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Thermal variational principle and gauge fields
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A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well
as non-Abelian: scalar electrodynamiesthout scalar self-couplingand the gluon plasma. The perturbatively
known self-energies are shown to derive by variation from a free quadf&igussian”) trial Lagrangian.
Independence of the covariant gauge-fixing parameter is redelitidn the orderg® studied after a refor-
mulation of the partition function such that it depends on only even powers of the gauge field. Also static
properties(Debye screeningare reproduced this way. But because of the present need to expand the varia-
tional functional, the method falls short of its potential nonperturbative pd@8556-282196)02424-1

PACS numbss): 11.10.Wx, 11.15.Tk

[. INTRODUCTION should be expected here. Instead, the known perturbative re-
sults are used teestour new variational construction. With
Variational principles, well established in nonrelativistic this first step we hope to pave the road towards its pre-
qguantum problems, develop their true power by setting aumedly powerful nonperturbative possibilities.
measure for the best approximate solution within some pa- Specifically on SUN) gauge fields under thermal varia-
rametrization of a trial space. This space is made up of wavéon, there is(to our knowledggonly the one(thus pioneer-
functions ¢ in nonrelativistic quantum mechanics, by statis-ing) paper of Manka[6] in 1986. He studied pure non-
tical operatorg in thermodynamics, and by actio&in the  Abelian gauge theory by using a free trial Lagrangian,
Feynman-Jensen formulation. The above objgctan al- namely, the Abelian one for photons taken-fold
ways be understood to be the ground state of some Hamitn=N?—1). The fields are identifiedAnon-apeiiar=Arial (@t
tonianH. Any statistical operator is also related uniquely toleast in the high-temperature phasand a constant trans-
a Hermitian operatoH (its “Hamiltonian”). Thus, in any of verse photon mass is taken as variational parameter. Note
these three cases, we may talk abouheoryto be param- that this identification of pure, but interacting gauge fields
etrized and varied. The task is to find a class of theoriesvith free, but massive ones makes the trial theory nontrivial.
coming reasonably close to the truth but to keep it simpléwith the longitudinal mass included as well as the four-
enough for tractability. vertex (which both were neglected if6]), Manka conjec-
Each of the above three cases generalizes to field theoryyres that the perturbative results on masses, generated by the
¢ becoming a wave functional, see, €.4j], while H andS  plasma, should be obtained from variation as well. Indeed,
keep their meaning. For the formulations of the thermalthey should—but by this supposedly easy task we were led
variational principle, wittH [2—10] or with S[5,10—-19, we into all that follows.
refer to the next section as some part Il of the Introduction. The following outlook reflects, to some extent, our indi-
We focus on the application to pure gauge theory withvidual path into the subject. Starting with the basic ideas of
particular interest in the hot gluon system. There are threg6] just mentioned, we were more or less forced into one step
fascinating aspects of this system. First, it distills out from(away from[6]) after the other.
the standard model by reducing the number of flavors to (1) The covariant gauge-fixing parameter is reintro-
zero, while possibly still containing the whole non-Abelian duced, and kept arbitrary, because all experience with, e.g.,
mystery. Second, other than in the Higgs sedtbe other the damping puzzle of the gluon plasma tells us thaif
distillate) its Lagrangian looks so simpl&:=—F2/4 . Third,  surviving in final results, is an ideal indicator for wrong
its high-temperature limit may be called understood, mainlyphysics.
based on the rearrangemém6,17] of diagrams at soft-scale (2) Both dynamical mass termigransverse and longitudi-
outer momenta (key words: resummation, hard thermal nal) are included as functions of momentum. This setup cov-
loops. ers static screening as well as dynamically generated masses.
There are several basic problems and pitfalls at the verfhe massive-photonic trial theory still keeps its Abelian
beginning when the variational method contacts gauge fieldgauge invariance.
It is the subject of the present paper to make the calculus (3) The functional integral formulation is applied. In pass-
working at all. Hence no new results on the hot gluon systeming, although our notation is Minkowskianmetrics

+ — ——) we actually alwaysneanthe Euclidean space. We

only have to remember, at appropriate places, that the zeroth
*Electronic address: yschroed@x4u2.desy.de componentA® of the gauge field i$ times a real field.
TElectronic address: hschulz@itp.uni-hannover.de (4) The classical(or Feynman-Jensgrnversion of the
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variational functional is used, because it avoids difficulties inindex bullet refers to the system studigd equilibrium, i.e.,
constructing the Hamiltonian to our higher-derivative trial to the “hard problem” which one likes to learn about by the
Lagrangian. As an intermediate result, the covariant gaugerariational method3=1/T, Z=Tr(e #"). Trial quantities
fixing parameters of studied and trial theory become equal.carry no index, st is the element running through the trial
(5) The variational functional, if evaluated with the qua- space whose only restrictions are tiat the spectrum of
dratic photonic trial theory as described, still depends on thé{ is bounded from below ang) H acts in the Hilbert space
(common gauge-fixing parametex (as also observed in of H.. The formulation(1) is found, e.g., as E¢10.83 in
[18]). A way out is proposed by first rewriting the partition [2] or as Eq.(20.3% in [4]. It is called Gibbs variational
function of the theory studied such that its action becomesgrinciple in[2] and Bogoljubov inequality if6,4]. There is
even in the gauge fields. This is called the “even version” ina natural application to the Heisenberg spin model, where
Sec. Il C. minimizing V yields the best Curie-Weiss Hamiltonig4],
(6) As in the low-order perturbative treatments, and sincethereby justifying the mean field procedure.
we shall only reproduce its results, detailed renormalization For the proof of Eq(1), we claim that one line suffices. It
is not (yet) required in this paper. Divergent terms can berests on the inequality-In(x)=1—x and on the irrelevance
separated from the finite thermal ones. Hence, the couplingf operator-ordering under trace, Tr XB)=Tr In(BA). With
g changes its meaning to be the running coupling in thesany nonequilibrium statistical operatpy the line reads
thermal contributions.

(7) For a first application of the “even version,” scalar Flpl=Tr(pH.)+T Tr(pin[p])
electrodynamic$ED) is appreciated once mof&9] to be an
ideal toy model for the non-Abelian problem. The known —F.—T Tr(p In Ep. )>F.. )
self-energies are put in by hand, but supplied with variable P

prefactors. Through variation, the latter become 1 indeed. _ o
(8) In the non-Abelian case, the Faddeev-Popov determiTo the left, Eq.(2) starts with the nonequlibrium free energy
nant becomes part of the even-odd decomposition. Th# (E—TS) form. The knowledge ofp. at equilibrium,

“even” functional works well, except for dhopefully) mi-  H.=—=T In(p.Z), _iS used fqr the inner equaliﬁy Sjgn
nor detail at the endconcerning gauge-fixing dependence in[F.=—T In(Z)]. Finally, the right end has been simplified
higher ordey. using Tr(p) =Tr(p.) =1. In whatsoever nonequilibrium state

(9) For the explicit analysis just mentioned, the varia-the system is, it has a statistical operagowith the three
tional functional had to be expanded up to the tHjpdrtly ~ properties one-trace, Hermiticity, and positivity. THusith
fourth) g power. This apparently inevitable recoursego the propertiesa), (b) of H as stated aboveits general form
powers is a big disappointment. is p=e~#"/Z. This makes Eq(2) to become Eq(1), Q.E.D.

The paper is organized as follows. Section Il on the for- It is tempting to require that the trial theory be a solvable
mulations of the thermal variational functional is a continuedone(e.g., a free field theojy However, it must not. Imagine
Introduction. Especially the “even version{the one that there was a small coupling in the trial theory, andfor
works) is introduced in Sec. Il C. In Sec. lll we follow the simplicity) only one variational parametey. Near its mini-
Feynman-Jensen version. It leads to unphysical results, batum, the functional would take the fori=a(e)+b(e)
is, on the other hand, reasonably simple to introduce severai[ »—c(e)]?. Clearly, through perturbative expansion of
technical details. Section IV treats scalar electrodynamic¥, the coefficientsa, b, ¢ as well as the positior of the
with the “even version” of the functional. In Sec. V on the minimum would be obtained as power serieseinThe pa-
gluon plasma, things start more involved but become veryametery may be chosen to be the coupliegtself.
similar at the end. In Sec. VI the case of constant trial self- We now turn to gauge field theory, governing a periodi-
energies is discussed in terms of Debye screening and magally repeated box of volum® and coupled to a thermal
netic mass. Open questions are summarized in Sec. Vlbath at rest with four-velocityJ =(1,0). In the variational
Conclusions follow in Sec. VIII. Three Appendices cover principle (1) H. andH are the Hamiltonians to a Lagrangian
details on the functional integral measures, on some normat, studied and a trial Lagrangiaf, respectively. To count

integrals involved, and on sum rules. the same number of field degrees of freedom, one may either
prepare the physical Hilbert spaces from the ouftée,15
Il. THE THERMAL VARIATIONAL PRINCIPLE or work with extended spacdsorrected by ghostsin the

latter case the two gauge fixings may be different. Adopting
general covariant gauges, there is a gauge-fixing parameter

The extremal properties of thermodynamic potentials arey, of the theory studied and an of the trial theory. No final
known from textbook$2,3] on statistical physics. In particu- result is allowed to depend on either of them.

lar in the canonical ensembf{the only one considered in this The hot gluon system is described by the pure Yang-Mills
papel, the free energy takes its minimum at equilibrium: Lagrangian

F=F.. In its usual version, the thermal variational principle

is identical with this modest inequality, if its left-hand side is i £ ar2 | —F amrab. b
detailed: L.=— ZF.MFf‘ - ﬂ(‘?#AM) +ic*Dc®,  (3)

A. Gibbs-Bogoljubov

e PH ! .
V[H]E'rr(_Z_[H__H])_T In(z)=min. (1) with F.2,=d,A2-9,A%+gf**A’AS and D3’=s",
—gf2*°A% . In the high-temperature limit the one-loop con-
The proof is given shortly. In Eq1) and in the following an tributions(hard thermal loopsare of relative order unity and
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therefore must be included in the true leading ofdé,17.
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n free photon Lagrangianéiumbered bya), supply them

The gluon propagator, resummed this way, may be written awith variable mass terms such that H¢) is among their

A*(Q) N B#"(Q) +aD’”(Q)
Q*-Mi(Q)  Q*~M(Q) Q?

