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We analyze the problems with the so-called gauge-invariant quantization of the anomalous gauge field
theories originally due to Faddeev and Shatashvili~FS!. Our analysis is a generalization of the FS method,
which allows us to construct a series of classically equivalent theories that are nonequivalent at the quantum
level. We prove that these classical theories are all consistent with the BRST invariance of the original gauge
symmetry with a suitably augmented field content. As an example of such a scenario, we discuss the class of
physically distinct models of two-dimensional induced gravity, which are a generalization of the David-Distler-
Kawai model.@S0556-2821~96!01024-7#
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I. INTRODUCTION

The consistent quantization of~classical! gauge-invariant
field theory requires the complete cancellation of anomal
@1,2#. Here, ‘‘consistent’’ means that we want not only t
require renormalizability~perturbative finiteness!, but also
unitarity of theS matrix, non-violation of Lorentz invari-
ance, etc. Moreover, in the physical four-dimensional 4
world, the anomaly cancellation condition itself often lea
to physical predictions. A well-known example is the equa
ity of numbers of quarks and leptons in the standard mo
of Weinberg and Salam.

On lower-dimensional~e.g.,d52! field theory, the can-
cellation of anomalies is still the crucial ingredient for mod
building. The critical string dimensiond526 is often quoted
@3# as a consequence of the anomaly-free condition fo
bosonic string~although in this example the cancellation o
the anomaly does not guarantee full consistency of the mo
in the above sense, due to the presence of tachyons!.

In the case of lower-dimensional field theory~d,4!, one
often tries to quantize a gauge field theory when there is
way of canceling its anomaly. The classical example of t
situation is the attempt to quantize the chiral Schwing
model by Jackiw and Rajaraman@4,5#. They have shown that
the model can be consistently quantized~free field theory!
even when gauge invariance is broken through the anom

In general there seem to be two ways for attempting
quantization of the anomalous gauge field theory.
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di Milano, Milano, Italy and I.N.F.N., Sezione di Pavia and Milano
Italy.
542821/96/54~12!/7664~13!/$10.00
ies
o

D
ds
l-
del

el

r a
f
del

no
his
er

aly.
the

(1) Gauge-nonvariant method.One ignores the breaking
of gauge symmetry and tries to show that the theory can b
quantized even without gauge invariance. The example o
this approach is the above Jackiw-Rajaraman quantization o
the chiral Schwinger model. The problem here is that it is no
easy to develop the general techniques covering a wide cla
of physically relevant models with an anomaly.

(2) Gauge-invariant method.In this case, one first tries to
recover gauge invariance by introducing new degrees of free
dom. The theory is anomalous when one cannot find a loca
counterterm to cancel the gauge noninvariance due to the on
loop ‘‘matter’’ integrals in the presence of gauge fields, by
making use exclusively of the degrees of freedom~fields!
already present in the classical action.

In Ref. @6#, Faddeev and Shatashvili~FS! have tried to
justify the introduction of new degrees of freedom that are
necessary to construct the anomaly-canceling counterterm
Their argument is based on the idea of a projective represen
tation of the gauge group. They observe that the appearan
of an anomaly does not mean the simple breakdown of~clas-
sical! gauge symmetry, but rather it signals that the symme
try is realized projectively~this is related to the appearance
of anomalous commutators of relevant currents!. Such a re-
alization, through projective representations, necessitates th
enlargement of physical Hilbert space. Thus they argued tha
the introduction of new fields in the model is not anad hoc
~and largely arbitrary! construction.

Independently of their ‘‘philosophy,’’ the FS method
gives the gauge-invariant action at the price of introducing
the extra degrees of freedom~generally physical!. The seri-
ous problem of this method is, however, that the gauge in
variance thus ‘‘forced’’ upon the theory, does not automati-
cally guarantee the consistency of the theory. This is in
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,
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54 7665QUANTIZATION OF ANOMALOUS GAUGE FIELD . . .
contrast with our experience with some 4D models suc
the standard model.

For example, one may apply the FS method to the
ebrated case of chiral Schwinger model@4,5#. In this case
we have the classical action

S05E dz̀ dz̄

2i
@c̄Rg z̄~ ]̄1R!cR1c̄Lgz]cL1 1

4 TrF
2#,

where

cR/L5
16g5

2
c,

R/L5A16 iA2 , F5 ]̄L2]R1@R,L#

~we are using the Euclidian notation!.
This is invariant under the gauge transformation

cR→cR
g5S~g!cR ,

cL→cL ,

Am5gAmg
211g]mg

21

for anyg(z,z̄)PG.
The theory is anomalous because the one loop integ

e2WR~R!5E DcRDc̄RexpS 2E c̄Rg z̄~ ]̄1R!cRD
is not gauge invariant under

R→gRg211g]̄g21

~for any choice of the regularization!.
Following the FS technique~see the next section!, how-

ever, one can introduce the local countertermL(R,L;g),
„g(z,z̄)PG… so that the gauge variation ofL cancels th
noninvariance ofWR(R).

There is certain arbitrariness in the choice ofL but the
convenient one is

L~R,L;g!52S aL~L,g!1
1

4p E Tr~RL! D ,
where

aL~L,g!5
1

4p F2E dz̀ dz̄

2i
Tr~g21]̄g,L !

1
1

2 E dz̀ dz̄

2i
Tr~g]g21,g]̄g21!

2
1

2 E
0

1

dtE dz̀ dz̄

2i

3Tr~g8] tg821,@g8]g821,g8]̄g821# !G ,
g8~0,z,z̄!51, g8~1,z,z̄!5g~z,z̄!
h as

cel-
,

ral

e

is the Wess-Zumino-Novikov-Witten action corresponding
to the anomaly of left fermioncL , c̄L ~aL is not globally a
local action but it is so far ‘‘small’’g.11 i j!. That is, one
can write

aL~L,g!5WL~L
g!2WL~L !,

where

e2WL~L !5E DcL8Dc̄L8expS 2E c̄L8gz~]1L !cL8 D
~note thatcL8 , c̄L8 have nothing to do withcL ,c̄L in S0!.

With this choice of counterterm, one can show that the
theory is equivalent to~a! free decoupled fermioncL ,c̄L and
~b! the vector Schwinger model. In fact, the added bosonic
degree of freedomg(z,z̄)PG can be ‘‘fermionized’’ to act
as missingcL8 , c̄L8 with the right coupling to the left com-
ponentL of gauge field.

