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Radial propagators and Wilson loops
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We present a relation which connects the propagator in the réebak-Schwinger gauge with a gauge-
invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate
the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields; its
singular nature is, however, naturally explained using the renormalization properties of Wilson loops with
cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate
loop calculations. Finally, we compare our results with previous approaches to derive a propagator in Fock-
Schwinger gaugg.50556-282(96)05922-X]

PACS numbe(s): 11.15Bt, 12.38Bx

I. INTRODUCTION X, A*(x)=0. 1.9

While perturbation theory for gauge fields formulated in It found widespread use in the context of QCD sum rules
covariant gauges is very well establisHédimany aspects of (e.g.,[8]). There, it is used as being more or less synony-
noncovariant gauges are still under discussion. In principlemous with the important field strength formula
one expects physical quantities to be independent of the cho- L
sen gauge. However, th!s might Igad to the naive c_onclusmn Arad(x):f dssXF,,(sX) (1.2
that a quantum theory in an arbitrary gauge is simply ob- # 0 a
tained by inserting the respective gauge-fixing term and the
appropriate Faddeev-Popov ghosts in the path integral repréthich enormously simplifies the task of organizing the op-
sentation and reading off the Feynman rules. Unfortunatelyerator product expansion of QQpoint functions in terms
it is not so easy to obtain the correct Feynman rules, i.e., Q_f gauge-invariant quan_tltles_by expressing the gauge poten-
set of rules yielding the same results for observable quantii@l via the gauge-covariant field strength tenemncerning

ties as calculations in covariant gauges. Prominent examplé?ld strength formu_las see al$d)). It was introduced long
%go[lo,lﬂ and rediscovered several tim@sg.,[12]).

Only few efforts have been made to establish perturbation

choices are considered since one expects the Faddeev—Popé%\E/EOr for radial aauge. The main reason for this is that the
ghosts to decouple. However, problems even start with th y gauge.

A . Jauge condition breaks translational invariance since the ori-
determination of the appropriate free gauge propagators;.

. . . jin [in general, an arbitrary but fixed pointcf. Eq.(1.6)] is
Temporal and axial gauge choices yield propagators plague ngled out by the gauge condition. Thus, perturbation theory
by gauge poles in their momentum space representatior& '

- annot be formulated in momentum space as usual but must
These are caused by the fact that such gauge conditions gtg et up in coordinate space.

insufficient tocompletelyremove the gauge degrees of free-  The first attempt to evaluate the free radial propagator
dom. The correct treatment of such poles can cause ghogfsg performed in[13]. Later, however, the function
fields to reappedi2], can break translational invarianfg, I',.(x,y) presented there was shown to be not symmetric
or both[4]. While these problems seem to be “restricted” to [14]. Moreover, it could not be symmetrized by adding
the evaluation of the correct gauge propagators and ghost, (y,x) since the latter is not a solution of the free Dyson
fields, the necessity of introducing even new multigluon ver-equation. By examining the general form of the homoge-
tices appears in the Coulomb gaugs. These additional neous and inhomogeneous solutions of the equation of mo-
vertices are due to operator-ordering problems which are diftion for the free radial propagator it was even suspected that
ficult to handle in the familiar path integral approach. Theyit might be impossible to find a symmetric solution of this
give rise to anomalous interaction terms at the two-loop levekquation in four-dimensional space. In addition, it was
[6] and cause still unsolved problems with renormalization ashown in[14] that one obtains a singular expression when

the three-loop level7]. one uses the field strength formula to derive a free radial
In this article we are interested in the radidfock- propagator. Indeed, we agree with this statement in principle,
Schwingey gauge condition but we will present an explanation for this problem and a

way to bypass it. Other approaches to define a radial gauge

propagator try to circumvent the problejg.,[15]) by sac-
“Electronic address: stefan.leupold@physik.uni-regensburg.de rificing the field strength formula as given in Ed.2) which
TElectronic address: weigert@mnhepw.hep.umn.edu was one of the main reasons the gauge became popular in
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nonperturbative QCD sum-rule calculatiof§ in the first  in the inversion of theree differential operator in a gauge
place. If we are not prepared to do so we are forced to untheory: Is there still a zero eigenvalue of the differential op-
derstand the origin of the divergences that plague most of therator in the space on which we try to perform the inversion?
attempts to define even free propagators in radial gauges and This of course is simply questioning the completeness of
see whether they can be dealt with in a satisfying manner.the gauge condition one is about to implement. This point

In Sec. Il we will make the first and decisive step in this has initiated a yet unresolved debate in the case of axial
direction by exploring the completeness of the gauge condigaugede.g.,[4]) but is only briefly mentioned in the context
tion (1.1) and its relation to the field strength formula and of radial gaugese.g.,[22]). We will see that the gauge con-
developing a new representation of the gauge potentials vidition (1.6) is not complete, at least if it is not supplemented
link operators. by other constraints such as for instance, carefully imple-

In Sec. Ill we use this information to relate the diver- mented boundary conditions. This might explain part of the
gences encountered in some of the attempts to define radipfoblems encountered in previous attempts. The methods
propagators to the renormalization properties of link operaused in Sec. Il A. are suited to analyze this question, we have
tors. We find that even free propagators in radial gauge magot done so in any detail since they also reveal that the field
feel remnants of the renormalization properties of closedstrength formula(1.2) is only valid under such more re-
gauge-invariant Wilson loops. Surprising as this seems to bstricted circumstances arbescorrespond to a completely
superficially, it is not impossible, however, if we recall that fixed gauge. The infinities encountered in applying 8q2)
the inhomogeneous term in the gauge transformation has an the problem at hand as [d4], therefore, require a quite
explicit 1/g factor in it. As a result we are able to define a different explanation which will be the main focus of this
regularized radial propagator using the field strength formulgaper. Section 11B. will provide the key tool to reach this
and established regularization procedures for link operatorgyoal.

Section IV will be devoted to demonstrate the consistency
of our approach by calculating a closed Wilson loop using A, The field strength formula and complete gauge fixing
our propagator and relating the steps to the equivalent calcu-
lation in Feynman gauge.