G*"(Q)= . (4

whereA, B, D are members of the symmetric Lorentz matrix

basis
A=g-B-D, B= Q
V
with
V=Q?U—(UQ)Q=(—0°— Qo). (6)

The orthonormal properties of E(p) are listed inf20]. Note
that A andB are projectors:

A*(Q)Q,=0, B*(Q)Q,=0. @)

In Eq. (4), M;=1II; and M,=1I, are the well known polar-
ization functiong 21,22

3 1
Ht(Q)=§m2—§H|(Q),

2
1(Q) = 4g°N AOAO[pZ— (2‘1) } ®
with
g°NT? 1 ~ 1
Mo TR SeTigoRy
1

2=y T (9)
P p n

For more details on th&l's (especially in our notatignsee
Appendix B of [23]. If V—o, 3, turns into

fd®p(27) 3T=,,. We work with the Matsubara contour:
Q=(iw,,q), w,=27nT. The gauge fields are Fourier trans-

formed as

) B .
A#(X)=; e PAL(P), ALP)= f eP*A,(x)
(10

with x=(—irr) and ff=[Edr[d°. To, e.g., check this,
the thermal Kronecker symbol

Jﬁe‘<Q‘P>X=BV6nQ,npaq,pE[Q—P] (11)
is very convenient. In Eq(4) the bullet ona. had been
“forgotten,” because the Green’s functigd) will turn out
to be that of the trial theory as well.

Were there not the pap6], a suitable trial Lagrangian
could come into mind while contemplating on Eg). Use

propagators, and identify the field&:in Eq. (3) =A in Eq.
(12):

L= 1F2+1A|\/|A ! A)2+ica? 12
== 5()5(19)|C<9C (12

with F,,=d,A,—d,A,. The trivial indexa is suppressed
here, and

B . ,
(MA)#(x)= f% e IRUXI[ M (Q)A*(Q)

+M(Q)B*"(Q)]AL(X).

The propagator of Eq.12) is Eqg. (4). But note that we are
still free to choose, e.g., constant masses

(13

M=mZ, M,=m? (“m case”, (14
or to cover the true leading-order propagat@tswith
M=A{TL(Q), M=MIL(Q) (“\ case’). (19

Our trial Lagrangian12) is noninteracting and quadratic

in the fieldsA. The gauge-fixing term is necessary, because
the mass terms are Abelian gauge invariant. To see this, in-
sert the Fourier transforrtl0) into Eq. (13) and notice that
the gauge variatioA,(Q)=—Q,x(Q) drops out due to
Eq. (7). Despite these neat properties of the mass term, the
longitudinal one makes trouble. B*—id* in Eq. (13),

and in them case for simplicity, we may rewritA(MA) as

AMA)=A,,(x)[MEA*(i9)+miB**(i9)]A(X). (16)

In passing, Eq(16) is the Abelian(trivial) case of the La-
grangian considered if24]. The matrixB (not A) has a
denominator containing,: V2= —q?Q2— — A. Hence,
our trial Lagrangian has arbitrarily high powers in the time
derivative. The definition of field momentum densities in
higher derivative Lagrangians is a delicate matter, as is the
construction of its Hamiltonian. Thubl, the trial object,
makes the problem. Note that, if working with a constant-
mass Stueckelberg tersm?A“A , [25], this problem would
not yet arise. We leave these difficulties right now, because
there is a wonderful way out as detailed in the following
subsection.

B. Feynman-Jensen

To each Lagrangian, Eq&3) and(12), there is a partition
function which, using functional integrals, is expressed by
the actionsS,= — [#£. andS= — [AL:

1 1
z.=—.NJ DAe S, Z= —J\/f DAe S. (17
Zg Zg

In Eqg. (17), and for the moment, lef DA include the ghost
field integrations. Equatior{17) holds true in Euclidean
space26,21: A, is a purely imaginary field. The prefactors
Zy andZg, e.g.,Zg=[DB exp(— [PB?/2«), occur through
the derivation of Eq(17) while integrating overs(dA— B)
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with normalized weight. Usually, they are hidden in thein lattice ¢* theory[13]. Before, it played a central role in a
functional measureV. But here, the twoV in Eq. (17) are  study of spin models and lattice gauge thefgh¢].
equal and independent of. Nevertheless, they depend on  The role played by the unusual last term in Etp) clears
B [26]. It might be emphasized that the above functionalup by combining it with the gauge-fixing terms contained in
language can still be applied to the Hamiltonian versionS, andS:
V[ H], since the first term of Eql) is —T In(Z), and the
individual terms in{H.—H) ( if known can be related to 11 1) (s 2 ) \F
Greens functions, which in turn derive fro#h (with source Vga”ge_i a. a f ((9A))=T1n qn a.
terms included
Hamiltonians can be avoided at all, as we learn in Sec. 3.4 Y
of Feynman's textbook10Q] (see also Sec. 8.3,4 there and a.||2% (20
[11]). Start fromZ., add the factore® ande™S under the

integral, divide by(and multiply with Z and define the av- For the logarithm in the first line se@14); the prime ex-

a
[ 2-1-m
a,

erage(- - -) as given in Eq(18). Then, cludesn=qg=0. To understand the last term in the second
2 line, remember thako=(T/V)X,X,. For the other terms
Z.=—FZ(e‘(S-‘S))BZ—.BZe*S-‘S), insert Eq.(10) and use
ZB ZB

(AL(QA,(P)=[Q+P]G,,(Q)

IDAeS. .. =[Q+PJ(AA+BA+aDAy), (21)

“[DAe S (18

. o ‘where the shorthand notation should be obvious from Eq.
The above inequality is, in the case at hand, the Jensen ina). Now considere of the trial Lagrangian to be one of the
equality; see, e.g.[27]. Its simplest version states that ygariational parameters. Clearly, with respectatpEg. (20)
(e"y=e~‘". The proof rests on the convexity ef [5,13,  has an extremum at= ., andVga gevanishes at this posi-
or, equivalently, on the nice Figure 3.5 [df0]. For conve-  tion. Moreover, it is a minimum, since the blank sum at the

nience we take the logarithm of E€L8), end in Eq.(20) is positive(though quartic divergentBy far
7o\ the bestx is a.. We note three consequencesct a.. First,
VS]=F+T(S.—S)—T In(—.B) =min, (19)  the three terms selected in EQO) may be simultaneously
Zg omitted in the sequel. Second, there is still dependence on

the now commony, as it enters through- - - ) when traced
back to the trial propagat@#). Hence, the above selection of
Ca—dependent terms was incomplete. But the divergence of
the last factor in Eg(20) helps maintain the conclusion with
rigor. Third, with respect tax, the variational principle is
exhausted, so one should no more think about an “optimal”
(common «a.

and call Eq.(19) the Feynman-Jensen variational principle.
The last term, we come back to shortly, is obviously specifi
to gauge theory.

