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Thermal variational principle and gauge fields
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A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well
as non-Abelian: scalar electrodynamics~without scalar self-coupling! and the gluon plasma. The perturbatively
known self-energies are shown to derive by variation from a free quadratic~‘‘Gaussian’’! trial Lagrangian.
Independence of the covariant gauge-fixing parameter is reached~within the orderg3 studied! after a refor-
mulation of the partition function such that it depends on only even powers of the gauge field. Also static
properties~Debye screening! are reproduced this way. But because of the present need to expand the varia-
tional functional, the method falls short of its potential nonperturbative power.@S0556-2821~96!02424-1#

PACS number~s!: 11.10.Wx, 11.15.Tk
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I. INTRODUCTION

Variational principles, well established in nonrelativist
quantum problems, develop their true power by setting
measure for the best approximate solution within some
rametrization of a trial space. This space is made up of w
functionsc in nonrelativistic quantum mechanics, by stat
tical operatorsr in thermodynamics, and by actionsS in the
Feynman-Jensen formulation. The above objectc can al-
ways be understood to be the ground state of some Ha
tonianH. Any statistical operator is also related uniquely
a Hermitian operatorH ~its ‘‘Hamiltonian’’ !. Thus, in any of
these three cases, we may talk about atheory to be param-
etrized and varied. The task is to find a class of theo
coming reasonably close to the truth but to keep it sim
enough for tractability.

Each of the above three cases generalizes to field the
c becoming a wave functional, see, e.g.@1#, while H andS
keep their meaning. For the formulations of the therm
variational principle, withH @2–10# or with S @5,10–15#, we
refer to the next section as some part II of the Introducti

We focus on the application to pure gauge theory w
particular interest in the hot gluon system. There are th
fascinating aspects of this system. First, it distills out fro
the standard model by reducing the number of flavors
zero, while possibly still containing the whole non-Abelia
mystery. Second, other than in the Higgs sector~the other
distillate! its Lagrangian looks so simple:L52F2/4 . Third,
its high-temperature limit may be called understood, mai
based on the rearrangement@16,17# of diagrams at soft-scale
outer momentaQ ~key words: resummation, hard therm
loops!.

There are several basic problems and pitfalls at the v
beginning when the variational method contacts gauge fie
It is the subject of the present paper to make the calcu
workingat all. Hence no new results on the hot gluon syst
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should be expected here. Instead, the known perturbative
sults are used totestour new variational construction. With
this first step we hope to pave the road towards its p
sumedly powerful nonperturbative possibilities.

Specifically on SU(N) gauge fields under thermal varia
tion, there is~to our knowledge! only the one~thus pioneer-
ing! paper of Manka@6# in 1986. He studied pure non
Abelian gauge theory by using a free trial Lagrangia
namely, the Abelian one for photons takenn-fold
(n[N221). The fields are identified,Anon-Abelian5Atrial ~at
least in the high-temperature phase!, and a constant trans
verse photon mass is taken as variational parameter. N
that this identification of pure, but interacting gauge fiel
with free, but massive ones makes the trial theory nontriv
With the longitudinal mass included as well as the fou
vertex ~which both were neglected in@6#!, Manka conjec-
tures that the perturbative results on masses, generated b
plasma, should be obtained from variation as well. Inde
they should—but by this supposedly easy task we were
into all that follows.

The following outlook reflects, to some extent, our ind
vidual path into the subject. Starting with the basic ideas
@6# just mentioned, we were more or less forced into one s
~away from@6#! after the other.

~1! The covariant gauge-fixing parametera is reintro-
duced, and kept arbitrary, because all experience with, e
the damping puzzle of the gluon plasma tells us thata, if
surviving in final results, is an ideal indicator for wron
physics.

~2! Both dynamical mass terms~transverse and longitudi
nal! are included as functions of momentum. This setup c
ers static screening as well as dynamically generated ma
The massive-photonic trial theory still keeps its Abeli
gauge invariance.

~3! The functional integral formulation is applied. In pas
ing, although our notation is Minkowskian~metrics
1222) we actually alwaysmeanthe Euclidean space. W
only have to remember, at appropriate places, that the ze
componentA0 of the gauge field isi times a real field.

~4! The classical~or Feynman-Jensen! version of the
7677 © 1996 The American Physical Society
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7678 54YORK SCHRÖDER AND HERMANN SCHULZ
variational functional is used, because it avoids difficulties
constructing the Hamiltonian to our higher-derivative tr
Lagrangian. As an intermediate result, the covariant gau
fixing parameters of studied and trial theory become equ

~5! The variational functional, if evaluated with the qu
dratic photonic trial theory as described, still depends on
~common! gauge-fixing parametera ~as also observed in
@18#!. A way out is proposed by first rewriting the partitio
function of the theory studied such that its action becom
even in the gauge fields. This is called the ‘‘even version’’
Sec. II C.

~6! As in the low-order perturbative treatments, and sin
we shall only reproduce its results, detailed renormalizat
is not ~yet! required in this paper. Divergent terms can
separated from the finite thermal ones. Hence, the coup
g changes its meaning to be the running coupling in th
thermal contributions.

~7! For a first application of the ‘‘even version,’’ scala
electrodynamics~ED! is appreciated once more@19# to be an
ideal toy model for the non-Abelian problem. The know
self-energies are put in by hand, but supplied with varia
prefactors. Through variation, the latter become 1 indeed

~8! In the non-Abelian case, the Faddeev-Popov deter
nant becomes part of the even-odd decomposition.
‘‘even’’ functional works well, except for a~hopefully! mi-
nor detail at the end~concerning gauge-fixing dependence
higher order!.

~9! For the explicit analysis just mentioned, the var
tional functional had to be expanded up to the third~partly
fourth! g power. This apparently inevitable recourse tog
powers is a big disappointment.

The paper is organized as follows. Section II on the f
mulations of the thermal variational functional is a continu
Introduction. Especially the ‘‘even version’’~the one that
works! is introduced in Sec. II C. In Sec. III we follow th
Feynman-Jensen version. It leads to unphysical results,
is, on the other hand, reasonably simple to introduce sev
technical details. Section IV treats scalar electrodynam
with the ‘‘even version’’ of the functional. In Sec. V on th
gluon plasma, things start more involved but become v
similar at the end. In Sec. VI the case of constant trial s
energies is discussed in terms of Debye screening and m
netic mass. Open questions are summarized in Sec.
Conclusions follow in Sec. VIII. Three Appendices cov
details on the functional integral measures, on some nor
integrals involved, and on sum rules.

II. THE THERMAL VARIATIONAL PRINCIPLE

A. Gibbs-Bogoljubov

The extremal properties of thermodynamic potentials
known from textbooks@2,3# on statistical physics. In particu
lar in the canonical ensemble~the only one considered in thi
paper!, the free energy takes its minimum at equilibrium
F>F •. In its usual version, the thermal variational princip
is identical with this modest inequality, if its left-hand side
detailed:

V@H#[TrS e2bH

Z @H •2H# D2T ln~Z!5
!
min. ~1!

The proof is given shortly. In Eq.~1! and in the following an
n
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index bullet refers to the system studied~at equilibrium!, i.e.,
to the ‘‘hard problem’’ which one likes to learn about by th
variational method.b51/T, Z5Tr(e2bH). Trial quantities
carry no index, soH is the element running through the tria
space whose only restrictions are that~a! the spectrum of
H is bounded from below and~b! H acts in the Hilbert space
of H •. The formulation~1! is found, e.g., as Eq.~10.83! in
@2# or as Eq.~20.37! in @4#. It is called Gibbs variational
principle in @2# and Bogoljubov inequality in@6,4#. There is
a natural application to the Heisenberg spin model, wh
minimizing V yields the best Curie-Weiss Hamiltonian@4#,
thereby justifying the mean field procedure.

For the proof of Eq.~1!, we claim that one line suffices. I
rests on the inequality2 ln(x)>12x and on the irrelevance
of operator-ordering under trace, Tr ln(AB)5Tr ln(BA). With
any nonequilibrium statistical operatorr, the line reads

F@r#5Tr~rH •!1T Tr~r ln@r#!

5F •2T TrS r lnF1rr •G D>F • . ~2!

To the left, Eq.~2! starts with the nonequlibrium free energ
in (E2TS) form. The knowledge ofr • at equilibrium,
H •52T ln(r•Z•), is used for the inner equality sig
@F •52T ln(Z•)#. Finally, the right end has been simplifie
using Tr(r)5Tr(r •)51. In whatsoever nonequilibrium stat
the system is, it has a statistical operatorr with the three
properties one-trace, Hermiticity, and positivity. Thus@with
the properties~a!, ~b! of H as stated above#, its general form
is r5e2bH/Z. This makes Eq.~2! to become Eq.~1!, Q.E.D.

It is tempting to require that the trial theory be a solvab
one~e.g., a free field theory!. However, it must not. Imagine
there was a small couplinge in the trial theory, and~for
simplicity! only one variational parameterh. Near its mini-
mum, the functional would take the formV5a(e)1b(e)
3@h2c(e)#2. Clearly, through perturbative expansion
V, the coefficientsa, b, c as well as the positionh of the
minimum would be obtained as power series ine. The pa-
rameterh may be chosen to be the couplinge itself.

We now turn to gauge field theory, governing a perio
cally repeated box of volumeV and coupled to a therma
bath at rest with four-velocityU5(1,0). In the variational
principle ~1! H • andH are the Hamiltonians to a Lagrangia
L• studied and a trial LagrangianL, respectively. To count
the same number of field degrees of freedom, one may ei
prepare the physical Hilbert spaces from the outset@6,8,15#
or work with extended spaces~corrected by ghosts!. In the
latter case the two gauge fixings may be different. Adopt
general covariant gauges, there is a gauge-fixing param
a • of the theory studied and ana of the trial theory. No final
result is allowed to depend on either of them.

