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Radial propagators and Wilson loops
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We present a relation which connects the propagator in the radial~Fock-Schwinger! gauge with a gauge-
invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculat
the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields;
singular nature is, however, naturally explained using the renormalization properties of Wilson loops with
cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilit
loop calculations. Finally, we compare our results with previous approaches to derive a propagator in Foc
Schwinger gauge.@S0556-2821~96!05922-X#
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I. INTRODUCTION

While perturbation theory for gauge fields formulated i
covariant gauges is very well established@1# many aspects of
noncovariant gauges are still under discussion. In princip
one expects physical quantities to be independent of the c
sen gauge. However, this might lead to the naive conclus
that a quantum theory in an arbitrary gauge is simply o
tained by inserting the respective gauge-fixing term and t
appropriate Faddeev-Popov ghosts in the path integral rep
sentation and reading off the Feynman rules. Unfortunate
it is not so easy to obtain the correct Feynman rules, i.e.
set of rules yielding the same results for observable quan
ties as calculations in covariant gauges. Prominent examp
are formulations in temporal and axial gauges. Such gau
choices are considered since one expects the Faddeev-P
ghosts to decouple. However, problems even start with
determination of the appropriate free gauge propagato
Temporal and axial gauge choices yield propagators plagu
by gauge poles in their momentum space representati
These are caused by the fact that such gauge conditions
insufficient tocompletelyremove the gauge degrees of free
dom. The correct treatment of such poles can cause gh
fields to reappear@2#, can break translational invariance@3#,
or both@4#. While these problems seem to be ‘‘restricted’’ t
the evaluation of the correct gauge propagators and gh
fields, the necessity of introducing even new multigluon ve
tices appears in the Coulomb gauge@5#. These additional
vertices are due to operator-ordering problems which are d
ficult to handle in the familiar path integral approach. The
give rise to anomalous interaction terms at the two-loop lev
@6# and cause still unsolved problems with renormalization
the three-loop level@7#.

In this article we are interested in the radial~Fock-
Schwinger! gauge condition

*Electronic address: stefan.leupold@physik.uni-regensburg.de
†Electronic address: weigert@mnhepw.hep.umn.edu
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m~x!50. ~1.1!

It found widespread use in the context of QCD sum rul
~e.g., @8#!. There, it is used as being more or less synon
mous with the important field strength formula

Am
rad~x!5E

0

1

dssxnFnm~sx! ~1.2!

which enormously simplifies the task of organizing the o
erator product expansion of QCDn-point functions in terms
of gauge-invariant quantities by expressing the gauge pot
tial via the gauge-covariant field strength tensor~concerning
field strength formulas see also@9#!. It was introduced long
ago @10,11# and rediscovered several times~e.g.,@12#!.

Only few efforts have been made to establish perturbat
theory for radial gauge. The main reason for this is that t
gauge condition breaks translational invariance since the
gin @in general, an arbitrary but fixed pointz, cf. Eq.~1.6!# is
singled out by the gauge condition. Thus, perturbation the
cannot be formulated in momentum space as usual but m
be set up in coordinate space.

The first attempt to evaluate the free radial propaga
was performed in @13#. Later, however, the function
Gmn(x,y) presented there was shown to be not symmet
@14#. Moreover, it could not be symmetrized by addin
Gnm(y,x) since the latter is not a solution of the free Dyso
equation. By examining the general form of the homog
neous and inhomogeneous solutions of the equation of m
tion for the free radial propagator it was even suspected t
it might be impossible to find a symmetric solution of th
equation in four-dimensional space. In addition, it wa
shown in @14# that one obtains a singular expression wh
one uses the field strength formula to derive a free rad
propagator. Indeed, we agree with this statement in princip
but we will present an explanation for this problem and
way to bypass it. Other approaches to define a radial ga
propagator try to circumvent the problem~e.g.,@15#! by sac-
rificing the field strength formula as given in Eq.~1.2! which
was one of the main reasons the gauge became popula
7695 © 1996 The American Physical Society
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7696 54STEFAN LEUPOLD AND HERIBERT WEIGERT
nonperturbative QCD sum-rule calculations@8# in the first
place. If we are not prepared to do so we are forced to
derstand the origin of the divergences that plague most of
attempts to define even free propagators in radial gauges
see whether they can be dealt with in a satisfying manne

In Sec. II we will make the first and decisive step in th
direction by exploring the completeness of the gauge con
tion ~1.1! and its relation to the field strength formula an
developing a new representation of the gauge potentials
link operators.

In Sec. III we use this information to relate the dive
gences encountered in some of the attempts to define ra
propagators to the renormalization properties of link ope
tors. We find that even free propagators in radial gauge m
feel remnants of the renormalization properties of clos
gauge-invariant Wilson loops. Surprising as this seems to
superficially, it is not impossible, however, if we recall th
the inhomogeneous term in the gauge transformation has
explicit 1/g factor in it. As a result we are able to define
regularized radial propagator using the field strength form
and established regularization procedures for link operato

Section IV will be devoted to demonstrate the consisten
of our approach by calculating a closed Wilson loop usi
our propagator and relating the steps to the equivalent ca
lation in Feynman gauge.

In Sec. V we summarize and compare our results to ot
approaches in the literature and briefly discuss the next s
in the program of establishing a new perturbative framewo
in radial gauges which, although, the steps to be perform
are quite straightforward, we will postpone for a future pu
lication.

In the following we work in aD-dimensional Euclidean
space. The vector potentials are given by

Am~x![Am
a ~x!ta , ~1.3!

where ta denotes the generators of an SU~N! group in the
fundamental representation obeying

@ ta ,tb#5 i f abct
c ~1.4!

and

tr~ tatb!5
1

2
dab . ~1.5!

In general, the radial gauge condition with respect toz reads

~x2z!mA
m~x!50. ~1.6!

For simplicity, we will setz50 in most expressions. Gener
alization to arbitraryz should be obvious at any rate.