In the non-Abelian case, there is a terrible pitfall hidden
in Eq. (18). Admittedly, things were written down, to run
into it with ease. If one still read§DA to include the ghost
field integrationgwrong casg the ghost term would appear
in the averagd (S.—S) and lose the term linear iA, hence
all A dependence. But if the integration over ghosts is cor-
rectly recognized to be the Faddeev-Popov determinant, So far, we were able to circumvent the Hamiltonian di-
Des(A), it may be included intoS. as SS9  lemma noted at the end of Sec. Il A. But in the new version
—In[Dee(A)]. Now, in the avergagel{—In(Dgp)), even (19 there is again a troubling element, as we become aware
powers ofA survive. For the explicit formulation of this see of next. Terms odd in the gauge fiel (the AAA part of
Sec. V. We learn thatc, though being Hermitian, must not L. in particluay drop out in) entirely, because they only
be viewed as a real number. Hence, in the non-Abelian casenter(S,—S) and vanish there, since the average weight is
one needs to write the actidh in Egs.(18) and(19) as to  the quadratic trial action. It is as if the three-vertex were
include Dx(A), while there will be no ghost field integra- taken out from the outset. But a Yang-Mills theory with no

C. The “even version”

tions in [DA. three-vertex can never be tested suitably by any trial theory.
There is also the Peierls’ versi¢@8,2,4,9 of a thermal For more details see the next section.
variational principle. It states that é‘rBHBEHe*”\H\”K For the resolution to this puzzle, it appears that the usual

rests on Jensen and may be used for another deriilaf  philosophy(“improve the trial theory”) fails. Also, our trial

Eg. (1). Things are closely related. But we have no rigoroustheory(12) is physically so reasonable: it “must” work. Our
answer to the question, whether the two versidngnd(19)  way out is to introduce one more version of the variational
are identical statements—just formulated in differentfunctional. On one hand this construction, which we call the
language—or not[see also pt.(3) in Sec. VII. The *“even version,” is the decisive success in treating gauge
Feynman-Jensen variational principle stays useful even dields variationally. On the other hand the idea is rather
zero temperature. It has been applied at0 to A ¢* theory ~ simple: in general, odd-iA terms in the action can be
without [29] and with gauge sectdrl8]. Formerly, these avoided from the outset by playing around with the func-
efforts had a Hamiltonian formulation, considered even theriional integrations oveA as follows.

mal [7]. At finite temperature, but without the exotic last  Let us split the action int&.= £+ O with £ keeping and
term, Eq.(19) has been recently used to obtain gap equation®) changing sign undeA— —A. The same decomposition
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can be done with the exponentiated action aswith A, =1/ pP2— M, (P)] and Ao=1/P?. The prefactom
e ‘e 9=e fcosh®)—e %sinh(®). Since the second term in Eq. (25) comes from the trivial sum over the color index.
drops out under the functional integrations over the gauge The treatment oMaapa Starts with the Wick decomposi-

field A, we may write tion [6] of the average into three pairs with partners
_ _ 1
f DAe S= f DAe £t nlcoshON (22 (Az(x)AE(x»:é’"b; GW(P)=5""bT2§(uWr+st).
(27)

The new exponent, which we callS.., is an even functional
of A. Since the above steps precede the use of Jensen’s iihe first equality in Eq(27) derives with Egqs(10) and(21).
equality, quite a new functiondl arises: The second one arises after integration over the directions of
. p. As the propagatora, , are rotationally invariangeven in
VS]=F+T(S.—S)=min with S..=&—In[cosHO)]. the N case (15)], this angular integration amounts to
(23y the replacements A~ —3u, B——3u—3p*Aqv, and
D— 3(v—u) +3p®Agv with the Lorentz matricesl,,, v,
In Eg.(23) a=a. is understood, i.e., the logarithm dg’sis  given byU ,U,—g,, and 4 ,U,—g,,, respectively. For
omitted together with the gauge-fixing termsdrandS. the sumg ands see Eq(29) below. Using the first equation
Once there are only even terms in the theory studied, th€7) and with f3°°f2°¢=nN one derives the first line of Eq.
qguadratic trial theory has a good chance to reproduce th&8). Exploiting theu-v version, one arrives at the second
leading-order perturbative results. We shall show in Secs. \one:
and V that the “even version” works that way, indeed.
There, the Faddeev-Popov determinétépending oA in Vv 2t E GH(P
Sec. V, but not in Sec. I¥is part ofS. and hence subject of “AAAA~ V57 | & u(P)
the above “even’-ing procedure.

2 2

-2 G (P)X G*(Q)
P Q

2

—vr SN )2y (29
IIl. TRIAL AND ERROR =n 6 (r s)(r S).

In this short section we step back to the insufficientThe objects, s in Egs.(27) and(28) are given by
Feynman-Jensen formulatidt9) to see which way it goes

wrong, to introduce some basic integrals and for a first run r=23+J+aly, s=-Y,—aJyt+aYy, (29

through the necessary algebra in the simplest case. For sim-

plicity, let us even omit the Faddeev-Popov tefe., run  whereJ, andY, are the sums of Eq26) taken at vanishing

into the pitfall noticed below Eq(19)]. It is not (solelyy ~ mass.

responsible for the defect, as we shall remark at the end of The last term of)’ to be evaluated is the trial free energy

this section. F=—T In(2). First of all, since colors do not miX is an
Using a=a. as reasoned below E(R1), the functional n fold product,

reads V=F+T(S.—S). In the difference S.—S

=—[P(L.— L) the terms odd in the gauge fiel vanish F=nFeoioress ~NT IN(Zcoiortesd =NV TH(— 21— 11+ 1),

under the averagé- - -). Others cancel. The only two sur- (30

viving terms are and the colorless partition function is identical with that of

scalar ED, see Sec. IV, if omitting the factor due to the

2
T<S._S>:VE(Aa(MA3)>+Vg_fabcfar5<A2A5A,U«rAVS> scalars. In the formul&l?) for Z (read colorless and Euclid-
2 4 ean, there are three unknown flying object§’ [DA, and
=V + Vassns (24) JDB. This is not a shame & is used exclusively as a gen-

erating functional. But here we ne&das a precise number.
where[# has reduced t@V due to spacetime independence The trouble[26] with the normalization factol'is propor-
of the averages. The first teri,, with M from Eq.(13), is  tional to the care of its treatment. We make efforts in Ap-
readily evaluated by using Eq&LO) and (21) and the trace Pendix A to write down at leasif not to derive this factor

relation (MA+M,B]G)*=2MA+MA,: N. Here we see from EqA20) thatF indeed splits up into

# the terms in the right-hand side of E@0). With Eq. (A3),

1 we obtain
VM=nVT4( —L— ELl). (25)
1 '
| =5y |IN(—T?A|(Po=0p))+ 2 In(P%A.(P))},
L, are two sums out of the collection P n

(31)

Ju=—B%2 Ay, Ly=—B*2 PAA—Ay), where the prime excludes=0. The indeX may be replaced
P P

by t or by O (then referring to zero massThe expression
(31) sticks with this awkward form as long as thecase(15)
Y, Z,BZEP ponAu (26) :;rli?ecluded. But by differentiation with respect ¢ we may
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Nl 1 & 3
_)\|(9}\|||:L| or ||:|0_f0 d)\XL|()\|:)\), (32) ng_ﬂ‘f':?(lo_l) (38)

with & one of e, ;=Bm;,, c=3+2 In(4m)—2y and y the
Euler constant. In the massless limit, the free endBfy is
now recognized to beé times that of ordinary blackbody

the right half being equivalent to a coupling constant integra
tion. In them case the above relation reagsnd,,| =L.

The sumsl, J to Y are divergent, and one has to keep'™"" '
track of variational-parameter dependences while renormaf@diation.
izing [6]. To study this in simple term&@nd for the rest of The contributions to V are now added up as
this section we turn to constant masses by Egid). In this T+ YutVaaaaand filled with details:
case the frequency sum in E@1) can be don¢21]. Using

Eqg. (A7) and going to the infinite volume limit, one obtains V=nVT —2l,— 23+ %[_2|I_8|2J|]+|0
1 o 1 2. 2 2
_ - 2 2 A= X Fe N (07
l= ZWZL dxx® SVX +8|+|”(1 eV ') ' +gT(2‘]t+‘]'_Y'+§ (2Jt+J|+2Y|)} (39
8|E,8m| . (33) nVT4 8? 2N5+0{ €
, soonst o 3 TN T
Furthermorel | =¢;J,. The sumJ becomes
o, 40
1 1 e19°N—5- (40)

Ji

1 (= x2

=—2f dx -+

2m )0 \x2+ ef 2 eVPrel _q There it is, the announced wrong result:depends omn.

Nevertheless, the structure is appealing: the parameters

with clearly the term being UV divergent as in Eq33).  ande, do not mix, the only extremum is a minimum, and its
Even after subtracting zero-point energies by hamtlich  Position has the right ordey?N of magnitude. But, apart
the functional integral does not know )pf from this, the minimum positionst2=g2N(5vL a)/24 and
L1+ (1/4m?) [2dx@=1%® there remains a singular inte- &f =g°N(1+ @)/8 give no sensawhicha? Including the FP
gral depending on the variational parameter On the other  term, with the means worked out in Sec. V, does not help us
hand, in a low-order perturbative treatment, such terms cafut of this dilemma, because it only leads to minor changes.
be addressed as zero-temperature renormaliz4ti6i23  To be specific, in Eq(40) 5+ « becomes & « and 1+«
and omitted entirely. As we like to reproduce these resultgurns into (2+3a)/3.
only, the omission should be allowed here as well. Consider,
for example, the combinatior‘rlf”b— iL,, which occurs in IV. SCALAR ELECTRODYNAMICS
F+Vy, and supplyp with an UV cutoff A:

] (34

For a first application of the “even” functiongR3), we
appreciate scalar ED as a suitable example. Remember that
this system is an ideal toy modgl9] to the gluon plasma,
with view to the identical diagram structure, the need of
resummation as well as to its physical gross features. The
Lagrangian, to be studied, is given by

1
2h

— sub__
|

1/2 term
1

AT 8|2
=—| dx| VC+ef—x———

+0(&}). (35

* 1 2 1 2
L.=(D*¢)*D,¢— 7F _2_a.(‘9A) (41)

