PHYSICAL REVIEW D VOLUME 54, NUMBER 12 15 DECEMBER 1996

Quantization of anomalous gauge field theory and BRST-invariant models
of two-dimensional quantum gravity

M. Martellini”
The Niels Bohr Institute, University of Copenhagen, Copenhagebe@mark
and Landau Network at Centro Volta, Como, Italy

M. Spreafico
Dipartimento di Matematica, Universitdi Milano, Milano, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy

K. Yoshida
Dipartimento di Fisica, Universitali Roma, Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
(Received 25 January 1996

We analyze the problems with the so-called gauge-invariant quantization of the anomalous gauge field
theories originally due to Faddeev and ShatashH##). Our analysis is a generalization of the FS method,
which allows us to construct a series of classically equivalent theories that are nonequivalent at the quantum
level. We prove that these classical theories are all consistent with the BRST invariance of the original gauge
symmetry with a suitably augmented field content. As an example of such a scenario, we discuss the class of
physically distinct models of two-dimensional induced gravity, which are a generalization of the David-Distler-
Kawai model.[S0556-282(196)01024-7

PACS numbeis): 11.10.Kk, 04.60.Kz

I. INTRODUCTION (1) Gauge-nonvariant metho@®ne ignores the breaking
of gauge symmetry and tries to show that the theory can be
The consistent quantization ¢flassical gauge-invariant quantized even without gauge invariance. The example of
field theory requires the complete cancellation of anomalieshis approach is the above Jackiw-Rajaraman quantization of
[1,2]. Here, “consistent” means that we want not only to the chiral Schwinger model. The problem here is that it is not
require renormalizability(perturbative finitenegs but also  easy to develop the general techniques covering a wide class
unitarity of the S matrix, non-violation of Lorentz invari- of physically relevant models with an anomaly.
ance, etc. Moreover, in the physical four-dimensional 4D (2) Gauge-invariant methodn this case, one first tries to
world, the anomaly cancellation condition itself often leadsrecover gauge invariance by introducing new degrees of free-
to physical predictions. A well-known example is the equal-dom. The theory is anomalous when one cannot find a local
ity of numbers of quarks and leptons in the standard modetounterterm to cancel the gauge noninvariance due to the one
of Weinberg and Salam. loop “matter” integrals in the presence of gauge fields, by
On lower-dimensionale.g.,d=2) field theory, the can- making use exclusively of the degrees of freedfialds
cellation of anomalies is still the crucial ingredient for model already present in the classical action.
building. The critical string dimensiod=26 is often quoted In Ref. [6], Faddeev and ShatashvilrS) have tried to
[3] as a consequence of the anomaly-free condition for gustify the introduction of new degrees of freedom that are
bosonic string(although in this example the cancellation of necessary to construct the anomaly-canceling counterterm.
the anomaly does not guarantee full consistency of the moddiheir argument is based on the idea of a projective represen-
in the above sense, due to the presence of tachyons tation of the gauge group. They observe that the appearance
In the case of lower-dimensional field thedig<4), one  of an anomaly does not mean the simple breakdow(clas-
often tries to quantize a gauge field theory when there is ngical gauge symmetry, but rather it signals that the symme-
way of canceling its anomaly. The classical example of thigry is realized projectivelythis is related to the appearance
situation is the attempt to quantize the chiral Schwingernf anomalous commutators of relevant currén8uch a re-
model by Jackiw and Rajaramy,5]. They have shown that alization, through projective representations, necessitates the
the model can be consistently quantizéeee field theory  enlargement of physical Hilbert space. Thus they argued that
even when gauge invariance is broken through the anomalyhe introduction of new fields in the model is not ad hoc
In general there seem to be two ways for attempting théand largely arbitraryconstruction.
guantization of the anomalous gauge field theory. Independently of their “philosophy,” the FS method
gives the gauge-invariant action at the price of introducing
the extra degrees of freedofgenerally physical The seri-
*On leave of absence from the Dipartimento di Fisica, Universitaous problem of this method is, however, that the gauge in-
di Milano, Milano, Italy and I.N.F.N., Sezione di Pavia and Milano, variance thus “forced” upon the theory, does not automati-
Italy. cally guarantee the consistency of the theory. This is in
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contrast with our experience with some 4D models such as the Wess-Zumino-Novikov-Witten action corresponding