In Sec. V we summarize and compare our results to oth
approaches in the literature and briefly discuss the next ste ) S , :
in the program of establishing a new perturbative frameworiCrM an arbitrary vector potentid into the fieldA satisfy-

in radial gauges which, although, the steps to be performeld Ed- (1.6). A gauge condition is complete B[B](x) is
are quite straightforward, we will postpone for a future pub_umquely determined up to a global gauge transformation. In

To clarify whether the gauge conditidd.6) is sufficient
oo completely fix the gauge degrees of freedom, we have to
talogue the gauge transformatidd§B](x) which trans-

lication. other words, we want to find all solutions of
In the following we work in aD-dimensional Euclidean 1
space. The vector potentials are given by (x—2) ,U[B](x)| B¥(x)— Ea" U[B] (x)=0.
A ()=A5(01,, 1.3 (2.0

wheret, denotes the generators of an (Bl group in the It is easily checked that we have an infinite family of such
fundamental representation obeying solutions which can all be cast in the form of a product of
two gauge transformations of the form
[ta,tp]=ifapd® (1.9
U[B](x)=V(z(x))U[B](z(x),X). 2.2
and
Here,

1
tr(tatb) = E 5ab- (15) Z(X)
U[B](z(x),x)zPexp( igf dw,ﬁ“(w)) (2.3
In general, the radial gauge condition with respect teads *

is a link operator whose geometric ingredients are param-
etrized via its end points andz(x) and the straight line path

For simplicity, we will sez=0 in most expressions. Gener- @ Petween them, an@ denotes path ordering.
alization to arbitraryz should be obvious at any rate. In particular,z(x) is the point where a straight line from
z throughx and a given closed hypersurface arounidter-

sect. Since there is a unique relation between these points
and the hypersurface we will also refer to the hypersurface
Before we can go ahead and tackle the problem of diveritself by z(x). This geometry is illustrated in Fig. 1. Both the
gences in the radial gauge propagator we have to establishdgtailed forms ofz(x) and the local gauge transformation
clearer picture of the situation at hand. Clearly, the many(x) are completely unconstrained as long as
problems encountered in earlier attempts show that there afx—z)-9*z(x)=0. In short, they parametrize the residual
unexpected and yet unclarified features of the radial gauggauge freedom not eliminated by Ed.1). Note that while
problem. Surprising as this may be, to our knowledge ther&/(x) is completely arbitrary the solutiori.2) ask only for
has been no thorough discussion of the one textbook quefts behavior at the given hypersurfaze). The simplest and
tion that will immediately arise when encountering infinities most intuitive choice forz(x) is a spherical hypersurface

(x—2),A*(x)=0. (1.6

Il. THE GAUGE CONDITION REVISITED
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FIG. 1. (a) Straight-line path in
the links for two pointsx andy.
(b) Example of the same for a
spherical hypersurfacgx).

/
\/

(@) (b)

aroundz. Introducing the appropriate spherical coordinates,
it becomes obvious thaf(z(x)) parametrizes gauge trans-  AL4x)=U[A](z,X)
formations which purely depend on the angles. Clearly, the
radial gauge conditiorfl.6) cannot fix the angular depen- 1 dw”
dence of any gauge transformation in E2.1). = J; dssSU[Al(Z,0)F,(0)U[A](,2)
To eliminate the residual gauge freedom one has to im-
pose a condition which is stronger than E.6) and it suf- 1 de”
fices to pin downV(x) up to a global transformation. A =f dSSEFrjf o). (2.6
possible choice for such a gauge fixing would be the condi- 0
tion

U[A](X,2)

15
A,U«(X) - Ea“

M 1 This is nothing but Eq(1.2) for arbitraryz [note that in this

D[f dw-A(w)+j d“yﬁ(z(x),y)ay-A(y) =0 casew=w(s) is simply given byw(s)=z+(x—2z)s.] This

2x) , 4  Simple resultis only true sincg,z(x)=d,z=0. For general
(2.4 z(x) there would be an additional term in the above formula

which, in addition to the vanishing of the radial componentreﬂec_tlng the residual gauge freedom encoded@z(x)). .
of the gauge potential, also implements a covariant gauge on This _sets the stage for a further exploration of the radial
the hypersurface(x). Such a gauge for arbitragfx) would ~ 9&uge in & context where we can be sure of having com-
immediately force us to introduce ghosts into the path intePetely fixed the gauge in such a way that the field strength
gral. Moreover, the field strength formula would also be lostformula is guaranteed to be valid. Before we go on to study
as we will illustrate below. the consequences the above has for the implementation of
There is one exception to these unwanted modification§ropagators, we will introduce yet another representation of
however, which may be implemented by contracting thethe gauge field in this particular complete radial gauge, this
closed surfacez(x) to the pointz. Then the influence of time solely in terms of link operators.
V(x) becomes degenerate with a global transformation and
the gauge is completely fixed. Incidentally, this is also the
only case which entails the field strength formula. To see this  B. Representing the gauge potential via link operators
we use
From now on we will assume the reference pdirtb be
the origin, but it will always be straightforward to recover
5U(X,Z)=ig{AM(X)U(X,Z)dX"— U(x,2)A,(2)dz* the general case without any ambiguities. We will also sup-
press the explicit functional dependence of link operators on

1 the gauge potentiah for brevity.
- fo ds{U(X,Wy) F ., (Wy) U (Wy,2)] Let us start with a link operator along a straight line path
dwi dW)’(’d N dW;:d . ) U N fld A )
X s | oxe 9% +dz”‘ |, (2.5 (x,x")="Pexp ig . w, A" ()|, (2.7

(see, e.g.[16,17) to differentiate the link operators in the
gauge transformatiof®2.2) in order to find an expression for where noww(s): =x’+s(x—x"). According to Eq(2.5 we
the radial gauge field: have
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dU(x,x")=ig| A,(x)

1
=G(92U(O,X)U(x,0) +U(0X)A,(x)U(x,0)

1 do” , 1
_fodssdsU(x,w)Fm(w)U(w,x) U(x,X') :fodssﬁrﬂ(sx), 219

(2.9
. o where the last step uses E@.8), mirroring the relations in
which can be used to express the vector potential in terms ¢tq. (2.6) for z=0.

the link operator

I1l. THE RADIAL GAUGE PROPAGATOR
lim &7, U(x,x") =igA (). (2.9

x' —x

With the type of radial gauge we are interested in
uniquely specified and the corresponding representations for
In the case at hand the fact thdf{0x)=1 in any of the the gauge field derived above, it is now straightforward to
x-A(x)=0 gauges allows us to introduce a new gauge-devise expressions for the propagator as a two-point func-
covariant representation tion. According to the above we know that

A;?d(x):%IIm &Z[U(O,X)U(X,XI)U(X,,O)] (21@ <AM(X)®Ay(y)>rad: llm a;aI)KU(OiX)U(X,X,)U(X,rO)

x'—x
X' —x y' =y
for the Fock-Schwinger gauge field. It is easy to see that this ®U(0y)U(y,y)U(y’,0)

is indeed equivalent to the field strength formula as given in . .
Eq. (1.2 and consequently, satisfies the same complete :f J s
gauge fixing conditiori.e., Eq.(2.4) for z(x)—z]: 0 ds 0 dtsx'ty*(U(0SXF (5%

XU(sx0®@U(0ty)Fg,(ty)U(ty,0)).