4
€|
- 32772|n(T_s, with D,=d,—igA, andF ,,=d,A,—3,A,. By again iden-

tifying the fields(here: ¢ andA), the trial Lagrangian reads

Since we expect,;~g, such terms are irrelevant v up to 1 1 1
3 .
g°. In the sequel we shall trust in the above arguments andﬁz(&#qg)*aﬂd,_ —F2— —(0A)?*+ = A(MA)—mZ¢* ¢.
omit the 3 terms entirely. 4 2a 2
Deleting the divergent pieces this wgp, e.g., Eqs(33) (42)
and (34)], I, J, Y become well defined integrals whose as-

2 2
ymptotic series are knowf80]: Its propagators are E¢4) and 1f m{— Q<] for photons and

scalars, respectively. Here we concentrate on the spectum of
P 2 3 4 4 real excitations. Hence, the mass matvxis that of thex
an & & € ce . . .
- _ 4 | — 6 case (15). The variational parameters in the above trial
+ + 2ln(8) 2 + 0(8 ), i
90 24 12w 327 64m theory areh;, A\, and the scalar magsg. The Lagrangian
(36) (42) turns into the effective Lagrangig@at orderg?) of hot
scalar ED[19] at the values,,=\,=1 andm?=g?T?/4. So,
J= i - i+ = — E(g | = 1 L 37) within O(g?), the parameter space includes the exact answer
12 4x PRGN A (to be derived by variation Note that both original and trial
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theory are invariant under regauging the photon field by
SA=—9A. By definition, the decoupling ghost terms are
kept apart from the above Lagrangians. But the Faddeev-
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Vtrunc: Vo"f‘ Vint with V(): F+ VM + Vmi,

Vint= VAA¢¢ + Vsquare (47)

Popov compensation must be taken into account in the par-

tition function either by ghosts or as a determinant.

A. The “even” functional of scalar ED

Recalling Sec. Il C, the partition function of scalar ED

may be written as

Z.—i.del’(,Bzaz)N f D{A, ¢* pte™S-. (43
Zg

ForV, we are well prepared from Sec. llI: strip off the color
factor n from Eqgs.(25) and (30). Of course, with a view to
Eq. (A20), the free energW T#(— 2I,) of the scalars has to
be added now. As the scalars have constant nhagsgiven
by Eq.(33) with index| replaced bys. Forvmg note that the

average( ¢* ¢) equals=pS(P) with the scalar propagator
given by S(P)=—1/(P?— mg)z —Ag. Thus, in particular

Vmgz _Vm§<¢* ¢>: _VT4L31 LS=8§JS,

The prime on the Faddeev-Popov determinant excludes the

zero eigenvaludsee also Appendix A To specify £ and
O in Eq. (23), in the case at hand, we read off from E41)
that

B
0= —J Ly with Ly=igA*¢*d,¢—ig(d,d* )AL,
(44)
while — [AL, with £,=g°A*A ,¢* ¢ is part of £ together
with the quadratic terms in E¢41). The index onC refers to

g powers. Witha= «a., as required for Eg(23) to be valid,
we may thus write the “even” functional as

V=F+T<fﬁ%A(MA)—m§fﬁ¢*¢_ fﬁﬁz

o ]

where F=—T In(Z), and the trial partition functiorZ is
given by Eq.(43) with all bullets stripped off there.
There is a highlbut probably inevitableprice to be paid

—In (45)

es=Bms, J=—B22 A, (48)

and in total

1
L+1o—2l—Lg|.

Vo=VT =2l L=l -3

(49

Among the interaction terms, one is pretty simple:
VaApp= — V92< O P)(AFA,)

=VT4g2(23,+ )+ VTg2algls=F . (50)
Of course,Jy=1/12 even in thex case. To the right in Eq.
(50), we have noted thats,,, precisely equals the pertur-
bative free energy contribution from the diagranione loop
scalar, one photonjcBut here the lines represent massive
propagators, making depending on variational parameters.
One may speculate that the remaining téfg,ecould cor-
respond to the diagraf® (the inner line photonic This is
indeed the case; see E(1) below. Classes of diagrams
were whisked away in the treatment of Sec. Ill.

The first steps in treatinysquareare straightforward: Fou-

for the physical consistency reached with the above formurier transform all fields, Wick decomposéhe O—O dia-
lation: it obviously contains fields in arbitrary high powers gram drops out due to odd summanand use Eq(21). One

(instead of only quartic For the explicit evaluation of Eq.

(45) one is, apparently, forced again into a perturbative ex-

pansion, namely that of the logarithmic term
(In[ coshf) ]=x2/2—x*/12+ x5/45— - - -). But note, at least,

that this expansion looks much simpler than diagrammatic
thermodynamics: here the seagull vertex does not occur in

higher powers. If, for any reason, terms of orgérmay be
neglected, then the functional simplifies to

vmmc=|:+T< JB%A(MA)—mgfﬁgb*db— fﬁ,cz
<))

In the following, while demonstrating the value of E¢5),
we shall in fact restrict to the truncated version E4f).

1

5 (46)

B. Evaluation of V yync

Let us group the above five contributions into “bare” and
interaction terms:

obtains

=

> 2

2 2 (2P—Q)*G,(Q)(2P-Q)"AA¢

Vsquare:

=F° (51
with A; =1/[(Q— P)z—mi]. There is gauge-fixing depen-
dence inVgq arethrough the propagatd® from Eq.(4). After
some algebra one obtains that

Vsquare_ % (sg:a%: _VT4gza‘JO‘JS1 (52
which cancels thex term of Eq.(50). Thus, in the case of
scalar ED and in its truncated “even” functional, there is no
gauge-fixing dependence. This is true for all values of our
variational parameters and for any mass matrix version.

In Eq. (51) at =0 terms withQ* or Q" are projected
out. The remaining sandwiches are

PAP=—[p?—(pq)?/q?]

and
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PBP=P2—(PQ)%/Q%— PAP. 2p[4P?Q?—4(PQ)*+ Q*I/[Q°PA(Q—P)?]=22p1/P%.
Expecting the structur@0), at least the terms linear i;,  We obtain:
N\, mg must be detailed. We therefore form differences as,
e.g., Ay=A,—A,, add Egq. (51) to Eq. (50), write V=V @ (votvi+v,) (53

Jio=Jd;— Jo, etc., and splity;,; into a constant ), terms )
linear in such differencesvg) and the rest«,), which is ~ With
certainly of higher order. Then, some terms wof [easily

e - 1 Q’P2—(QP)?\ 5T
identified in Eq.(56) below] are regrouped into,, because Vo= > 3-2 — (54)
they are of higher order for other reasons. Note that 3 F Q°P? Q*(Q-P)? 288’
|
1 [, (p9)?
_T4 2_
01=T 0200+ 330)+22, Au(QV 2 By P~ 7 | (55)

, (pa)? _ _ , (PQ)? _ U S

v2=2 2 | 280850+ 2 PP =7 | Au(AsAs —A0do) +A10ds0—2| PP = Ai(AsAs ~AoAo) + 5410Q%A0h |-

(56)
|

In each term of Eq(56) the argument of the first propagator T (= 1 1

is Q, and P that of the second. To understand why the last >, A“H,=3m2ﬁf dqof| —— P

two terms of Eq(56) are less tha®(g), the first one can be Q mJo a 9 1om

rewritten as—2m§EQ'pA,ASA; plus some products of dif- T4g%( g\

ferences. But for the last term in E¢6) only a detailed = Tom —') (58

analysis(of the type done in Appendix Breveals its order ™\ 3

T*g?In(g) of magnitude. Such terms are known to occur in

the perturbation expansion of the free enefg¥]. Dependence o, has dropped out, with the reason readily
Up to orderg® in V (or orderg in v,) only the line(55)  detected in the vanishing factd; of \? i.e., in the absence

needs further study. Note at first that, formally, the expresof a (squaredl magnetic mass at orderf. In the same man-

sion (8) (at N=1 herg appears in this line. So, the machin- ner the soft parts od integrals are obtained:

ery “knows” of the leading-order longitudinal polarization

function. There are two ways to evaludigA 1, (for later L

use, we detail both First, one may cancdl functions with . =9 _

those in the trial propagatofsising IT,=3m?— 2I1,), write h=dom 7 3 T J=dot 0t (59)

v, in terms of basic integrals as

with again no dependence an for the same reason.
To complete the evaluation, note that the scalar contribu-
2 1 g2 tions Jg, Lg, |5 arem-case objects, hence their expansions
> AIL=—T4 FL# FLI_ ik (57)  are given by Eqs(36) and (37) with e=g,=8ms. For the
Q t ' remaining\-case integrals iy, Eq. (49), apparently, the
sumsL; and L, are still to be studied separately. For this
) i somewhat delicate task see Appendix B. As a result, both
and proceed Wl.th expanding Fhe Igt(eee below Note that | «iart with ag?\? term whose prefactok diverges loga-
these cancellations are possible in thease only. The al- yihmically. From Eqs(B5) to (B7),
ternative second way is by far the easier and more enlight-

ening one. As is basic to the dimensional reduction method

2 3
[32—34 and to various related thermodynamic calculations ) ngl_ i(g_)‘l ..
(e.g.,[35,31]), a frequency sum may be occasionally reduced ' 3 4 \/§ '
to its Q=0 term. This step, if valid19,36, rests on the
structure of a massive propagatbfQ) and usually prepares 1 92\2
its soft part while contributions from nonzero hard frequen- L= (ﬂ_ 3 LI, NI (60)

cies are of higher order. Of course, there must be no hard
part in a sum under such study. In fact, £§7) is an ideal
example for the above. Moreover, @,=0 the polarization ~Now note that the singular piecedrops out inV,, because
functionsII, andIl, reduce to constants, namelyn3 and  there L appears in the combination |2L=2l,+{1
0, respectively: —2[3dN(1N)IL, see Eq(32), and the curly brackets is a
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projector:{ }A%2=0. One might ask for the fate of the singu-  Let us try to avoid expansions, and let the collection of all
lar terms in Eq.(57). They drop out there by cancellation, terms containing\, be denoted by (! _ Up to an additive
and Eq.(58) derives again. constant, it may be written as
(t)y _— 4 2 (t
C. Minimizing Wy at order g° Vtune= VT UA VG