II. THE GAUGE CONDITION REVISITED

Before we can go ahead and tackle the problem of div
gences in the radial gauge propagator we have to establi
clearer picture of the situation at hand. Clearly, the ma
problems encountered in earlier attempts show that there
unexpected and yet unclarified features of the radial ga
problem. Surprising as this may be, to our knowledge th
has been no thorough discussion of the one textbook qu
tion that will immediately arise when encountering infinitie
un-
the
and
r.
is
di-
d
via

r-
dial
ra-
ay
ed,
be
at
an
a
ula
rs.
cy
ng
lcu-

her
teps
rk
ed
b-

-

er-
sh a
ny
are
uge
ere
es-
s

in the inversion of thefree differential operator in a gauge
theory: Is there still a zero eigenvalue of the differential op
erator in the space on which we try to perform the inversio

This of course is simply questioning the completeness
the gauge condition one is about to implement. This poi
has initiated a yet unresolved debate in the case of ax
gauges~e.g.,@4#! but is only briefly mentioned in the context
of radial gauges~e.g.,@22#!. We will see that the gauge con-
dition ~1.6! is not complete, at least if it is not supplemente
by other constraints such as for instance, carefully impl
mented boundary conditions. This might explain part of th
problems encountered in previous attempts. The metho
used in Sec. II A. are suited to analyze this question, we ha
not done so in any detail since they also reveal that the fie
strength formula~1.2! is only valid under such more re-
stricted circumstances anddoescorrespond to a completely
fixed gauge. The infinities encountered in applying Eq.~1.2!
to the problem at hand as in@14#, therefore, require a quite
different explanation which will be the main focus of this
paper. Section II B. will provide the key tool to reach thi
goal.

A. The field strength formula and complete gauge fixing

To clarify whether the gauge condition~1.6! is sufficient
to completely fix the gauge degrees of freedom, we have
catalogue the gauge transformationsU@B#(x) which trans-
form an arbitrary vector potentialB into the fieldA satisfy-
ing Eq. ~1.6!. A gauge condition is complete ifU@B#(x) is
uniquely determined up to a global gauge transformation.
other words, we want to find all solutions of

~x2z!mU@B#~x!FBm~x!2
1

ig
]mGU@B#21~x!50.

~2.1!

It is easily checked that we have an infinite family of suc
solutions which can all be cast in the form of a product o
two gauge transformations of the form

U@B#~x!5V„z~x!…U@B#„z~x!,x…. ~2.2!

Here,

U@B#„z~x!,x…5PexpS igE
x

z~x!

dvmB
m~v! D ~2.3!

is a link operator whose geometric ingredients are para
etrized via its end pointsx andz(x) and the straight line path
v between them, andP denotes path ordering.

In particular,z(x) is the point where a straight line from
z throughx and a given closed hypersurface aroundz inter-
sect. Since there is a unique relation between these po
and the hypersurface we will also refer to the hypersurfa
itself by z(x). This geometry is illustrated in Fig. 1. Both the
detailed forms ofz(x) and the local gauge transformation
V(x) are completely unconstrained as long a
(x2z)•]xz(x)50. In short, they parametrize the residua
gauge freedom not eliminated by Eq.~1.1!. Note that while
V(x) is completely arbitrary the solutions~2.2! ask only for
its behavior at the given hypersurfacez(x). The simplest and
most intuitive choice forz(x) is a spherical hypersurface
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FIG. 1. ~a! Straight-line path in
the links for two pointsx and y.
~b! Example of the same for a
spherical hypersurfacez(x).
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aroundz. Introducing the appropriate spherical coordinate
it becomes obvious thatV„z(x)… parametrizes gauge trans
formations which purely depend on the angles. Clearly, t
radial gauge condition~1.6! cannot fix the angular depen-
dence of any gauge transformation in Eq.~2.1!.

To eliminate the residual gauge freedom one has to i
pose a condition which is stronger than Eq.~1.6! and it suf-
fices to pin downV(x) up to a global transformation. A
possible choice for such a gauge fixing would be the con
tion

hF E
z~x!

x

dv•A~v!1E d4y
1

h
„z~x!,y…]y•A~y!G[0

~2.4!

which, in addition to the vanishing of the radial compone
of the gauge potential, also implements a covariant gauge
the hypersurfacez(x). Such a gauge for arbitraryz(x) would
immediately force us to introduce ghosts into the path int
gral. Moreover, the field strength formula would also be lo
as we will illustrate below.

There is one exception to these unwanted modificatio
however, which may be implemented by contracting th
closed surfacez(x) to the pointz. Then the influence of
V(x) becomes degenerate with a global transformation a
the gauge is completely fixed. Incidentally, this is also th
only case which entails the field strength formula. To see th
we use

dU~x,z!5 igHAm~x!U~x,z!dxm2U~x,z!Am~z!dzm

2E
0

1

ds@U~x,wx!Fmn~wx!U~wx ,z!#

3
dwx

m

ds S dwx
n

dxa dx
a1

dwx
n

dza dz
aD J , ~2.5!

~see, e.g.,@16,17#! to differentiate the link operators in the
gauge transformation~2.2! in order to find an expression for
the radial gauge field:
s,
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Am
rad~x!5U@A#~z,x!FAm~x!2

1

ig
]m
x GU@A#~x,z!

5E
0

1

dss
dvn

ds
U@A#~z,v!Fnm~v!U@A#~v,z!

5E
0

1

dss
dvn

ds
Fnm
rad~v!. ~2.6!

This is nothing but Eq.~1.2! for arbitraryz @note that in this
casev5v(s) is simply given byv(s)5z1(x2z)s.# This
simple result is only true since]mz(x)[]mz50. For general
z(x) there would be an additional term in the above formu
reflecting the residual gauge freedom encoded inV„z(x)….

This sets the stage for a further exploration of the rad
gauge in a context where we can be sure of having co
pletely fixed the gauge in such a way that the field streng
formula is guaranteed to be valid. Before we go on to stu
the consequences the above has for the implementatio
propagators, we will introduce yet another representation
the gauge field in this particular complete radial gauge, t
time solely in terms of link operators.

B. Representing the gauge potential via link operators

From now on we will assume the reference pointz to be
the origin, but it will always be straightforward to recove
the general case without any ambiguities. We will also su
press the explicit functional dependence of link operators
the gauge potentialA for brevity.

Let us start with a link operator along a straight line pa

U~x,x8!5PexpF igE
0

1

dvmA
m~v!G , ~2.7!

where nowv(s):5x81s(x2x8). According to Eq.~2.5! we
have
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]m
x U~x,x8!5 igFAm~x!

2E
0

1

dss
dvn

ds
U~x,v!Fnm~v!U~v,x!GU~x,x8!

~2.8!

which can be used to express the vector potential in term
the link operator

lim
x8→x

]m
x U~x,x8!5 igAm~x!. ~2.9!

In the case at hand the fact thatU(0,x)51 in any of the
x•A(x)50 gauges allows us to introduce a new gaug
covariant representation

Am
rad~x!5

1

ig
lim
x8→x

]m
x @U~0,x!U~x,x8!U~x8,0!# ~2.10!

for the Fock-Schwinger gauge field. It is easy to see that
is indeed equivalent to the field strength formula as given
Eq. ~1.2! and consequently, satisfies the same comp
gauge fixing condition@i.e., Eq.~2.4! for z(x)→z#:

Am
rad~x!5

1

ig
lim
x8→x

]m
x @U~0,x!U~x,x8!U~x8,0!#

5
1

ig
lim
x8→x

@]m
x U~0,x!U~x,x8!U~x8,0!