the standard model. to the anomaly of left fermionyy , ¢, (o, is not globally a
For example, one may apply the FS method to the cellocal action but it is so far “small’g=1+i¢). That is, one

ebrated case of chiral Schwinger modlé]5]. In this case, can write

we have the classical action

ai(L,g)=W (L9 =W (L),

d2\dz —  — — N
:f i [IrYz{ I+ R) Yt Ly, 0 + 3 TrFE<],
where
where
1+ g e Wlb= f DwLDwLexp( - f YLy 9+ waﬁ)
br=—5— ¥
_ (note thaty , ;,’_ have nothing to do withj_ z in Sp).
RIL=A;*iA,, F=dL—-dR+[R,L] With this choice of counterterm, one can show that the
) o theory is equivalent t@a) free decoupled fermiog, , 4, and
(we are using the Euclidian notation _ (b) the vector Schwinger model. In fact, the added bosonic
This is invariant under the gauge transformation degree of freedong(z,z) e G can be “fermionized” to act
g_ as missingy, , ¢, with the right coupling to the left com-
Yr— hr=S(9) ¥, ponentL of gauge field.
However, there is still a point missing in this story. In
=i, fact, after introducing the new degree of freedgnthere is
1 1 no reason to exclude the other type of invariant local coun-
A=9A.9 "+9d,9 terterm such as
for anyg(z,z) e G.
The theory is anomalous because the one loop integral a f Tr(LIRY)
417

~Wg(R) — s | Gov=tod _
¢ fWRWReXp( waﬁ(HRWR) =%f Tr{(gLg™*+gag™h),(gRg *+gag™ )]

is not gauge invariant under

o [one can also attribute it to the indefinite—regularization
R—gRg ~+gdg dependent—part of the fermionic integral, i.8g(R)
+W,_(L)+(a/dnm) [Tr(RL)].

It is well known[4] that the arbitrary constaatenters the
physical spectrum. For the Abelian ca&s U(1), the mass
square of the massive boson is given by

(for any choice of the regularization

Following the FS techniquésee the next sectignhow-
ever, one can introduce the local counterteAtR,L;Q),
(9(z,2) e G) so that the gauge variation df cancels the

noninvariance ofVg(R). 5 2
There is certain arbitrariness in the choice/ofbut the m2= =2
convenient one is a—1’
1 thus, fora<1, the theory is not consistent although the re-
g)=— +— > ' ; . . L
ARL:9) (a,_(L,g) A7 f Tr(RL)), quirement of gauge invariance is satisfied.
In the fermionized version of the theof$(b)], a enters
where the charges of the left and right fermions as
(Lo)=-— f 0 e g gL 1
gQ)=-—|- - r , e
oL g 4 21 g g eR/LZE( a—1=* 1)
a_

1 ( dz\dz_ =4
+35 f — Tr(gdg™~~,9d9 ") : . .
2 2i This means that the conditica>1 is necessary also for

1 1 dz\dz" the real coupling constant, or the Hermitian Hamiltonian.
_Z j dtf . In general, the consistency of the theory can be proved if
2 Jo 2i one can set up the Beechi-Rouet-Stora-TyutBRST)
o scheme with certain physical conditions at the start, such as
xTrg' a9’ L[g9'dg" Lg'ag’ )|, Hermiticity of the Hamiltoniar{11].

In what follows, we discuss the possibility of recasting the
o o o FS method into BRST formalism, thus facilitating the analy-
9'(0z,2)=1, 9'(1z,2)=9(z,2) sis of the consistency of the theory.
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Il. FADDEEV-SHATASHVILI METHOD
, , z=J DAJ DX A(A)e—[SG<A>+SM<X;A>]fDg&(F(AG))
A. Path integral formalism

We shall briefly describe the FS method of quantizing ~sa(A9) s (XO:A9) :
anomalous gauge field theory in the path integral formalism, :f DAJ Dg A(A)e f DX e AU S(F(A9)).
following the work of Harada and Tsuts[if] and Babelon,

Shaposnik, and Viald®]. 8
| Let UIS take a generic gauge field theory described by th%he second equality follows from the gauge invariance of the
classical action classical actionSy(A9;X9) =S,(A;X).
So(A,X)=Se(A)+Syu(X;A), (1) In the case of usual gauge field theory, such as the chiral

