where we have used=et. We have thus reproduced the
_ approximate solution in Eq(2.11 that is valid for long
Yo(t,7)=A(7)cog +B(7)sirt, (2.19  times. Note that while conventional perturbation theory is

only valid fort<e™ 1, the multiple-scale solution is valid for
times satisfyingt<e~2. This multivariate approach can, in
?)rinciple, be performed tath order in powers ok for any

whereA(7) andB(7) are as yet unknown functions ef We
determine these functions by imposing the condition that n
secular terms appear ;. That is, we use the functional
freedom in the choice oA(7) and B(7) to eliminate the
resonant coupling between zeroth and first order in perturba-
tion theory. We substitut¥,(t,7) in Eq. (2.15 into the right
side of Eq.(2.14) and expand the resulting expression using
the trigonometric identities

IIl. MULTIPLE-SCALE PERTURBATION THEORY
APPLIED TO THE QUANTUM ANHARMONIC
OSCILLATOR

In this section we extend the multiple-scale approach de-
scribed in Sec. Il to the quantum anharmonic oscillator. This
is a nontrivial generalization of the usual multiple-scale tech-
nigques because it requires that we sabperatordifferential

. 1. 3. equationg13].
sirt=— 2SiN(3L) + 7sint, The quantum anharmonic oscillator is defined by the
Hamiltonian[14]

5 ! 3 >
co t—Zcos( t)+ Zcos,

1 1
T 4 i 1 1
cogt sint ZSin(3t) + Zsint, H(p.q) = §p2+ §q2+ «q’ (e>0), 3.1
Sir?t cod = — Ecos{3t)+ Ecos&. (2.16 wherep andq are operators satisfying the canonical equal-
4 4 time commutation relation
To eliminate secularity we require that the coefficient of [q(t),p(t)]=i%. (3.2

cod and sin vanish. This gives the pair of equations
The positivity of e ensures that (p,q) is bounded below.

dB 3 ) The Heisenberg operator equations of motion are
2—=—-3A°-3AB
dr
d 1 3
and 9= 7 laHpP.al=p, (3.3
dA 3 ) d 1
247 =3B +3A°B. (2.17 giP= 7P H(P.))=—a) —4da)]. (3.4

To solve this system we multiply the first equation by These equations combine to give
B(7) and the second equation By 7). Adding the resulting

. . 2
equations gives

d
Wq(t)+q(t)+4e[q(t)]3=0, (3.5

d_TC(T):O’ (218 which is the qguantum analog of Duffing’s classical differen-
tial equation(2.1). Sincep(t) and q(t) are operators, we
where cannot impose numerical initial conditions like those in Eq.
(2.2); rather, we enforce a general operator initial condition
1 , 1 ) att=0:
C(n)=5[AN+5[B(D]” (2.19
q(0)=qgo and p(0)=po. (3.6

Hence C(7) is independent ofr and we may take Here,p, andqg are fundamental time-independent operators

C(7)=C(0). . .
Substituting this result back into E(.17) gives the el- obeying the Heisenberg algebra
ementary linear system [do.Pol=it. (3.7

Rather than seeking a solution to E§.5 as a conven-
tional perturbation series in powers ef we perform a
multiple-scale analysis. We assume th#ét) exhibits char-
When we solve this system and then impose the initial conacteristic behavior on the short-time scalend on the long-
ditions, we obtainC(0)=13 and time scaler= et and we write

d d
—B=-3C(0)A and —A=3C(0)B. (2.20
dr dr



54 MULTIPLE-SCALE ANALYSIS OF QUANTUM SYSTEMS 7713

a(t)=Q(t,7)=Qo(t,7) + €Q;(t,7) + O(€?). (3.9

This equation is analogous to E.12 but hereQ, and

Q, areoperator-valuedunctions. This system of operator-valued differential equations is the
There is an associated expression for the momentum Oquantum analog of Eq2.17).

eratorp(t):

dA
ZE=383+ ABA+ AAB+ BAA. (3.18

To solve the systeni3.18 we begin by multiplying the
t)=Py(t, 7) + eP,(t,7)+ O(€). 39 first equation on the left and on the right 8(7) and the
P(O=Po(t,7)+ Py (t,7) +O() 39 second equation on the left and on the right&yr). Adding
Furthermore, since the momentum operator is the time dethe resulting four equations and simplifying, we get
rivative of the position operatgsee Eq(3.3)], the chain rule

i d
gives =0, (3.19
_ J J J 2
P()=—-Qote| =-Qo+ —-Q:|+O(e?). (310 oo
We substitute the expression fgft) in Eq. (3.8) into Eq. 1 1
(3.5), collect the coefficients of° and e!, and obtain opera- H= A%+ SB2. (3.20
tor differential equations analogous to E¢a13 and(2.14):
5 Equation(3.19 is the quantum analog afC/dr=0 in Eq.

a—2Q0+Q0=0 (3.11) (2.18. By construction, the operatdt is independent of the
at ' '

short-time variable. However, Eq.(3.19 shows thatH is
also independent of the long-time variableTherefore, Eq.