The hot gluon system is described by the pure Yang-M
Lagrangian

L•52
1

4
F •mn

a F •
mna2

1

2a •
~]mAm

a !21 i c̄a]mDm
abcb, ~3!

with F •mn
a 5]mAn

a2]nAm
a1g fabcAm

bAn
c and Dm

ab5dab]m

2g fabcAm
c . In the high-temperature limit the one-loop co

tributions~hard thermal loops! are of relative order unity and
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54 7679THERMAL VARIATIONAL PRINCIPLE AND GAUGE FIELDS
therefore must be included in the true leading order@16,17#.
The gluon propagator, resummed this way, may be written

Gmn~Q!5
Amn~Q!

Q22Mt~Q!
1

Bmn~Q!

Q22Ml~Q!
1a

Dmn~Q!

Q2 , ~4!

whereA, B, D are members of the symmetric Lorentz mat
basis

A5g2B2D, B5
V+V

V2 ,

C5
Q+V1V+Q

A2Q2q
, D5

Q+Q

Q2 , ~5!

with

V5Q2U2~UQ!Q5~2q2,2Q0q!. ~6!

The orthonormal properties of Eq.~5! are listed in@20#. Note
thatA andB are projectors:

Amn~Q!Qn50, Bmn~Q!Qn50. ~7!

In Eq. ~4!, Mt5P t andMl5P l are the well known polar-
ization functions@21,22#

P t~Q!5
3

2
m22

1

2
P l~Q!,

P l~Q!54g2N(
P

D0
2D0Fp22 ~pq!2

q2 G ~8!

with

m25
g2NT2

9
, D05

1

P2 , D0
25

1

~Q2P!2
,

(
P

[
1

V(
p
T(

n
. ~9!

For more details on theP ’s ~especially in our notation! see
Appendix B of @23#. If V→`, (P turns into
*d3p(2p)23T(n . We work with the Matsubara contou
Q5( ivn ,q), vn52pnT. The gauge fields are Fourier tran
formed as

Am~x!5(
P

e2 iPxAm~P!, Am~P!5Eb

eiPxAm~x!

~10!

with x5(2 i t,r ) and *b[*0
bdt*d3r . To, e.g., check this

the thermal Kronecker symbol

Eb

ei ~Q2P!x5bVdnQ ,nP
dq,p[@Q2P# ~11!

is very convenient. In Eq.~4! the bullet ona • had been
‘‘forgotten,’’ because the Green’s function~4! will turn out
to be that of the trial theory as well.

Were there not the paper@6#, a suitable trial Lagrangian
could come into mind while contemplating on Eq.~4!. Use
s
n free photon Lagrangians~numbered bya), supply them
with variable mass terms such that Eq.~4! is among their
propagators, and identify the fields:A in Eq. ~3! [A in Eq.
~12!:

L52
1

4
F21

1

2
A~MA!2

1

2a
~]A!21 i c̄]2c ~12!

with Fmn5]mAn2]nAm . The trivial indexa is suppressed
here, and

~MA!m~x!5E
x8

b

(
Q

e2 iQ~x2x8!@Mt~Q!Amn~Q!

1Ml~Q!Bmn~Q!#An~x8!. ~13!

The propagator of Eq.~12! is Eq. ~4!. But note that we are
still free to choose, e.g., constant masses

Mt5mt
2 , Ml5ml

2 ~ ‘‘m case’’!, ~14!

or to cover the true leading-order propagators~4! with

Mt5l t
2P t~Q!, Ml5l l

2P l~Q! ~ ‘‘ l case’’!. ~15!

Our trial Lagrangian~12! is noninteracting and quadrati
in the fieldsA. The gauge-fixing term is necessary, becau
the mass terms are Abelian gauge invariant. To see this
sert the Fourier transform~10! into Eq. ~13! and notice that
the gauge variationdAn(Q)52Qnx(Q) drops out due to
Eq. ~7!. Despite these neat properties of the mass term,
longitudinal one makes trouble. ByQm→ i ]m in Eq. ~13!,
and in them case for simplicity, we may rewriteA(MA) as

A~MA!5Am~x!@mt
2Amn~ i ]!1ml

2Bmn~ i ]!#An~x!. ~16!

In passing, Eq.~16! is the Abelian~trivial! case of the La-
grangian considered in@24#. The matrixB ~not A) has a
denominator containingQ0: V

252q2Q2→2Dh. Hence,
our trial Lagrangian has arbitrarily high powers in the tim
derivative. The definition of field momentum densities
higher derivative Lagrangians is a delicate matter, as is
construction of its Hamiltonian. ThusH, the trial object,
makes the problem. Note that, if working with a consta
mass Stueckelberg term12m

2AmAm @25#, this problem would
not yet arise. We leave these difficulties right now, beca
there is a wonderful way out as detailed in the followin
subsection.

B. Feynman-Jensen

To each Lagrangian, Eqs.~3! and~12!, there is a partition
function which, using functional integrals, is expressed
the actionsS•52*bL• andS52*bL:

Z•5
1

ZB
•NE DAe2S•, Z5

1

ZB
NE DAe2S. ~17!

In Eq. ~17!, and for the moment, let*DA include the ghost
field integrations. Equation~17! holds true in Euclidean
space@26,21#: A0 is a purely imaginary field. The prefactor
ZB
• andZB , e.g.,ZB5*DB exp(2*bB2/2a), occur through

the derivation of Eq.~17! while integrating overd(]A2B)
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7680 54YORK SCHRÖDER AND HERMANN SCHULZ
with normalized weight. Usually, they are hidden in t
functional measureN. But here, the twoN in Eq. ~17! are
equal and independent ofa. Nevertheless, they depend o
b @26#. It might be emphasized that the above function
language can still be applied to the Hamiltonian vers
V@H#, since the first term of Eq.~1! is 2T ln(Z), and the
individual terms in^H •2H& ~ if known! can be related to
Greens functions, which in turn derive fromZ ~with source
terms included!.

Hamiltonians can be avoided at all, as we learn in Sec.
of Feynman’s textbook@10# ~see also Sec. 8.3,4 there an
@11#!. Start fromZ•, add the factorseS and e2S under the
integral, divide by~and multiply with! Z and define the av-
erage^•••& as given in Eq.~18!. Then,

Z•5
ZB
ZB
• Z^e2~S•2S!&>

ZB
ZB
• Ze

2^S•2S&,

^•••&[
*DAe2S

•••

*DAe2S . ~18!

The above inequality is, in the case at hand, the Jensen
equality; see, e.g.,@27#. Its simplest version states tha
^e2 f&>e2^ f &. The proof rests on the convexity ofex @5,12#,
or, equivalently, on the nice Figure 3.5 of@10#. For conve-
nience we take the logarithm of Eq.~18!,

V@S#5F1T^S•2S&2T lnSZBZB• D5
!
min, ~19!

and call Eq.~19! the Feynman-Jensen variational princip
The last term, we come back to shortly, is obviously spec
to gauge theory.

In the non-Abelian case, there is a terrible pitfall hidd
in Eq. ~18!. Admittedly, things were written down, to ru
into it with ease. If one still reads*DA to include the ghost
field integrations~wrong case!, the ghost term would appea
in the averageT^S•2S& and lose the term linear inA, hence
all A dependence. But if the integration over ghosts is c
rectly recognized to be the Faddeev-Popov determin
DFP(A), it may be included into S• as S•

no ghosts

2 ln@DFP(A)#. Now, in the avergageT^2 ln(DFP)&, even
powers ofA survive. For the explicit formulation of this se
Sec. V. We learn thati c̄c, though being Hermitian, must no
be viewed as a real number. Hence, in the non-Abelian c
one needs to write the actionS• in Eqs. ~18! and ~19! as to
includeDFP(A), while there will be no ghost field integra
tions in *DA.

There is also the Peierls’ version@28,2,4,5# of a thermal
variational principle. It states that Tre2bH>(ne

2^nuHun&,
rests on Jensen and may be used for another derivation@5# of
Eq. ~1!. Things are closely related. But we have no rigoro
answer to the question, whether the two versions~1! and~19!
are identical statements—just formulated in differe
language—or not@see also pt.~3! in Sec. VII#. The
Feynman-Jensen variational principle stays useful eve
zero temperature. It has been applied atT50 to lf4 theory
without @29# and with gauge sector@18#. Formerly, these
efforts had a Hamiltonian formulation, considered even th
mal @7#. At finite temperature, but without the exotic la
term, Eq.~19! has been recently used to obtain gap equati
l
n

.4

in-

.
c

r-
t,

se

s

t

at

r-

s

in latticef4 theory@13#. Before, it played a central role in
study of spin models and lattice gauge theory@14#.

The role played by the unusual last term in Eq.~19! clears
up by combining it with the gauge-fixing terms contained
S• andS:

Vgauge5
T

2 S 1a •
2
1

a D Eb

^~]A!2&2T lnS )
q,n

8 Aa

a •
D

5S a

a •
212 lnF a

a •
G DV2(Q 8 . ~20!

For the logarithm in the first line see~A14!; the prime ex-
cludesn5q50. To understand the last term in the seco
line, remember that(Q5(T/V)(n(q . For the other terms
insert Eq.~10! and use

^Am~Q!An~P!&5@Q1P#Gmn~Q!

5@Q1P#~AD t1BD l1aDD0!, ~21!

where the shorthand notation should be obvious from
~4!. Now considera of the trial Lagrangian to be one of th
variational parameters. Clearly, with respect toa, Eq. ~20!
has an extremum ata5a •, andVgaugevanishes at this posi
tion. Moreover, it is a minimum, since the blank sum at t
end in Eq.~20! is positive~though quartic divergent!. By far
the besta is a •. We note three consequences ofa5a •. First,
the three terms selected in Eq.~20! may be simultaneously
omitted in the sequel. Second, there is still dependence
the now commona, as it enters througĥ•••& when traced
back to the trial propagator~4!. Hence, the above selection o
a-dependent terms was incomplete. But the divergence
the last factor in Eq.~20! helps maintain the conclusion wit
rigor. Third, with respect toa, the variational principle is
exhausted, so one should no more think about an ‘‘optim
~common! a.