However, there is still a point missing in this story. In
fact, after introducing the new degree of freedomg, there is
no reason to exclude the other type of invariant local coun-
terterm such as

a

4p E Tr~LgRg!

5
a

4p E Tr@~gLg211g]g21!,~gRg211g]̄g21!#

@one can also attribute it to the indefinite—regularization
dependent—part of the fermionic integral, i.e.,WR(R)
1WL(L)1(a/4p)*Tr(RL)#.

It is well known@4# that the arbitrary constanta enters the
physical spectrum. For the Abelian case,G5U~1!, the mass
square of the massive boson is given by

m25
e2a2

a21
,

thus, fora,1, the theory is not consistent although the re-
quirement of gauge invariance is satisfied.

In the fermionized version of the theory@5~b!#, a enters
the charges of the left and right fermions as

eR/L5
e

2 S Aa216
1

Aa21
D .

This means that the conditiona.1 is necessary also for
the real coupling constant, or the Hermitian Hamiltonian.

In general, the consistency of the theory can be proved if
one can set up the Beechi-Rouet-Stora-Tyutin~BRST!
scheme with certain physical conditions at the start, such as
Hermiticity of the Hamiltonian@11#.

In what follows, we discuss the possibility of recasting the
FS method into BRST formalism, thus facilitating the analy-
sis of the consistency of the theory.
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II. FADDEEV-SHATASHVILI METHOD

A. Path integral formalism

We shall briefly describe the FS method of quantizi
anomalous gauge field theory in the path integral formalis
following the work of Harada and Tsutsui@7# and Babelon,
Shaposnik, and Vialet@8#.

Let us take a generic gauge field theory described by
classical action

S0~A,X!5SG~A!1SM~X;A!, ~1!

where $A(x)% and $X(x)% represent, respectively, gaug
fields and ‘‘matter fields,’’ gauge invariantly coupled to th
former.

The total actionS0 as well as the pure gauge partSG and
the matter partSM are invariant under the local gauge tran
formation

A→A85Ag, X→X85Xg, g~x!PG. ~2!

Being anomalous generally means that the one loop m
ter integral@assuming thatSM(X,A) is quadratic inX#

E DX e2SM~X,A![e2W~A! ~3!

cannot be regularized in such a way as to preserve the ga
invariance of the functionalW(A):

W~Ag!2W~A!5a~A;g!Þ0. ~4!

Naturally, a(A;g) depends on the regularization used, b
there is no way of canceling it completely by adding som
local counter termL(A,X) to the action.

One can understand Eq.~4! as the noninvariance of the
path integral measure,DX:

DXgÞDX. ~5!

In fact, as shown by Fujikawa@9#, one can write the
‘‘anomaly equation’’

W~Ag!2W~A!5a~A;g!,

detSDXg

DX D5e2a~A;g!5ea~A;g21!. ~6!

In this situation, clearly one cannot hope that the us
Faddeev-Popov~FP! ansatz to quantize the theory may g
through.

If one inserts thed function identity,

15D~A!E Dg d~F~Ag!!, ~7!

whereF(A) is a gauge-fixing function, into the path integr
expression for the partition function

Z5E DAE DX e2@SG~A!1SM~X;A!#

then one obtains
ng
m,

the
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Z5E DAE DX D~A!e2@SG~A!1SM~X;A!#E Dgd„F~Ag!…

5E DAE Dg D~A!e2SG~Ag!E DX e2SM~Xg;Ag!d„F~Ag!….

~8!

The second equality follows from the gauge invariance of the
classical action:S0(A

g;Xg)5S0(A;X).
In the case of usual gauge field theory, such as the chiral

Schwinger model, we can make a series of assumptions on
the remaining functional measuresDA andDg.

First, we assume

~1! DA5DAg. ~9!

Then with the change of variableAg→A andXg→X in Eq.
~7!, we get

Z5E DgE DA Dd„F~A!…~Ag21
!e2SG~A!

3E DX e2@SM~X;A!1a~A;g21!#, ~10!

where we have used Eq.~5!, i.e., DX5DXgg21

5DXge2a(A;g21).
Further, one can assume, for the usual gauge group, the

invariance of Haar measureDg, i.e., for anyh in G,

~2! D~gh!5D~hg!5Dg, ~11!

which results, as is well known, in the invariance of the FP
factorD(A):

D~Ag21
!5D~A!. ~12!

Thus, we get the expression forZ proposed in Refs.@6#
and @7#:

Z5E DgE DA D~A!d„F~A!…E DX e2Seff~X,A;g!

~13!

with

Seff~X,A;g!5S0~X,A;g!1a~A;g21!. ~14!

As one can see from Eq.~4! the effect of the counterterm
a(A;g21) is to transform the one loop path integralW(A),
Eq. ~3!, toW(Ag21

), which is trivially gauge invariant under
the extended gauge transformation

A→Ah, X→Xh,

g→hg ~15!

and thus the model is invariant up to the one loop level.
We have repeated here the above well known manipula-

tions @7# to emphasize the relevance of the invariance condi-
tions ~1! and ~2! @Eqs. ~9! and ~11!#. In many familiar ex-
amples, such as the chiral Schwinger model, these conditions
are trivially satisfied.
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One well-known case where these conditions beco
problematic is the two-dimensional~2D! induced gravity or
off-critical string. In this case, if one fixes the path integr
measuresDf for the Weyl factor of the metric andDs for
the Weyl group element by the invariance under the diffe
morphisms of the 2D manifold, then they are not invaria
under the translations, e.g.,s→s1a ~i.e., the Weyl transfor-
mation!. Thus, the path integral measure~i.e., DADg! can
never be invariant under the whole gauge group

G5diffeo^Weyl

B. BRST quantization †10‡

A more rigorous strategy to have a consistent formulat
of a gauge field theory is to recast it in the BRST formalis
In this way, one may discuss the physically important qu
tions such as the unitarity of theSmatrix @11#.

In a simpler example such as the chiral gauge field the
where the invariance of the measureDgDA @Eqs. ~9! and
~11!# under the gauge transformations is respected, ther
no difficulty in setting up the BRST procedure once t
anomaly has been removed.

One replaces the ‘‘heuristic’’ FP factor

D~A!d„F~A!…5detS dF~Ah!

dh U
h51

D d„F~A!…

with BRST gauge-fixing term

expS 2E ŝ@ c̄F~A!# D
5expS 2E FBF~A!2 c̄

dF~Ah!

dh U
h51

cG D ,
wherec,c̄ are the BRST ghosts corresponding to the gau
groupG while B ~‘‘Lagrange multiplier’’! is the Nakanishi-
Lautrup field@12#. Under the BRST operatorŝ, one has, in
particular,

ŝc̄5B,

ŝB50

~ ŝ220!.