A;fd(x)=% lim #[U(0X)U(x,x)U(x",0)] 3.0
x'—x
1 Since we are in a fixed gauge it makes sense to perform a
= lim [#XU(0x)U(x,x")U(X’,0) multiplet decomposition and, for instance, extract the singlet
19, K’ part of this propagator. The latter reduces to the free propa-
gator in the limitg—0.
+U(0,X)(9;(LU(X,X,)U(X,,O)] We define

N?Z_1
2

tr (Au(2) A, (v)) = tr(tats) (A%(2) AL (y)) et =
= 6abDu"($w y)

Dy, (z,y) (3.2

to extract 1
Wi(x,X",y,y'): = Ntr(U(O,x)U(x,x’)U(x’ ,0U(0y)

xXU(y,y")U(y’,0)) (3.9
(AL OAD(y) e 5702 (A, (O A(Y) - invariant Wi is |
u AY) vad NZ—1 \''m Y))rad is a gauge-invariant Wilson loop. Its geometry is illustrated
in Fig. 2.
_ s 2 1 (U (0x) On the other hand, using the second expression in Eg.

(3.1 we have an equivalent representation for the singlet part

——— —— lim &
N°=1(ig), *
X X of radial gauge propagator via the field strength formula:

y'—y

XU(x,x"HU(X',0U(0y)U(y.y")

. 2 1 1
(ALY )P 57 [ s [ dtsny?
XU(y",0)). (3.3 o Jo

Xtr(U(0,sXF,,(sx)U(sx,0)U(0ty)
Obviously, XFg,(ty)U(ty,0)). (3.5
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Modanesd 14] tried to calculate the free radial gauge propa- X’
gator from Eq.(3.5) in a D-dimensional space-timeUnfor-
tunately, one gets a result which diverges in the limit
D—4.
Let us briefly recapitulate how this divergence makes its X
appearance: Since the right-hand side of 835 is gauge
invariant we can choose an arbitrary gauge to calculate it.
For simplicity, we take the Feynman gauge with its free
propagator

(A2(X)AL(Y))Feyr= 02 DIV, Y)
I'(b/2—1)
==~ 9., T(x—y)’ 1P
(3.6

y
Using the free field relations U(a,b)=1 and

Fu=d,A,—d,A,, we get(for more details see Appendix  FIG. 2. The Wilson loopV; which is intimately connected with
A) the radial gauge propagator according to E§s3) and (3.4).

(A5 (2) A5 (1)) rad
F(D/2 - 1) ab ! ! o se gt sz gt sz ot sz gt 211~-D/2
== 1) | ds | dt sz ty® (g#,,aa 95 + 90p0,70," — ga.ua“ 05 — 9u505 6}) [(sz — ty)”]

R L St | dsa, (2 - 910~ 0} / Aty (o - 1P
. 0 0

4xD/2
1 1
+ 8:53,3:/ ds/ diz-yl(sz —ty)?)~P/? } .
0 0 (37)

4-D

In the last term we encounter an ultraviolet divergence at théhe ones we will focus oA Since one can tune which singu-
lower limits of the parameter integrals whesg—ty van- larities are present simply by choosing appropriate external
ishes for arbitrary pairs ok andy, with one remarkable points, we will refrain from explicitly discussing this special
exception: this whole term does not contribute if eithercase below in order to keep the argument compact and easier
x=0 ory=0. The latter being simply a consequence of ourto follow. In summary, we will come to the conclusion that
attempt to preserve the field strength form@la2 which  this attitude can also be maintained for more general
forces the vector field to vanish at the origin general, at N-point functions and in higher order perturbation theory.

the reference pointz). Careful analysis reveals another, The observation that the radial gauge propagator as cal-
mathematically distinct, type of singularity that emergescmate_d here dlverge§ in four-dlmensmn_al space raises the
whenx andy are aligned with respect to the origin. This duestion, whether it is perhaps impossible to formulate a
singularity, appearing for special combinationsxond y quantum theory in radial gauge. This would suggest that the

only, is however, not as striking as the one observed abov%adial gauge cond_itiqn, in the fprm th?‘t facilitates_ the:' field

which is present fofnearly arbitrary arguments. We stress strength formula, is inherently inconsistefiunphysical”)

that also this singularity is regularized by the techniques pre-

sented below and can be dealt with exactly the same way as, . i . o
ndeed, one encounters singularities for special combinations of

arguments in many gauges, not only in the radial gauge. The tem-
poral component of the Coulomb gauge propagator might serve as
an example. It is given by [6] DSMO™x,y)
Yn fact, he discussed the Abelian case but this makes no differ= [[d*k/(27)*]e’* *~¥)(1/k2) which is obviously singular for
ence for free fields. Xo=VYo-
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in contrast with the general belief that it is “very physical” y
since it allows one to express gauge variant quantities such
as the vector potential in terms of gauge-invariant ones. To
answer this question we have to understand from where this
divergence comes from. In the following we will see that for 3 2
this purpose the complicated-looking Wilson loop represen-
tation (3.3) is much more useful than the field strength for-
mula(3.5). [Note, however, that the result for the free propa-
gator(3.7) of course will be the samk.
It is well known that Wilson loops need renormalization
to make them well definedsee, e.g.[18] and references 1 X
therein. The expansion of an arbitrary Wilson loop

FIG. 3. A Wilson loop with two straight-line parts.