C. The ‘‘even version’’

So far, we were able to circumvent the Hamiltonian d
lemma noted at the end of Sec. II A. But in the new vers
~19! there is again a troubling element, as we become aw
of next. Terms odd in the gauge fieldA ~the AAA part of
L• in particluar! drop out inV entirely, because they only
enter^S•2S& and vanish there, since the average weigh
the quadratic trial action. It is as if the three-vertex we
taken out from the outset. But a Yang-Mills theory with n
three-vertex can never be tested suitably by any trial the
For more details see the next section.

For the resolution to this puzzle, it appears that the us
philosophy~‘‘improve the trial theory’’! fails. Also, our trial
theory~12! is physically so reasonable: it ‘‘must’’ work. Ou
way out is to introduce one more version of the variation
functional. On one hand this construction, which we call t
‘‘even version,’’ is the decisive success in treating gau
fields variationally. On the other hand the idea is rath
simple: in general, odd-in-A terms in the action can be
avoided from the outset by playing around with the fun
tional integrations overA as follows.

Let us split the action intoS•5E1O with E keeping and
O changing sign underA→2A. The same decompositio
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54 7681THERMAL VARIATIONAL PRINCIPLE AND GAUGE FIELDS
can be done with the exponentiated action
e2Ee2O5e2Ecosh(O)2e2Esinh(O). Since the second term
drops out under the functional integrations over the ga
field A, we may write

E DAe2S•5E DAe2E1 ln[cosh~O!] . ~22!

The new exponent, which we call2S••, is an even functiona
of A. Since the above steps precede the use of Jensen
equality, quite a new functionalV arises:

V@S#5F1T^S••2S&5
!
min with S••5E2 ln@cosh~O!#.

~23!

In Eq. ~23! a5a • is understood, i.e., the logarithm ofZB’s is
omitted together with the gauge-fixing terms inE andS.

Once there are only even terms in the theory studied,
quadratic trial theory has a good chance to reproduce
leading-order perturbative results. We shall show in Secs
and V that the ‘‘even version’’ works that way, indee
There, the Faddeev-Popov determinant~depending onA in
Sec. V, but not in Sec. IV! is part ofS• and hence subject o
the above ‘‘even’’-ing procedure.

III. TRIAL AND ERROR

In this short section we step back to the insufficie
Feynman-Jensen formulation~19! to see which way it goes
wrong, to introduce some basic integrals and for a first
through the necessary algebra in the simplest case. For
plicity, let us even omit the Faddeev-Popov term@i.e., run
into the pitfall noticed below Eq.~19!#. It is not ~solely!
responsible for the defect, as we shall remark at the en
this section.

Using a5a • as reasoned below Eq.~21!, the functional
reads V5F1T^S•2S&. In the difference S•2S
52*b(L•2L) the terms odd in the gauge fieldA vanish
under the averagê•••&. Others cancel. The only two su
viving terms are

T^S•2S&5V
1

2
^Aa~MAa!&1V

g2

4
f abcf ars^Am

bAn
cAmrAns&

[VM1VAAAA, ~24!

where*b has reduced tobV due to spacetime independen
of the averages. The first term,VM with M from Eq. ~13!, is
readily evaluated by using Eqs.~10! and ~21! and the trace
relation (@MtA1MlB#G)m

m52MtD t1MlD l :

VM5nVT4S 2Lt2
1

2
Ll D . ~25!

Lt,l are two sums out of the collection

Jt,l52b2(
P

D t,l , Lt,l52b4(
P

P2~D t,l2D0!,

Yt,l5b2(
P

p2D0D t,l ~26!
s

e

in-

e
e
V

t

n
m-

of

with D t,l51/@P22Mt,l(P)# andD051/P2. The prefactorn
in Eq. ~25! comes from the trivial sum over the color inde

The treatment ofVAAAA starts with the Wick decomposi
tion @6# of the average into three pairs with partners

^Am
a ~x!An

b~x!&5dab(
P

Gmn~P!5dabT2
1

3
~umnr1vmns!.

~27!

The first equality in Eq.~27! derives with Eqs.~10! and~21!.
The second one arises after integration over the direction
p. As the propagatorsD t,l are rotationally invariant@even in
the l case ~15!#, this angular integration amounts t
the replacements A→2 2

3u, B→2 1
3u2 1

3p
2D0v, and

D→ 1
3(v2u)1 1

3p
2D0v with the Lorentz matricesumn , vmn

given byUmUn2gmn and 4UmUn2gmn , respectively. For
the sumsr ands see Eq.~29! below. Using the first equation
~27! and with f abcf abc5nN one derives the first line of Eq
~28!. Exploiting theu-v version, one arrives at the secon
one:

VAAAA5nV
g2N

4 S F(
P

Gm
m~P!G22(

P
Gmn~P!(

Q
Gmn~Q! D

5nVT4
g2N

6
~r1s!~r22s!. ~28!

The objectsr , s in Eqs.~27! and ~28! are given by

r52Jt1Jl1aJ0 , s52Yl2aJ01aY0 , ~29!

whereJ0 andY0 are the sums of Eq.~26! taken at vanishing
mass.

The last term ofV to be evaluated is the trial free energ
F52T ln(Z). First of all, since colors do not mix,Z is an
n fold product,

F5nFcolorless52nT ln~Zcolorless!5nVT4~22I t2I l1I 0!,
~30!

and the colorless partition function is identical with that
scalar ED, see Sec. IV, if omitting the factor due to t
scalars. In the formula~17! for Z ~read colorless and Euclid
ean!, there are three unknown flying objects:N, *DA, and
*DB. This is not a shame ifZ is used exclusively as a gen
erating functional. But here we needZ as a precise number
The trouble@26# with the normalization factorN is propor-
tional to the care of its treatment. We make efforts in A
pendix A to write down at least~if not to derive! this factor
N. Here we see from Eq.~A20! thatF indeed splits up into
the terms in the right-hand side of Eq.~30!. With Eq. ~A3!,
we obtain

I l5
1

2VT3(p F ln~2T2D l~P050,p!!1(
n

8 ln~P0
2D l~P!!G ,

~31!

where the prime excludesn50. The indexl may be replaced
by t or by 0 ~then referring to zero mass!. The expression
~31! sticks with this awkward form as long as thel case~15!
is included. But by differentiation with respect tol l we may
write
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2l l]l l
I l5Ll or I l5I 02E

0

l l
dl

1

l
Ll~l l5l!, ~32!

the right half being equivalent to a coupling constant integ
tion. In them case the above relation reads2m]mI5L.

The sumsI , J to Y are divergent, and one has to ke
track of variational-parameter dependences while renorm
izing @6#. To study this in simple terms~and for the rest of
this section! we turn to constant masses by Eq.~14!. In this
case the frequency sum in Eq.~31! can be done@21#. Using
Eq. ~A7! and going to the infinite volume limit, one obtain

I l52
1

2p2E
0

`

dxx2F12Ax21« l
21 ln~ 12e2Ax21« l

2! G ,
« l[bml . ~33!

Furthermore,Ll5« l
2Jl . The sumJ becomes

Jl5
1

2p2E
0

`

dx
x2

Ax21« l
2 F 121

1

eAx21« l
2
21

G ~34!

with clearly the 1
2 term being UV divergent as in Eq.~33!.

Even after subtracting zero-point energies by hand~which
the functional integral does not know of!,
I l→I l1(1/4p2)*0

`dxx3[I l
sub there remains a singular inte

gral depending on the variational parameter« l . On the other
hand, in a low-order perturbative treatment, such terms
be addressed as zero-temperature renormalization@16,23#
and omitted entirely. As we like to reproduce these res
only, the omission should be allowed here as well. Consid
for example, the combination2I l

sub2 1
2Ll , which occurs in

F1VM , and supplyp with an UV cutoffL:

F2I l
sub2

1

2
LlG

1/2 term

5
1

4p2E
0

L/T

dxS Ax21« l
22x2

« l
2

2Ax21« l
2D

5
« l
4

32p2 lnS L

T« l
D 1O~« l

4!. ~35!

Since we expect« l;g, such terms are irrelevant inV up to
g3. In the sequel we shall trust in the above arguments
omit the 1

2 terms entirely.
Deleting the divergent pieces this way@in, e.g., Eqs.~33!

and ~34!#, I , J, Y become well defined integrals whose a
ymptotic series are known@30#:

I5
p2

90
2

«2

24
1

«3

12p
1

«4

32p2ln~«!2
c«4

64p2 1O~«6!,

~36!

J5
1

12
2

«

4p
1•••52

1

«
]«I5

1

«2
L, ~37!
-

l-

n

ts
r,

d

-

Y5
1

8
2

«

4p
1•••5

3

«2
~ I 02I ! ~38!

with « one of « t,l5bmt,l , c5 3
212 ln(4p)22g and g the

Euler constant. In the massless limit, the free energy~30! is
now recognized to ben times that of ordinary blackbody
radiation.

The contributions to V are now added up a
F1VM1VAAAA and filled with details:

V5nVT4F22I t2« t
2Jt1

1

2
@22I l2« l

2Jl #1I 0

1
g2N

6 S 2Jt1Jl2Yl1
a

8 D ~2Jt1Jl12Yl !G ~39!

5const1
nVT4

4p S « t
3

3
2« tg

2N
51a

24
1

« l
3

6

2« lg
2N
11a

16
1••• D . ~40!