3? 32 .
— _103_ (3.16 allows us to expresg{ in terms of the fundamental
g2 Qut Q1= ~4Q0—25757Q0 (312 operatorsp, andqo:
Because Eq(3.1]) is linear it is easy to find its general 1, 1,

solution: H= §p0+ qu. (3.2)

Qo(t, ) = A(7)cod + B(r)sin, (313 Next we use Eq(3.19 to rewrite EQ.(3.18 in manifestly
from this result we obtain Hermitian form:

Po(t,7)=B(7)cos— A(7)sint. 3.1 d 3

o(t,7)=B(7) (7) (314 L3 s a0

It is now necessary to find the coefficient functions
A(7) andB(7), which are operators. The canonical commu-gng
tation relations in Eq(3.2) imply that these operators must

satisfy d 3
d_A: E(HB-F BH). (3.22
[A(7),B(7)]=ih. (3.19 T
Also, the initial conditions in Eq(3.6) give Sup_pose for a moment that we could rgpl&efeby the
numerical constant(0). Wewould then obtain the elemen-
A(0)=0g9 and B(0)=pg. (3.16 tary classical system of coupled differential equations in Eq.

(2.20. Because this system imear we could treat these
To determine the dependence of the functiov$(7) and  operator differential equations classically and ignore opera-
B(7), we must eliminate secular behavior. To do so we extor ordering. The solution to this system that satisfies the
amine the right side of Eq3.12), which is initial conditions in Eq.(3.16) would then be

—4[ A(r)cog+B(7)sint]® A(7)=00c0$ 3C(0) 7]+ pesin 3C(0) 7]

d ) d and
—-2| - d—TA(T)smH E_B(T)cos . (3.17
B(7)=pecog3C(0)7]—qesiN3C(0)7]. (3.23
Next, we expand the cubic term, taking care to preserve the _ _
order of operator multiplication, and we use the trigonomet- This solution suggests the structure of the exact solution
ric identities in Eq(2.16. We eliminate secularity by setting to the operatordifferential equation syster8.22. The for-
the coefficients of cdsand siri to zero and obtain mal solution is a natural quantum operator generalization of
Eq. (3.23 using Weyl ordered products of operators:
dB
 — 3_ _ _ .
24y = 3A - BAB-BBA-ABD A(7) =W docos 3H7) ]+ W pesin(3H7)],

and B(1) =W pocod3H1)]- WM qesin(3H7)]. (3.29
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The notationW qof(H7)] represents an operator ordering
defined as follows: First, expand the functibé(<7) as a
Taylor series in powers of the operafdtr. Then Weyl order
the Taylor series term by term:

1
WAoH") = 57 [ (0) QoM+ (DHAoH"

+ (B H?QeH" 2+ - - + (D H o]
(3.25

Using this definition it is straightforward to verify that Eq.
(3.29 is indeed theexact operator solutiorto Eq. (3.22
satisfying the initial conditions in Eq3.16).

Our objective is now to simplify the formal solution in

Eq. (3.29 and to reexpress it in closed form. Since sines and
cosines are linear combinations of exponential functions, we

consider first the general problem of simplifying the Weyl-
ordered product

W(doe"") = W[ do

+ ...

1 2 1 3
T+ M7+ 57 (HD) ™+ 37 (H7)

|

For each power of we reorder the operators by commuting
0o symmetrically to the left and to the right to maintain the
Hermitian form

(3.2

1
W(Qo)z%zi(%"‘%),

H H
QOgJF%QO

)

1 f
W(QoH) = E(QOH+ HAo) = 5(

1
W(oH?) = Z(Q0H2+ 2HqoH+H?qp)

NEENEEN

3 _ 1 3 2 2 3
W(qQoH?) = §(Q0H +3HAoH + 3H qoH+H>do)

o

1
W(qoH*) = E(qu“Jr AHoH3+ 6H2qoH?

H2 1
X

H? 1

ﬁZ
?‘z)+

T2

H® 3H

H® 3 H
73 ag)%p

h3
F‘M)*(

"2

+4H3qoH+ HAq)
_h“ H* 3H? 5
=2 %77 272 16
H* 3H?2 5
T aF T2 pz 16/ %

: (3.27)

and so on. This process defines a set of polynomials in the

variableH/# [15]:

CARL M. BENDER AND LUIS M. A. BETTENCOURT

H* 3H2 5
727 1e

H> 5H® 25H
75 2% 164

HO 15H4+75H2 61 -
A R T LT 329
We identify these polynomials as Euler polynomigl$] in

which the argument is shifted by 1/E, (=H/h+3). The
generating function for these nonorthogonal polynomials is
given by