1
W(C) = —tr(Pexdig$cdx A, (x)]) (3.8
N which makes the gauge propagator, even the free one, diver-
gent. One might cast the answer in the following forfilne

in powers of the coupling constant is given by propagator diverges because of, and not contrary to, the fact

1" that the radial gauge is “very physical.”
W(C)=1+ _z (ig)”gﬁcdx’l‘l o -Sﬁcdxﬁf” Consequently, the next questions are as follows: Is there
Ni=2 any use for a divergent expression for the free propagator?
Especially: Can we use it to perfordimensionally regular-
XOc(Xy>- - >x)trG X1, -+ - Xn), (3.9 . ) . 2
cXa ) A "‘n( ! ) (39 ized) loop calculations? Can one find a renormalization pro-
X ) - . ’
where® (x> - - - >x,) orders the pointsy , . . . x, along gram which yields a finite radial gauge propagator-

In the next section we will answer these questions. First,
we will perform a one-loop calculation of a Wilson loop
Xy, X0): :<Aﬂ1(xl)' . 'Aun(xn» using_the radial gauge propaga(_ﬁr?) and compare the di-

mensionally regularized result with a calculation in Feynman
(3.10
gauge.

The answer to the second question turns out to be surpris-
ing. Indeed, the renormalization program developed for Wil-
son loops can be extended to the radial gauge propagator
yielding a finite expression for the latter. Naively, one would
expect this expression to be the correct input as the free
propagator for perturbative calculations. However, as we
shall see in the next section there is no corrawed finite
version of a free radial gauge propagator for the purpose of
Feynman rules. The divergence in four-dimensional space

However, new divergences appear if the contGuhas turns out to be mandatory to perform loop calculations. For
cusps or self-intersections. The renormalization properties dpe sake .Of qompleteness we have neverth(_aless worlged outa
such loops are discussed [i20,21. While the singularities renormalization scheme for the propagator in Appendix B. It

of regular loops appear at the two-loop lefeiderg® in Eq. is shown there that the singularity is indeed removed by

(3.9)] cusps and cross points cause divergences even in Ieaﬁa_normallzmg the appropriate Wilson loop. In addition, the

ing (nontrivial) orderg?. properties of the finite “propagator” are contrasted with the

SinceW, as given in Eq(3.4) is indeed plagued by cusps regularized version.
and self-intersections, a second renormalization operation
must be carried out to get a renormalized exprestfh
from the bare onéVN,. This observation has an important

the contourC and

G

,u,l...;Ln(

are the Green functions.

In general, Wilson loops show ultraviolet singularities in
any order of the coupling constant. If the contoQr is
smooth (i.e., differentiabl¢ and simple(i.e., without self-
intersectiony the conventional charge and wave-function
renormalization, denoted By in the following, is sufficient
to makeW(C) finite. We refer the reader tdl9] for more
details about renormalization of regul@mooth and simp)e
loops.

IV. CALCULATING A WILSON LOOP IN RADIAL

consequence for our radial gauge propagator as given in Eq. GAUGE

(3.3): Even the free propagator needs renormalization. This \ve choose the path

provides a natural explanation for the fact that a naive cal-

culation of this object yields an ultraviolet divergent result

[14]. Note that the usual divergences of Wilson loops which oX , oe[0,1],x e RP,

are removed b{R, such as e.g., vertex divergences, appear at
O(g? and thus do not contribute to the free part of the radial /:2(0)={ W(e—=1) , oe[1,2,w(0)=x,w(1)=y,
gauge propagator, while the cusp singularities indeed con- (3-o)y oe[2,3),yeRP.
tribute since they appear a{g?) and affect the free field 4.7
case due to the factord? in Eq. (3.3).

Now we are able to answer the question whether the ra-
dial gauge is “unphysical” or “very physical.” It is just its It is shown in Fig. 3. The linev(o—1) is supposed to be an
intimate relation to physical, i.e., gauge-invariant, quantitiesarbitrary curve connecting andy.
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First, we will perform the calculation of this Wilson loop in Feynman gauge. UsindE6). we get, in leading order of the
coupling constant,

W(e) = itr <1> exp [ig?{dz”Au(z)]> ~ 1+ (ig)2N2 —1 /Osda/osdre(a — 1) #(0) 2*(r) DE™(2(0), (7))

=1+ (ig)2 S5 / da/ dr ##(c) () DEI™(2(c), 2(T))

4.2
= f
To get rid of the® function we have exploited the symmetry property of two-point Green functions
F _nF
D;ﬁzyrtX,Y) - D eyrky X) (43)

Decomposing the contouf according to Eq(4.1) we find that the Feynman propagator in E4.2) connects each segment
of / with itself and with all the other segments. Thuigjs given by

3 3
A=1 B=1

where @,B) denotes the contribution with propagators connecting loop segmeatsiB (cf. Fig. 3, e.g.,

(1,2 = fdo-f drxAw”(7)DEYox,w( 7))~ %zﬁfldafoldrx”
XW,,(7)[(ox—w(7))?]* P2, (4.5

Next, we will evaluate the same Wilson loop in radial gauge. Clearly, the first and the third part of the path do not
contribute if the radial gauge condition,A*(x) =0 holds. We insert the free propagator

(A2 (X)AY(Y)) o= 67PD0 (X,y) (4.6
from Eq.(3.7) into

W) = %tr <7> exp [ig /0 do u'),‘(a)A“(w(a))] >
-1

N2
~ 1+ (ig)”

2N
1 1
xl/ da’/ dr (o) w” () DY, (w(e), w(r))
2 0 0 (47)
=1
and observe that
) d

Thus, the integral in Eq4.7) reduces to



7702 STEFAN LEUPOLD AND HERIBERT WEIGERT 54

I'(D/2—1 1 1 . 1 1
l=- (TDQ—)[ fo do fo drw, ()W () (w(o) —w(7)*] "2+ fo ds fo dt(w, (DwH(D){(sw(1) —tw(1))*}* P
+w,(0)wH(0){[sw(0) —tw(0) ]2}~ P2—w ,(1)wH(0){[sw(1) — tw(0)]3}*~P2—w,,(0)w*(1){[sw(0)

—tw(1) AP - foldsfoldﬂ}\/ﬂ(T)(W“(l){[SW(l) —w(7) AP wH(0){[sw(0) —w(7) ]2 P

- fldtJ'ldO'\}\IM(O')(Wp'(l){[W(o’)—tW(l)]z}l’D/Z—WP«(O){[W(U)_tW(O)]Z}lfDIZ)
0 0

=(2,2+(3,9+(1,D)+(3,D)+(1,3+(3,2+(1,2+(2,3 +(2,1). 4.9

A careful analysis of Eqi4.9) shows that it exactly coincides agrees with the calculation in Feynman gauge. Finally, we
with the Feynman gauge calculation. This is expressed in theave pointed out that any version of the radial propagator
last line where we have denoted which parts of the loop arevhich is finite in four-dimensional space at least cannot re-
connected by the Feynman gauge propagator to reproduggoduce the correct renormalization properties of Wilson
Eq. (4.9 term by term. Thus, using the radial gauge propadoops with cusps at the reference pamt
gator as given in Eq3.7) yields the same result as the cal- It is instructive to compare the radial gauge propagators
culation in Feynman gauge. Finally, this regularized expresas presented here with other approaches: As discussed in
sion has to be renormalized. This can be performed withouBec. Il the radial gauge conditiqd.1) does not completely
any problems according {@0]. Since we are not interested fix the gauge degrees of freedom. Thus, the field strength
in the Wilson loop itself but in the comparison of the resultsformula
obtained in radial and Feynman gauge, we will not calculate
the renormalized expression fav(/).