There it is, the announced wrong result:V depends ona.
Nevertheless, the structure is appealing: the parameter« t
and« l do not mix, the only extremum is a minimum, and i
position has the right orderg2N of magnitude. But, apar
from this, the minimum positions« t

25g2N(51a)/24 and
« l
25g2N(11a)/8 give no sense:whicha? Including the FP
term, with the means worked out in Sec. V, does not help
out of this dilemma, because it only leads to minor chang
To be specific, in Eq.~40! 51a becomes 61a and 11a
turns into (213a)/3.

IV. SCALAR ELECTRODYNAMICS

For a first application of the ‘‘even’’ functional~23!, we
appreciate scalar ED as a suitable example. Remember
this system is an ideal toy model@19# to the gluon plasma,
with view to the identical diagram structure, the need
resummation as well as to its physical gross features.
Lagrangian, to be studied, is given by

L•5~Dmf!*Dmf2
1

4
F22

1

2a •
~]A!2 ~41!

with Dm5]m2 igAm andFmn5]mAn2]nAn . By again iden-
tifying the fields~here:f andA), the trial Lagrangian reads

L5~]mf!* ]mf2
1

4
F22

1

2a
~]A!21

1

2
A~MA!2ms

2f*f.

~42!

Its propagators are Eq.~4! and 1/@ms
22Q2# for photons and

scalars, respectively. Here we concentrate on the spectu
real excitations. Hence, the mass matrixM is that of thel
case ~15!. The variational parameters in the above tr
theory arel t , l l and the scalar massms . The Lagrangian
~42! turns into the effective Lagrangian~at orderg2) of hot
scalar ED@19# at the valuesl t5l l51 andms

25g2T2/4. So,
within O(g2), the parameter space includes the exact ans
~to be derived by variation!. Note that both original and tria
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theory are invariant under regauging the photon field
dA52]L. By definition, the decoupling ghost terms a
kept apart from the above Lagrangians. But the Fadde
Popov compensation must be taken into account in the
tition function either by ghosts or as a determinant.

A. The ‘‘even’’ functional of scalar ED

Recalling Sec. II C, the partition function of scalar E
may be written as

Z•5
1

ZB
• det8~b2]2!NE D$Amf*f%e2S••. ~43!

The prime on the Faddeev-Popov determinant excludes
zero eigenvalue~see also Appendix A!. To specifyE and
O in Eq. ~23!, in the case at hand, we read off from Eq.~41!
that

O52Eb

L1 with L15 igAmf* ]mf2 ig~]mf* !Amf,

~44!

while 2*bL2 with L25g2AmAmf*f is part of E together
with the quadratic terms in Eq.~41!. The index onL refers to
g powers. Witha5a •, as required for Eq.~23! to be valid,
we may thus write the ‘‘even’’ functional as

V5F1TK Eb1

2
A~MA!2ms

2Eb

f*f2Eb

L2

2 lnFcoshS Eb

L1D G L , ~45!

where F52T ln(Z), and the trial partition functionZ is
given by Eq.~43! with all bullets stripped off there.

There is a high~but probably inevitable! price to be paid
for the physical consistency reached with the above form
lation: it obviously contains fields in arbitrary high powe
~instead of only quartic!. For the explicit evaluation of Eq
~45! one is, apparently, forced again into a perturbative
pansion, namely that of the logarithmic ter
(ln@cosh(x)#5x2/22x4/121x6/452•••). But note, at least,
that this expansion looks much simpler than diagramm
thermodynamics: here the seagull vertex does not occu
higher powers. If, for any reason, terms of orderg4 may be
neglected, then the functional simplifies to

Vtrunc5F1TK Eb1

2
A~MA!2ms

2Eb

f*f2Eb

L2

2
1

2 S Eb

L1D 2L . ~46!

In the following, while demonstrating the value of Eq.~45!,
we shall in fact restrict to the truncated version Eq.~46!.

B. Evaluation of V trunc

Let us group the above five contributions into ‘‘bare’’ an
interaction terms:
y

v-
r-

he

-

-

ic
in

Vtrunc5V01Vint with V05F1VM1Vm
s
2,

Vint5VAAff1Vsquare. ~47!

ForV0 we are well prepared from Sec. III: strip off the colo
factor n from Eqs.~25! and ~30!. Of course, with a view to
Eq. ~A20!, the free energyVT4(22I s) of the scalars has to
be added now. As the scalars have constant mass,I s is given
by Eq.~33! with index l replaced bys. ForVm

s
2 note that the

average^f*f& equals(PS(P) with the scalar propagato
given byS(P)521/(P22ms

2)[2Ds . Thus, in particular

Vm
s
252Vms

2^f*f&52VT4Ls , Ls5«s
2Js ,

«s[bms , Js52b2( Ds , ~48!

and in total

V05VT4S 22I t2Lt2I l2
1

2
Ll1I 022I s2LsD . ~49!

Among the interaction terms, one is pretty simple:

VAAff52Vg2^f*f&^AmAm&

5VT4g2~2Jt1Jl !Js1VT4g2aJ0Js5F •
` . ~50!

Of course,J051/12 even in thel case. To the right in Eq
~50!, we have noted thatVAAff precisely equals the pertur
bative free energy contribution from the diagram̀~one loop
scalar, one photonic!. But here the lines represent massi
propagators, making̀ depending on variational parameter
One may speculate that the remaining termVsquarecould cor-
respond to the diagram* ~the inner line photonic!. This is
indeed the case; see Eq.~51! below. Classes of diagram
were whisked away in the treatment of Sec. III.

The first steps in treatingVsquareare straightforward: Fou-
rier transform all fields, Wick decompose~the s2s dia-
gram drops out due to odd summand!, and use Eq.~21!. One
obtains

Vsquare52V
1

2
g2(

Q
(
P

~2P2Q!mGmn~Q!~2P2Q!nDsDs
2

5F •
* ~51!

with Ds
251/@(Q2P)22ms

2#. There is gauge-fixing depen
dence inVsquarethrough the propagatorG from Eq.~4!. After
some algebra one obtains that

Vsquare2V square
~a50!52VT4g2aJ0Js , ~52!

which cancels thea term of Eq.~50!. Thus, in the case o
scalar ED and in its truncated ‘‘even’’ functional, there is n
gauge-fixing dependence. This is true for all values of o
variational parameters and for any mass matrix version.

In Eq. ~51! at a50 terms withQm or Qn are projected
out. The remaining sandwiches are

PAP52@p22~pq!2/q2#

and
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PBP5P22~PQ!2/Q22PAP.

Expecting the structure~40!, at least the terms linear inl t ,
l l , ms must be detailed. We therefore form differences
e.g., D t l[D t2D l , add Eq. ~51! to Eq. ~50!, write
Jt0[Jt2J0, etc., and splitVint into a constant (v0), terms
linear in such differences (v1) and the rest (v2), which is
certainly of higher order. Then, some terms ofv1 @easily
identified in Eq.~56! below# are regrouped intov2, because
they are of higher order for other reasons. Note that
r
as

-

in

es
n-
n

gh
ho
n
e

s
n
a

,

(P@4P2Q224~PQ!21Q4#/@Q2P2~Q2P!2#52(P1/P
2.

We obtain:

Vint5Vg2~v01v11v2! ~53!

with

v05(
Q

(
P

1

Q2P2 S 322
Q2P22~QP!2

Q2~Q2P!2 D5
5 T4

288
, ~54!
v15T4J0~2Jt013Js0!12(
Q

D t l~Q!(
P

1

P2~Q2P!2Fp22 ~pq!2

q2 G , ~55!

v25(
Q

(
P

S 2D t0Ds012Fp22 ~pq!2

q2 GD t l~DsDs
22D0D0

2!1D l0Ds022 FP22
~PQ!2

Q2 GD l~DsDs
22D0D0

2!1
1

2
D l0Q

2D0D0
2D .
~56!
ily

bu-
ns

is
oth
In each term of Eq.~56! the argument of the first propagato
is Q, andP that of the second. To understand why the l
two terms of Eq.~56! are less thanO(g), the first one can be
rewritten as22ms

2(Q,PD lDsDs
2 plus some products of dif

ferences. But for the last term in Eq.~56! only a detailed
analysis~of the type done in Appendix B! reveals its order
T4g2ln(g) of magnitude. Such terms are known to occur
the perturbation expansion of the free energy@31#.

Up to orderg3 in V ~or orderg in v1) only the line~55!
needs further study. Note at first that, formally, the expr
sion ~8! ~atN51 here! appears in this line. So, the machi
ery ‘‘knows’’ of the leading-order longitudinal polarizatio
function. There are two ways to evaluate(QD l tP l ~for later
use, we detail both!. First, one may cancelP functions with
those in the trial propagators~usingP l53m222P t), write
v1 in terms of basic integrals as

(
Q

D l tP l52T4S 2l t
2Lt1

1

l l
2Ll2

g2

3
JtD , ~57!

and proceed with expanding the latter~see below!. Note that
these cancellations are possible in thel case only. The al-
ternative second way is by far the easier and more enli
ening one. As is basic to the dimensional reduction met
@32–34# and to various related thermodynamic calculatio
~e.g.,@35,31#!, a frequency sum may be occasionally reduc
to its Q050 term. This step, if valid@19,36#, rests on the
structure of a massive propagatorD(Q) and usually prepare
its soft part while contributions from nonzero hard freque
cies are of higher order. Of course, there must be no h
part in a sum under such study. In fact, Eq.~57! is an ideal
example for the above. Moreover, atQ050 the polarization
functionsP l andP t reduce to constants, namely 3m2 and
0, respectively:
t

-

t-
d
s
d

-
rd

(
Q

D l tP l53m2
T

2p2E
0

`

dqq2S 1q2 2
1

q21l l
23m2D

5
T4g2

12p S gl l

A3 D . ~58!