Tn

_n:O nt "

H

oIt +112)7
e+l H

1
+ —

5 (| 7| <m).

e’+1
(3.29

This generating function allows us to express the following
Weyl-ordered product compactly:

qOeHT+ eHTqO

HTy —
WA ™) = o oii2)

(3.30

Using Eq.(3.30 the cosines and sines of our quantum
solution in Eq.(3.24 can also be written in compact form
when we take combinations of complex exponentials:

QoCog3H7)+cog3HT)qp
M doCos3H )= 2c0$37412) ’
. QoSiN(3H ) +sin(3H7)dg
M dosin(3H7)]= 2c08374/2)
(3.3)

Last, we substitute this result into the zeroth-order solu-
tion in Eq. (3.13 and obtain

_ ggcogt+3H7)+coqt+3H7)qp
Qolt,7)= 2c0437h12)

PosSin(t+3H7) +sin(t+3H7)pg
2c0g37h/2)

_ gocogt+3Het) +cogt+3Het)q
B 2cog3eth/2)

posin(t+3Het) + sin(t + 3Het) pg
2cog3€eth/2) '

(3.32
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where we have replacetlby et. The result in Eq(3.32 is  Then by examining the time dependence of this matrix ele-
the objective of our multiple-scale analysis. It is the quantunment we can read off the energy-level differences of the
operator analog of Eq2.21). Indeed, in the limit a—0, quantum system. It is easy to construct a set of states because
we recover the classical multiple-scale approximation in Eqthe operatorsg, and py satisfy the commutation relation
(2.21). [To obtain this result we impose the classical initial (3.7). Hence, appropriate linear combinationsggf and pg
conditions pp=0 and qo=1, which from Eq.(3.2) give  may be used as raising and lowering operators to generate a
H=1] Fock space consisting of the statg®. By construction,

We interpret this multiple-scale approximation to the op-these states are eigenstates of the opefdtor
eratorgq as follows: In the classical case we identify the
coefficient of the time variable as a first-order approxima- H|n)=
tion to the frequency shift. However, here the coefficient of
t in Eq. (3.32 is anoperator Thus, we have derived an
operator form of mass renormalization. Let us take the expectation value of E§.32 between
To understand this operator mass renormalization wehe stategn—1| and|n). Allowing the operatorH to act to
must take the expectation value of £§.32 between states. the left and the right using Eq3.33), we obtain

n+% h|n). (3.33

cogt+3(n+ 3)Aet]+codt+3(n— 3)Aet]
(n=1|Qq|n)=(n—1|qe|n)

2cog 3€th/2)
siMt+3(n+ 3)fiet]+siNt+3(n— 3)het]
+{n=1{poln) 2c043ethl2)
=(n—1|qg|n)cogt(1+3n%ie)]+(n—1|pg|n)sint(1+3nte)], (3.39

and we can see that the energy-level differences of the quan-  IV. RESUMMATION OF THE CONVENTIONAL

tum oscillator are ¥ 3n#ie. PERTURBATION SERIES FOR THE QUANTUM
Let us verify this result. If we se¢=0 in Eqg. (3.1), we ANHARMONIC OSCILLATOR

obtain the harmonic oscillator, whose coordinate-space

eigenfunctions/,(x) and corresponding energy eigenvalues

E, are

Now we turn our attention from the Heisenberg equations
of motion to the Schidinger equation and examine the be-
havior of the wave function. The ground-state wave function
¥(x) for the quantum anharmonic oscillator satisfies the

, 1 Schralinger equation
Ua(x)=e" P He (x) and E,=n+ > (3.35

> 1,1

_W_FZX +Z€X _E(G) l/I(X)—O (41)

where Heg(x) represents the Hermite polynomial. The first-
order perturbative correction to the energy eigenvalues is Obeind obevs the boundary conditions
tained by computing the expectation value of the perturba- y y
tion term in the HamiltoniarH:

h(+)=0. (4.2
o _ 2
E nt 1 N eh [ .dxe” VP Hey(x)]°x* We can use WKB analysis to find the largeasymptotic
TNt 7., dxe" V2 He (x)]? behavior of the wave functiog(x). A geometrical-optics

approximation gives the controlling factéthe exponential
component of the leading asymptotic behayias

1 3
:n+§+Zeﬁ(2n2+2n+1)+0(62). (3.36

e Ve 43

If we now calculate the energy differenég,—E,_; from . ) o ) )
Eqg. (3.36), we obtain This result is nonperturbative in the sense that WKB is valid

independent of the size of the parameterThe question
addressed in this section is whether it is possible to repro-
E,—E,_1=1+3n%e+0O(e?), (3.37  duce this result using perturbation theory.
The conventional approach to solving E@t.1) using
Rayleigh-Schrdinger perturbation theory5,7] represents
which verifies the result in Eq3.34). both the eigenfunction and eigenvalue as power series in
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o0 o0

P(X)~ D, €yn(x) and E(e)~ >, €"E,.

n=0 n=0

(4.9
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Yn=e P (x). 4.7

Note that we use the asymptotic symbel because, as is Substituting Eq(4.7) into Eq. (4.1), we obtain the recursion
well known, the conventional perturbation series for the anformula for the polynomials:

harmonic oscillator diverges.