With the counterterma(A;g) canceling the one loop
anomaly, one can show easily the validity of the Slavno
Taylor identity,

dG̃

dA

dG̃

dK
1

dG̃

dF i

dG̃

dKi
1

dG̃

dc

dG̃

dL
~ G̃3G̃50!, ~16!

up to one loop.
G̃ is the generating functional of the one particle irredu

ible part G ~with an added external source for compos
operators! minus the ‘‘gauge fixing term’’@in Eq. ~16!, A
andc are the classical counterparts of the gauge fieldsA and
ghostc, while $Fi% are the classical fields for the matterX
and newly introduced fieldg; K, Ki , and L are the usual
external sources for the gauge variationsd̂A, d̂F i , anddc,
me

al
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respectively#. One then hopes that it is possible to choose the
higher-order local counterterm in such a way that Eq.~16! is
satisfied to all orders.

Let us now imagine, however, that the invariance condi-
tions ~1! and ~2! for the measureDADg @Eqs.~9! and ~11!#
are not satisfied@11~b!#. This means that one should take
account of one or both of the following situations.

~18! Condition ~1! is not satisfied, i.e.,DAÞDAg

5DAe2a8(A;g), wherea8(A;g) is the ‘‘Fujikawa determi-
nant’’ associated with the non-gauge-invariance of the mea-
sure over the gauge field itself.~28! Condition ~2! is not
satisfied, i.e.,D(Ag)ÞD(A).

First of all, the noninvariance property~28! means that the
factor D(A)d„F~A!… in Eq. ~11! must be replaced by
D(Ag21

)d„F(A)….
Thus, instead of a BRST gauge fixing term~14! one ends

up with

E ŝ@ c̄F~A!#1 lnS D~Ag21
!

D~A!
D . ~17!

The trouble is that one cannot transform2ln D(A) into a
BRST-invariant local term in the action. In fact, the BRST
gauge fixed action would appear something like

Seff5S01a~A;g21!1a8~A;g21!1 lnS D~Ag21
!

D~A!
D

1E ŝ@ c̄F~A!#. ~18!

The extra one loop terma8(A;g) does not cause any
trouble for the BRST scheme to work at least in the example
we are interested in. One way to push through the BRST
scheme may be to replace Eq.~18! with

Seff8 5S01a~A;g21!1a8~A;g21!1E ŝ@ c̄F~A!#. ~19!

It is likely that the effective action~19! leads to a consis-
tent BRST quantization. One may only add that it does not
correspond to the path integral method of Refs.@7# and @8#
whenD(Ag)ÞD(A). To reconcile the ‘‘path integral’’ for-
mulation of the FS method with the BRST scheme, we pro-
pose another possibility.

It must be realized that once the new degree of freedomg
is admitted in the theory then there is no reason to exclude
new local counterterms of the right dimension, which are
BRST invariant and which may also depend ong. Naturally
this will change the model and its ‘‘physics,’’ but neverthe-
less it can remain consistent, insofar as the BRST invariance
is maintained.

Let us then introduce the following counterterm in our
theory:
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L̃G~A,g;c,c̄,c8,c̄8,B!

5FBG~Ag21
!2 c̄8

dG„~Ag21
!h…

dh
U
h51

c8G
2FBG~A!2 c̄

dG~Ah!

dh U
h51

cG , ~20!

where the second pair of ‘‘ghosts’’c8,c̄8 are defined as the
BRST singlet

d̂ c̄850, ŝc850 ~21!

andG(A) is the ‘‘pseudo-gauge-fixing,’’ which is generally
different fromF(A).

The first term inL̃G is trivially BRST invariant since all
the fields involved are either gauge invariant by themselv
or appear as invariant combinations. The second term, on
other hand, can be written as

ŝ@ c̄G~A!#,

so it is invariant too.
The effective action now takes the form

Seff5S01a~A;g21!1a8~A;g21!

1E L̃G~A,g;c,c̄,c8,c̄8,B!1E ŝ@ c̄F~A!#. ~22!

Note that the gauge freedom of the BRST-invariant theo
~22! is represented by the~arbitrary! gauge-fixing function
F(A) while each different choice of ‘‘pseudo-gauge
function’’ G(A) defines a new model.

Each choice ofG(A) then results in a gauge-invarian
model, which must then be gauge fixed by choosing a p
ticular form forF(A). In the limit of singular gauge

F~A!→G~A! ~23!

the effective action~22! gives the series of models dependin
on G(A) alone. The corresponding effective action can
formally written as

Seff5S01a~A;g21!1a8~A;g21!

1E FBG~Ag21
!2 c̄8

dG„~Ag21
!h…

dh
U
h51

c8G . ~24!

Note that in Eq.~24! the gauge is already fixed~with a
singular gauge!. To see the gauge-invariance property of t
model~24!, one must go back to Eq.~22! with Eq. ~20!: i.e.,
es
the

ry
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g
be
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Seff
inv5S01a~A;g21!1a8~A;g21!

1E FBG~Ag21
!2 c̄8

dG„~Ag21
!h…

dh
U
h51

c8G
2E FB@F~A!2G~A!#2 c̄

d

dh
@F~Ah!

2G~Ah!#U
h51

cG . ~25!

We have seen in this way that the FS method of formu-
lating an anomalous theory within the path integral formal-
ism apparently generates a series of physically distinct an
BRST-invariant gauge field theories. We will discuss the
possible candidate for such a scenario in the next section.

Before leaving this section, however, one has to conside
the following question: i.e., in what sense can the effective
action of Eqs.~24! or ~25! be considered as the quantum
version of the classical action Eq.~1!?

Apart from the inevitable@6# g(x), one has new ghosts
c8(x) and c̄8(x). They are BRST singlets as stated above
@Eq. ~21!#. Thus, it is not apparent that these extra new
ghosts decouple from the theory even in the classical limit
To show that such a decoupling actually takes place—albe
only in the classical limit—we start from the gauge-fixed
action, Eq.~24!. Since we are interested in the classical limit,
we may further simplify the discussion by considering in-
stead

Seff8 5S0~A,X!1E FBG~Ag21
!2 c̄8

dG„~Ag21
!h…

dh
U
h51

c8G ,
~26!

forgetting temporarily the one loop countertermsa(A;g21)
anda8(A;g21) in Eq. ~24!.