Dependence onl t has dropped out, with the reason read
detected in the vanishing factorP t of l t

2 i.e., in the absence
of a ~squared! magnetic mass at orderg2. In the same man-
ner the soft parts ofJ integrals are obtained:

Jl5J02
1

4p

gl l

A3
1•••, Jt5J0101••• ~59!

with again no dependence onl t for the same reason.
To complete the evaluation, note that the scalar contri

tions Js , Ls , I s arem-case objects, hence their expansio
are given by Eqs.~36! and ~37! with «5«s5bms . For the
remainingl-case integrals inV0, Eq. ~49!, apparently, the
sumsLt and Ll are still to be studied separately. For th
somewhat delicate task see Appendix B. As a result, b
L start with ag2l2 term whose prefactork diverges loga-
rithmically. From Eqs.~B5! to ~B7!,

Ll52 k
g2l l

2

3
2

1

4p S gl l

A3 D 31•••,

Lt5S 1242k D g2l t
2

3
101•••. ~60!

Now note that the singular piecek drops out inV0, because
there L appears in the combination 2I1L52I 01$1
22*0

ldl(1/l)%L, see Eq.~32!, and the curly brackets is a
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projector:$ %l250. One might ask for the fate of the singu
lar terms in Eq.~57!. They drop out there by cancellation
and Eq.~58! derives again.

C. Minimizing Vtrunc at order g
3

In the preceding subsection, the expansions were dr
just as far as to allow for writing down the functionalV up to
third order in the couplingg. Of course, as in Sec. III, we
anticipate that the solutions toms andl t,l will be O(gT) and
order 1 in magnitude, respectively. By combining the deta
of the preceding subsection one obtains

V tog35VT4S 22
p2

45
1
5 g2

288
1

g3

24pA3 Fl l
3

3
2l l G

1
1

12p F ~bms!
32

3g2

4
bmsG D . ~61!

It still has the structure of Eq.~40!. The variational param-
eters do not couple, which is specific to the order conside
The absence of any dependence onl t was already under
stood, although merely technically~see also Sec. VI!. The
aboveV, when plotted over thel l–l t–plane, has the form o
a long gutter. The resolution of this defect is deferred to S
IV D.

Minimizing Eq. ~61! with respect toms andl l gives the
values

ms
min5

1

2
gT, l l

min51, ~62!

as expected. We immediately look for the value of the ab
V taken at these parameters, which is the height of the
tom of the gutter:

V min5VT4S 22
p2

45
1
5 g2

288
2

g3

12pF 1

3A3
1
1

4G D , ~63!

with the last term in the square bracket being due to
scalars. The minimum perfectly agrees with the perturba
free energy up tog3. The g3 term, the correlation energy
was given by Kalashnikov and Klimov@37# @Eq. ~19! there,
taken atl5m50 ande5g#. In summary, for scalar electro
dynamics and up to the thirdg power, the ‘‘even’’ varia-
tional functional has all required properties, namely gau
fixing independence, the right minimal value, and~apart
from degeneracy! the right minimum position.

D. Solution to the gutter problem

The missing dependence onl t in Eq. ~61! is, as already
noticed, an artifact of the restriction to orderg3 of the func-
tional. The problem merely is how to go one order high
within the expansions so far developed. First of all, we not
that g4 terms are allowed within the truncated function
although the neglected next term of ln@cosh(x)# does con-
tribute at orderg4 too. However, the latter is a constant
this order; variational parameters appear atg5.
n

s

d.

c.

e
t-

e
e

-

r
e
,

Let us try to avoid expansions, and let the collection of
terms containingl t be denoted byV trunc

(t) Up to an additive
constant, it may be written as

V trunc
~ t ! 5VT4Ut1Vg2v2

~ t !

with

Ut52Lt12E
0

l t
dl

1

l
Lt~l t5l!1

1

l t
2Lt . ~64!

Here,v2
(t) is made up of the first two terms in Eq.~56!, but

leavev2
(t) aside for a moment. Then, the minimum conditio

may be given the form of a product

05]l t
Ut5S 2l t

Lt2]l t
LtD S 12

1

l t
2D ~65!

with the first factor ‘‘unknown,’’ but the second reachin
zero atl t

251 as desired. To be sure that this zero cor
sponds to a minimum, the first factor must be shown to
positive. We shall do so at the end of Appendix B. There,
first factor is also seen to be of orderg4 and to vary asl t

3 for
small g, see ~B11!. Hence, Ut has a Higgs-type shap
Ut;const2g4l t

21 1
2g

4l t
41••• with a maximum at the ori-

gin. The curvature of the gutter sets in one order high
indeed. A plot ofV now merely looks like a long bathtub.

The above construction only works if the correctionv2
(t)

remains below the orderO(g2). Its first term is the first in
Eq. ~56! and is of orderT4g(Jt2J0) in magnitude. With a
view to Eq.~59! it is indeed belowg2. For the second con
tribution @the second in Eq.~56! but with D t0 in place of
D t l# we need a bit of calculation. Both sums may be cons
ered ‘‘soft,’’ i.e., n(x)→T/x is allowed, thereby preparing
the contribution of interest. All propagators are represen
spectrally. For the two frequency sums, Eq.~6.6! of @23# is
used repeatedly. The result is a three-momentum double
tegral over ~among other factors! *dx(1/x)@r t

(l)(x,q)
2r (0)(x,q)]. But, due to the sum rule~C6!, this factor van-
ishes. Q.E.D.

V. YANG-MILLS FIELDS „THE GLUON PLASMA …

For treating the non-Abelian theory~3! in its ‘‘even ver-
sion,’’ we use Sec. IV as a guideline. Hence, first of all, w
strip off the ghost terms fromL•, L and introduce the index
‘‘no’’ for such reduced Lagrangians:

S•
no52Eb

L•no52Eb

~L01L11L2!

with

L152g~]mAn
a! f abcAmbAnc,

~66!

L252
1

4
g2f abcf arsAm

bAn
cAmrAns. ~67!

Here,L0 is the quadratic part ofL•no, hence including the
gauge fixing:L052(Fa)2/42(]Aa)2/(2a •). The Faddeev-
Popov determinant now depends on the gauge field an
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thus subject to functional integrations. But for convenien
we may split off its bare factor. The partition function, st
waiting for its even–odd decomposition, so far reads

Z•5
1

ZB
• det8~b2]2dab!NE DAm

ae2S•
no

2SFP. ~68!

The two factors in Eq.~68!, which obviously stand for the FP
determinant det8(b2]D), derive through

det8~b2]D !5det8~b2]2dab!

3det8S @]2dab2]mg fabcAm
c #

1

]2dabD
[det8~b2]2dab!det8~11W!

[det8~b2]2dab!e2SFP, ~69!

where byW the part odd in the gauge field is prepared:

W52g fabc]mAm
c 1

]2
. ~70!

The first ]m acts onAm
c and all functions that follow. We

read off from Eq.~69! that

SFP52 ln@det8~11W!#52Tr8ln~11W!

52
1

2
Tr8ln~12W 2!2

1

2
Tr8lnS 11W

12WD . ~71!

In the second line, clearly, the even-odd decomposition
achieved. But the second equality in Eq.~71! ~first line! is
delicate, because all eigenvalues of 11W have to be posi-
tive, but are not. While this point needs care in exactly so
able models@38#, here we may be content with a crude a
gument. For the intended comparison with perturbat
theory, the above logarithms are expanded anyway. He
Eq. ~71! is merely a formal compact notation for series to
generated@39#.

We are ready to form the non-Abelian ‘‘even’’ actio
S•• throughS•

no1SFP→S••5E2 ln@cosh(O)# with E,O given
by

E52Eb

~L01L2!2
1

2
Tr8ln~12W 2!, ~72!

O52Eb

L12
1

2
Tr8lnS 11W

12WD . ~73!

The trial theory has remained unchanged. It is that of S
III. The trial partition function is given by Eq.~68! without
the bullets, atSFP50 and withSno52*bLno. The free en-
ergyF is Eq. ~30!. Thus, the ‘‘even’’ functional~23! of the
gluon system~taken ata5a •) reads

V5F1TK Eb1

2
Aa~MAa!2Eb

L22
1

2
Tr8ln~12W 2!

2 lnFcoshS Eb

L11
1

2
Tr8lnF11W

12WG D G L . ~74!
e

is

-

n
ce

c.

The first two terms form the bare partV0 and are familar
from Secs. III and IV:

V05nVT4S 22I t2Lt2I l2
1

2
Ll1I 0D . ~75!

As in Sec. IV, we expand the logarithms up toW 2 to
reach a reasonable simple ‘‘truncated version.’’ Sin
Tr8W50 , no such term arises from the last logarithm. Th

Vtrunc5V01Vint , Vint5VAAAA1VFP1Vsquare ~76!

with

VFP5
T

2
^Tr8W 2&, Vsquare52

T

2 K S Eb

L1D 2L . ~77!

The contributionVAAAA is given by Eq.~28!. It agrees with
the perturbative free energy contribution from the tadp
diagram~both lines gluons!: VAAAA5F •

` . Compared to Sec
III, there are two additional terms in Eq.~76!: the last two.
By analogy with Sec. IV we expect that they equal the tw
other diagrams at second order, which were missing in S
III. Indeed, taking the trace ofW 2 with states
(bV)21/2e2 iPx, using f abcf abc5Nn and through Wick de-
composition, we obtain

VFP5nV
g2N

2 (
Q

(
P

Gmn~Q!
Pm~P2Q!n

P2~Q2P!2
5F •

4, ~78!

Vsquare5nV
g2N

2 (
Q

(
P

@~Q1P!lGln~Q2P!Gnr~Q!

2Glt~Q!Glt~Q2P!Qr#Grm~P!~2Q2P!m

5F •
* , ~79!

where, in Eq.~78!, the symbol4 ~with two out of many
dots! stands for the ghost loop with an inner gluon line.