Schwinger model, we can make a series of assumptions on
where {A(x)} and {X(x)} represent, respectively, gauge the remaining functional measur@A andDg.
fields and “matter fields,” gauge invariantly coupled to the  First, we assume

former.
The total actionS, as well as the pure gauge p&g and (1) DA=DAS. ©

the matter parg,, are invariant under the local gauge trans-+nan with the change of variabk®— A andX%— X in Eq
formation (7), we get '

A—A'=AY X—-X'=X9, g(x)eG. (2 .
z=f DngA ASF(A))AY He S
Being anomalous generally means that the one loop mat-
ter integral[assuming tha8,,(X,A) is quadratic inX]
xf DX e [SuATaaig ), (10)
J DX e SuXA =g~ WA 3
where we have used Eq(5), i.e., DX=DX% '
_ a1
cannot be regularized in such a way as to preserve the gaugeDX%  **9 7).
invariance of the functionalV(A): Further, one can assume, for the usual gauge group, the
invariance of Haar measuf®qg, i.e., for anyh in G,
W(AY) - W(A)=a(A;g)#0. (4)
(2) D(gh)=D(hg)=Dg, (11
Naturally, «(A;g) depends on the regularization used, but ) ] ) ]
there is no way of canceling it completely by adding somewhich results, as is well known, in the invariance of the FP

local counter term\(A,X) to the action. factor A(A):
One can understand E¢4) as the noninvariance of the g1
path integral measuréX: A(A% )=A(A). (12)
DXI+£ DX (5) Thus, we get the expression f@rproposed in Refd.6]
and[7]:
In fact, as shown by Fujikawd9], one can write the
“anomaly equation” Z:f ng DA A(A) 5(F(A))f DX e~ Seff(X.AQ)
W(A9) —W(A)=a(A;g), (13
g with
de(z — e a(Alg) = ga(Aig™ ) (6) )
DX Set( X, A1) = So(X,A;9) + a(A;g ™). (14)

In this situation, clearly one cannot hope that the usual As one can see from E@4) the effect of the counterterm
Faddeev-PopovFP) ansatz to quantize the theory may go a(A;g ') is to transform the one loop path integhak(A),

through. _ o _ Eqg.(3), to W(Agfl), which is trivially gauge invariant under
If one inserts thed function identity, the extended gauge transformation
A—A" XXM,
1-(A) | Dg (F(AY), Y B

g—hg (15
whereF (A) is a gauge-fixing function, into the path integral
expression for the partition function and thus the model is invariant up to the one loop level.
We have repeated here the above well known manipula-
_ . tions[7] to emphasize the relevance of the invariance condi-
Z:f DAJ DX e[S+ St tions (1) and (2) [Egs. (9) and (11)]. In many familiar ex-
amples, such as the chiral Schwinger model, these conditions
then one obtains are trivially satisfied.
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One well-known case where these conditions becomeespectively. One then hopes that it is possible to choose the
problematic is the two-dimensionéD) induced gravity or  higher-order local counterterm in such a way that @) is
off-critical string. In this case, if one fixes the path integral satisfied to all orders.
measureD ¢ for the Weyl factor of the metric an@o for Let us now imagine, however, that the invariance condi-
the Weyl group element by the invariance under the diffeotions (1) and(2) for the measuréADg [Egs.(9) and (11)]
morphisms of the 2D manifold, then they are not invariantare not satisfied11(b)]. This means that one should take
under the translations, e.@r;—~o+« (i.e., the Weyl transfor- account of one or both of the following situations.

mation. Thus, the path integral measufiee., DADg) can 1" Condltlon (1) is not satisfied, i.e.,DA#DASY
never be invariant under the whole gauge group =DAe “ (A;g), wherea’(A;Q) is the “Fupkawa determi-
nant” associated with the non-gauge-invariance of the mea-
G=diffeo® Weyl sure over the gauge field itself2’) Condition (2) is not
satisfied, i.e. A(A9) #A(A).
B. BRST quantization [10] First of all, the noninvariance propertg’) means that the

factor A(A)5(F(A)) in Eg. (11) must be replaced by
"A(AT ) S(F(A)).