The second term in Eq.~26!, i.e., the ‘‘pseudo-gauge-
fixing term,’’ certainly cannot be interpreted as the gauge
fixing term for the original gauge symmetry~which has been
fixed already!. On the other hand, one may still wonder if
there can be any accidental gauge symmetry~which may be
anomalous at one loop! realized in the action Eq.~24!.

Let us consider the altered gauge transformations

~G8!H A→A85Ag,
X→X85Xg,
g→g85ggg21

. ~27!

These transformations differ from the original gauge trans
formations of Eq.~15!, only by the transformation of the
Faddev-Shatashvili fieldg(x). In Eq. ~15! we have

~G!H A→A85Ag

X→X85Xg

g→g85gg

so thatAg21
is invariant.

Starting from Eq.~27!, we define the new BRST transfor-
mations corresponding to~G8! with FP ghostsc8 and c̄8
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replacingc and c̄. We must therefore define, apart from th
BRST variation ofA, X, andg,

s8c85 1
2c8∧c8,

s8c̄85B~not B8!,

s8B50.

Note here that the new~G8! transformation ofg(x) field
causes the linear transformation of the ‘‘mean field’’p(x)
defined by

g~x!5ep~x!,

while the originalg→g85gg induces the nonlinear transfor-
mation of thep field.

With the new BRST operators8 defined above, one can
see immediately that the pseudo-gauge-fixing terms in E
~24! or Eq. ~26! can be written as

E FBG~Ag21
!2 c̄8

dG„~Ag21
!h…

dh
U
h51

c8G5s8@ c̄8G~Ag21
!#,

i.e., the effective action~26! is invariant unders8 and the
pseudo-gauge-fixing becomes a true one with respect to
gauge symmetryG8. The gauge-fixing functionG(Ag21

) de-
pends explicitly on the extra ‘‘scalar’’ fieldg(x) in the same
way as the ’t Hooft gauge fixing for the ‘‘spontaneousl
broken’’ gauge field theory~Higgs!. TheG8 gauge symmetry
and the corresponding BRST operations8 have nothing to do
with the original gauge symmetry of the theory@Eq. ~25!#.
But they have all the necessary characteristics for definin
BRST invariant system.

Formally ~i.e., without worrying about loop corrections!
one can define the new BRST operatorQ8 such that

s8F[@Q8,F#

with the nilpotencyQ8250. Thus, the theory defined~forget-
ting the anomaly problem for a moment! by the effective
action ~26! can be interpreted as an ordinary gauge fie
theory with gauge fixing:

E s8@ c̄8G~Ag21
!#,

where the FP ghosts arec8 and c̄8 and with original
Nakanishi-Lautrup fieldB. If the accidentalG8 gauge sym-
metry was good to all orders, then one could have furth
restricted the physicalS-matrix elements so that the new
ghostsc8 and c̄8 would not have entered the physical spe
trum. One could have repeated the whole Kugo-Ojima arg
ment @11# starting from the definition of the physical state

Q8uphys&50

~together withQuphys&50!. As it is,G8 is broken by the one
loop effects, which are~i! a anda8 in Eq. ~24!, which are not
G8 invariant, and~ii ! the anomaly caused by the matter
gauge coupling inS0(A,X), Eq. ~1!. Point ~ii ! could be, in
principle, dealt with exactly as before, i.e., by introducin
the countertermsa~A,g821! anda8~A,g821!, which are, how-
e
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ever, notG invariant ~g8 would be the new FS field!. Thus,
at one loop, one loses the new ghosts (c8,c̄8) free definition
of the physicalS-matrix elements and theG-BRST invari-
ants c8 and c̄8 start to contribute to the physical particle
spectrum. In other words, beyond zero loops, the symmetry
G8 ~and correspondings8! cannot discriminate against
gauge-noninvariantc8 and c̄8. However, as we have shown,
the new ghostsc8 and c̄8 should decouple in the classical
limit by virtue of behaving like true FP ghosts of the acci-
dental~exact at zero loops! gauge symmetryG8 of Eq. ~27!.

III. TWO-DIMENSIONAL INDUCED GRAVITY

In this section we would like to apply the FS method of
Sec. I to analyze the quantization problem of 2D gravity@13#
~off critical string! in conformal gauge@14#. The theory at
the classical level is defined in terms of the Polyakov action

S05 (
m51

d E d2xAggab]aXm]bX
m, ~28!

where$Xm(x)%m51,d are the bosonic matter fields coupled to
the 2D metricgab ~in the string language, the string is im-
mersed in ad-dimensional target space!.

We use a Euclidian metric and introduce the complex
coordinates

z5x11 ix2 ,

z̄5x12 ix2 .

The invariant line element can be written as

ds25gabdx
adxb5efudz1mdz̄u2. ~29!

Thus, one can conveniently parametrize the metric as

gzz5m̄ef, g z̄ z̄5mef,

gz z̄5g z̄z5
11m̄m

2
ef.

In terms of the parametersm, m̄, andf the classical action
~28! takes the form@15#

S05 (
m51

d E dz∧dz̄

2i

~ ]̄2m]!Xm~]2m̄]̄ !Xm

12mm̄
.

It is understood thatm and m̄ are constrained by

umu2,1.

The classical actionS0 is invariant under the gauge group
G, which is the semidirect product of diffeomorphisms~gen-
eral coordinate transformations! and Weyl transformations.
These symmetry groups imply, respectively,~1! the symme-
try under the general coordinate transformation

z→z85 f ~z,z̄!,
~30!

z̄→ z̄85 f̄ ~z,z̄!,

where the relevant fields transform as
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Xm~z,z̄!→X8m~z8,z̄8!5Xm~z,z̄! ~scalar!,

m~z,z̄!→m8~ z̄8,z̄8!52
]̄ f2m] f

]̄ f̄2m] f̄
~z,z̄!, ~31!

f~z,z̄!→f8~z8,z̄8!5f~z,z̄!1 ln
~ ]̄ f̄2m] f̄ !~] f2m̄]̄ f !

Df
2 ,

where

Df5detS ] f ] f̄

]̄ f ]̄ f̄
D .

~2! The symmetry under the local rescaling of the 2D metr

gab→esgab

or in terms of them, m̄, andf variables,

m→m, m̄→m̄, f→f1s. ~32!