However, a qualitative discussion of the renormalization
properties ofW(/) is illuminating. By constructionW(/")
has at least a cusp at the origi@ther cusps are possible at is not the only solution of the system of equatidns
x or y or along the line parametrized by, but are not . "
important for our considerationsTo give the right behavior X, AMX)=0,  FL,(0)=0,Ax)=gALX). (5.2
of the Wilson loop the calculation_dN(/)_ in an arbitrary One might add a functiofL4]
gauge must reproduce the cusp singularity. Usually, the pa-
rameter integrals in the vicinity of the cusp do the job. For A% (x)=9*f(x) (5.3
gauge choices where the propagator does not vanish in the g a
vicinity of the origin, this is automatically achieved. Let us to Eq.(5.1) wheref is an arbitrary homogeneous function of
assume for a moment that it is possible to construthite  degree 0. However, amyz(x) added in order to modify Eq.
radial gauge propagator obeying the field strength formulas.1) is necessarily singular at the origin. Hence, regularity at
(1.2 while, due to the gauge condition, having trivial gaugethe origin may be used as a uniqueness condfti@h If we

factors along radial lines. Of course, this is nothing but sayrelax this boundary condition other solutions are possible,
ing that there are no contributions from parts 1 and 3 of thes g,

loop, i.e., in the vicinity of the origin. Since the propagator is

assumed to be finite, there are no singular integrals corre- — *

sponding to the cusp at the origin. Thus a finite radial gauge Au(x)=— L dssxF,.(sX), (5.4
propagator cannot reproduce the correct behavior of the Wil-

son loop. In turn we conclude thatsingular radial gauge where we must assume that the field strength vanishes at
propagator is mandatoryto get the right renormalization infinity. While Eqg.(5.1) is the only solution which is regular

A,(xX)= foldssX’Fw(sx) (5.1

properties of Wilson loops. at the origin, Eq(5.4) is regular at infinity. Ignoring bound-
ary conditions for the moment one can construct a radial
V. SUMMARY AND OUTLOOK gauge propagator bS]

In this article we have shown how to calculate the radial 1
gauge propagator in ®-dimensional space using Wilson E[Gw(x’yHGm(y'X)] (5.9
loops. As discovered ifil4] the free propagator diverges in
four-dimensional space. We were able to explain this singuwith
lar behavior by studying the properties of associated Wilson
loops. Furthermore, we have shown that the free propagator,
in spite of being divergent in four dimensions, can be used 3For simplicity, we discuss the QED case here. Aiming at an
for perturbative calculations in @imensionally regularized  expression for the free gauge propagator, this is no restriction of
framework and that the result for a gauge-invariant quantitygenerality. For non-Abelian gauge groups [&2].
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1 o one may worry about even in the case of “safe” combina-
GL(Xy)i=— jo dSSXle dtty’(F (S F g, (ty)). tions of external points: What happens in loop integrals if
one has to integrate over such combinations of internal

(5.6 ) : . .
points? Here again, comparing to the Wilson loop represen-

It turns out that this propagator is finite in four dimensions.tation combined with covariant gauge Feynman rules imme-

However, the price one has to pay is that boundary congidiately tells us that it is only the location of external points

tions are ignored and thus the object “lives” in the restricted that governs the typ_es of Iipk—related _singularities. Hence, all
spaceR4\{0} and not ink* anymore. In our approach we the potentially worrisome internal points must have cancel-

insist on the field strength formul®.1) widely used in op- M9 cont'nbutlons n t_he regularized expression. o
erator product expansiofig] and on the regular behavior of All this of course illustrates clearly how much is still left
vector potentials at the origiii2]. One might use the propa- to be done_but it also shows the wealth of tool_s and cross-
gator(5.5) to calculate they? contribution to the Wilson loop checks available on the way to a new perturbation theory in
on the contour4.1). It is easy to check that the result differs @ radial gauge that respects the field strength formula.
from those obtained in Eq$4.7) and (4.9). Clearly, this is
due to the fact that Eq5.5) is ill defined at the origin.
E.specially, it is sh.own in Appendix C thqt.thc_ere appears no ACKNOWLEDGMENTS
divergence reflecting the cusp at the origin if one uses Eq.
(5.5 instead of Eq.3.7) for the calculation of the Wilson
loop. This is an explicit example for our general statement H.W. wants to thank Alex Kovner for his invaluable pa-
that any finite version of the radial propagator cannot cortience in his role as a testing ground of new ideas. S.L.
rectly reproduce cusp singularities at the origin. thanks Professor Ulrich Heinz for valuable discussions and
In the above, all calculations were performed in Euclidearsupport. During this research S.L. was supported in part by
space. In Minkowski space Wilson loops show additionalDeutsche Forschungsgemeinschaft and Bundesministerium
divergences if part of the contour coincides with the lightfur Bildung, Wissenschaft, Forschung und Technologie.
cone[23]. Thus, we expect the appearance of new singulariH.W. was supported by the U.S. Department of Energy un-
ties also for the radial propagator, at least if one or both of itader Grant No. DOE Nuclear DE-FG02-87ER-40328 and
arguments are lightlike. Further investigation is required toby the Alexander von Humboldt Foundation through their
work out the properties of the radial gauge propagator inFeodor Lynen program.
Minkowski space.
To formulate perturbation theory in a specific gauge the
knowledge of the correct free propagator is only the first
step. In addition, one has to check the decoupling of APPENDIX A: DERIVATION OF THE FREE RADIAL

Faddeev-Popov ghosts in radial gauge which is suggested by PROPAGATOR

the algebraic nature of the gauge condition. However, the The free radial propagator derived from the field strength
still continuing discussion about temporal and axial gaugegormula shows a divergence M=4, as already indicated in
might serve as a warning that the decoupling of ghosts fokec, |1, Eq.(3.7). Here, we give the details of the algebra
algebraic gauge conditions is far from being triviel. [2,4] leading to this conclusion.

and references therginTo prove (or disprove the decou- The following relations summarize the steps carried out in
pling of ghosts in radial gauge we expect that our Wilsonhe calculation below:

loop representation of the propagator is of great advantage

since it yields the possibility to calculate higher loop contri-

butions in two distinct ways: On the one hand, one might use X 0% = |X|07\X\ ' (A1)

the Wilson loop representation to calculate the full radial
propagator up to an arbitrary order in the coupling constant.