Equationg4.1) and(4.2) are homogeneous, so we are free

to adopt the normalization conditiof(0)=1, which trans-
lates into

(4.9

The unperturbed(harmonic-oscillator solutions corre-
sponding toe=0 are

Vo(0)=1 and y,(0)=0 (n>0).

1

—x2/4 —
and Eg 5

Yo(X)=€ (4.6)

In Ref.[5] it is shown that for alh, y,(X) is a product of
the zeroth-order approximation to the wave functigjix)
given in Eq.(4.6) multiplied by a polynomialP,(x):

1 n—-1
PROO=XPA(x) = 2X*Pn-100 = 24 Pj(0En-.
(4.9

The form of this recursion relation is generic. It is a typical
recursive structure that arises in all perturbative calculations;
to wit, the homogeneous part of this recursion relation is the
same for alln while the inhomogeneous part contains all
previous polynomials. It is this kind of recursive structure
that is responsible for successive orders of perturbation
theory being resonantly coupled. Here, the resonant coupling
causes the degree of the polynomials to grow with
P.(x) is a polynomial of degreer2in the variablex?:

Po(x)=1,

3(x\% [x\*
Pio-=303) 13

21(x\?2 31
0= + 5|

B () = 333/x\2 243/x\* 271
=" 2] " l2) T
5 30885/ x)? 2777(x4 18461/ x\°® 9195
A== 3] T7g 2 96 2] " 128

4 13/x\% 1/x\®
T512) T212)
x\& 47/x\® 17/x\10 1/x\1?
2] 812 12\2] 6l2]

3

12 7

+_
12

14 1

+_
24

X

8 979(x\10
2

" 28\2

599( X

" 1442

16
i)

o) 916 731 x\?> 651363 x|* 89673/x\® 69107x|® 250183 x| 29177(x|** 1325/x|
s0=""1g |2/ “ 128 |2) " 32 2/ 64 |2 768 \2/ 384 |2/ 96 \2
269/x\1% 25 (x\1® 1 [x\%
~144l2) 144\2) 120(2) ¢
b ()2 551840 x|? 23046319x|* 75770813 x|° 247601y x|°® 925948 x|'® 13796435 x\*
¥="512 |2/ T2 |2 1536 |2) "7 128 |2 1536 |2 9216 |2
77 173 x)l“ 112 483 x\1® 4055/x\1® 349/x\?° 29 (x\# 1 [x\* 49
256 \2) 2304 |2) Teaslz) Ts7elz) T72012) T720\2) 49
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Forn>0 the general form of the polynomial is ever, the classical and quantum anharmonic oscillators are
evidently quite different; although we have summed the most
2n 1 \k secular terms to all orders in perturbation theory, the result in
P, (X)= E (o k( - —x2> ) (4.10 Eqg. (4.19 is not the correct behavior of the wave function
k=1 2 ¥(x) for large x because it decays to zero too rapidly. The
correct behavior from WKB theory is an exponential of a
cubic[see Eq(4.3)] and not an exponential of a quartic.

Can we improve our estimate of(x) by including
Cp.on—1, the coefficient of theext highest poweof x, in our
summation? This coefficient satisfies the inhomogeneous dif-
ference equation obtained by settikg 2n—1 in Eq.(4.11):

Note that by virtue of Eq(4.5 the polynomialsP,(x) have
no constant term when>0.

We can derive a formula foE,, and a recursion relation
for the coefficientsC,, , by substituting Eq(4.10 into Eq.
(4.8) to obtain, forn>0,

Ch1=En,
e (4n—2)C -1+ Cno1m-3= —2n(4n—1)Cy 5
2KCp k+Cp1x-2= —(k+1)(2k+1)Cpy k41 1\ 1
n-1 =—2n(4n—1)(—z) n_l
+ i i .
]_21 C],kCn j,1 (4 1]) (4.13
The coefficientC,, , form a triangular array in the sense The solution to this inhomogeneous equation is
that the degree of the polynomials increases withThe
convolution in Eg.(4.1) makes this recursion relation 1\"1 n
highly nontrivial. However, for alln it is possible to find Chan-1=—| — 4 m§(4n+5). (4.16