1U~0,x!]m
x U~x,x8!U~x8,0!#
s of

e-

this
in

lete

5
1

ig
]m
x U~0,x!U~x,0!1U~0,x!Am~x!U~x,0!

5E
0

1

dssxnFnm
rad~sx!, ~2.11!

where the last step uses Eq.~2.8!, mirroring the relations in
Eq. ~2.6! for z50.

III. THE RADIAL GAUGE PROPAGATOR

With the type of radial gauge we are interested in
uniquely specified and the corresponding representations fo
the gauge field derived above, it is now straightforward to
devise expressions for the propagator as a two-point func
tion. According to the above we know that

^Am~x! ^An~y!& rad5 lim
x8→x
y8→y

]m
x ]n

y^U~0,x!U~x,x8!U~x8,0!

^U~0,y!U~y,y8!U~y8,0!&

5E
0

1

dsE
0

1

dtsxatyb^U~0,sx!Fam~sx!

3U~sx,0! ^U~0,ty!Fbn~ ty!U~ ty,0!&.

~3.1!

Since we are in a fixed gauge it makes sense to perform
multiplet decomposition and, for instance, extract the single
part of this propagator. The latter reduces to the free propa
gator in the limitg→0.

We define
.
t

~3.2!

to extract

^Am
a ~x!An

b~y!& rad
singlet5dab

2

N221
tr^Am~x!An~y!& rad

5dab
2

N221

1

~ ig !2
lim
x8→x
y8→y

]m
x ]n

ytr^U~0,x!

3U~x,x8!U~x8,0!U~0,y!U~y,y8!

3U~y8,0!&. ~3.3!

Obviously,

W1~x,x8,y,y8!:5
1

N
tr^U~0,x!U~x,x8!U~x8,0!U~0,y!

3U~y,y8!U~y8,0!& ~3.4!

is a gauge-invariant Wilson loop. Its geometry is illustrated
in Fig. 2.

On the other hand, using the second expression in Eq
~3.1! we have an equivalent representation for the singlet par
of radial gauge propagator via the field strength formula:

^Am
a ~x!An

b~y!& rad
singlet5dab

2

N221E0
1

dsE
0

1

dtsxatyb

3tr^U~0,sx!Fam~sx!U~sx,0!U~0,ty!

3Fbn~ ty!U~ ty,0!&. ~3.5!
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Modanese@14# tried to calculate the free radial gauge propa
gator from Eq.~3.5! in aD-dimensional space-time.1 Unfor-
tunately, one gets a result which diverges in the limi
D→4.

Let us briefly recapitulate how this divergence makes it
appearance: Since the right-hand side of Eq.~3.5! is gauge
invariant we can choose an arbitrary gauge to calculate
For simplicity, we take the Feynman gauge with its free
propagator

^Am
a ~x!An

b~y!&Feyn5dabDmn
Feyn~x,y!

52
G~D/221!

4pD/2 gmndab@~x2y!2#12D/2.

~3.6!

Using the free field relations U(a,b)51 and
Fmn5]mAn2]nAm , we get~for more details see Appendix
A!
-

t

s

it.

FIG. 2. The Wilson loopW1 which is intimately connected with
the radial gauge propagator according to Eqs.~3.3! and ~3.4!.
~3.7!
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In the last term we encounter an ultraviolet divergence at t
lower limits of the parameter integrals wheresx2ty van-
ishes for arbitrary pairs ofx and y, with one remarkable
exception: this whole term does not contribute if eithe
x50 or y50. The latter being simply a consequence of o
attempt to preserve the field strength formula~1.2! which
forces the vector field to vanish at the origin~in general, at
the reference pointz). Careful analysis reveals another
mathematically distinct, type of singularity that emerge
when x and y are aligned with respect to the origin. This
singularity, appearing for special combinations ofx and y
only, is however, not as striking as the one observed abo
which is present for~nearly! arbitrary arguments. We stress
that also this singularity is regularized by the techniques p
sented below and can be dealt with exactly the same way

1In fact, he discussed the Abelian case but this makes no diff
ence for free fields.
he

r
ur

,
s

ve

re-
as

the ones we will focus on.2 Since one can tune which singu-
larities are present simply by choosing appropriate extern
points, we will refrain from explicitly discussing this specia
case below in order to keep the argument compact and ea
to follow. In summary, we will come to the conclusion tha
this attitude can also be maintained for more gene
n-point functions and in higher order perturbation theory.

The observation that the radial gauge propagator as c
culated here diverges in four-dimensional space raises
question, whether it is perhaps impossible to formulate
quantum theory in radial gauge. This would suggest that t
radial gauge condition, in the form that facilitates the fiel
strength formula, is inherently inconsistent~‘‘unphysical’’!

er-

2Indeed, one encounters singularities for special combinations
arguments in many gauges, not only in the radial gauge. The te
poral component of the Coulomb gauge propagator might serve
an example. It is given by @6# D00

Coulomb(x,y)

5*@d4k/(2p)4#eik•(x2y)(1/kW2) which is obviously singular for
x05y0.
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in contrast with the general belief that it is ‘‘very physical
since it allows one to express gauge variant quantities s
as the vector potential in terms of gauge-invariant ones.
answer this question we have to understand from where
divergence comes from. In the following we will see that f
this purpose the complicated-looking Wilson loop represe
tation ~3.3! is much more useful than the field strength fo
mula ~3.5!. @Note, however, that the result for the free prop
gator ~3.7! of course will be the same.#

It is well known that Wilson loops need renormalizatio
to make them well defined~see, e.g.,@18# and references
therein!. The expansion of an arbitrary Wilson loop

W~C!5
1

N
tr^Pexp@ igrCdx

mAm~x!#& ~3.8!

in powers of the coupling constant is given by

W~C!511
1

N(
n52

`

~ ig !nrCdx1
m1 . . . rCdxn

mn

3QC~x1.•••.xn!trGm1 . . .mn
~x1 , . . . ,xn!, ~3.9!

whereQC(x1.•••.xn) orders the pointsx1 , . . . ,xn along
the contourC and

Gm1 . . .mn
~x1 , . . . ,xn!:5^Am1

~x1!•••Amn
~xn!&

~3.10!

are the Green functions.
In general, Wilson loops show ultraviolet singularities

any order of the coupling constant. If the contourC is
smooth ~i.e., differentiable! and simple~i.e., without self-
intersections!, the conventional charge and wave-functio
renormalization, denoted byR in the following, is sufficient
to makeW(C) finite. We refer the reader to@19# for more
details about renormalization of regular~smooth and simple!
loops.