In the preceding subsection, the expansions were drivewith
just as far as to allow for writing down the functionalup to

third order in the couplingy. Of course, as in Sec. lll, we _ f 1
anticipate that the solutions tog and\ ; will be O(gT) and U=—Li+2 d)\ LiA=M)+ )\th (64)
order 1 in magnitude, respectively. By combining the details
of the preceding subsection one obtains Here,v" is made up of the first two terms in E¢56), but
3 Ieavev(t) aside for a moment. Then, the minimum condition
3 > 5¢° g° A ma be iven the form of a product
VISV 2t S GRS y ey P
241
2 1
(g~ 2B ) (61 Ozaxyt:(ﬁt_%t)(l_ E) (65)
mg)°———6m
1277 s s

with the first factor “unknown,” but the second reaching
zero atA\?=1 as desired. To be sure that this zero corre-
ponds to a minimum, the first factor must be shown to be
ositive. We shall do so at the end of Appendix B. There, the
first factor is also seen to be of ordgt and to vary a&f for

It still has the structure of Eq40). The variational param-
eters do not couple, which is specific to the order considere
The absence of any dependence \qnwas already under-
stood, although merely technicallgee also Sec. VI The :

small g, see (Bll) Hence, i, has a Higgs-type shape
above), when plotted over thi,—\;—plane, has the form of Uy~ const- 94)\ N 294)\ L+ ... with 2 maximum at the ori-

a long gutter. The resolution of this defect is deferred to Secgm The curvature of the gutter sets in one order higher,

IV D.
Minimizing Eq. (61) with respect tamg and A, gives the indeed. A plot of)’ now merely looks I|k_e a long bathtub
values The above construction only works if the correctio$y

remains below the orde®(g?). Its first term is the first in
1 Eq. (56) and is of orderT*g(J;—J,) in magnitude. With a
mM'=_gT, A""=1, (62)  View to Eq.(59) it is indeed belowg?. For the second con-
2 tribution [the second in Eq(56) but with A, in place of
A, ] we need a bit of calculation. Both sums may be consid-
as expected. We immediately look for the value of the aboveered “soft,” i.e., n(x)—T/x is allowed, thereby preparing
V taken at these parameters, which is the height of the bothe contribution of interest. All propagators are represented
tom of the gutter: spectrally. For the two frequency sums, E.6) of [23] is
used repeatedly. The result is a three-momentum double in-

7 52 ¢*[ 1 ) tegral over (among other factoys [dx(1x)[p™(x,q)
Vv M=y -2 — 4 —— , (63 —pO(x,q)]. But, due to the sum ruléC6), this factor van-
45" 288 127 3\/_ ishes. Q.E.D.

with the last term in the square bracket_ being due to t.he V. YANG-MILLS FIELDS (THE GLUON PLASMA )
scalars. The minimum perfectly agrees with the perturbative

free energy up ta@®. The g® term, the correlation energy, For treating the non-Abelian theof®) in its “even ver-
was given by Kalashnikov and Klimop87] [Eq. (19) there,  sion,” we use Sec. IV as a guideline. Hence, first of all, we
taken at\ = u=0 ande=g]. In summary, for scalar electro- strip off the ghost terms frong., £ and introduce the index
dynamics and up to the third power, the “even” varia- “no” for such reduced Lagrangians:

tional functional has all required properties, namely gauge- 5 5

fixing independence, the right minimal value, atapart no_ _ no_ _

from degeneradythe right minimum position. S°= f L= f (Lot Lyt L)

with (66)
D. Solution to the gutter problem
The missing dependence an in Eq. (61) is, as already L1=—g(d,A5)FaPARPAY,

noticed, an artifact of the restriction to ordgt of the func-
tional. The problem merely is how to go one order higher
within the expansions so far developed. First of all, we notice
that g* terms are allowed within the truncated functional,
although the neglected next term ofdosh)] does con- Here, £, is the quadratic part of!°, hence including the
tribute at orderg* too. However, the latter is a constant at gauge fixing:£o=— (F?)%/4— (9A?)?/(2a.). The Faddeev-
this order; variational parameters appeagat Popov determinant now depends on the gauge field and is

1
- ZfabCfarSAZAiA[LI’AVS. (67)

Lo=— 49
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thus subject to functional integrations. But for convenienceThe first two terms form the bare pavy and are familar
we may split off its bare factor. The partition function, still from Secs. Il and IV:
waiting for its even—odd decomposition, so far reads L
1 . Vo=nVT* —2l=L=h= 5L+l (75)
z.=Z—.def(ﬁ2025ab)N f DAje™ S ~ 5, (69)

B As in Sec. IV, we expand the logarithms up ¥ ? to
The two factors in Eq(68), which obviously stand for the FP reach a reasonable simple “truncated version.” Since

determinant dé82JD), derive through Tr'W=0, no such term arises from the last logarithm. Thus,
det (829D) =det ( 82526%Y) Viune™ Vot Vint, Vit= Vaaaat Vept Vequare  (76)
X det | [ 9?5620 — grgfaPeAC ]—21—5 i
St T T/ (8|2
=det (82526°")det (1+ W) Ve (TIW5: Vaauare - §< ( f = > (70
=det (B2926%P) e 5P, (690  The contributionVaaan is given by Eq.(28). It agrees with

the perturbative free energy contribution from the tadpole
where by)V the part odd in the gauge field is prepared:  djagram(both lines gluons Vaaaa=FZ . Compared to Sec.
1 lll, there are two additional terms in E¢76): the last two.
_gfabcaMA;:L_z' (70) By ana!ogy with Sec. IV we expect Fhat they egua}l th_e two
d other diagrams at second order, which were missing in Sec.
. . ) lll. Indeed, taking the trace of W2 with states
The first 9# acts onA,, and all functions that follow. We  (gv)~2%~iPx ysing fabfabc=Nn and through Wick de-

read off from Eq.(69) that composition, we obtain

Sep= —In[det (1+4)]= —Tr'In(1 i
-p=—In[det (1+W)] r'in(1+WwW) VFp=nV z 2 G,.(Q) 2((Q g)) =F., (78

= 1T'| 1 2 1T’I dd 71
——Ern( _W)_Ernl—W' (71

v —nvgz—NE 2 [(Q+P)*G,,(Q-P)G™(Q)
In the second line, clearly, the even-odd decomposition is sduare 279 °F M
achieved. But the second equality in E@1) (first line) is ,
delicate, because all eigenvalues of 1V have to be posi- ~G\(QGM(Q- P)Q"1G,.(P)(2Q—P)*
tive, but are not. While this point needs care in exactly solv- =F9, (79
able modeld38], here we may be content with a crude ar-
gument. For the intended comparison with perturbationyhere, in Eq.(78), the symbol+ (with two out of many
theory, the above logarithms are expanded anyway. Hencgotg stands for the ghost loop with an inner gluon line.
Eq. (71) is merely a formal compact notation for series to be  Quite different from scalar ED, the gauge-fixing depen-
generated39]. dence does not cancel in a manner independent of variational
We are ready to form the non-Abelian “even” action parameters. Spliting the Green’s function &&=y
S.. throughS™+ Sgp— S..= £—In[cosh(©) ] with &, O given +aDA0, we see thaix occurs up to the third power. The
by term o is contained iNVsquareONly, and its prefactor van-
ishes. Collectingr® and « terms one obtains

B 1
s:—J (Lot L) = 5Tr'IN(L=-W?), (72 : Ny s 9
V (a ): —nVTaz 5 = P4(Q_P)4PMX,LLV(Q)PV

0= fB,C 1T'| 1+W
-7 ) M2 TN
2

The trial theory has remained unchanged. It is that of Sec. ), <“>—nvg—a2 2

(73 — (the same at zero mass (80)

)4[X,L(Q)(Q P)?