It is well known that the theory is anomalous; i.e., on
cannot regularize the path integral in a way that conserv
the wholeG5diffeo3Weyl group. One can see this easily
examining the matter integral measureDXm. With the sim-
plest ~translationally invariant or ‘‘flat’’! regularization
D0X

m, one has

)
m51

d E D0X
meS0~X,m,m̄ !5expS 2

d

24p
@W~m!1W̄~m̄ !# D ,

~33!

whereW~m! is Polyakov’s ‘‘light cone gauge’’ action@13#.
This is naturally Weyl invariant~S0 does not contain the
variablef!. On the other hand, it is equally clear that one h
lost diffeomorphism’s invariance, since the invariance und
general coordinate transformations means

dW~m!50 ~34!

underdm5( ]̄2m]1]m)(e1mē), which corresponds to the
infinitesimal version of Eq.~31! with f (z,z̄)5e(z,z̄), f̄ (z,z̄)
5 ē(z,z̄).

Equation~34! is equivalent to the functional differential
equation

~ ]̄2m]22]m!
dW

dm~z,z̄!
50.

A well-known computation@16# gives, instead,

~ ]̄2m]22]m!
dW

dm~z,z̄!
5]3mÞ0. ~35!

Thus,D0X
m cannot be invariant under diffeomorphisms

One can define the diffeomorphism-invariant measu
DdiffeoX

m by introducing the local counterterm
ic

e
es
,

as
er

.
re

L~m,m̄,f!52
1

2 E dz∧dz̄

2p F 1

12mm̄
$~]2m̄]̄ !f~ ]̄2m]!

3f22@ ]̄m̄~ ]̄2m]!1]m~]2m̄]̄ !#f%

1F~m,m̄ !G , ~36!

whereF(m,m̄) is a local function ofm and m̄ only. We do
not need the explicit form ofF @17#.

The new effective action

Wcov~m,m̄,f!5W~m!1W̄~m̄ !1L~m,m̄,f!

is invariant under diffeomorphisms.
One can writeWcov~m,m̄,f! compactly in the form

Wcov~m,m̄,f!5E dz∧dz̄

2p

~]2m̄]̄ !F~ ]̄2m]!F

12mm̄

5E d2xAggab]aF]bF, ~37!

whereF5f2ln ]z]̄z andm5]̄z/]z ~Beltrami differentials!.
The nonlocal~with respect tom andm̄! parameterz(z,z̄) is a
Polyakov meson field~13! in 2D gravity.

One characterizes the diffeomorphism-invariant measure
DdiffeoX

m by

)
m51

d E DdiffeoX
meS0~X,m,m̄!5expS 2

d

24p
Wcov~m,m̄,f! D .

~38!

~One can understand the appearance of thef field, which is
absent in the classical action, as due to the introduction of a
covariant regularization:Lcov, ds

2;efudzu2.Lcov
2 .!

Following, for instance, Distler, David, and Kawai~DDK!
@14#, in what follows we consistently make use of the
diffeomorphism-invariant measure. Thus, except when indi-
cated explicitly otherwise,

DXm[DdiffeoX
m, ~39!

and more generallyDw[Ddiffeow for any other filedw. Evi-
dently, the diffeomorphism-invariant measureDXm cannot
be invariant under the Weyl transformation

f→f1s.

Thus, one establishes that the theory isG anomalous. Having
seen that our model for 2D gravity is anomalous, one would
like to apply to it the Faddeev-Shatashvili method of
‘‘gauge-invariant’’ quantization of Sec. I. As in Sec. I, we
‘‘preestablish’’ the gauge choice for the full groupG5diffeo
3Weyl:

m5m0 ,

m̄5m̄0 diffeomorphisms,

F~f!50 Weyl. ~40!
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Since our regularization preserves the diffeomorphis
we assume that the gauge-fixing problem~with relevant
‘‘ b,c’’ ghosts! for diffeomorphisms has been already take
care of.

To deal with anomalous Weyl symmetry, we have to i
ms

n

n-

troduce an extra degree of freedom, a scalar fields(z,z̄),

corresponding to the element of Weyl symmetry groupg

5es(z, z̄ ). The anomaly canceling counterterm suggested

FS is then given by
a~m,m̄,f;2s!5Wcov~m,m̄,f2s!2Wcov~m,m̄,f!52
1

2 E dz̀ dz̄

2i

1

12mm̄
$~]2m̄]̄ !s~ ]̄2m]!s12~]2m̄]̄ !s

3~ ]̄2m]!f22@ ]̄m̄~ ]̄2m]!1]m~]2m̄]̄ !#f%. ~41!
s

-

,

Note that the nonlocal part ofWcov is canceled and
a~m,m̄,f;2s! is perfectly local. Naturally, one needs th
counterterma for each covariant one loop integral corre
sponding not only to the matter field$Xm% m51

d , but also to
the diffeomorphism ghosts,b,c and b̄,c̄, as well as to thef
field contained inWcov~m,m̄,f!.

Thus, the effective action in sense of Sec. II. is giv
by

Seff5S0~X,m,m̄ !1SGF
~d!~b,c,b̄,c̄,B,B̄,m,m̄ !

1g8a~m,m̄,f;2s!, ~42!

whereSGF
(d) is the gauge fixing term with respect to the non

nomalous diffeomorphism symmetry.
As explained above, the coefficientg8 is contributed by

all the relevant fields, that is $Xm% m51
d ⇒

d,(b,c,b̄,c̄)⇒226,f⇒1, which givesg85(d22611)/24p
5(d225)/24p. Note that the contribution of thef field is
due to the fact thatDdiffeofÞD0f, or in the terminology Sec.
II; that one needs the ‘‘second’’ FS counterterma8~f;s!.
One can now write down the partition functionZ with the FS
prescription@within the path integral formalism of Ref.@7#,
see Eq.~8! of Sec. I#. Integrating out the ‘‘matter fields’’
(Xm,b,c,b̄,c̄,), one has

Z;E DsDfFexpS 2g8E dz̀ dz̄

2i

1

12m0m̄0
D

3$~]2m̄0]̄ !~f2s!~ ]̄2m0]!~f2s!

22@ ]̄m̄0~ ]̄2m0]!1]m0~]2m̄0]̄ !#~f2s!%G
3D~f2s!d„F~f!…, ~43!

where the local action in the exponential is essentially
Liouville action SL8 (f8) ~f85f2s!. The last two factors
come from thed-function insertion

D~f!E Ds d„F~f1s!…51. ~44!

Note that, sinceDs[DdiffeosÞD0s ~D0s ‘‘flat’’ measure!