Ch 2. the coefficient of théhighest powernf x. This is an

exact analog of finding the coefficient of the highest powenf we include this formula in the resummation to all orders,
of t (most secular terjnin nth order in perturbation theory e obtain the result in Eq4.14 now multiplied by a poly-
for the classical anharmonic oscillator. By settikg 2n in nomial:

Eqg. (4.11), we see tha€C,, ,, satisfies the simple linear recur-

sion relation , 4 3 1
e e oY 1 gex®+ 5ee™x° ). (4.17)
4nCn,2n+ Cn,lygn,2=0, (412
whose solution is We have again failed to obtain the correct largbehav-
ior of (x). Nevertheless, let us continue to reorganize the
1\"1 perturbation series. Settiig=2n—2 in Eq.(4.11), we get
Cn,2n: - Z m (413)

(4n=4)Cpon-2+Cpo1n-4=—(2n=1)(4n=3)Cp 201
To study the behavior of the wave functigiix) for large
X, we approximatael(x) by resumming the perturbation se- i §C (4.18
ries in Eq.(4.4) and keeping just theighest poweof x in 4 -n-Lan-2 :
every order. Using Eq4.13 we obtain a simple exponential

approximation tog(x): whose solution is
- —1)" 1\"1 n(n—1)
n —x2/4( an_ o—x%/4,—ex*I16 — 2
———X"= : . === ———=— +64n+87).
HZO e"e g X"=e e (4.14 Chon_2 ( 4) g (16n*+64n+87)
(4.19
For the classical anharmonic oscillator this approach also
gives an exponential approximatigaee Eq.(2.11)]. How-  The next few coefficients are
1\"1 n(n—1) 4 3 5
Chon-3=— 2 FW(Mn +400n°+ 764n-— 433+ 390), (4.20

1\"1 n(n—1)(n—2)
— —  (256n°+2816*+ 11 7443+ 18 303+ 34 20+ 70 029,

C“'Z"“:( 4/ ni 1944
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1\"1 n(n—1)(n—2
) M( 10247+ 14 5918+ 74 3681°+ 106 08M* + 45 3163

Cnan-5= _( "4 nl 29160
+143 073122 392 8031+ 3 967 380,

(4096n8+86 0161+ 718 08M°

1)” 1 n(n—=1)(n—2)(n—3)

4) n! 524 880

+2799 360°+6 702 384*+ 16 486 704°

Cn,2n—6:

+16 745 9757+ 180 087 586+ 415 966 860.

Evidently, the coefficienC, ,,_; has the general form of a polynomial inof degree 2 multiplied by (—4)~"/n!.
When we sum these coefficients to all orders, we obtain a totally new sequence of polyridisisyed below in square
bracket$ in the variableex*:

6

3 (x\? 2 [x 31 x\® 2 [x\12
—x2/4,— ex*/16 R ] iy _ 53 Z o4z
e e 1+ 26(2) +36(2 + 86(2) 26(2 +96(2)
21 ,(x\* 187 ,(x\® 73 (x4 (x)18 243 (x\* 5307 ,(x\® 58 b
+Zf§ E62+1_262 f§+s—162+?fz 1285362
+133 X 8 X 2 (X 24+ 333 2+ 14 465 ,(x 6 39493 (x 1°+ 12463 [ x 14
_65 2 %EE 52 9% 12 256 < |2 192 €12
313 (x 211 5 . % 4 1o X 80
i 5 —57€|5] T € 5
2 162 81 \2 3645 |2
2777 ,(x ¢ 46891 ((x\® 5444579 (x|*? 14497 _[x 16+ 79357 4 20 833 ,
2 64 |2 9216 < |2/ ~ 64 °\2 1728 € |2 162
+307 ® 4 x 32+ 4 [x 36+ 4o
972¢ E 405° |2/ T 32805 |2 s .29

The original form of the perturbation series in E¢$.4) and (4.7) has undergone a remarkable transmutation. The original
polynomialsP,,(x) have been absorbed and the wave functjgx) is now represented as a more elaborate exponential
multiplying a new class of polynomialf/Ve can, of course, generate these polynomials directly from the @olyer equation
(4.1) using a recursion relation similar to that in £¢.9).]