l1l. The trial partition function is given by Eq(68) without 2 (Q—P

the bullets, atSep=0 and withS™°= — [AL™. The free en- b 2 2 2 )
ergy F is Eq.(30). Thus, the “even” functional23) of the ~PEXu Q)P+ Q(PT= Q%) X, ( Q)X (P)]
gluon Systen'(taken ata= a.) reads — (the same at zero mass (81)

81 B 1 The fact that Eqs(80) and (81) vanish at zero mass reflects
— _AQ ay __ _ ! _ 2
V_F+T<f 2A (MA%) f L, 2Tr In(1-w* gauge invariance of thermodynamic perturbation theory at
L L orderg?. For the next step, namely analyzii, at order
B + 3 . .
cosr(f Lo+ ETr’In - DD (74) g>, we need more: Eqg80) and (81) must remain below

—In 1-Ww g°. This is the case, as one may check, e.g., by power count-
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ing. Remember that perturbativelygd only arises by dress- @ X e 1 t At
ing theg? diagrams, whereby gauge invariance persists. J j dx—x J dte(1/2 1(t2—1 + (tZ—1)2
The strategy of further evaluation is now that of Sec. IV,
as detailed above E¢GJ). Since they are of higher order, we 1 1
temporarily omit the twoa-dependent termé30) and (81). + W|n(t+2)+ W'”|t—2| -
In VYV, this amounts to the replacemer®— y=AA,
+BA,. Then the termsy(;) linear iny — x, are isolated, and  The derivation used EqC2). To check the above statement
terms of hlgher order—others than in Sec. IV—move toof Vanishing soft part, one may write Xﬁo for the second
v,. But evaluation ob; runs through the steps in Sec. IV B Bose function. Then the integral oveérgives zero, as re-
and, surprisingly, ends up with tlsameresult as in Sec. IV, quired. But as it standsJ is some nonzero mathematical

(89

namely Eq.(57) at mg=0. Just to show the prefactors constant i~ —1.04).
The above remainingr dependence, which prevents us
T4 from solving the gutter problem in the non-Abelian case, is
Vine=NVEN(vo+v1+vs), vo= a2’ the “minor detail” noted in pt.(8) of the Introduction. There

must be a resolution to this puzzle within the truncated ver-
sion (76), because the terms beyond, depending. pare of
orderg®. As the term(85) contains two Bose functions, the
way out has probably nothing to do with renormalizations.
The only possibility we are able to invent is the fact that at
higher orders there is also @ term [see Eq.(5)] in the
propagator, which is missing in E@4) and is specific to
non-Abelian theory. Furthermore, this term has a faatan
front of it; see, e.g., Sec. 3 §#0]. Let such speculations be
beyond the scope of the present paper.

T4 T4 4

V= —Jo. (82

gZN)\t2t ZgzN)\z"' 6

The complete functional up to ordgf [add Eq.(82) to Eq.
(75)] does not depend or;, (gutter form and reads

1
Vo o= const-nV T U (83
VI. STATIC PROPERTIES

with the functior/; defined as4 in Eq. (64) by changing the So far, while testing the “even version” in the case, we
index. Minimization 9'Ve~°’\l 1, as desired. For the height \yere thinking in terms of real excitations in the plasfaea-
of the minimum to ordeg® we obtain lar and gluon, whose spectra are hidden in the polarization
functions. Here we recall the other well-tractable case within
2 gZN 1 N \3 the infinity of Abelian gauge invariant mass terms. Before
VMit=ny T — 25 122~ F( 9\ 7= } (84)  all, turning to them case comes with a change in philosophy.
A 9NV3 hilo
We now ask for the best constant-mass teffoagitudinal
and transvergein the trial Lagrangian. To leading order
This is Eq.(8.47) in [21]. At N=1, the correlation energy (otherW|se see e.g[34]), static propagators have the form
(g term) agrees with the photonic one in scalar ED, see Eq(— q Screea ! But the trial propagators readQf
(63). . _ _ . —q _mn) . Nevertheless, it may well happéremember
As in the Abelian cas¢Sec. IV D) the functional is ex- he “Qo=0 method” of Sec. IV B that they lose memory to
pected to become convex with respectNpby including thelr dynamical elemerﬁgo automatically.
g* terms. However, at this point we run into non-Abelian For Yang-Mills fields, the analysis runs through the steps
difficulties. There are four terms to be included. The first one of Sec. V up to Eq(82) No gauge-fixing dependence occurs
is U4 [replacelf in Eq. (83) byLﬁ+2ut], Wh'c.h has a mini- up to the ordeg® to be considered here. The bare paytis
mum ath,=1. The secqnd term arises fram in Eq.(82), a given by Eq.(75), now with them-case integral$36) and
rather lengthy expressiofseven lines sayand so far not (37) to be inserted. The crucial line where thecase starts
evaluated. The third and fourth terms are talependent to make differences reads
pieces(80) and (81) and cause the trouble. They should be
(but are nok either constant, or minimal at,=1, too, or of
Iower order in magnitude. Consider, e.g., thg part of the v1=2T*o(J—Jo) — 22 A(QI(Q). (86)
«? term (80). If evaluated “soft” it vanishegin the manner Q
noted at the end of Sec. JVAt first glance, as no UV cutoff - yithin the present accuracy, the above sum may be reduced
is needed, one might conclude that“ 9=0 at all. How- to its Qu=0 term. But note the difference to the case.
ever, it appears that there is still a hard contribution, which inOnce the transverse propagator is supplied with a nonzero
turn needs no IR cutoff. Because this is perhaps somewhahagnetic mass by hand, this variational parameter survives
unusual, let us state the result in the result:

T4g?N

(B~ ). @7

an2
( _ _|_4 gN)\t EAIIHIZ
Vi = VT o et Y ©

The same happens in tlgsum, see Eq(37). But the com-
with bination of these details in E¢86) yields v,=—T3m,/
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(244). The linear(not the cubic, see belgwdependence on VII. OPEN QUESTIONS
m; has gone, this time by cancellation—a wanted detail, as

we see next. Including the bare p3y the functional reads In the preceding sections, the application of the varia-

tional calculus to pure gauge theory was far from being a
2 N 1 straightforward procedure. Several problems were eluded
pe gzse:nv-rfl( — o —[(BmM)3—g?’NSmM ] and questions not answered, because we could not. Let us
45 144 24w recall these questions and just list them here.
1 (1) The Hamiltonian formulation to both, the Gibbs-
+ E(,Bmtﬁ) . (89 Bogoljubov or Feynman-Jensen varational princisiee text
below Eq.(17)], was given up in Sec. Il because we were
unable to construct the Hamiltoniad of the trial theory.

The longitudinal part clearly becomes minimal at This construction is a challenging task. See the text below
m,=g+NT/\/3, which is the well known Debye screening Eq. (16 ging '

mass at leading order. There is a transverse part in(d@aj,.
hence no gutter problem. Aws, is restricted to the positive

half-axis, the minimum is reached at,=0, which is the space. By forming the Becchi-Rouet-Stora-Tyu(BRST)

magnetic mass at the order studied, indeed. charge and projecting out physical states from the outset, this
In spite of the above correct answers on static properties; 9 Proj 9 pny '

there remain delicate questions. Remember thatsteared Would be the natural approach to the Gibbs-Bogoljubov ver-

Debye mass 87 already entered the dynamical calculation Sion[6.8.13. _ _ _ .
at Eq. (58). It appears that, within the ordep, the varia- (3) The functionalV in both versions, Gibbs-Bogoljubov

tional functional cannot really discriminate between statics2"d Feynman-Jensen, has the total minimum value in com-
and dynamics. In fact, the minimum value of the functionalMon (namely the exact free energyHowever, the trial
(88) agrees with Eq(84), i.e., with the exact one to order Spaces are different. Hence, a given trial theory which does
g3_ Thus, two equa”y low minima are found over the Spacenot cover this minimum could lead to quite different approxi-
of mass terms. However they are joined, namely through #nations. Since presumedly, this is not true, a proof of the full
subspace of all functiorH, that have the valuer? at zero  equivalence of the two principles is desirable. Note that such
frequency, andl, vanishing there. Nevertheless, in the a proof would circumvent our Hamiltonian problem of the
case the appearence of constant masses is a technical bypratbove point(1). Moreover, the interpretation of the trial
uct, while in the present static case it answers the posespace as one of nonequilibrium statistical operators would be
question. Let us add conjectures on the behavior in highgpreserved.

orders. The safe ground is on the dynamical side. Supplying (4) We have not made an effort to introduce, by Legendre
the variational functional with anything good, then it might transformation, the 1Pl-generating functiorid) although
answer with self-energies comparably good. For static propthere is a variational principle even f[44,29.

erties, on the other hand, one needs more, namely some phi- (5) Renormalizatior{6], not yet needed in this paper, is
Iosophzy of why the _trlal propagators get rid of its dynamical probably inevitable already when the method should repro-
partQg by only forcing the mass to be constant. Remembeyyyce the next-to-leading-order perturbative results, such as,
also that, starting from the real-excitation spectrum in thee_g” the lowering “by glue” of the longitudinal plasma fre-

-q plane, the static limit¢=0) is only reached through a ,encyifor scalar ED this is the term 0.37% in Eq. (5.5) of
range with imaginary wave vect¢86] on mass-shell lines. r[sl 1
t

Perhaps the variational procedure prepares at least the fi
nonvanishing term of each screening mass.