D~f2s!ÞD~f!. ~45!
e
-

en

a-

a

Formally, one can write theD~f2s! factor as a local
action with the help of the ‘‘Weyl ghosts’’c and c̄

D~f2s!5E Dc Dc̄ expS 2E c̄
dF~f2s!

df
c D . ~46!

The path integral argument of Sec. I is at best heuristic. It
may suggest the possible models but one cannot prove in thi
way their consistency. As argued in Sec. I, one may start a
more precise discussion after setting up the BRST quantiza
tion procedure.

The BRST properties of the type of models we are dealing
with here have been studied in detail for the critical case, i.e.
for d526, where the theory is not anomalous. In Ref.@15#,
the BRST transformation properties of the fields are given.
They may be used to study our~off critical! model.

One has@see Eq.~31!#

d̂Xm5~j•]!Xm,

d̂m5~ ]̄2m]1]m!c,

d̂f5c1~j]!f1~]j!1m]j̄1m̄]̄j,
~47!

d̂j5~j•]!j,

d̂c5c]c,

d̂c5~j•]!c,

wherej•] meansj]1j̄ ]̄. Here d̂ stands for the both Weyl
and diffeomorphism symmetries. The diffeomorphism ghosts
c,c̄ are related to the original~j,j̄! @corresponding todz
5e(z,z̄), d z̄5ē(z,z̄)# by

c5j1mj̄,

c̄5 j̄1m̄j. ~48!

To Eq. ~47!, we must add the transformation of the aux-
iliary field s(z,z̄). Sinces must be a scalar with respect to
diffeomorphisms one has

d̂s5c1~j•]!s. ~49!

Together with the formulas in Eqs.~47!–~49!, one consis-
tently finds
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d̂250. ~50!

One should add also the diffeomorphism antighost (b,b̄)
and Weyl antighostc̄ with the corresponding Nakanishi
Lantrup fieldsB andD. Their transformation properties are

ŝb5B, ŝb̄5B̄, ŝc̄5D,
~51!

ŝB5 ŝB̄5 ŝD50.

We have seen, however, that the Faddeev-Popov fa
D~f! is not Weyl invariant@Eq. ~45!#. Thus, according to the
result of Sec. I, one needs to correct the effective actionSeff
by modifying the factorD~f2s!d„F~f!… into a BRST
gauge-fixing term. As we have seen in Sec. I, such a p
scription is not unique. Formally, any action of the form

BRST~ invariant!1 ŝ@cF~f!#~BRST exact!

will do the job.
Now the factorD~f2s!d„F~f!… can be rewritten in the

form

expF2E SDF~f!1w̄8
dF

df
~f2s!c8D G .

Thus, in order to follow this expression as close as p
sible, we suggest to add a counterterm of the form of E
~20! in Sec. I,

L̃G~f,s;c,c̄,c8,c̄8,D !

5FDG~f2s!1c̄8
dG

df
~f2s!c8G

2FDG~f!1w̄
dG

df
~f!c G , ~52!

where we have introduced the functionG~f! to distinguish it
from the true gauge-fixing terms[ c̄F(f)]. The new fields
c8 andc̄8 in Eq. ~52! @c8 andc̄8 in Eq. ~20!# are Weyl singlet
and transform as

d̂c̄850,
~53!

d̂c85~j•]!c8.

With the addition of the countertermL̃G , the effective action
now reads

S̃eff5SL9~f2s!1E L̃G~f,s;c,c̄,c8,c̄8,D !

1E ŝ@cF~f!#

5SL9~f2s!1E FDG~f2s!1c̄8
dG

df
~f2s!c8G

1E ŝ@c̄~F2G!~f!#. ~54!
tor

re-

s-
q.

The expression forS̃eff contains two arbitrary functionsF~f!
andG~f!. Their roles are completely different. WhileF~f!
is a genuine gauge-fixing function, each choice ofG~f! ac-
tually defines a new model.

Naturally, the ‘‘series’’ of models~at arbitrary gauge! in-
cludes the familiar cases. For example, if one fixes the mode
by choosing

G50,

one reproduces the physically equivalent formulations of the
DDK model. Alternatively, for any givenG, one may con-
sider the singular gauge limit

F→G.

In this limit the model formally corresponds to the action

S̃eff5SL9~f2s!1E FDG~f2s!1c̄8
dG

df
~f2s!c8G .

~55!

This is the type of model treated in Ref.@18#. One may
further add the BRST invariant term~l/2!*D2 and transform
S̃eff into

S̃eff8 5SL9~f2s!1E F 12l
G2~f2s!1c̄8

dG

df
~f2s!c8G .

~56!

Note that the Weyl-invariant ‘‘new ghosts’’c8 and c̄8
should decouple from the theory in the classical limit, as we
have explained at the end of Sec. II. Under the ‘‘accidental’’
gauge symmetryG8, the BRST transformations ofc8 andc̄8
are

d8c̄85D,

d8c85~j•]!c8.

Because the Weyl transformation is Abelian, the transfor-
mation ~27! for the FS fields is

s→s,

while under the originalG, one has of course

s→s1a.

Equation~55! @or Eq. ~56!# seems to be the closest BRST
quantization scheme corresponding to the FS prescriptio
given by the insertion

15D~f!E Ds d„G~f1s!…. ~57!

In Ref. @18#, and in some later works, the choice

G~f!5R~f!2R0 ~58!

with R the scalar curvature, has been made. Using Eq.~58!,
the effective action~56! becomes
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S̃eff8 @~f85f2s!,c8,c̄,#

5SL9~f8!1E F 12l
@R~f8!2R0#

2

3~f2s!1c̄8
dR

df
~f2s!c8G . ~59!

Note that the model defined by Eq.~59! is fully interact-
ing. In particular~a! the presence of propagatingc8 and c̄8
fields and~b!, more importantly, the presence ofc8, c̄8, and
f8 ~Yukawa! interaction in Eq.~59!, change the parameter
in the Liouville-type actionSL9(f8). Such a change, which
affects the low-energy dynamics of Eq.~59!, cannot be cal-
culated exactly. It is not easy to develop a systematic per
bation expansion@20#. We believe@18,19# that the modifica-
tion represented by Eq.~59! may result in deviations from
the classical DDK result, when one uses Eq.~59! to calculate
physical quantities such as the string tension and the ano
lous dimensions.

Lastly, it must be mentioned that the BRST-invariant ter

E c̄8
dG

df
~f2s!c8 ~60!

in Eq. ~55! could also be obtained from the alternative gau
fixing

SGF5E ŝF c̄ dG

df
~f2s!sG . ~61!