Quite different from scalar ED, the gauge-fixing depe
dence does not cancel in a manner independent of variati
parameters. Splitting the Green’s function asG5x
1aDD0, we see thata occurs up to the third power. Th
term a3 is contained inVsquareonly, and its prefactor van-
ishes. Collectinga2 anda terms one obtains

V ~a2!52nV
g2N

4
a2(

Q
(
P

Q4

P4~Q2P!4
Pmxmn~Q!Pn

2~ the same at zero mass!, ~80!

V ~a!5nV
g2N

2
a(

Q
(
P

1

~Q2P!4
@xm

m~Q!~Q2P!2

2Pmxmn~Q!Pn1Q2~P22Q2!xmn~Q!xmn~P!#

2~ the same at zero mass!. ~81!

The fact that Eqs.~80! and ~81! vanish at zero mass reflec
gauge invariance of thermodynamic perturbation theory
orderg2. For the next step, namely analyzingVtrunc at order
g3, we need more: Eqs.~80! and ~81! must remain below
g3. This is the case, as one may check, e.g., by power co
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ing. Remember that perturbatively ag3 only arises by dress
ing theg2 diagrams, whereby gauge invariance persists.

The strategy of further evaluation is now that of Sec. I
as detailed above Eq.~53!. Since they are of higher order, w
temporarily omit the twoa-dependent terms~80! and ~81!.
In Vint this amounts to the replacementG→x5AD t
1BD l . Then the terms (v1) linear inx2x0 are isolated, and
terms of higher order—others than in Sec. IV—move
v2. But evaluation ofv1 runs through the steps in Sec. IV
and, surprisingly, ends up with thesameresult as in Sec. IV,
namely Eq.~57! atms50. Just to show the prefactors

Vint5nVg2N~v01v11v2!, v05
T4

144
,

v15
T4

g2Nl t
2Lt1

T4

2g2Nl l
2Ll2

T4

6
J0 . ~82!

The complete functional up to orderg3 @add Eq.~82! to Eq.
~75!# does not depend onl t ~gutter form! and reads

V to g35const1nVT4
1

2
Ul ~83!

with the functionUl defined asUt in Eq. ~64! by changing the
index. Minimization givesl l51, as desired. For the heigh
of the minimum to orderg3 we obtain

Vmin5nVT4F2
p2

45
1
g2N

144
2

1

12pS gA N

A3 D 3G . ~84!

This is Eq.~8.47! in @21#. At N51, the correlation energy
(g3 term! agrees with the photonic one in scalar ED, see
~63!.

As in the Abelian case~Sec. IV D! the functional is ex-
pected to become convex with respect tol t by including
g4 terms. However, at this point we run into non-Abelia
difficulties. There are four terms to be included. The first o
is Ut @replaceUl in Eq. ~83! by Ul12 Ut#, which has a mini-
mum atl t51. The second term arises fromv2 in Eq. ~82!, a
rather lengthy expression~seven lines say! and so far not
evaluated. The third and fourth terms are thea-dependent
pieces~80! and ~81! and cause the trouble. They should
~but are not! either constant, or minimal atl t51, too, or of
lower order in magnitude. Consider, e.g., theD t0 part of the
a2 term ~80!. If evaluated ‘‘soft’’ it vanishes~in the manner
noted at the end of Sec. IV!. At first glance, as no UV cutoff

is needed, one might conclude thatV t
(a2)50 at all. How-

ever, it appears that there is still a hard contribution, which
turn needs no IR cutoff. Because this is perhaps somew
unusual, let us state the result

V t
~a2!52nVT4

a2

24

g4N2l t
2

48p4 I

with
,

.

e

n
at

I5E
0

`

dx
x

ex21E0
`

dt
1

e~1/2!xt21 S t

t221
1

4t

~ t221!2

1
1

~ t11!3
ln~ t12!1

1

~ t21!3
lnut22u D . ~85!

The derivation used Eq.~C2!. To check the above stateme
of vanishing soft part, one may write 2/(xt) for the second
Bose function. Then the integral overt gives zero, as re-
quired. But as it stands,I is some nonzero mathematic
constant (I'21.04).

The above remaininga dependence, which prevents u
from solving the gutter problem in the non-Abelian case,
the ‘‘minor detail’’ noted in pt.~8! of the Introduction. There
must be a resolution to this puzzle within the truncated v
sion ~76!, because the terms beyond, depending onl, are of
orderg5. As the term~85! contains two Bose functions, th
way out has probably nothing to do with renormalization
The only possibility we are able to invent is the fact that
higher orders there is also aC term @see Eq.~5!# in the
propagator, which is missing in Eq.~4! and is specific to
non-Abelian theory. Furthermore, this term has a factora in
front of it; see, e.g., Sec. 3 of@40#. Let such speculations b
beyond the scope of the present paper.

VI. STATIC PROPERTIES

So far, while testing the ‘‘even version’’ in thel case, we
were thinking in terms of real excitations in the plasma~sca-
lar and gluon!, whose spectra are hidden in the polarizati
functions. Here we recall the other well-tractable case wit
the infinity of Abelian gauge invariant mass terms. Befo
all, turning to them case comes with a change in philosoph
We now ask for the best constant-mass terms~longitudinal
and transverse! in the trial Lagrangian. To leading orde
~otherwise see e.g.,@34#!, static propagators have the form
(2q22mscreen

2 )21. But the trial propagators read (Q0
2

2q22mt,l
2 )21. Nevertheless, it may well happen~remember

the ‘‘Q050 method’’ of Sec. IV B! that they lose memory to
their dynamical elementQ0

2 automatically.
For Yang-Mills fields, the analysis runs through the ste

of Sec. V up to Eq.~82!. No gauge-fixing dependence occu
up to the orderg3 to be considered here. The bare partV0 is
given by Eq.~75!, now with them-case integrals~36! and
~37! to be inserted. The crucial line where them case starts
to make differences reads

v152T4J0~Jt2J0!22(
Q

D l t~Q!P l~Q!. ~86!

Within the present accuracy, the above sum may be redu
to its Q050 term. But note the difference to thel case.
Once the transverse propagator is supplied with a nonz
magnetic mass by hand, this variational parameter surv
in the result:

(
Q

D l tP l5
T4g2N

12p
~bml2bmt!. ~87!

The same happens in theJt sum, see Eq.~37!. But the com-
bination of these details in Eq.~86! yields v152T3ml /
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(24p). The linear~not the cubic, see below! dependence on
mt has gone, this time by cancellation—a wanted detail,
we see next. Including the bare partV0 the functional reads

Vm case
to g3 5nVT4S 2

p2

45
1
g2N

144
1

1

24p
@~bml !

32g2Nbml #

1
1

12p
~bmt!

3D . ~88!

The longitudinal part clearly becomes minimal
ml5gANT/A3 , which is the well known Debye screenin
mass at leading order. There is a transverse part in Eq.~88!,
hence no gutter problem. Asmt is restricted to the positive
half-axis, the minimum is reached atmt50, which is the
magnetic mass at the order studied, indeed.

In spite of the above correct answers on static propert
there remain delicate questions. Remember that the~squared!
Debye mass 3m2 already entered the dynamical calculati
at Eq. ~58!. It appears that, within the orderg3, the varia-
tional functional cannot really discriminate between stat
and dynamics. In fact, the minimum value of the function
~88! agrees with Eq.~84!, i.e., with the exact one to orde
g3. Thus, two equally low minima are found over the spa
of mass terms. However they are joined, namely throug
subspace of all functionsP l that have the value 3m

2 at zero
frequency, andP t vanishing there. Nevertheless, in thel
case the appearence of constant masses is a technical by
uct, while in the present static case it answers the po
question. Let us add conjectures on the behavior in hig
orders. The safe ground is on the dynamical side. Supply
the variational functional with anything good, then it mig
answer with self-energies comparably good. For static pr
erties, on the other hand, one needs more, namely some
losophy of why the trial propagators get rid of its dynamic
partQ0

2 by only forcing the mass to be constant. Remem
also that, starting from the real-excitation spectrum in
v-q plane, the static limit (v50) is only reached through
range with imaginary wave vector@36# on mass-shell lines
Perhaps the variational procedure prepares at least the
nonvanishing term of each screening mass.

At the supersoft scale, the magnetic mass~see@33,41# for
more recent work! most probably comes with some nume
cal factor timesg2T @42#. Then, as a rough speculation, th
last term in

V5nVT4S const1 1

12p
~bmt!

32constg4bmtD ~89!

would be in search. Note that such a term, if any and if
others, would arise in one step over the present truncatio
the functional. For possible danger with this step see the
point in the following list of open questions.

For completeness, we add them-case result for scala
electrodynamics. It simply agrees with Eq.~88! at
N5n51, except for the constant terms and an additio
term due to the scalars, which may be both read off from
~61!. Let us end up with the question which way the ma
netic sectors of Abelian@43# and non-Abelian theories migh
become different in a variational treatment.
s
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VII. OPEN QUESTIONS

In the preceding sections, the application of the var
tional calculus to pure gauge theory was far from being
straightforward procedure. Several problems were elu
and questions not answered, because we could not. Le
recall these questions and just list them here.

~1! The Hamiltonian formulation to both, the Gibbs
Bogoljubov or Feynman-Jensen varational principle@see text
below Eq.~17!#, was given up in Sec. II because we we
unable to construct the HamiltonianH of the trial theory.
This construction is a challenging task. See the text be
Eq. ~16!.

~2! Knowing the Hamiltonians of both, trial and studie
theory, one could construct the common physical Hilb
space. By forming the Becchi-Rouet-Stora-Tyutin~BRST!
charge and projecting out physical states from the outset,
would be the natural approach to the Gibbs-Bogoljubov v
sion @6,8,15#.

~3! The functionalV in both versions, Gibbs-Bogoljubov
and Feynman-Jensen, has the total minimum value in c
mon ~namely the exact free energy!. However, the trial
spaces are different. Hence, a given trial theory which d
not cover this minimum could lead to quite different appro
mations. Since presumedly, this is not true, a proof of the
equivalence of the two principles is desirable. Note that s
a proof would circumvent our Hamiltonian problem of th
above point~1!. Moreover, the interpretation of the tria
space as one of nonequilibrium statistical operators would
preserved.