B X Yy X ay X Yy
: . ; L(X,y):=X %t Qagd @ — G dd
The appropriate Wilson loop can be calculated in any gauge, * (x.¥) Y9, BT Yap’y aru?p

e.g., in a coyariant gauge. On the o_ther hand, the radial _guﬁazai):guva\X\alyl|X||y|_&vaalyl|y|
propagator might be calculated according to Feynman rules. .
Since the results should coincide this might serve as a check — Y uIp| X[+ T ax-y. (A2)

for the validity and completeness of a set of radial gauge

Feynman rules. NS — _ i .
Indeed, the above philosophy allows for more than justlntroducmgx. X/|x| andu=s||, we have for arbitrary:

algebraically checking the correctness of a particular calcu-

lation. It can be used to predict properties of perturbative SX,d5F(8X) =X, %5 (8X), (A3)

guantities. Let us end with just one more example of how

powerful these arguments can be by coming back to the one 1 1 X

type of singularity we have put aside in our discussion up to 5|X|J' d5|x|f(5x):01‘x‘j dsix|f(s|x|X)=d} | duf(uX)

now: the singularities that are present only if both end points 0 0 0

and the radial reference poit are in a line. Since they

constitute only a special case in the above procedures, there

was no need to explicitly address them here. When we are

going to do loop integrals however, there will be one issue We get

= £(|x[%) = f(x). (A4)
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47TD/2 a b 0
- W_T) (Au (x)Au (y)>rad

= 4 /Olds /Oldt T (52, ty) [(s2 — ty)?])* P72

=6"T,,(z,y) /Olds/oldt [(sz —ty)?])*~P/?

= 5% apo el bl = 3 20 Oils] ~ 3%y halel+ 9507 2-3) [ o [[tl(om — 102"
— 5o <9uu[(f —y)?-D/2 o /Olds 2, [(sz — y)2]=P12 — o /Oldt u [(z = ty)2)1=P/?

1 1
voga [ as [ ylior —=2r ).
0 0

(A5)
1
~4-D
|
The diverggnt part of_the double integral in the last line Bi=,(y-Yy',—Y), (B5)
can be found in Appendix D. At the moment, however, the
exact form of the divergence is not important. B =20y, y—y'). (B6)
APPENDIX B: RENORMALIZATION PROGRAM FOR The cross point at the origin introduces a mixing between
THE FREE PROPAGATOR W, and
Here, we shall use the renormalization program developed R ¢ , L1
for Wilson loops with cusps and self-intersectid@®,21 to Wa(X,x",y,y"): = Ntr[U(O,x)U(x,x JU(x 'O)JN
obtain a finite expression for the radial gauge propagator.
This proves that the overall singularity of the propagator is , ,
indeed caused by the cusps of the Wilson |¢8gl). How- XufU0y)U(y.y)U(y".01).
ever, as we have argued above this finite expression cannot (B7)

be used as an input for perturbation theory. In the following

we concentrate on the free radial gauge propagator. The geRgain the divergences appearing here are functions of the
eralization to higher orders in perturbation theory is straight

angles
forward. g
As a first step, we must apply the renormalization opera- Yoo 1= L(=%xX"))
tion R to W, as given in Eq(3.4). This yields ,
! J a y Yyy T AC'AD
Wi(X, X"V, Y iR D) = RWy(X,X,y,y":0,D), Yy = L(=X=Y)| - B8
(B1) Yoy = 2y [T (B8)
whereW, (x,x’,y,y’;g,D) is a regularized expression calcu- Yy = L(X,=y)
lated in D dimensions angu is a subtraction point intro- Yxyr = L(=XY) )

duced by the renormalization proceduRe As mentioned
above this serves to perform the usual coupling constant arithe renormalized Wilson looV/? is given by
wave-function renormalization. For the purpose of the

present work the only important relation is W?(x,x’,y,y’;gR,,u,,Ca CaCp,Cpr,C;,
gr= P29+ 0(gd). (B2) = limz(C,,gr,«;D)Z(C,/,0r, ;D)
D—4

In a second step the cusps and self-intersections must be X Z(C. ‘DVZ(C o D
renormalized. According t¢20] each cusp is multiplica- ( B'_gR"u' ) (NB 'Or:#iD)
tively renormalizable with a renormalization factdr de- X[Z11(C;,gr, ;D)W (X,X",Y,Y";0r &,D)
pending on the cusp angle. In our case we have four cusps _ ~
W|th al’lg|eS +212(C«;nguUnD)WZ(X:X’:yay’ngalLaD)

a:=/,(x=x",—X), (B3) = 1Im WaGx",y.y"58r:Ca i Carn Cp G,

@'t = £ (X x—x"), (B4) XC;iD), (B9)
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where the second renormalization procedure introduces newielding

subtraction point<,, (cf. [18,20 for more details b
i i - i (ALOOAYY)R
We define a renormalized expression for the radial gauge R™

D—4 c
uC "t lim 37,9 6Z(C,)

propagator by o ;H;
2N 1 -
a b smglet -4 J— J— N
(AL()AYY))R D“Lnfa 1 (ign )zM +8Z(C )+ 8Z(Cp)+ 5Z(Cp) + 623
+ 8245+ SW,]. (B15)