In this case, one can dispense with the extra BRS
invariant ~for Weyl transformation! c8 and c̄8 degrees of
freedom. The gauge-fixing function is

F~f,s!5
dG~f2s!

df
~f2s!s. ~62!

It looks as if this model is gauge equivalent to the DD
model, since the gauge choiceG~f!5f gives the effective
action

Seff5SL8~f2s!1E ~cc̄1Ds!;SL8~f! ~s50!. ~63!

The Liouville actionSL8 here is identical to Eq.~44! without
further renormalization@Eq. ~59! is a free-field action#.

In the next section, we apply the DDK-type@14# consis-
tency arguments to analyze the consequences of the m
@Eq. ~59!#, paying attention to the influence of the Yukaw
term ~c̄8c8f! in Eq. ~59!.

IV. PHYSICAL CONSEQUENCES
„MODIFIED KPZ-DDK MODEL …

After reading the last section, one may wonder if th
counterterm such as

DG~f2s!1c̄8
dG

df
~f2s!c8 ~64!
s

tur-

ma-

m

ge

T-

K

odel
a

e

@Eq. ~52! of Sec. III# may indeed influence the physics in any
way. In fact, it is very probable that such an influence i
washed away for a large class of ‘‘pseudo-gauge-functions
G~f! by the renormalization-group argument.

However, for the specific choice of Ref.@18#, i.e., @Eq.
~58! of Sec. III#,

G~f!5R~f!2R0 ,

it gives actually the possibility to modify the classica
Knizhnik-Polydkov-Zamolodchikov~KPZ! @28# results on
the string tension and anomalous conformal dimensions.

The effective action that corresponds to the above choi
of G~f! is given by Eq.~59!. As remarked previously, this
action is equivalent to the well-known Kawai-NakayamaR2

model @21#, if one omits precisely the ‘‘fake’’ FP term

E c̄8
dR

df
~f2s!c8 ~65!

in Eq. ~59!.
Now, in Ref. @21#, it has been shown that the Kawai-

Nakayama model with theR2 @or (R2R0)
2# term gives the

same scaling behavior for large distances as the origin
DDK model. That is, for the fixed area partition function

Z~A!5E D~fields!~Jacobians!

3expF2Seff3dS E dx2Ag2AD G
;constA2G~h!23 ~66!

asA→`, except for the 1/A correction in the exponent. The
string tension is the same as the KPZ result~h is the genus!

G~h!5~12h!
252d1A~12d!~252d!

12
. ~67!

It is not a simple matter to calculate the possible chang
with respect to this result in the presence of the pseudo-F
term Eq.~65!. The difficulty is due to the fact that we have
here the genuine interacting theory instead of an effectiv
Gaussian model such as the original DDK case@14#. Here we
present the approximate analysis, which is, at best, valid f
the low-energy~large distance! regime.

Writing down the pseudo-FP term Eq.~65! in detail, we
have

S95E dz̀ dz̄

2i
Aĝc̄8@2]]̄1]]̄~f2s!1R#c8 ~68!

~in the conformal gauge wherem5m050, m̄5m̄050!.
In S9, the free part forc̄8 andc8 has the structure of the

so-calledbc ghost system

S9~ free!5E b]̄c
dz̀ dz̄

2i
~69!

if one identifies

b[]c̄8,

c[c8, ~70!
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with the stress energy tensor and ghost number current giv
by

T52b]c,

J5bc ~71!

~note that the conformal dimensions ofb andc here is, re-
spectively, 1 and 0!.

Then one can give an equivalent bosonic system with

T852 1
2 @~]w!21Q8]2w#,

~72!
J85 i ]w,

which reproduces the same algebraic structure as the sys
Eq. ~71! for the suitable value ofQ8(5 i ), if the new scalar
field w satisfies

w~z!w~w!;2 lnuz2wu2.

One should still take account of the interaction~Yukawa!
term in Eq.~68!. To do so, we write

]c̄8c85 iA]w1••• , ~73!

where the ellipsis represents the higher-order corrections.
Thus, the low energy equivalent of Eq.~68! is

S9;E Aĝ@2w]]̄w2 i ~11A!wR̂1 iaAw]]̄f8# ~74!

~f85f2s, see Sec. III!.
The undetermined constantA represents the first-order

correction due to the interaction. The constanta is the usual
gravitational correction (gab5efĝab→eafĝab). To avoid
the imaginary coupling constant in Eq.~74! ~problem of uni-
tarity in the BRST approach!, we ‘‘Wick rotate’’ w, w→iw.
Then, with the redefinition of constants in Eq.~74!, one can
write a low-energy approximation as

S95
1

8p E Aĝ~w]]̄w22Bw]]̄f81Q̃wR̂!. ~75!

Putting this together with the rest of the effective action i
Eq. ~59!, our low-energy approximation consists of taking
Gaussian model with two scalars:

S̃eff8 ~f8,w!5
1

8p E dz̀ dz̄

2i
Aĝ~2Mi jF

iD ĝF
j2QiR̂F i !,

~76!

where

F i[~F1,F2!5~f8,w!,

Qi[~Q1 ,Q2!5~Q,2Q̃!,

and

Mi j5S 1B B
21D .

Such a two-boson system with a ‘‘Lorentzian’’ metric as
a kind of improvement over the standard Liouville type 2D
en

tem

n
a

gravity ~DDK model! has been suggested in the past@18,23#.
More recently, Cangemi, Jackiw, and Zwiebach have given
the thorough field theoretical analysis of such a system for
B50, treating it as the ‘‘dilatation gravity’’@24#. Here, how-
ever, the presence of thew-f8 coupling term~BÞ0! is cru-
cial for the possible modification of the KPZ-DDK result.
The origin of such a term is, of course, the Yukawa coupling
in the original counterterm~64!.

At this point, one can in principle apply the techniques of
Ref. @20# to get the perturbative estimate of the constantA
~i.e., B!. We leave such an analysis for further publication
and content ourselves with repeating the original DDK con-
sistency arguments to indicate that indeed one has the possi-
bility of changing the KPZ-DDK result.

Thus, we would like to apply the effective action~76! to
estimate~a! string tensionG(h), and ~b! renormalization
D0→D of the conformal dimension of a primary operatorO.

From the effective action~76!, one can derive the expres-
sion for the gravitational stress energy tensor

Tgrav52 1
2 ~Mi j ]F i]F j1BQi]

2F i !, ~77!

which contributes to the central charge by the amount

cgrav5213Mi jQiQj , ~78!

whereMikMk j5d j
i .