At the supersoft scale, the magnetic més=e[33,41] for
more recent workmost probably comes with some numeri-
cal factor timesg®T [42]. Then, as a rough speculation, the
last term in

(2) Knowing the Hamiltonians of both, trial and studied
theory, one could construct the common physical Hilbert

(6) From Secs. Il B to Il C we turned to the “even ver-
sion” immediately. But perhaps there is something in be-
tween that we have not found, namely a feasible modified
trial theory not running into the pitfall of Sec. Ill.
(7) Only a very poor subspace of polarization functions
was considered by simply varying prefactorg in front of
1 the true functiondl,, II,, already known perturbatively. An
— i 3_ 4 honest “even version”-variational treatment might instead
V=nVT const 12 (Bm)"—constg ’Bmt) ®9 vary unknown functiondI; ;(Q). To make sense, this gen-
eralization probably needs* terms in the functional.
would be in search. Note that such a term, if any and if no (8) For the “minor detail” of reminescen& dependence
others, would arise in one step over the present truncation ofhen solving the gutter problem in the non-Abelian case, see
the functional. For possible danger with this step see the laghe comments at the end of Sec. V.
point in the following list of open questions. (9) The most troubling step in Secs. IV and V was the
For completeness, we add time-case result for scalar expansion of the [rcosh()] term in the variational func-
electrodynamics. It simply agrees with E¢88 at tional. So, the question is whether this expansion can be
N=n=1, except for the constant terms and an additionahvoided some way.
term due to the scalars, which may be both read off from Eq. (10) With regard to the observed gauge-fixing indepen-
(61). Let us end up with the question which way the mag-dence, it could turn out that a later truncation of the series
netic sectors of Abeliaf43] and non-Abelian theories might makes less sense than readinfctishi) ]~ 3x? as some
become different in a variational treatment. good approximation.
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VIIl. CONCLUSIONS B

sff (M3G* b+ &* )= (M3—P?) B(P)* $(P)
A Feynman-Jensen type thermal variational principle is ?

constructed such that an Abelian free trial theory works well mZ— P2

in both cases, scalar electrodynamics and pure Yang-Mills :En BV " ¢. (A1)

theory. To this end their actions are to be rewritten such that >

only even powers in the gauge field appear. This way, they; each of the countable infinite discrete positigna there
perturbatively known leading-order self-energies of photonsg e asp is complex, two independent integrations. Equation

scalars, and gluons, respectively, are reprodiapdrt from (A1) refers to our conventiorb(x)=Se " P*¢(P) but we
a minor open question to the non-Abelian gasg variation may turn to that of Kapusta[21] by ¢(P)
of their prefactors. The subspace of constant masses cove;s\/ﬁ_v(a“b)/\/i (with indicesp, n on a, b suppressed

the inverse Debye screening length. There is a large asynyye now guess the functional integral measure and justify by
metry of the functional with respect to tijghotonic/gluoni¢  eyaluation:

transverse sector, as it does rigét) depend on the corre-
sponding parameter at ordgf. 1 1

The delicate problem of handling two different covariant Zs:/\/rﬂl F,BZJ dadb EXF{ - E(mﬁ— P?)(a*+b?)
gauge-fixing parameter®ne of the original and one of the >
trial theory has a simple resolution: they become equal by
minimization. Hence, the observed gauge independence re-
fers to the remaining gauge-fixing parameter common to
both theories. wherell=II, , and

The new variational functional contains a term
Infcosh@AA)] and hence involves arbitrarily high even /\/:H H, -
powers of the gauge field&. In the non-Abelian casénd 0 o ™
within covariant gauggssuch powers occur already in the
unmodified Feynman-Jensen principle due to the Faddeewith the prime excludingn=0. Remember thatAs‘l
Popov determinant depending of. Unfortunately, for = p2_m§= —(27-rnT)2—p2—m§<0. Of course, each factor
evaluation and minimization we had to expand the In-coshn A/ has to be attached to the corresponding one innthe
function. But a true nonperturbative scheme should neveproduct in Eq.(A2), and the product ovem has to be per-
refer tog powers at all. So, the present success is still belowformed first(other constructions may be possible
the potential nonperturbative possibilities of the variational The infinite product(A2) can be performed. To this end

=N2T (-T2, (A2)

(A3)

approach. we collect four(known) formulas of general use. By contour
integration,
1 1
ACKNOWLEDGMENTS TE ,=—=|=+n(x) (A%)
n Poz—x X|2

We are very indebted to Martin Reuter, who made us
aware of the Feynman formulation and correctly localizedwith n(x)=1/(e#*—1) the Bose function. Equatioi4) is
the origin of our initial problems in the FP determinant. We Eq. (2.3 of [21]. Multiply Eq. (A4) with 2x and integrate
are also grateful to specific hints and valuable discussiongverx fromc toy:
with Norbert Dragon, Fritjof Flechsig, Edmond lancu, Olaf

Lechtenfeld, Anton Rebhan, and Andreas Wipf. y?- Pé 1-e #

T In| 5—z|=y—c+2T In| —3]|. (A5
APPENDIX A Multiply Eq. (A5) with 8, setBy=w, and perform the limit
Bc—0:
Here the functional integral measure of the trial partition
functionZ of scalar ED is made expliciZ is Eq.(43) with- - 2 sinh( w/2)
out the dots there. The normalization factbris fixed by 21 In{ 1+ 22 :In( o2 ) (AB)
e

requiring that, in the massless limit, the partition function
Z must turn into two times that of blackbody radiation, one

of the photons and one of the scalars. On the more ambitiOLEXphomfem'amg Eq(IA6) and extending to alh, one arrives
task of a true derivation see the comments at the end of thi§t the fourth formula

Appendix. 2.1)2 24— 0
We start by splittingZ into four factors,Z=2Z,Z4eZaZs I 2( mn) , = w'e , (A7)
with a piece of\ contained in each. But notice the redun- n 0 +(2mn)° (1-e )~

dance of such a factor in front of an unspecifi®. . .,
hence, e.g.Z,=1/Zg suffices. The simplest part i8;= which is Eq.(89.5.16 in [45] and EQ.(2.269 in [12]. Check
“ [D{p* ¢} e Ss with Eq. (A7) at w—0. Using Eq.(A7) for Eq. (A2) we obtain
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efﬁxlmgﬂoz
z=N§ll (-T2a9= ,
S OH ( s) ];[ (1_e—ﬁ\/@)2

1<
e Zg=" f DB”exp(—z; B(P)*B(P))
(A8) right 1

=11 EJ dadbexp(—%(a%bz) =I]" Ve
Fe=—TIN(Zo)=2>, B\/W (A14)
p

As B(x) is a real field and B(—P)*=B(P),

, (A9)  B(P)=BV(a+ib)/y2, the two integrations are placed on
half of the P space, the right saffet right and left exclude
the origin. The prefactor was chosen here to reach the

which is, at zero mass, the desired result of twice a halkimple resultz,=1/Zg=11" V1/a. It must wait to make
blackbody radiation. The guessing was good. Aside, 0n@ense in combination witH, .

+T In( 1—e*ﬂ\/m§+p2)

No—T1,ePP211, " 2. termsMy :
We turn to the factoZ 4, with again a trial-and-error pref- ’
actor: 1 1
SA=§§P‘, (PZ= M)A, A*'A,+ Eg (P2=M)A,B*A,
-1
Zdet:Nazdef(ﬁzaz):{N(z)H, (—TZAo)} 1 , C
(AL0) + Z; P?A DA, =S,+S) (A15)
(Bp)?+(2mn)>? with A, =A (—P) and theD term being part oiS'A. The
_ ’ 2 4 1 13
_{1;[ (Bp) HI_P[ 1;[ (2mn)2 , (ALD) corresponding further splittinZ;A=ZtAZ'A is allowed because

the transverse componenfthose ine;, direction, e »L p,

. . ) e, L &) in the expansion
where in the blankll’ and on the determinant the prime

excludes only the one positian=p=0. As the determinant

is the product of the eigenvalues 82P?, naively, P=0 A#(P)=UEX+ U EL+uTH+iwU#  with Tf‘:(o,E),
must be excluded to make sense. However, if this is required P

to result from a derivation, one might go back to the unity

insertion in the Faddeev-Popov procedure: Ef,=(08 ), (A16)

drop out inS'A and are the only parts surviving under the

T 5(—P2ap,n)}. operation:A*"E, ,,=Ef',. As the first three terms of Eq.