However, new divergences appear if the contourC has
cusps or self-intersections. The renormalization properties
such loops are discussed in@20,21#. While the singularities
of regular loops appear at the two-loop level@orderg4 in Eq.
~3.9!# cusps and cross points cause divergences even in l
ing ~nontrivial! orderg2.

SinceW1 as given in Eq.~3.4! is indeed plagued by cusp
and self-intersections, a second renormalization opera
must be carried out to get a renormalized expressionW1

R

from the bare oneW1. This observation has an importan
consequence for our radial gauge propagator as given in
~3.3!: Even the free propagator needs renormalization. T
provides a natural explanation for the fact that a naive c
culation of this object yields an ultraviolet divergent resu
@14#. Note that the usual divergences of Wilson loops whi
are removed byR, such as e.g., vertex divergences, appea
O(g4) and thus do not contribute to the free part of the rad
gauge propagator, while the cusp singularities indeed c
tribute since they appear ato(g2) and affect the free field
case due to the factor 1/g2 in Eq. ~3.3!.

Now we are able to answer the question whether the
dial gauge is ‘‘unphysical’’ or ‘‘very physical.’’ It is just its
intimate relation to physical, i.e., gauge-invariant, quantit
’’
uch
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which makes the gauge propagator, even the free one, dive
gent. One might cast the answer in the following form:The
propagator diverges because of, and not contrary to, the fac
that the radial gauge is ‘‘very physical.’’

Consequently, the next questions are as follows: Is ther
any use for a divergent expression for the free propagator
Especially: Can we use it to perform~dimensionally regular-
ized! loop calculations? Can one find a renormalization pro-
gram which yields a finite radial gauge propagator?

In the next section we will answer these questions. First
we will perform a one-loop calculation of a Wilson loop
using the radial gauge propagator~3.7! and compare the di-
mensionally regularized result with a calculation in Feynman
gauge.

The answer to the second question turns out to be surpris
ing. Indeed, the renormalization program developed for Wil-
son loops can be extended to the radial gauge propagat
yielding a finite expression for the latter. Naively, one would
expect this expression to be the correct input as the fre
propagator for perturbative calculations. However, as we
shall see in the next section there is no correctand finite
version of a free radial gauge propagator for the purpose o
Feynman rules. The divergence in four-dimensional spac
turns out to be mandatory to perform loop calculations. For
the sake of completeness we have nevertheless worked ou
renormalization scheme for the propagator in Appendix B. It
is shown there that the singularity is indeed removed by
renormalizing the appropriate Wilson loop. In addition, the
properties of the finite ‘‘propagator’’ are contrasted with the
regularized version.

IV. CALCULATING A WILSON LOOP IN RADIAL
GAUGE

We choose the path

l :z~s!5H sx , sP@0,1#,xPRD,

w~s21! , sP@1,2#,w~0!5x,w~1!5y,

~32s!y , sP@2,3#,yPRD.
~4.1!

It is shown in Fig. 3. The linew(s21) is supposed to be an
arbitrary curve connectingx andy.

FIG. 3. A Wilson loop with two straight-line parts.
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First, we will perform the calculation of this Wilson loop in Feynman gauge. Using Eq.~3.6! we get, in leading order of the
coupling constant,

~4.2!

To get rid of theQ function we have exploited the symmetry property of two-point Green functions

Dmn
Feyn~x,y!5Dnm

Feyn~y,x!. ~4.3!

Decomposing the contourl according to Eq.~4.1! we find that the Feynman propagator in Eq.~4.2! connects each segment
of l with itself and with all the other segments. Thus,I f is given by

I f5 (
A51

3

(
B51

3

~A,B!, ~4.4!

where (A,B) denotes the contribution with propagators connecting loop segmentsA andB ~cf. Fig. 3!, e.g.,

~1,2!5E
0

1

dsE
0

1

dtxmẇn~t!Dmn
Feyn

„sx,w~t!…2
G~D/221!

4pD/2 E
0

1

dsE
0

1

dtxm

3ẇm~t!@„sx2w~t!…2#12D/2. ~4.5!

Next, we will evaluate the same Wilson loop in radial gauge. Clearly, the first and the third part of the path do
contribute if the radial gauge conditionxmA

m(x)50 holds. We insert the free propagator

^Am
a ~x!An

b~y!& rad
0 5:dabDmn

0 ~x,y! ~4.6!

from Eq. ~3.7! into

~4.7!

and observe that

ẇm~s!]w~s!
m 5

d

ds
. ~4.8!

Thus, the integral in Eq.~4.7! reduces to
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I r52
G~D/221!

4pD/2 F E
0

1

dsE
0

1

dtẇm~s!ẇm~t!@„w~s!2w~t!…2#12D/21E
0

1

dsE
0

1

dt~wm~1!wm~1!$„sw~1!2tw~1!…2%12D/2

1wm~0!wm~0!$@sw~0!2tw~0!#2%12D/22wm~1!wm~0!$@sw~1!2tw~0!#2%12D/22wm~0!wm~1!$@sw~0!

2tw~1!#2%12D/2!2E
0

1

dsE
0

1

dtẇm~t!~wm~1!$@sw~1!2w~t!#2%12D/22wm~0!$@sw~0!2w~t!#2%12D/2!

2E
0

1

dtE
0

1

dsẇm~s!~wm~1!$@w~s!2tw~1!#2%12D/22wm~0!$@w~s!2tw~0!#2%12D/2!G
5~2,2!1~3,3!1~1,1!1~3,1!1~1,3!1~3,2!1~1,2!1~2,3!1~2,1!. ~4.9!
A careful analysis of Eq.~4.9! shows that it exactly coincides
with the Feynman gauge calculation. This is expressed in
last line where we have denoted which parts of the loop
connected by the Feynman gauge propagator to reprod
Eq. ~4.9! term by term. Thus, using the radial gauge prop
gator as given in Eq.~3.7! yields the same result as the ca
culation in Feynman gauge. Finally, this regularized expr
sion has to be renormalized. This can be performed with
any problems according to@20#. Since we are not intereste
in the Wilson loop itself but in the comparison of the resu
obtained in radial and Feynman gauge, we will not calcul
the renormalized expression forW(l ).