~4! We have not made an effort to introduce, by Legend
transformation, the 1PI-generating functionalG, although
there is a variational principle even toG @44,29#.

~5! Renormalization@6#, not yet needed in this paper,
probably inevitable already when the method should rep
duce the next-to-leading-order perturbative results, such
e.g., the lowering ‘‘by glue’’ of the longitudinal plasma fre
quency@for scalar ED this is the term20.37e in Eq. ~5.5! of
@19##.

~6! From Secs. II B to II C we turned to the ‘‘even ve
sion’’ immediately. But perhaps there is something in b
tween that we have not found, namely a feasible modifi
trial theory not running into the pitfall of Sec. III.

~7! Only a very poor subspace of polarization functio
was considered by simply varying prefactorsl t,l in front of
the true functionsP t , P l , already known perturbatively. An
honest ‘‘even version’’-variational treatment might inste
vary unknown functionsP t,l(Q). To make sense, this gen
eralization probably needsg4 terms in the functionalV.

~8! For the ‘‘minor detail’’ of reminescenta dependence
when solving the gutter problem in the non-Abelian case,
the comments at the end of Sec. V.

~9! The most troubling step in Secs. IV and V was t
expansion of the ln@cosh()# term in the variational func-
tional. So, the question is whether this expansion can
avoided some way.

~10! With regard to the observed gauge-fixing indepe
dence, it could turn out that a later truncation of the ser
makes less sense than reading ln@cosh(x)#' 1

2x
2 as some

good approximation.



i
e
il
th
th
n

v
y

-

n
e
b

t

m
n

e
ee

s
v
lo
na

u
e
e
ion
af

on

on
ne
io
th

n-

on

by

r
e

d
r

54 7689THERMAL VARIATIONAL PRINCIPLE AND GAUGE FIELDS
VIII. CONCLUSIONS

A Feynman-Jensen type thermal variational principle
constructed such that an Abelian free trial theory works w
in both cases, scalar electrodynamics and pure Yang-M
theory. To this end their actions are to be rewritten such
only even powers in the gauge field appear. This way,
perturbatively known leading-order self-energies of photo
scalars, and gluons, respectively, are reproduced~apart from
a minor open question to the non-Abelian case! by variation
of their prefactors. The subspace of constant masses co
the inverse Debye screening length. There is a large as
metry of the functional with respect to the~photonic/gluonic!
transverse sector, as it does not~yet! depend on the corre
sponding parameter at orderg3.

The delicate problem of handling two different covaria
gauge-fixing parameters~one of the original and one of th
trial theory! has a simple resolution: they become equal
minimization. Hence, the observed gauge independence
fers to the remaining gauge-fixing parameter common
both theories.

The new variational functional contains a ter
ln@cosh(AAA)# and hence involves arbitrarily high eve
powers of the gauge fieldsA. In the non-Abelian case~and
within covariant gauges! such powers occur already in th
unmodified Feynman-Jensen principle due to the Fadd
Popov determinant depending onA. Unfortunately, for
evaluation and minimization we had to expand the ln-co
function. But a true nonperturbative scheme should ne
refer tog powers at all. So, the present success is still be
the potential nonperturbative possibilities of the variatio
approach.
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APPENDIX A

Here the functional integral measure of the trial partiti
functionZ of scalar ED is made explicit.Z is Eq. ~43! with-
out the dots there. The normalization factorN is fixed by
requiring that, in the massless limit, the partition functi
Z must turn into two times that of blackbody radiation, o
of the photons and one of the scalars. On the more ambit
task of a true derivation see the comments at the end of
Appendix.

We start by splittingZ into four factors,Z5ZaZdetZAZs
with a piece ofN contained in each. But notice the redu
dance of such a factor in front of an unspecified*D . . . ,
hence, e.g.,Za51/ZB suffices. The simplest part isZs5
‘‘ *D$f*f% ’’ e2Ss with
s
ll
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at
e
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Ss5Eb

~ms
2f*f1f* ]2f!5(

P
~ms

22P2!f~P!*f~P!

5(
p,n

ms
22P2

bV
f*f. ~A1!

At each of the countable infinite discrete positionsp,n there
are, asf is complex, two independent integrations. Equati
~A1! refers to our conventionf(x)5(e2 iPxf(P) but we
may turn to that of Kapusta @21# by f(P)
5AbV(a1 ib)/A2 ~with indicesp, n on a, b suppressed!.
We now guess the functional integral measure and justify
evaluation:

Zs5N 0
2)
p,n

1

2pb2E dadb expF2
1

2
~ms

22P2!~a21b2!G
5N 0

2) ~2T2Ds!, ~A2!

where)[)p,n and

N05)
p

)
n

8 2pn ~A3!

with the prime excludingn50. Remember thatDs
21

5P22ms
252(2pnT)22p22ms

2,0. Of course, each facto
in N0 has to be attached to the corresponding one in thn
product in Eq.~A2!, and the product overn has to be per-
formed first~other constructions may be possible!.

The infinite product~A2! can be performed. To this en
we collect four~known! formulas of general use. By contou
integration,

T(
n

1

P0
22x2

52
1

x F121n~x!G ~A4!

with n(x)[1/(ebx21) the Bose function. Equation~A4! is
Eq. ~2.38! of @21#. Multiply Eq. ~A4! with 2x and integrate
over x from c to y:

T(
n

lnS y22P0
2

c22P0
2D 5y2c12T lnS 12e2by

12e2bcD . ~A5!

Multiply Eq. ~A5! with b, setby5v, and perform the limit
bc→0:

(
n51

`

lnS 11
v2

~2pn!2D5 lnS sinh~v/2!

v/2 D . ~A6!

Exponentiating Eq.~A6! and extending to alln, one arrives
at the fourth formula

)
n

8
~2pn!2

v21~2pn!2
5

v2e2v

~12e2v!2
, ~A7!

which is Eq.~89.5.16! in @45# and Eq.~2.269! in @12#. Check
Eq. ~A7! at v→0. Using Eq.~A7! for Eq. ~A2! we obtain
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7690 54YORK SCHRÖDER AND HERMANN SCHULZ
Zs5N 0
2) ~2T2Ds!5)

p

e2bAms
2
1p2

~12e2bAms
2
1p2!2

, i.e.,

~A8!

Fs52T ln~Zs!52(
p

F12Ams
21p2

1T ln~ 12e2bAms
2
1p2! G , ~A9!

which is, at zero mass, the desired result of twice a h
blackbody radiation. The guessing was good. Aside,
could include the zero-point energies by the redefinit
N0→)pe

bp/2)n82pn.
We turn to the factorZdetwith again a trial-and-error pref

actor:

Zdet5N 0
22det8~b2]2!5FN 0

2) 8 ~2T2D0!G21

~A10!

5F)
p

8 ~bp!2GF)
p

)
n

8
~bp!21~2pn!2

~2pn!2 G , ~A11!

where in the blank)8 and on the determinant the prim
excludes only the one positionn5p50. As the determinan
is the product of the eigenvalues2b2P2, naively, P50
must be excluded to make sense. However, if this is requ
to result from a derivation, one might go back to the un
insertion in the Faddeev-Popov procedure:

15D•N 0
2F) 8 T2E dap,nGF) 8 d~2P2ap,n!G .

~A12!

Originally thed argument was]2L ~with dAm52]mL the
gauge variation!. Since there is no constant term inL, there
is no a0,0 integration in Eq.~A12! and no zeroP in Eq.
~A10!, Q.E.D. Equation~A12! directly leads toD5Zdet. Us-
ing Eq. ~A7! for Eq. ~A11! we have

Fdet52T ln~Zdet!522(
p

8 F12 p1T ln~12e2bp!G .
~A13!

Clearly, with the above measure, the determinant term s
tracts twice a half blackbody radiation. In passing, the pri
in Eq. ~A13!, while still being necessary there, becomes
relevant in the continuum limit.

With an argument quite similar to that below Eq.~A12!,
there is also a prime in the measure of*DB. This integration
runs over ad(]A2B). But ]A cannot be constant, sinc
otherwiseA would be linear in spacetime and lie outside o
space of Fourier-transformable fields. So,P50 maybe ex-
cluded:
lf
e
n

d

b-
e
-

r

ZB5 ‘‘ E DB’’expS 2
1

2a(
P

8 B~P!*B~P! D
5)

right
1

2pE dadb expS 2
1

2a
~a21b2! D 5) 8 Aa.

~A14!

As B(x) is a real field and B(2P)*5B(P),
B(P)5AbV(a1 ib)/A2 , the two integrations are placed o
half of theP space, the right say~let right and left exclude
the origin!. The prefactor was chosen here to reach
simple resultZa51/ZB5)8A1/a. It must wait to make
sense in combination withZA .

The photonic part of the trial action includes the ma
termsMt,l :

SA5
1

2(P ~P22Mt!Am
2AmnAn1

1

2(P ~P22Ml !Am
2BmnAn

1
1

2a(
P

P2Am
2DmnAn[SA

t 1SA
l ~A15!

with Am
25Am(2P) and theD term being part ofSA

l . The
corresponding further splittingZA5ZA

t ZA
l is allowed because

the transverse components~those ine1,2 direction, e1,2'p,
e1'e2) in the expansion

Am~P!5u1E1
m1u2E2

m1vTm1 iwUm with Tm5S 0,ppD ,
E1,2

m 5~0,e1,2!, ~A16!

drop out inSA
l and are the only parts surviving under theA

operation:AmnE1,2n5E1,2
m . As the first three terms of Eq

~A16! as well aswUm are Fourier transforms of real fields
half P spaces are related byuj (2P)Ej

m(2P)
5uj (P)*Ej

m(P), v(2P)52v(P)* and w(2P)5w(P)* .
Hence, the integrations inZA

t to start with, are of the real-
field type ~A14!, except that there are now two integratio
at the originn5p50 and four at each place in the right ha
Two of the latter may be attached with the left half. The
choosing the same functional integral measure as forZs , we
arrive at precisely Eq.~A2! with the role ofms

2 taken over by
Mt(P):

ZA
t 5N 0

2) ~2T2D t!. ~A17!