(A12) (Al16) as well aswU* are Fourier transforms of real fields,
half P spaces are related byu;(—P)Ef(—P)
=u;j(P)*Ef(P), v(=P)=—v(P)* and w(—P)=w(P)*.
Hence, the integrations i}, to start with, are of the real-
field type (A14), except that there are now two integrations
at the originn=p=0 and four at each place in the right half.
Two of the latter may be attached with the left half. Then,
choosing the same functional integral measure aZ forwe
arrive at precisely EqA2) with the role ofm§ taken over by
M;(P):

1=A-N§[H’ TZJ dap,n}

Originally the 8 argument was’?A (with OA,=—d,A the
gauge variation Since there is no constant termAn there
iS no ag o integration in Eq.(A12) and no zeroP in Eq.
(A10), Q.E.D. Equatior{A12) directly leads taA =Z 4. Us-
ing Eq. (A7) for Eq. (A11) we have

1
Foe= =T IN(Zoed = =22 |5p+T In(1—e "),
P
Al
(AL3) Zh=N2T (—T2Ay. (A17)

Clearly, with the above measure, the determinant term sub-
tracts twice a half blackbody radiation. In passing, the primeThe longitudinal part of the action is first rewritten as
in Eq. (A13), while still being necessary there, becomes ir-

relevant in the continuum limit. 1 all 1
With an argument quite similar to that below Eé12), S =5 ,B_VE [M,—P?]|£]?—P2=| 5|2
p.n o

there is also a prime in the measuref@B. This integration

runs over ad(dA—B). But JA cannot be constant, since
otherwiseA would be linear in spacetime and lie outside ourWith
space of Fourier-transformable fields. $550 maybe ex-
cluded: E=pw+iPgv, n=-iPow+pv. (A18)
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Next we observe thaf(—P)=¢&(P)*, n(—P)=—n(P)*, APPENDIX B
and mark the origin and the right haF space to count
independent integratiorisvo overé at the origin and four in
the righy. Finally, by changing the variables from w to
&, m (with unit Jacobian determinantsand with the now
familiar functional integral measure, one arrives at

Here the two sumg, andL; are evaluated, in the case
and with regard to contributions not accessible by a naive
Qo=0 method. The details are required for Secs. IV B and
IV D. We start from the definition26) and work with the
spectral representation

Zh=NoIl V=-TPANGIT' V-T?aho. (A9 1 fd pu( p) B1
P?— NI (P) ' (&1

Note that most of the above “trivialities” were due to care-
fully counting all positions inP space, i.e., to place the of trial propagators. The above spectral densities are related

primes right. to ordinary ones, denoted byJ(x,p;mZ), by
We are ready to constitute the scalar ED partition function
from the above several factors: PtV (X,p) = pr (X, p;AZm?). (B2)
1 1 ) ) Hence all sum rule¢Cé) and (C7) remain valid forp®) if
Z= NAIT (-T2 m? is replaced by\?m? to the right. Using Eq(B1) and the
17 Va V[T (—T2A¢) sum rule = fdxxp™(x,p) theL sums read

AN (—T24) Liy==8'2 (P?Ay—1)

<
Next, with Eq.(B2), defining p=(x?>—p?)p [cf. Eq. (C1)]

Obviously, the gauge-fixing parameter cancels. Now, and using Eq(A4), we may write
counting halves of blackbody radiation amounts to L
—24+2+1+1+2=4 as required. 4 * — N2

A true derivation of the above must not anticipate the Lu=8 ﬁfa dppzf dxpr (X, A5
known zero-mass results. WifR6] as a guideline, such deri- (B4)
vation should be possible even inside covariant gauges, i.e., o
without a recourse to physical gauges. There is one problemNote that bothp and the square bracket, are odd functions of
in taking the right starting poirfimaybe with a factoNS in  x. Let us splitp into its leading part as given by Eq&C2)
front of the classical partition function for the fogof six)  and(C3), and the resp—p '®® which we call the soft part.
degrees of freedom to be quantieand in the volume fac- CorrespondinglyL is wrltten asleady, | soft Introducing an
tor (to be split ofj the other. UV cutoff A, the leading parts may be written as

L Ml pge s 1
L:ead = 2)\|2 12772f0 dxx

2_ .2

P
IT a}NéH’ (=T2AgN LI (= T249). > f dxm%?(x,p)(;‘;rxpz—l). (B3)

(A20)

1
§+ n(X) .

E +n(x)

1-1(x)
{ 1(x) x)—f dp— (B5)

Equation (B5) is the right place deleting the3‘term” as  T/x in place of the square bracket in E(B4) (and, of
discussed below Ed34) in the main text. But even under course, the mentioned difference in placepdf Using the
the control of the Bose function there remains a logarithmicsum rule(C5), one obtains

divergent factor: namely,

3 [
L ﬁ?f dpp? f A Tpr(x,0) — o X, 0) T

B? (A A1
K= mfo dxxn(x) fo de. (B6) o
=1 \/§ . (B7)
Using Eq. (B6) we have LIP%=(4—«)ig®\2 and L[
3ng)\| which are thex? terms in Eq.(60). But, through the above line and with a view to EG4), the

We turn to the soft parts df; |, whose series might start transversal functlort_sOft vanishes. This completes the deri-
with g2\3. To prepare this\® term, one may simply write vation of Eq.(60).
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For the gutter problem of Sec. IV D we must still learn saturation at 1 being never reached because the round
about the first nonvanishing piece of". Let us work with  bracket sets the limit. It starts with 1(&t w—m) and goes
\=1 and remembem— \m at the end. We start from the as (9/4n*w~“4In(w/m) for large w (with such details taken
full expression, but separate the cut and pole parts of th&om Appendlx B of[23]). Hence Eq.(B10) is indeed of
spectral densities. In particulap, 't '*®means the second orderg* in magnitude. Going to\#1 simply amounts to
term in Eq.(C2), and_'ead 3m?/4p the prefactor of the M—Am in Eq. (B10). But note that this scaling also changes

5 functions. There is an exact expressiomithout index  the definition of, e.g..w¢, which now is the transversal

lead to both. Then, three differences may be formed: plasma frequency as ih wereAm.
What we really need in the main text, is rot itself but

g* the first factor in Eq(65). The operation there, fortunately,
ftry
LN =1)= 5 f dppzf dx _+ n(x)|{2(re—r ) eliminates the above last integration:
p Tut_ Ty tut lead 2 3\2 N [ Ton
XO(X—w)+p{—pi Ll—o L= g t2 _bn( g t” (B11)
e A 216w 3| 3
To(x—w) = 8(x—p) 1, (B8)

This “first factor” is thus positive, and it behaves as
g4)\3 for small g. Just these properties were used in the
main text below Eq(65) to reach the long bathtub.

where w;= w(p) is the transversal plasma frequency, to be
obtained by solvmgot p2+I1,(w,,p). We now notice that

X, p are restricted to soft values by the above first two dif-
ferences, but not by the third one. So, in front of the first two,

. . . APPENDIX C
we may still use theT/x approximation. Note that
$+n(x)—T/x=Bx/12+0O(B?x?). Hence, for Bx~g this Here we collect a few special details on the spectral den-
difference is by twog powers smaller thal/x~1/g. sitiesp; andp, which were needed in Appendix B. There we

might contribute td_ only atg Working this way, the sum had to learn on the product
rule helps again to get rid gf, andr,:

. p(X,p)=(x*=p?)p(X,p) (Cy)
B3 p
LN =1)= —r dp( 1= —+pBp[n(w)—n(p)]|.  and its asymptotic forms at largeargument p?s>m?):
t
(B9) 3m 3m?
_ _ . . I [6<x p) = a(x+p)]— 7z x0(p?—x?),
For convenience, this can be further rewritten by introducing 4p°
o= w; as the integration variabl@nd by once more replac- (C2
ing n(p)—T/p in a soft term—this time required for consis- 3m?
tencyl: p R 4 Exa(p —x2). (C3)

p(w ))

333m2
L2 (v=1)= Twrf do[1- 5“’”(“’)]<1_ oo These leading terms are readily obtained from the full ex-
(B10) pressions as given in Appendix B fi23]. One may check
Egs.(C2) and(C3) by using it in thep sum rules and thereby
with o’ the derivative ofw; with respect top, andp being  producing, in each case, the term of highggtower to the
p(w). The square bracket starts 88w for small Bw, its  right. The exacp sum rules read

(1) ( 0
X m’
N 6 212 4
f dx{ X* ¢ px,p)= s prmeEm (C4
x° 2 p*m?+ L p?m*+md
7
L X J L %p m + 1(7)2 p4m4+ l8p2m +m8'
(1) ( 3m?/(3m?+ p?)
X m’
J— 3 K22 4
f dx{ X* ¢ pi(%.p)= sprmTm (CH)
x5 3 p4m2~l— 6 p2m4+ m®
X7

6,2 213 + 292mP 8
L ) \apm+ 2p*mi+ 2p?m®+mé.

They derive through EqC1) from the sum rules of ordinary densities:
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( llxw ( 1/p?
X 1
3 p®+m?
j dx{ 5 } pt(x,p)=< p*+ L p2m24+ m? (Co)
7 PS4+ 122 pdm2 4 17 p2mé 4 m
9
X
& | 0%+ 8 pF+ S phm 2 pi
R ( 2, 12
1/x 1/(3m°+p9)
x 1
X3 p2+ m2
f dx{ 5 } pi(x,p)={ p*+ Ep2m2-+ m? (C7)
x’ p®+ I p*m?+ ¥ p?m*+m®
9
\ X J lp8+%§p6m2+%p4m4+1?4p2m6+m8,

and these, in turn, are derived along the lines givef20;.
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