Let us perform a further resummation procedure. That is, for this new set of polynomials we determine the coefficient of the
highest power ok,

E n i 6n 1 Zn 45
3/ \2) nr€ (4.22
the coefficient of the second-highest powerxof
9/2\"/x\6n41
—z(§> (z pre i .23
the coefficient of the third-highest power xf
6n—8
g(z)n X)™ — e 2n(n—1)(9n?—3n+1) (4.29
3213/ \2 n! ' ’
the coefficient of the fourth-highest power xf
27(2)" (X" L g —1)(n—2)(9n3*-9n?+7n+4) (4.25
~ 1783 € n(n (n (9n n n , .

and so on.
Having discovered these formulas we can now sum overhis further reorganization of the perturbation series gives a
newapproximation tos(x) as an exponential multiplied by yet another set of polynomials, this time in the vaeatie
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2

3 (x x\8 [31 7 ,(x\¥° 1 [x\'*®
—x2/4,— ex?116,€2x8196) 4 _|° | 2 32 ~ DA ” - 82
e e e [1 €l 5 +62 +862 +2€<2) +26(2
187 6+ 277 12+ 11 + 1 g(x\* . 4o
16°€ <2 *7l3) *5l3) |t (4.2
For these new polynomials the term containing the highest powerrhafs the form
n X o l 3!’]
(—1) >l mre (4.27
and the term containing the second-highest power bés the form
1 X 8n—6 1
E(—1)”(5) m453“—2n(4n—1). (4.28

Again, we reorganize the perturbation series by summing over. dlhis resummation gives yet another representation for
Y(x) as an exponential multiplied by a new set of polynomials, this time in the varidife

2 10
o~ X14g— ex*1165e°x%196q— €x3/256] 1 4 | _ 5¢ 5 +264 > +... (4.29
|
For these polynomials we identify the term containing the 1 . .
highest power ok, exp go[1-(1+ex%) 2t ~e Ve (|x] o).
(4.33
on X "l — ", (4.30
2] n '

Let us examine more deeply what happens at each reor-
anization of the perturbation series. At the first resumma-
n we sum over terms of the fore'x*" and treatex* as
%mall. Thus, while may be large compared with 1, it cannot
be too largex must satisfy the asymptotic boumd< e~ Y4,
At the next reorganization we sum over terms of the form
2ny6n and treate?x® as small. This resummation is valid in
(4.3)  the larger regiorx<e~ Y2 At the next level we sum over
terms of the forme®"x®" and treate®x® as small. Hence, this
We can continue this process indefinitely. With each it-resummation is valid in a still larger regioxs< <e 3B Atthe
erative reorganization of the perturbation series we generatigh iteration the range ok increases tox< el(2j+2).
a new exponential multiplied by new polynomials. However, Clearly, asj — o, we obtain an estimate of the wave function
we have not attained our original goal of deriving the expo-¢(x) that is valid forx as large ag~ 2 It is only whenx is
nential behavior in Eq(4.3) from the weak-coupling pertur- this large that thex* term in the Schidinger equatiori4.1)
bation series in powers af. Indeed, it seems impossible for becomes comparable in size to tké term. Thus, after a
our approach to succeed because at each stage in the reor§iaite number of reorderings of the perturbation series, we
nization of the perturbation series the variablappears only cannot expect to reproduce exactly the exponential behavior
in evenpowers. How can we ever obtain the exponential of ain Eq. (4.3).
cubic? Nevertheless, at each stage of the resummation process
There is a simple and direct answer to this question. Wave observe precursors of the exponential behavior in Eg.
merely recognize that the exponent in £4.31) is the be- (4.3. To demonstrate this, we examine the structure of the

and we reorganize the perturbation series again by summi
over alln. This resummation gives a hew exponential and
new set of polynomials, this time in the variahdéx®:

24— e 2,6 _ 3,8 4,10
e x/4e 2 /lBeex/%e ex/256eex /512{1+.__}.

ginning of a binomial series: exponent in Eq(4.32), in which we factor out the first term:
x? 1 1 1 1 )
————EX + —ex— —38+ —— 0+ . .. X 1 1 1 1
4 16 96 256 512 -7 1+ Zex 24€ 2x4 +§16 x© 128¢ 4x8+
1 (4.39
=sl1-@a+ ex?)%2]. (4.32

At the first iteration, which is valid fok< e~ 4 we neglect

If we now letx be large €x?>1), we recover the asymptotic all terms in Eq.(4.34 beyond;ex? (because they are small
behavior in Eq(4.3): compared with 1and replace this series by
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2

(4.39

1 1/2 1 1
4

Zex? =
1+ 5 ex (439 4(1152/43™ 5.966 63

At the second iteration, which is valid for<e '3 we ne- |t is now clear how it is possible to obtain a cubicsirfrom

glect all terms in Eq(4.34) beyond— 1/24e°x* and replace only even powers oK.

the series by Having given a detailed discussion of the exponential
2 5 1a prefactor that emerges at each stage of the resummation pro-
— 21+ ex®+ _62X4) _ (4.3  cess, we conclude this section by describing the structures of
4 24 the polynomials that arise at every stage. Netepresent the

number of resummations that we have performed. Then for
each value oN we can express the wave functigifx) as
an exponential multiplied by a sum over polynomials. We