A. String tension

The details of how to generalize the DDK argument to get
the string tensionG(h) in our model are given in Ref.@18#.
We limit ourselves, therefore, to the more relevant results.

The consistency conditions lead to the determination of
Qi ’s as

Q152
1

)
FBA11Bd2A11B21~B21!dG,

~79!

Q25S 11BD

3 D 1/2.
Then the string tensionG(h) is given, just as in Ref.@14#,

by

G~h!5x~h!
Q1

a
12

@x(h)52(12h) is the Euler index#. a can be calculated
again as in Ref.@14# from

dim~eaf8Aĝ!51,

which gives

a52
A11B2

2)
FA251~B21!d2A11~B21!dG. ~80!

Thus, one obtains the string tension in our model as the
function ofB,
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G~h!5
2~12h!

A11B2

BA11Bd2A~11B2!251~B21!d

A251~b21!d2A11~B21!d
12,

~81!

which reduces to the KPZ expression ifB50 ~i.e., d<1!.
Note thatG(h) is real forB>121/d with an arbitrary posi-
tive d. In view of excellent agreement between the KP
formula and ‘‘experiments’’ ford,1, we might expect some
sort of phase transition behavior

B}u~d21!

@whereu(x) is the step function# but it would be very hard to
show such behavior by the limited techniques available@20#.
For the various ‘‘improvements’’ and applications to stati
tical mechanic of Eq.~81! we refer to@19#.

B. Anomalous dimension

The calculation of the renormalization of conformal d
mension is more straightforward. Let the base conformal
mensions of an operatorO be ~D0,D̄0!. We would like to
construct the globally defined operators*eafAĝ and
*ebfAĝO. This requirement implies

dim~eafAĝ!5~1,1!,

dim~ebfAĝO!5~1,1!.

These conditions give rise to

a21~Q11BQ2!a12~11B2!50,
~82!

b21~Q11BQ2!b12~11B2!~12D0!50.

The renormalized dimensionD of the operatorO can be
read off from the asymptotic formula

FO~A!5E Df8Dwe2 S̃eff8 dS E eaf8Aĝ2AD
3E Oebf8AĝY Z~A!

;KOA
12D.

This gives, just as in Ref.@14#,

12D5
b

a
. ~83!

From Eqs.~82! and~83!, one gets the equation determin
ing D:

D2D052
1

2

1

11B2 a2D~D21!

Needless to say, this too reduces to the KPZ result wh
B50.

V. CONCLUSION

In this paper, we have tried to analyze further cons
quences of the Faddeev-Shatashvili method of quantiz
Z

s-

i-
di-

-

en

e-
ing

anomalous gauge-field theories. In contrast with other au
thors@5~b!#, we did not try to show the equivalence with the
gauge-noninvariant method of which the Jackiw-Rajarama
treatment of the chiral Schwinger model is a distinguished
example. On the contrary, we have argued that, in certai
cases of physical interest, the FS method can be used
generate models. The series of 2D gravity models propose
here includes the models in Refs.@18# and@19# as well as the
Kawai-Nakayama type (R2R0)

2 ~or R2! models @21,22#.
The analysis presented in Sec. IV with respect to the mode
Eq. ~59! is at best heuristic and we certainly cannot~and do
not! claim to have ‘‘solved’’ the famousd51 barrier prob-
lem in 2D gravity. We merely indicate possible ways to
modify the original DDK model.

To see if the possibility of enlarging in this way the 2D
~induced! gravity models really throws some light on the
problem of thed51 barrier in 2D gravity, we need a more
thorough analysis of the consistency of these models as we
as a better understanding of their physical consequences. W
would like to end by mentioning a further peculiarity about
the anomalous diffeomorphism-Weyl gauge symmetry of 2D
gravity. It is natural to ask whether, instead of somehow
trying to conserve the entire gauge symmetry of the anoma
lous classic model, one may still have a physical consisten
quantum model by keeping only the ‘‘maximal’’ anomalous
free part of the classical symmetry~up to local counter-
terms!.

Recently precisely such a suggestion has been made
Jackiw and others@25#. They counter the conventional argu-
ment favouring the diffeomorphism symmetry~over Weyl!
by pointing out the even greater difficulty of conserving the
whole diffeomorphism symmetry in the quantum canonica
Hamiltonian approach@26#.

Thus, in Ref.@25#, it has been suggested to conserve Wey
symmetry plus area~volume! preserving diffeomorphism
„i.e., diffeomorphismxm→x8m5 f m(x) with the constrain
det[] f m/]xn]51….

Jackiw’s formalism can be generalized to the series o
models that are symmetric under the modified diffeomor
phismsD (k):

xm→x8m5 f ~k!
m ~x!,

~84!

gmn~x!→gmn8 ~x8!5gab~x!
]xa

]x8m

]xb

]x8n FdetS ]xh

]x8lD G ~k21!/k

,

where 0,k<1. While k51 corresponds to the usual
diffeomorphism-invariant DDK-like model, the limitk→0
can be shown to give the improved Weyl invariant model of
Jackiwet al. Superficially, these models parametrized byk
correspond to different gauge symmetries and, in particula
one might expect a drastic change of the physics between th
two limits k51 ~diffeomorphisms! andk→0 ~Weyl and area
preserving diffeomorphisms!. However, there are reasons to
believe that they actually correspond to the same physics.~1!
One can move formally from the ‘‘standard’’D ~1! invariant
model to theD (kÞ1) defined through Eq.~84! by a simple
changing of variables. In terms of Beltrami parametrization
of the 2D metric in Sec. III; this changing of variables is
given by
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m→m~k!5m,

m̄→m̄~k!5m̄,

f→f~k!5kf1~12k!lnS 1

12mm̄ D5f1~k21!lnA2g.

~85!

At the quantum level, Eq.~85! amounts to a different
choice of the local counterterm.~2! In Ref. @27#, the two-
dimensional Hawking radiation has been calculated usi
Jackiw’s Weyl-invariant model as well as the gener
D (k)-invariant model. In either case, the result is identic
with the standard~D ~1!-invariant! model. This fact means
that at least the black-hole thermodynamics is independ
from the parameterk.

If one conjectures from these facts that the choice of i
variant gauge group is in some sense irrelevant~at least for
ng
al
al

ent

n-

2D gravity!, the implication for the anomalous gauge field
theory is not clear.
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