However, a qualitative discussion of the renormalizati
properties ofW(l ) is illuminating. By constructionW(l )
has at least a cusp at the origin.~Other cusps are possible a
x or y or along the line parametrized byw, but are not
important for our considerations.! To give the right behavior
of the Wilson loop the calculation ofW(l ) in an arbitrary
gauge must reproduce the cusp singularity. Usually, the
rameter integrals in the vicinity of the cusp do the job. F
gauge choices where the propagator does not vanish in
vicinity of the origin, this is automatically achieved. Let u
assume for a moment that it is possible to construct afinite
radial gauge propagator obeying the field strength form
~1.2! while, due to the gauge condition, having trivial gau
factors along radial lines. Of course, this is nothing but s
ing that there are no contributions from parts 1 and 3 of
loop, i.e., in the vicinity of the origin. Since the propagator
assumed to be finite, there are no singular integrals co
sponding to the cusp at the origin. Thus a finite radial gau
propagator cannot reproduce the correct behavior of the W
son loop. In turn we conclude thata singular radial gauge
propagator is mandatoryto get the right renormalization
properties of Wilson loops.

V. SUMMARY AND OUTLOOK

In this article we have shown how to calculate the rad
gauge propagator in aD-dimensional space using Wilso
loops. As discovered in@14# the free propagator diverges i
four-dimensional space. We were able to explain this sin
lar behavior by studying the properties of associated Wils
loops. Furthermore, we have shown that the free propaga
in spite of being divergent in four dimensions, can be us
for perturbative calculations in a~dimensionally! regularized
framework and that the result for a gauge-invariant quan
the
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agrees with the calculation in Feynman gauge. Finally, we
have pointed out that any version of the radial propagator
which is finite in four-dimensional space at least cannot re-
produce the correct renormalization properties of Wilson
loops with cusps at the reference pointz.

It is instructive to compare the radial gauge propagators
as presented here with other approaches: As discussed in
Sec. II the radial gauge condition~1.1! does not completely
fix the gauge degrees of freedom. Thus, the field strength
formula

Am~x!5E
0

1

dssxnFnm~sx! ~5.1!

is not the only solution of the system of equations3

xmA
m~x!50, Fmn~x!5]m

x An~x!2]n
xAm~x!. ~5.2!

One might add a function@14#

Am
0 ~x!5]m

x f ~x! ~5.3!

to Eq.~5.1! wheref is an arbitrary homogeneous function of
degree 0. However, anyAm

0 (x) added in order to modify Eq.
~5.1! is necessarily singular at the origin. Hence, regularity at
the origin may be used as a uniqueness condition@12#. If we
relax this boundary condition other solutions are possible,
e.g.,

Ām~x!52E
1

`

dssxnFnm~sx!, ~5.4!

where we must assume that the field strength vanishes at
infinity. While Eq. ~5.1! is the only solution which is regular
at the origin, Eq.~5.4! is regular at infinity. Ignoring bound-
ary conditions for the moment one can construct a radial
gauge propagator by@15#

1

2
@Gmn~x,y!1Gnm~y,x!# ~5.5!

with

3For simplicity, we discuss the QED case here. Aiming at an
expression for the free gauge propagator, this is no restriction of
generality. For non-Abelian gauge groups cf.@22#.
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Gmn~x,y!:52E
0

1

dssxaE
1

`

dttyb^Fam~sx!Fbn~ ty!&.

~5.6!

It turns out that this propagator is finite in four dimension
However, the price one has to pay is that boundary con
tions are ignored and thus the object ‘‘lives’’ in the restricte
spaceR4\$0% and not inR4 anymore. In our approach we
insist on the field strength formula~5.1! widely used in op-
erator product expansions@8# and on the regular behavior of
vector potentials at the origin@12#. One might use the propa-
gator~5.5! to calculate theg2 contribution to the Wilson loop
on the contour~4.1!. It is easy to check that the result differs
from those obtained in Eqs.~4.7! and ~4.9!. Clearly, this is
due to the fact that Eq.~5.5! is ill defined at the origin.
Especially, it is shown in Appendix C that there appears
divergence reflecting the cusp at the origin if one uses E
~5.5! instead of Eq.~3.7! for the calculation of the Wilson
loop. This is an explicit example for our general stateme
that any finite version of the radial propagator cannot co
rectly reproduce cusp singularities at the origin.

In the above, all calculations were performed in Euclidea
space. In Minkowski space Wilson loops show addition
divergences if part of the contour coincides with the ligh
cone@23#. Thus, we expect the appearance of new singula
ties also for the radial propagator, at least if one or both of
arguments are lightlike. Further investigation is required
work out the properties of the radial gauge propagator
Minkowski space.

To formulate perturbation theory in a specific gauge th
knowledge of the correct free propagator is only the fir
step. In addition, one has to check the decoupling
Faddeev-Popov ghosts in radial gauge which is suggested
the algebraic nature of the gauge condition. However, t
still continuing discussion about temporal and axial gaug
might serve as a warning that the decoupling of ghosts
algebraic gauge conditions is far from being trivial~cf. @2,4#
and references therein!. To prove ~or disprove! the decou-
pling of ghosts in radial gauge we expect that our Wilso
loop representation of the propagator is of great advanta
since it yields the possibility to calculate higher loop contr
butions in two distinct ways: On the one hand, one might u
the Wilson loop representation to calculate the full radi
propagator up to an arbitrary order in the coupling consta
The appropriate Wilson loop can be calculated in any gau
e.g., in a covariant gauge. On the other hand, the rad
propagator might be calculated according to Feynman rul
Since the results should coincide this might serve as a ch
for the validity and completeness of a set of radial gau
Feynman rules.

Indeed, the above philosophy allows for more than ju
algebraically checking the correctness of a particular calc
lation. It can be used to predict properties of perturbati
quantities. Let us end with just one more example of ho
powerful these arguments can be by coming back to the o
type of singularity we have put aside in our discussion up
now: the singularities that are present only if both end poin
and the radial reference pointz are in a line. Since they
constitute only a special case in the above procedures, th
was no need to explicitly address them here. When we
going to do loop integrals however, there will be one issu
s.
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one may worry about even in the case of ‘‘safe’’ combina-
tions of external points: What happens in loop integrals if
one has to integrate over such combinations of internal
points? Here again, comparing to the Wilson loop represen-
tation combined with covariant gauge Feynman rules imme-
diately tells us that it is only the location of external points
that governs the types of link-related singularities. Hence, all
the potentially worrisome internal points must have cancel-
ing contributions in the regularized expression.

All this of course illustrates clearly how much is still left
to be done but it also shows the wealth of tools and cross-
checks available on the way to a new perturbation theory in
a radial gauge that respects the field strength formula.
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APPENDIX A: DERIVATION OF THE FREE RADIAL
PROPAGATOR

The free radial propagator derived from the field strength
formula shows a divergence inD54, as already indicated in
Sec. III, Eq.~3.7!. Here, we give the details of the algebra
leading to this conclusion.