At the next two iterations we have

2

X 11 3 16
7|1t EEXZ+ Eezx4+ 3—263X6) (4.37)  have established that aftdf resummations the exponential
factor has the form
and
i L L R P
2 1/8 exp — — €X . .
X fhoes oy D a6 A s 4 T'(3/2=n)(n+1)!
4 12 12 1152 '

(4.39 At each stagé in the resummation process the argument of

the polynomials changes so we denote the argume
Now, let x be large. In each of the above formulas we Poly g g Zhby

here
obtain a cubic inx. Moreover, this cubic is multiplied by W
—+/e and the numerical coefficients of the cubic approach x2\N+1
i z EGN(—) (4.4
6 N 4
i = ; In general, the wave function is a product of the exponential
4.2 5.65685 factor multiplied by a power series in the variable
1 _ 1 1 )
4(24/57~ 5.920 66 =2 (4.42
1 1 We represent the coefficient pf at theNth resummation by
4(32/37% " 5934 69 the notationPV)(zy). Thus,
|
2 N 3 oo
X I'(3) 5
X)=exg ——2, ———(ex?)" npN(z,). 4.4
Y(x) p[ 4§0r(%_n)(n+l)!< I PIRGCAEN (4.43

We now describe the structure I?EN)(ZN). For sufficiently largeN, N>n—2, PgN) is a polynomial of degrea. However,
when N=<n-—2, negative powers are present. The largest negative powey ©f zg(”_'\‘_l). Thus, in the range from
N=0 to N=n—2, PMN)(z,) contains all powers ofy from zy""N"Y to z}. But whenN>n—2, PN)(z,) contains all
powers ofzy from z3 to zy .

We now give some formulas for the functio® . For allN, P{V) is extremely simple:

PNV (zy)=1. (4.44
We have found a closed-form general expressiorﬂ&fi? valid for all N:
3 (2N)!
N) — 0 — ()N 7"
The closed-form expression f@?‘zN) is more complicated:
21 ., 31 13 1,
—Zy+t 5+ =2t 52z5; (N=0),
CEREE S (449
2 AN 31 L (1IN+13)(2N)! (2N 12, '

zy (N>0).

g7 ! NI(NT3)! N4 NN+ 2)!
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The expression foP{" is still more complicated:

(383, 243 , 271 47 17, 1. . o

B0 g 16 s 10 g0 (NTO

21 187 73 4
N) _J) o 2 Y 2, T3 _
7)(3 (ZN) < 4 Zl 16 + 1221 Zl+ 8121 (N 1)! (447)
187 ) AL @eNyr R
\ —1—6+bNZN+CNZN—(—1) § m Zy (N>1),
|

whereby andcy are rational numbers. the following generalization of MSPT we will show how the

Ginsburg and Montrol[17] attempted to approximate the definition of the long scales relative to the short scalean
wave function for the anharmonic oscillator by a sequence obe deduced from the formalism and that secularity has a
exponentials of fractional powers of polynomials. In this re-natural analogue in the behavior of the wave function for
spect their work is superficially similar to ours. However, largex.
they did not generate these polynomials from the Rayleigh- To illustrate our procedure we begin by performing a
Schralinger perturbation series; rather, they attemptetitto multiple-scale analysis involving only two scaléA. higher-
the smalle and largex behaviors ofi(x) and then to deduce order analysis will be given later gnWe assume a pertur-
formulas for the eigenvalues. Their work represented thdative solution to Eq(4.1) of the form
wave function #(x) by an exponential function only,
whereas in our work there are always polynomiBlsnulti- W(X)=Go(X, &)+ €G1(X, &) +O(€), (5.9
plying the exponential structure. These polynomials will
never disappear, even after an infinite number of resummawhere the short scale s and the long scal€; is anun-
tions, because they express higysical-opticscorrection to  knownfunction ofx: ;= ef,(x). (We use the subscript 1 to
the geometrical-optics approximation to the wave functionindicate that this is thdirst of a hierarchy of longer and
The exponential in Eq(4.3) is only the geometrical-optics longer scale$.This assumption is reminiscent of the method
approximation. of stretched coordinatgS].

Using the chain rule we calculate the first two derivatives

of ¥(x):
V. MULTIPLE-SCALE PERTURBATION THEORY
APPLIED TO THE SCHRO DINGER EQUATION dy 4G, (&Go df, dG,
=/ TE€E

FOR THE ANHARMONIC OSCILLATOR - ox GE, dx + W) +0(€?),
In this section we attempt to obtain the lang@symptotic
behavior of the wave functiog(x) by applying MSPT di- d?y 9°G, #Gy df; Gy d’f;  9°G, X
rectly to the Schidinger equation4.1). We will see that G2 = W“(@a 98 T +0(€%).
multiple-scale analysis gives the results of the previous sec- (5.2
tion but it avoids the need to resum the perturbation series.
Recall that in Sec. IV we showed that the asymptotic form  Next, we substitute Eqg5.1) and (5.2) into the Schre
of the wave function as the exponential of a cubic could onlyginger equation and collect coefficients of powerseoflo