X lim d7, Wi (x,x",y,y";D),
x' —x

Yy Using the fact that up t@(gﬁ) the two quantitiesV; and

(B10) W, are essentially the sarfiaye find

. 2N ~
where we have suppressed most of the other variables on [|im 5ab 1,uD 4 lim 9,05 6W,

which W, dependgsee Eq(B9)]. D—4 X' —x
From now on, we will concentrate on the calculation of a y'—y
renormalized expression for the free propagator 2N 1
(Ai(x)AE(y))%. As we shall see only a few of the many = lim &P _2_1@2 lim 570 #[1+(ig)?6W,]
possible renormalization constants will contribute to the final D—4 "X
result. y'—y
Since in the relation between the propagator and the ap- 2N
propriate Wilson loop(3.3 a factor 1¢? is involved, all = lim 5ab 1 {ig )2 lim &7, 37Wa|q-0o
guantities, especially all the's andW's of Eg. (B9), have to D—4 —x
be calculated up t®(g3). We have y'—y
W, =1+ (igg)26W, + O(g) (i=1,2), (B12) = lim (A2(X)A(Y) ) pag- (B16)
D—4
Z=1+(igr)?6Z+0O(gp), (B12) _
Z1,=1+(igR)26Z11+ O(g‘F';), (B13) To get thesZ’'s we must calculatéW, which is straightfor-
o, 4 ward using Eqs(3.4) and (B1). We only need the Feynman
Z1,=0+(igr)“6Z1,+ O(gR), (B14)  propagator(3.6) to get
~ -1TI'(D/2-1
o= — 2 L D 40 4 x40 4 X0 [y 40 [y -y [0+ [y 40 1 X

F (X=X, =X) + (=X, X))+ 10y y=y ) +1l(y—y', = y) +la =y, Yy ) = 1o(X", —y) + (X", —y) + (Y, —X)
=X, =y) =I5y, =X y=y )+ Iy, = xy—y' ) —ls(X —y" x=x"y' —y) = I3(x",—y',x=x")

+15(x", =y, x=x")] (B17)
|
with
1 1 1 l,=— ﬁ'i‘fll’llte (B21)
IlZZJ dSJ dt@(S—t)W]r, (B18)
o _
and
pa)i= [ as[ at 28 e19 .
sp+tq)2]D2 12(p,Q) = 5 yoty+finite, (B22)
and
where vy is the angle betweep and g. The integrall 5 is
l3(m,p,q):= f dsf dt (m+sp+tq)2]D’2 1 finite as long asn+0.

(B20) To specify the renormalization facto# we choose the
minimal subtraction schemi}'® as described irf18]. In
In the following we are interested only in the divergent partsdimensional regularization all the divergences are given by
of these integrals. The integralg and |, are calculated in sums of pole terms. We define ev&tyactor to be given just
Appendix D. The results are by the respective sum. The important property of this renor-
malization scheme is that th&factors depend on the angles
only and not on the length of the loop or of any part of the
“Only a factoru®~* comes in sincays as given in Eq(B2) is  loop. Using Egs(B21) and(B22) the Z factors can be read
dimensionless in contrast with off from Eq. (B17) (cf. [21]):
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— N?-1 1 1
8Z(C,)= N m4_D(aCOta—1), (B23)
—  N2-1 1 , ,
6Z(C,)= N m4_D(a cote’ —1), (B24)
— 2_ 1
0Z(Cp)= 5N m‘l_D(ﬁcotﬁ—l), (B25)
— N*>-11 1
8Z(Cp)= N m4_D(ﬁ cot3’—1), (B26)
NZ—1 1 1 )
52].1: 2N m 4_DL(7x’yCOt7x/y_1)
+ (’yxy/COt’yxyr - 1)], (827)

N2—1 1 1
5212: 2N m 4— D[ Vxx! COtyXX, + ’yyyrcot’)/yy/

—(m—= 7x’y’)C0t(7T_ 7x’y’)

STEFAN LEUPOLD AND HERIBERT WEIGERT 54

Using Eqgs.(D4) and(D14) below, we find

b r(pR-1) , .
U,LV(X,3/)2W2—5a 3,01 2(X,—Y)

r(or-1) [ 1
=07 000 75 (T xy)

X cot(m— yyy) + finite)

1
b X Jy
=72 %99,

+finite (B32)

1
X\ zzp (7~ ¥xy) COtyyy

and thus

UaL(x,y)+Can(x,y) =finite.

v

B33
(B28) (833

— (7= yxy)COI(W_ ')’xy)]-
Now, we exploit the fact that only one of the angles, namely Note that if one tries to guess a finite expression such as
¥xy depends orx and y. All the other ones depend only on (AZ(X)AS(y»% one would have to introduce a scgleby
X or ony separately, or on none of them. This simplifies Eq.hand without interpretation. In our derivation this scale ap-
(B15) drastically: pears naturally as the typical renormalization scale of the
‘R operation.

The counter terncfﬁ(x,y) has some interesting proper-

ties. It is symmetric with respect to an exchange of all vari-
ables and it obeys the gauge condition

. 2N o,
(ALOOALY))R= lim 80 == uP™* lim 4,9}

D—4 x' —x
y'—y

X (8Z 10+ SW.
(0212t o) X#C2(x,y) =0=C28(x,y)y". (B34)
11
— i b, D—4 X 9y
lim | &% aﬂ‘?V(W 4-D

Thus(Af‘L(x)AB(y))g is finite in the limitD—4 but still can
be interpreted as a gluonic two-point function which satisfies

X (7= Yyy) COtyxy the radial gauge condition

XH(A2(X)AN(y))=0. (B35)

+(ALOOAYY)) %l (B29)

_ However,C2%(x,y) and thus alsqA%(x)A(y))R is ill de-
where we have used E(B16) to get the last expression.  fined at the origin and hence conflicts with the field strength
Before discussing some properties of the renormalized eXprmula (1.2). Note that the regularized propagator in con-
pression for the free propagator we shall show that the counrast with the renormalized “propagator” is well defined and
terterm vanishes if one of its arguments approaches zero, as pointed
out after Eq.(3.7). We, therefore, conclude that we may use
the regularized propagator in perturbative calculations and
can ensure to preserve relations such as the field strength
formula or Egs.(2.11) or (3.1) throughout the calculation.

Cab(x y).= 5abuD_4(9X¢9y —1 —1 (7m— yyy)COty
uv\M Y v\ 4 24 D Xy. Xy
(530)

exactly cancels the divergence of the propagésor), i.e.,

a b/ )0 o g ;
e o 452 SO ApPENDIX . WILSON LOOP CALCULATION Wi A
A PP ' 9 P ALTERNATIVE RADIAL PROPAGATOR
of the propagatof3.7) is given by
ab r'(D/2—1)
V(X y)i=—— 5@z —

In Sec. IV we have calculated thg? contribution of the
Wilson loop along the patf4.1) in Feynman gauge as well
as in the radial gauge using the propagd®). We have
shown that the two results andl, agree with each other.
However, using the propagat@®.5 for the same Wilson
loop we end up with a different result as we shall show now.