The following relations summarize the steps carried out in
the calculation below:

xm]x
m5uxu] uxu , ~A1!

Tmn~x,y!:5xayb~gmn]a
x ]b

y1gab]m
x ]n

y2gan]m
x ]b

y

2gmb]a
x ]n

y!5gmn] uxu] uyuuxuuyu2]m
x xn] uyuuyu

2]n
yym] uxuuxu1]m

x ]n
yx•y. ~A2!

Introducingx̂:5x/uxu andu5suxu, we have for arbitraryf :

sxa]b
sxf ~sx!5xa]b

x f ~sx!, ~A3!

] uxu E
0

1

dsuxu f ~sx!5] uxu E
0

1

dsuxu f ~suxux̂!5] uxu E
0

uxu
du f~ux̂!

5 f ~ uxux̂!5 f ~x!. ~A4!

We get
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~A5!
The divergent part of the double integral in the last lin
can be found in Appendix D. At the moment, however, th
exact form of the divergence is not important.

APPENDIX B: RENORMALIZATION PROGRAM FOR
THE FREE PROPAGATOR

Here, we shall use the renormalization program develop
for Wilson loops with cusps and self-intersections@20,21# to
obtain a finite expression for the radial gauge propagato
This proves that the overall singularity of the propagator
indeed caused by the cusps of the Wilson loop~3.4!. How-
ever, as we have argued above this finite expression can
be used as an input for perturbation theory. In the followin
we concentrate on the free radial gauge propagator. The g
eralization to higher orders in perturbation theory is straigh
forward.

As a first step, we must apply the renormalization oper
tion R toW1 as given in Eq.~3.4!. This yields

W̃1~x,x8,y,y8;gR ,m,D !5RW1~x,x8,y,y8;g,D !,
~B1!

whereW1(x,x8,y,y8;g,D) is a regularized expression calcu-
lated in D dimensions andm is a subtraction point intro-
duced by the renormalization procedureR. As mentioned
above this serves to perform the usual coupling constant a
wave-function renormalization. For the purpose of th
present work the only important relation is

gR5m~D24!/2g1o~g3!. ~B2!

In a second step the cusps and self-intersections must
renormalized. According to@20# each cusp is multiplica-
tively renormalizable with a renormalization factorZ de-
pending on the cusp angle. In our case we have four cus
with angles

a:5/~x2x8,2x!, ~B3!

a8:5/~x8,x2x8!, ~B4!
e
e

ed

r.
is

not
g
en-
t-

a-

nd
e

be

ps

b:5/~y2y8,2y!, ~B5!

b8:5/~y8,y2y8!. ~B6!

The cross point at the origin introduces a mixing between
W1 and

W2~x,x8,y,y8!:5 K 1Ntr@U~0,x!U~x,x8!U~x8,0!#
1

N

3tr@U~0,y!U~y,y8!U~y8,0!#L .
~B7!

Again, the divergences appearing here are functions of the
angles

gxx8 :5 /~2x,x8!

gyy8 :5 /~2y,y8!

gxy :5 /~2x,2y!

gx8y8 :5 /~x8,y8!

gx8y :5 /~x8,2y!

gxy8 :5 /~2x,y8!

6 gW . ~B8!

The renormalized Wilson loopW1
R is given by

W1
R~x,x8,y,y8;gR ,m,C̄a ,C̄a8,C̄b ,C̄b8,C̄gW !

5 lim
D→4

Z~C̄a ,gR ,m;D !Z~C̄a8,gR ,m;D !

3Z~C̄b ,gR ,m;D !Z~C̄b8,gR ,m;D !

3@Z11~C̄gW ,gR ,m;D !W̃1~x,x8,y,y8;gR ,m,D !

1Z12~C̄gW ,gR ,m;D !W̃2~x,x8,y,y8;gR ,m,D !

5: lim
D→4

W̄1~x,x8,y,y8;gR ,m,C̄a ,C̄a8,C̄b ,C̄b8,

3C̄gW ;D !, ~B9!
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where the second renormalization procedure introduces n
subtraction pointsC̄s ~cf. @18,20# for more details!.

We define a renormalized expression for the radial gau
propagator by

^Am
a ~x!An

b~y!&R
singlet:5 lim

D→4
dab

2N

N221

1

~ igR!2
mD24

3 lim
x8→x
y8→y

]m
x ]n

yW̄1~x,x8,y,y8;D !,

~B10!
where we have suppressed most of the other variables
which W̄1 depends@see Eq.~B9!#.

From now on, we will concentrate on the calculation of
renormalized expression for the free propaga
^Am

a (x)An
b(y)&R

0 . As we shall see only a few of the man
possible renormalization constants will contribute to the fin
result.

Since in the relation between the propagator and the
propriate Wilson loop~3.3! a factor 1/g2 is involved, all
quantities, especially all theZ’s andW’s of Eq. ~B9!, have to
be calculated up toO(gR

2). We have

W̃i511~ igR!2dW̃i1O~gR
4 !~ i51,2!, ~B11!

Z511~ igR!2dZ1O~gR
4 !, ~B12!

Z11511~ igR!2dZ111O~gR
4 !, ~B13!

Z12501~ igR!2dZ121O~gR
4 !, ~B14!
ew

ge

on

a
or
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ap-
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^Am
a ~x!An

b~y!&R
05 lim

D→4
dab

2N

N221
mD24 lim

x8→x
y8→y

]m
x ]n

y@dZ~C̄a!

1dZ~C̄a8!1dZ~C̄b!1dZ~C̄b8!1dZ11

1dZ121dW̃1#. ~B15!

Using the fact that up toO(gR
2) the two quantitiesW1 and

W̃1 are essentially the same,4 we find

lim
D→4

dab
2N

N221
mD24 lim

x8→x
y8→y

]m
x ]n

ydW̃1

5 lim
D→4

dab
2N

N221

1

~ ig !2
lim
x8→x
y8→y

]m
x ]n

y@11~ ig !2dW1#

5 lim
D→4

dab
2N

N221

1

~ ig !2
lim
x8→x
y8→y

]m
x ]n

yW1ug50

5 lim
D→4

^Am
a ~x!An

b~y!& rad
0 . ~B16!

To get thedZ’s we must calculatedW̃1 which is straightfor-
ward using Eqs.~3.4! and~B1!. We only need the Feynman
propagator~3.6! to get
dW̃152m42D
N221

2N

G~D/221!