The longitudinal part of the action is first rewritten as

SA
l 5

1

2

1

bV(
p,n

all S @Ml2P2#uju22P2
1

a
uhu2D

with

j5pw1 iP0v, h52 iP0w1pv. ~A18!
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Next we observe thatj(2P)5j(P)* , h(2P)52h(P)* ,
and mark the origin and the right halfP space to count
independent integrations~two overj at the origin and four in
the right!. Finally, by changing the variables fromv, w to
j, h ~with unit Jacobian determinants!, and with the now
familiar functional integral measure, one arrives at

ZA
l 5N0) A2T2D lN0) 8 A2T2aD0. ~A19!

Note that most of the above ‘‘trivialities’’ were due to car
fully counting all positions inP space, i.e., to place th
primes right.

We are ready to constitute the scalar ED partition funct
from the above several factors:

Z5
1

) 8 Aa

1

N 0
2) 8 ~2T2D0!

N 0
2) ~2T2D t!

3AN 0
2) ~2T2D l !

3AF) 8 a GN 0
2) 8 ~2T2D0!N 0

2) ~2T2Ds!.

~A20!

Obviously, the gauge-fixing parametera cancels. Now,
counting halves of blackbody radiation amounts
221211111254 as required.

A true derivation of the above must not anticipate t
known zero-mass results. With@26# as a guideline, such deri
vation should be possible even inside covariant gauges,
without a recourse to physical gauges. There is one prob
in taking the right starting point@maybe with a factorN 0

4 in
front of the classical partition function for the four~of six!
degrees of freedom to be quantized#, and in the volume fac-
tor ~to be split off! the other.
r
i

t

n

e.,
m

APPENDIX B

Here the two sumsLt andLt are evaluated, in thel case
and with regard to contributions not accessible by a na
Q050 method. The details are required for Secs. IV B a
IV D. We start from the definition~26! and work with the
spectral representation

1

P22l2P t,l~P!
5E dxx

r t,l
~l!~x,p!

P0
22x2

, ~B1!

of trial propagators. The above spectral densities are rel
to ordinary ones, denoted byr t,l(x,p;m

2), by

r t,l
~l!~x,p!5r t,l~x,p;l

2m2!. ~B2!

Hence all sum rules~C6! and ~C7! remain valid forr (l) if
m2 is replaced byl2m2 to the right. Using Eq.~B1! and the
sum rule 15*dxxr (l)(x,p) theL sums read

Lt,l52b4(
P

~P2D t,l21!

52b4(
P

E dxxr t,l
~l!~x,p!S P0

22p2

P0
22x2

21D . ~B3!

Next, with Eq. ~B2!, defining r̄[(x22p2)r @cf. Eq. ~C1!#
and using Eq.~A4!, we may write

Lt,l5b4
1

2p2E
0

`

dpp2E dxr̄ t,l~x,p;l
2m2!F121n~x!G .

~B4!

Note that both,r̄ and the square bracket, are odd functions
x. Let us splitr̄ into its leading part as given by Eqs.~C2!
and~C3!, and the restr̄2 r̄ lead, which we call the soft part.
Correspondingly,L is written asL lead1Lsoft. Introducing an
UV cutoff L, the leading parts may be written as
Lt
lead

Ll
leadJ 5H l t

2

2l l
2J b2g2

12p2E
0

L

dxxF 121n~x!G H 12I ~x!

I ~x!
, I ~x!5E

x

L

dp
1

p
. ~B5!
i-
Equation ~B5! is the right place deleting the ‘‘12 term’’ as
discussed below Eq.~34! in the main text. But even unde
the control of the Bose function there remains a logarithm
divergent factor: namely,

k5
b2

4p2E
0

L

dxxn~x!E
0

L

dp
1

p
. ~B6!

Using Eq. ~B6! we have Lt
lead5( 1

242k) 13g
2l t

2 and Ll
lead

5 2
3kg2l l

2 which are thel2 terms in Eq.~60!.
We turn to the soft parts ofLt,l , whose series might star

with g2l3. To prepare thisl3 term, one may simply write
c

T/x in place of the square bracket in Eq.~B4! ~and, of
course, the mentioned difference in place ofr̄). Using the
sum rule~C5!, one obtains

Ll
soft5

b3

2p2E
0

`

dpp2E dx
1

x
@ r̄ l~x,p!2 r̄ l

lead~x,p!#m2→l2m2

52
1

4p S gl l

A3 D 3. ~B7!

But, through the above line and with a view to Eq.~C4!, the
transversal functionLt

soft vanishes. This completes the der
vation of Eq.~60!.
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For the gutter problem of Sec. IV D we must still lea
about the first nonvanishing piece ofLt

soft. Let us work with
l t51 and rememberm→l tm at the end. We start from th
full expression, but separate the cut and pole parts of
spectral densities. In particular,r̄ t

cut, leadmeans the secon
term in Eq. ~C2!, and r̄ t

lead53m2/4p the prefactor of the
d functions. There is an exact expression~without index
lead! to both. Then, three differences may be formed:

Lt
soft~l t51!5

b4

2p2E
0

`

dpp2E dxF121n~x!G$2~ r̄ t2 r̄ t
lead!

3d~x2v t!1 r̄ t
cut2 r̄ t

cut, lead

12r̄ t
lead@d~x2v t!2d~x2p!#%, ~B8!

wherev t5v t(p) is the transversal plasma frequency, to
obtained by solvingv t

25p21P t(v t ,p). We now notice that
x, p are restricted to soft values by the above first two d
ferences, but not by the third one. So, in front of the first tw
we may still use theT/x approximation. Note tha
1
21n(x)2T/x5bx/121O(b2x2). Hence, for bx;g this
difference is by twog powers smaller thanT/x;1/g. It
might contribute toL only atg5. Working this way, the sum
rule helps again to get rid ofr̄ t and r̄ t :

Lt
soft~l t51!5

b33m2

4p2 E
0

`

dpS 12
p

v t
1bp@n~v t!2n~p!# D .

~B9!

For convenience, this can be further rewritten by introduc
v5v t as the integration variable@and by once more replac
ing n(p)→T/p in a soft term—this time required for consis
tency#:

Lt
soft~l t51!5

b33m2

4p2 E
m

`

dv@12bvn~v!#S 12
p~v!

vv8 D
~B10!

with v8 the derivative ofv t with respect top, andp being
p(v). The square bracket starts as12bv for small bv, its
e

-
,

g

saturation at 1 being never reached because the ro
bracket sets the limit. It starts with 1/6~at v→m) and goes
as (9/4)m4v24ln(v/m) for largev ~with such details taken
from Appendix B of @23#!. Hence Eq.~B10! is indeed of
order g4 in magnitude. Going tol tÞ1 simply amounts to
m→l tm in Eq. ~B10!. But note that this scaling also chang
the definition of, e.g.,v t , which now is the transversa
plasma frequency as ifm werel tm.

What we really need in the main text, is notLt itself but
the first factor in Eq.~65!. The operation there, fortunately
eliminates the above last integration:

2

l t
Lt2]l t

Lt5
g3l t

2

216p2 F12
gl t

3
nS Tgl t

3 D G . ~B11!

This ‘‘first factor’’ is thus positive, and it behaves a
;g4l t

3 for small g. Just these properties were used in t
main text below Eq.~65! to reach the long bathtub.

APPENDIX C

Here we collect a few special details on the spectral d
sitiesr t andr l which were needed in Appendix B. There w
had to learn on the product

r̄~x,p![~x22p2!r~x,p! ~C1!

and its asymptotic forms at largep argument (p2@m2):

r̄ t
lead5

3m2

4p
@d~x2p!2d~x1p!#2

3m2

4p3
xu~p22x2!,

~C2!

r̄ l
lead51

3m2

2p3
xu~p22x2!. ~C3!

These leading terms are readily obtained from the full
pressions as given in Appendix B of@23#. One may check
Eqs.~C2! and~C3! by using it in ther̄ sum rules and thereby
producing, in each case, the term of highestp power to the
right. The exactr̄ sum rules read
E dx5
1/x

x

x3

x5

x7
6 r̄ t~x,p!55

0

m2

6
5 p

2m21m4

9
7 p

4m21 12
5 p2m41m6

4
3 p

6m21 702
175 p

4m41 18
5 p

2m61m8,

~C4!

E dx5
1/x

x

x3

x5

x7
6 r̄ l~x,p!55

3m2/~3m21p2!

m2

3
5 p

2m21m4

3
7 p

4m21 6
5 p

2m41m6

1
3 p

6m21 213
175 p

4m41 9
5p

2m61m8.

~C5!

They derive through Eq.~C1! from the sum rules of ordinary densities:



E dx

1/x

x

x3

x5

x7

r t~x,p!5

1/p2

1

p21m2

p41 11
5 p2m21m4

p61 122 p4m21 17 p2m41m6

~C6!
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5
x9
6 5 35 5

p81 506
105 p

6m21 1297
175 p

4m41 23
5 p2m61m8,

E dx5
1/x

x

x3

x5

x7

x9
6 r l~x,p!55

1/~3m21p2!

1

p21m2

p41 8
5p

2m21m4

p61 71
35 p

4m21 11
5 p2m41m6

p81 248
105 p

6m21 598
175 p

4m41 14
5 p2m61m8,

~C7!

and these, in turn, are derived along the lines given in@20#.
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