We have to compark;=1, as given in Eq(4.9 with

1 1
X Ay . __+\,\271-D/2
XaMano dsfO dtx-y[(sx—ty)“] .

(B31)
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f:dsfoldt+ Joldsf:dt)(w“(l)wﬂ(l)

X{[sW(1) —tw(1)]2*" P2+ w,(0)wH(0){[ sw(0) — tw(0) ]2}~ P2—w ,(1)wH(0){[ sw(1) — tw(0)]?}*~ P2

I'(D/2—1)

| = Jld fld W, (o) WA ) [ (W( o) —w( ))2]1—0/2_'_}
) 4 o 7 0 Tl T a T 2

— W, (O WH(1){[sW(0) — tw(1) P} P - %( [fas| 1ds) [ ami, o) Tswn) — w207 we0)
0 o 0
1/ r1 1 1
><{[svv(0>—w<r>]2}l'3’2>—§( [far | dt) | dow, 10w 1) w0 - w0
0 o 0

—W“(O){[W(G)—tW(O)]Z}lD’Z)}- (CY

Obviously, it is very tedious and on the other hand not verywith

illuminating to calculate all the integrals in Eq&l.9) and 1 1 .

(C1). Therefore, we restrict ourselves to the most interesting 1(p,q): :f dsJ dt%ﬂ. (C7)
part, the cusp divergence at the origin, i.e., we calculate the = Jo [(sp+ta)?]
contributionsf,(6) andf,(5) with

1 As shown in Appendix D the integra), is finite for D—4;
Ir,w:mfr,w( 8)+ contr. indep. of+finite contr. thus
(C2) f,=0 (C8
and . . . .
w(0)-w(1) which obviously differs from Eq(C5). This proves that,
COSy: = . C3 Fly.
W(O)T[w(D) € 7
To prove thatl,#1,, holds, it is sufficient to show that, APPENDIX D: SOME IMPORTANT INTEGRALS
#fy. . . .
: ; — ; The integrald ; andl, play an important part in the renor-
a ;)rnlisgetermlned by the contribution8,1) and(1,3) in Eq. malization procedure of Appendix B and determine the di-
' 1 U I(D/2-1) (1 . vergences of the naive free radial propagator introduced in
_ — Sec. lll. The integral , is important for the comparison of
_— = — — 13 4
4-D fr(9) 47O J; dsfo dt(=w,(Lw(0) the radial propagator obtained here with the one presented in
1 1-DJ2 [15]. All these integrals are discussed in detail below.
X{[sw(1) —tw(0)]} —w,(0)w*(1) To calculate
X{[sw(0)—tw(1)]}* P A L
(D/2—-1) |1Z=f de dt@(S—t)W, (D1)
== g0 22(W(0),~w(1)) (C4 o Jo
with |, given in Eq.(D4). Strictly speaking, the first equality we introduce the substitution
sign in Eq.(C4) holds up to finite contributions. Using Eq. e _
(D14) we get g=s—t, h=s+t (D2)
1
fr(5)=—ﬁ(w—5)cot(7r— d). (C5  toget
L L 12 2-g 1
Similarly, f,, is given by Il:if dgf dhgz’sz dg(1—g)g? P
Lo 1ﬁ—r(D/Z_l) fld fldt+fld fldt o ’
2—p =3 o7 | ]98], 0 %), _I(2)r(3-D) 1 03
X (~ W, (DWH(0){[sw(1) ~tw(0)]?} O HeE=b) (4=DE=Db)
—w,(0)wH(1){[sw(0) —tw(1)]3}*~P"?) For the calculation of

['(D/2—1)
== — o [1aW(0),~w(1))

1 1 .
|2(I0,Q)1=f0 dsfo dt%ﬁ (D4)

+1,4w(1),—w(0))] (C6) sp+tq)
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we have to distinguish the two casps agq where the only
divergence that appears is fert=0 and p=aq with an
additional divergence a=ta. Here, we will only need the
former [cf. the discussion after Eq43.7)].

As a first step it is useful to separate off the divergence at
the origin by the substitution

A=s+t, X=S/\. (D5) :
This yields
Y FIG. 4. The geometry of the variables appearing in the calcula-
1/2 1/(1-x) tion of I, (C4).
12(p,q) = f dXJ dx
0 0 i
o X|p|+(1—x)|qgle'”
2|¢:
1 1/x 3D p-q € X|p|+(1_x)|q|e,|y. (D9)
" 1/2dX 0 dr [ {[xp+(1-x)q]3}P= 1
Note thaty is nothing but the angle betweg@nandu(x). To
jl/Zd (1-x)P~4 p-q perform this substitution in EqD6) we need
= X — — N DP2—1
o 47D Axprd=xaly x=alsin(y— $)/N(s), 1-x=p|sing/N(y), (D10)
1 XD_4 pP-q
+ | dx —. (D6 . dy [N
[ BT © fuop—patsaiNG andy = - 1o
As long asp# aq holds there are no divergences in the D
integration since with
u(x):=xp+(1-x)q (D7) N(y): =|p|siny+|q|sin(y—y). (D12)
never vanishes. We introduce the angle betweemdq, In addition, it is useful to introduce
cosy:= S|‘|2| , (D8) U= p(x=1/2) (D13

which is the angle betweem andp+q (cf. Fig. 4).
and the substitutioh18] Using all that, we end up with

1o ):f‘”’d ,_|p||CI|Sin7/|p|sin¢ D-4 N2 D=1 p.q
2(P.q , Y N2 \ N pzqzsinzy 5

[l s N0 g —comit
Oy N? \ N p2qsiry 2-D D

q 4*wa,d¢rsinD*4¢r
Y

S _ —cosysin’ Py
oo [ e 4| -

D 4DJV‘/”deinD4w>

Y

q 4*Df$ dysin® 4+
Y

=1°D ycoty+finite. (D14

The integral

[4(p,q):= f de dtmz— (D15)

can be calculated in the same waylasAgain, we use the substitutigid5) to derive

_ 1/(1-x) 3-D p-q
l4(p,q) = L/ZdXJ’ dAA Ixp+ (1—x)q3PZ 1T (D16)

Obviously, |, is finite for D—4 as long ap+# aq holds.
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