4pD/2 @~ ux8u42D1ux2x8u42D1uxu42D1uy8u42D1uy2y8u42D1uyu42D!I 11I 2~x8,x2x8!

1I 2~x2x8,2x!1I 2~2x,x8!1I 2~y8,y2y8!1I 2~y2y8,2y!1I 2~2y,y8!2I 2~x8,2y8!1I 2~x8,2y!1I 2~y8,2x!

2I 2~x,2y!2I 3~y8,2x8,y2y8!1I 3~y8,2x,y2y8!2I 3~x82y8,x2x8,y82y!2I 3~x8,2y8,x2x8!

1I 3~x8,2y,x2x8!# ~B17!
with

I 1 :5E
0

1

dsE
0

1

dtQ~s2t !
1

@~s2t !2#D/221 , ~B18!

I 2~p,q!:5E
0

1

dsE
0

1

dt
p•q

@~sp1tq!2#D/221 , ~B19!

and

I 3~m,p,q!:5E
0

1

dsE
0

1

dt
p•q

@~m1sp1tq!2#D/221 .

~B20!

In the following we are interested only in the divergent pa
of these integrals. The integralsI 1 and I 2 are calculated in
Appendix D. The results are

4Only a factormD24 comes in sincegR as given in Eq.~B2! is
dimensionless in contrast withg.
rts

I 152
1

42D
1finite ~B21!

and

I 2~p,q!5
1

42D
gcotg1finite, ~B22!

whereg is the angle betweenp and q. The integralI 3 is
finite as long asmÞ0.

To specify the renormalization factorsZ we choose the
minimal subtraction schemeKg

MS as described in@18#. In
dimensional regularization all the divergences are given by
sums of pole terms. We define everyZ factor to be given just
by the respective sum. The important property of this renor-
malization scheme is that theZ factors depend on the angles
only and not on the length of the loop or of any part of the
loop. Using Eqs.~B21! and ~B22! theZ factors can be read
off from Eq. ~B17! ~cf. @21#!:
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dZ~C̄a!5
N221

2N

1

4p2

1

42D
~acota21!, ~B23!

dZ~C̄a8!5
N221

2N

1

4p2

1

42D
~a8cota821!, ~B24!

dZ~C̄b!5
N221

2N

1

4p2

1

42D
~bcotb21!, ~B25!

dZ~C̄b8!5
N221

2N

1

4p2

1

42D
~b8cotb821!, ~B26!

dZ115
N221

2N

1

4p2

1

42D
@~gx8ycotgx8y21!

1~gxy8cotgxy821!#, ~B27!

dZ125
N221

2N

1

4p2

1

42D
@gxx8cotgxx81gyy8cotgyy8

2~p2gx8y8!cot~p2gx8y8!

2~p2gxy!cot~p2gxy!#. ~B28!

Now, we exploit the fact that only one of the angles, nam
gxy depends onx and y. All the other ones depend only o
x or ony separately, or on none of them. This simplifies
~B15! drastically:

^Am
a ~x!An

b~y!&R
05 lim

D→4
dab

2N

N221
mD24 lim

x8→x
y8→y

]m
x ]n

y

3~dZ121dW̃1!

5 lim
D→4

FdabmD24]m
x ]n

yS 1

4p2

1

42D

3~p2gxy!cotgxyD
1^Am

a ~x!An
b~y!& rad

0 G , ~B29!

where we have used Eq.~B16! to get the last expression.
Before discussing some properties of the renormalized

pression for the free propagator we shall show that the c
terterm

Cmn
ab~x,y!:5dabmD24]m

x ]n
yS 1

4p2

1

42D
~p2gxy!cotgxyD

~B30!

exactly cancels the divergence of the propagator~3.7!, i.e.,
^Am

a (x)An
b(y)&R

0 really is finite. To this end we use som
technical results derived in Appendix D. The divergent p
of the propagator~3.7! is given by

Umn
ab~x,y!:52

G~D/221!

4pD/2 dab

3]m
x ]n

yE
0

1

dsE
0

1

dtx•y@~sx2ty!2#12D/2.

~B31!
ely
n
Eq.

ex-
oun-

e
art

Using Eqs.~D4! and ~D14! below, we find

Umn
ab~x,y!5

G~D/221!

4pD/2 dab]m
x ]n

yI 2~x,2y!

5
G~D/221!

4pD/2 dab]m
x ]n

yS 1

42D
~p2gxy!

3cot~p2gxy!1finiteD
52

1

4p2 dab]m
x ]n

y

3S 1

42D
~p2gxy!cotgxyD1finite ~B32!

and thus

Umn
ab~x,y!1Cmn

ab~x,y!5finite. ~B33!

Note that if one tries to guess a finite expression such
^Am

a (x)An
b(y)&R

0 one would have to introduce a scalem by
hand without interpretation. In our derivation this scale ap
pears naturally as the typical renormalization scale of th
R operation.

The counter termCmn
ab(x,y) has some interesting proper-

ties. It is symmetric with respect to an exchange of all var
ables and it obeys the gauge condition

xmCmn
ab~x,y!505Cmn

ab~x,y!yn. ~B34!

Thus^Am
a (x)An

b(y)&R
0 is finite in the limitD→4 but still can

be interpreted as a gluonic two-point function which satisfie
the radial gauge condition

xm^Am
a ~x!An

b~y!&R
050. ~B35!

However,Cmn
ab(x,y) and thus alsôAm

a (x)An
b(y)&R

0 is ill de-
fined at the origin and hence conflicts with the field strengt
formula ~1.2!. Note that the regularized propagator in con
trast with the renormalized ‘‘propagator’’ is well defined and
vanishes if one of its arguments approaches zero, as poin
out after Eq.~3.7!. We, therefore, conclude that we may use
the regularized propagator in perturbative calculations an
can ensure to preserve relations such as the field stren
formula or Eqs.~2.11! or ~3.1! throughout the calculation.

APPENDIX C: WILSON LOOP CALCULATION WITH AN
ALTERNATIVE RADIAL PROPAGATOR

In Sec. IV we have calculated theg2 contribution of the
Wilson loop along the path~4.1! in Feynman gauge as well
as in the radial gauge using the propagator~3.7!. We have
shown that the two resultsI f and I r agree with each other.
However, using the propagator~5.5! for the same Wilson
loop we end up with a different result as we shall show now

We have to compareI f5I r as given in Eq.~4.9! with
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I w52
G~D/221!

4pD/2 F E
0

1

dsE
0

1

dtẇm~s!ẇm~t!@„w~s!2w~t!…2#12D/21
1

2 S È1

dsE
0

1

dt1E
0

1

dsÈ1

dtD ~wm~1!wm~1!