be obtained after an infinite number of resummations. Sincgrdereo we obtain the Scﬁdjnger equation for the quantum
multiple-scale analysis is equivalent to resumming the moskarmonic oscillator:

secular terms in the perturbation series, we expect that at

every order of MSPT we will find a result similar in structure PG, (1 1
to the forms of the previous section. Thus, we expect that - 74— sz— E)GOZO' (5.3

leading-order MSPT based on just two scales will fail to
generate the correct cubic asymptotic behavior of the wave- . . . . . .
function in Eq.(4.3). However, we expect that as we includeerhe solution to this equation that is normalizable is
more and more scales in the MSPT we will obtain a series (e
like that in Egs.(4.32 and (4.33. Go(x,61)=A(é1)e : (5.9

We will see that the application of MSPT to the Schro _ .
dinger equation2.1) is not straightforward. MSPT is con- WhereA(£;) Is an unknown function of the long scade.
ventionally applied to systems that reduce to classical har- TO ordere~ we obtain
monic oscillators when the perturbation parameter vanishes )
so that long scales are equal to the short scale multiplied by Gy
) : . ———+
increasing powers of the perturbation paramegerThe X
multiple-scale analysis that we perform here is unusual be-
cause, as we have already see in Sec. IV, the long scales are 1,

. . : — =X*Gg+E Gy, (5.5

now proportional to increasing powers xt as well ase. In 4

1, 1) Gy df;  9Gg d?f;

272 %k ax T g e
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whereE;, is the first-order correction to the energy eigen-£&,=e2f(x), é&3=¢€°f5(x), and so on. The functionk, are

value. determined from the requirement that the right side of the
Substituting the solution foG, into Eq. (5.5 gives differential equation foiG,, vanish. This requirement yields
2 the new dependence &, on &,.
9°Gy (1 2 1) To orderé? thi d ield
Rt BN Bl Bl e €“ this procedure yields
x> \4” 27t
—e (/4% _dA xﬁ—@ —A EX“—E 52:€Z(ixﬁ+ EX4+ EXZ and Ezz_é,
= dg; | Xdx T ae 2 1]]- 96 64 8 8
(5.6 (5.10
We now make the crucial argument in this procedure. By
analogy with conventional MSPT we do not wadf to sat-  2nd
isfy an inhomogeneous equation driven by its homogeneous
solution G, because this will give a contribution @, that G (x)=ex;{£x2 14 §6_ Eé)
may decay less quickly tha®, for largex. For example, if 0 4 2 4
the square bracket in Eq5.6) were a constant, the;
would grow like Gglnx for largex. We thus require that the _ ifx4( 1— 1—15) + ifzxe (5.11
square bracket on the right side of H§.6) vanish identi- 16 4 96 ' '
cally. Of course, one cannot give a logical argument that this
expression must vanish. Rather, we exploit the functional 3
degree of freedom that we introduced in E§.1) when we 10 Ordere” we have
replaced a function of one variable by a function of two
variables and simplgemand that the square bracket vanish 41 8y 21 6y 45 ap 333 ,
identically. a= €| 556X T 192% T 32X T 32X
We proceed as one does when performing a separation of
variables for a partial differential equation. The vanishing of
the expression in square brackets gites ordinary differ- and
ential equations, one fdr, and one forA. Apart from con-
stants of integration that are irrelevant because they scale 333
out, we obtain Es=—5" (5.12
1,3, -3
fl(x)—Ex +§x and El_Z’ (5.7 and
B 1, 3 21, 333,
which fully defines the scalg;=e(%x*+ 2x?). Note that Go(x)=exp = 7x*| 1+ 5e= e+ 3¢
E, computed here is the usual perturbative correction to the
eigenvalue determined from E(.8). Also, we have _ i x4< 1— 1_1 +f’ 2)
16° 4€72°€
—e &
A(é)=e "L (5.8 1, 21 1,
+9—6€ X 1—?6 2—566 X (513

Finally, we use the expression féy in terms ofx to rewrite
the solution forGy:
Observe the pattern that develops. Every new order in MSPT
GO:ef(1/4)x2[1+(3/2)e]7(1/16)ex4_ (5.9 reproduces a new term in the expansion of the exponent in
Eq. (4.32 together withx-dependent corrections to the wave
function in the exponential. To recover the sequence polyno-
Observe that this generalized multiple-scale procedure leadsials P;, P,, Ps, ..., which are discussed in Sec. IV one
to a solution that incorporates not only the next term in theneed only expand the exponentials.
expansion of the exponefdee Eq.(4.32] but also contains
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