3$@sw~1!2tw~1!#2%12D/21wm~0!wm~0!$@sw~0!2tw~0!#2%12D/22wm~1!wm~0!$@sw~1!2tw~0!#2%12D/2

2wm~0!wm~1!$@sw~0!2tw~1!#2%12D/2!2
1

2 S E
0

1

ds1 È1

dsD E
0

1

dtẇm~t!~wm~1!$@sw~1!2w~t!#2%12D/22wm~0!

3$@sw~0!2w~t!#2%12D/2!2
1

2 S E
0

1

dt1 È1

dtD E
0

1

dsẇm~s!~wm~1!$@w~s!2tw~1!#2%12D/2

2wm~0!$@w~s!2tw~0!#2%12D/2!G . ~C1!
n

Obviously, it is very tedious and on the other hand not ve
illuminating to calculate all the integrals in Eqs.~4.9! and
~C1!. Therefore, we restrict ourselves to the most interesti
part, the cusp divergence at the origin, i.e., we calculate
contributionsf r(d) and f w(d) with

I r ,w5
1

42D
f r ,w~d!1contr. indep. ofd1finite contr.

~C2!

and

cosd:5
w~0!•w~1!

uw~0!uuw~1!u
. ~C3!

To prove thatI rÞI w holds, it is sufficient to show thatf r
Þ f w .

f r is determined by the contributions~3,1! and~1,3! in Eq.
~4.9!: i.e.,

1

42D
f r~d!52

G~D/221!

4pD/2 E
0

1

dsE
0

1

dt~2wm~1!wm~0!

3$@sw~1!2tw~0!#2%12D/22wm~0!wm~1!

3$@sw~0!2tw~1!#2%12D/2!

52
G~D/221!

4pD/2 2I 2„w~0!,2w~1!… ~C4!

with I 2 given in Eq.~D4!. Strictly speaking, the first equality
sign in Eq.~C4! holds up to finite contributions. Using Eq.
~D14! we get

f r~d!52
1

2p2 ~p2d!cot~p2d!. ~C5!

Similarly, f w is given by

1

42D
fw~d!52

1

2

G~D/221!

4pD/2 S È1

dsE
0

1

dt1E
0

1

dsÈ1

dtD
3„2wm~1!wm~0!$@sw~1!2tw~0!#2%12D/2

2wm~0!wm~1!$@sw~0!2tw~1!#2%12D/2
…

52
G~D/221!

4pD/2 @ I 4„w~0!,2w~1!…

1I 4„w~1!,2w~0!…# ~C6!
ry

ng
the

with

I 4~p,q!:5 È1

dsE
0

1

dt
p•q

@~sp1tq!2#D/221 . ~C7!

As shown in Appendix D the integralI 4 is finite for D→4;
thus

f w50 ~C8!

which obviously differs from Eq.~C5!. This proves thatI r
ÞI w .

APPENDIX D: SOME IMPORTANT INTEGRALS

The integralsI 1 andI 2 play an important part in the renor-
malization procedure of Appendix B and determine the di-
vergences of the naive free radial propagator introduced in
Sec. III. The integralI 4 is important for the comparison of
the radial propagator obtained here with the one presented i
@15#. All these integrals are discussed in detail below.

To calculate

I 1 :5E
0

1

dsE
0

1

dtQ~s2t !
1

@~s2t !2#D/221 , ~D1!

we introduce the substitution

g5s2t, h5s1t ~D2!

to get

I 15
1

2E0
1

dgE
g

22g

dhg22D5E
0

1

dg~12g!g22D

5
G~2!G~32D !

G~52D !
5

1

~42D !~32D !
. ~D3!

For the calculation of

I 2~p,q!:5E
0

1

dsE
0

1

dt
p•q

@~sp1tq!2#D/221 ~D4!
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we have to distinguish the two casespÞaq where the only
divergence that appears is fors5t50 andp5aq with an
additional divergence ats5ta. Here, we will only need the
former @cf. the discussion after Eq.~3.7!#.

As a first step it is useful to separate off the divergence
the origin by the substitution

l5s1t, x5s/l. ~D5!

This yields

I 2~p,q!5S E
0

1/2

dxE
0

1/~12x!

dl

1E
1/2

1

dxE
0

1/x

dl D l32D
p•q

$@xp1~12x!q#2%D/221

5E
0

1/2

dx
~12x!D24

42D

p•q

$@xp1~12x!q#2%D/221

1E
1/2

1

dx
xD24

42D

p•q

$@xp1~12x!q#2%D/221 . ~D6!

As long aspÞaq holds there are no divergences in thex
integration since

u~x!:5xp1~12x!q ~D7!

never vanishes. We introduce the angle betweenp andq,

cosg:5
p•q

upuuqu
, ~D8!

and the substitution@18#
at

e2ic5
xupu1~12x!uqueig

xupu1~12x!uque2 ig . ~D9!

Note thatc is nothing but the angle betweenp andu(x). To
perform this substitution in Eq.~D6! we need

x5uqusin~g2c!/N~c!,12x5upusinc/N~c!, ~D10!

@u~x!#25p2q2sin2g/@N~c!#2,and
dc

dx
52

@N~c!#2

upuuqusing
~D11!

with

N~c!:5upusinc1uqusin~g2c!. ~D12!

In addition, it is useful to introduce

c8:5c~x51/2! ~D13!

which is the angle betweenp andp1q ~cf. Fig. 4!.
Using all that, we end up with

FIG. 4. The geometry of the variables appearing in the calcula
tion of I 2 ~C4!.
I 2~p,q!5E
g

c8
dc

2upuuqusing
N2 S upusinc

N D D24S N2

p2q2sin2g D D/221 p•q

42D

1E
c8

0

dc
2upuuqusing

N2 S uqusin~g2c!

N D D24S N2

p2q2sin2g D D/221 p•q

42D
5

2cosgsin32Dg

42D S UqU42DE
g

c8
dcsinD24c

1UpU42DE
c8

0

dcsinD24~g2c! D 5
2cosgsin32Dg

42D S UqU42DE
g

c8
dcsinD24c1UpU42DE

g

g2c8
dcsinD24c D

5
1

42D
gcotg1finite. ~D14!

The integral

I 4~p,q!:5 È1

dsE
0

1

dt
p•q

@~sp1tq!2#D/221 ~D15!

can be calculated in the same way asI 2. Again, we use the substitution~D5! to derive

I 4~p,q!52E
1/2

1

dxE
1/x

1/~12x!

dll32D
p•q

$@xp1~12x!q#2%D/221 . ~D16!

Obviously, I 4 is finite for D→4 as long aspÞaq holds.
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