Thus, instead of a BRST gauge fixing teffil) one ends
up with

A more rigorous strategy to have a consistent formulation
of a gauge field theory is to recast it in the BRST formalism.
In this way, one may discuss the physically important ques-
tions such as the unitarity of tH& matrix [11].

In a simpler example such as the chiral gauge field theory
where the invariance of the measuPgDA [Egs. (9) and
(12)] under the gauge transformations is respected, there is J—
no difficulty in setting up the BRST procedure once the f S[CF(A)]+In
anomaly has been removed.

One replaces the “heuristic” FP factor

SF(AM
sh

A(Agl)>

The trouble is that one cannot transforain A(A) into a
S(F(A)) BRST-invariant local term in the action. In fact, the BRST
gauge fixed action would appear something like

A(A)ﬁ(F(A))=de*<

h=1

with BRST gauge-fixing term

ex;{—f é[ﬁ(A)]) Se=Sot+ a(A; g H+a'(A;g™H+In

h
:exp(—”BF(A)—c_gF;:)

wherec,c are the BRST ghosts corresponding to the gauge
groupG while B (“Lagrange multiplier”) is the Nakanishi-
Lautrup field[12]. Under the BRST operat@, one has, in

A(Agl))
A(A)

. ) +f S[cF(A)]. (18)

h=1

The extra one loop terna’(A;g) does not cause any
trouble for the BRST scheme to work at least in the example
we are interested in. One way to push through the BRST

particular, scheme may be to replace H48) with
sc=B
s8=0 Séff=So+a(A;g‘1)+a’(A;g‘1)+f S[cF(A)]. (19
(s2—0).
With the counterterma(A;g) canceling the one loop It is likely that the effective actiori19) leads to a consis-
anomaly, one can show easily the validity of the Slavnovtent BRST quantization. One may only add that it does not
Taylor identity, correspond to the path integral method of R¢H.and[8]
_ ~ ~ ~ _ ~ when A(A9% #A(A). To reconcile the “path integral” for-
oI o' oI' 6I' o' 6 ~ ~ mulation of the FS method with the BRST scheme, we pro-

(I'XI'=0), (18 ose another possibility.

It must be realized that once the new degree of freegom

up_to one loop. is admitted in the theory then there is no reason to exclude

I' is the generating functional of the one patrticle irreduc-new local counterterms of the right dimension, which are
ible partI" (with an added external source for compositeBRST invariant and which may also dependgnrNaturally
operatory minus the ‘“gauge fixing term'[in Eq. (16), A  this will change the model and its “physics,” but neverthe-
andc are the classical counterparts of the gauge fidlégsxd less it can remain consistent, insofar as the BRST invariance
ghostc, while {&;} are the classical fields for the mattér is maintained.
and newly introduced field); K, K;, andL are the usual Let us then introduce the following counterterm in our
external sources for the gauge variatia#ss, 69,, andsc,  theory:

SA oK T 3d. oK, T ac oL
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As(A.g;c,c,c',¢",B) N =So+ a(Aig e’ (Alg™Y)
L 8G((AY Hh L 8G((AY
= BG(Ag 1)—0, # C’l +f BG(Ag 1)—0' % c’
g h=1 h=1
_5G(A") _4 A
—|BG(A)—c cl, (20 — B[F(A)—G(A)]—c — [F(A")
sh |, _, sh
where the second pair of “ghostst’ ,c” are defined as the -G(AM]| ¢l (29
BRST singlet h=1
We have seen in this way that the FS method of formu-
5¢’=0, 3¢'=0 (22) lating an anomalous theory within the path integral formal-

ism apparently generates a series of physically distinct and
BRST-invariant gauge field theories. We will discuss the
andG(A) is the “pseudo-gauge-fixing,” which is generally possible candidate for such a scenario in the next section.
different fromF(A)._ Before leaving this section, however, one has to consider
The first term inA g is trivially BRST invariant since all the following question: i.e., in what sense can the effective
the fields involved are either gauge invariant by themselvesaction of Eqgs.(24) or (25 be considered as the quantum
or appear as invariant combinations. The second term, on theersion of the classical action E¢)?
other hand, can be written as Apart from the inevitablg6] g(x), one has new ghosts
c'(x) andc’(x). They are BRST singlets as stated above
o [Eg. (21)]. Thus, it is not apparent that these extra new
S[cG(A)], ghosts decouple from the theory even in the classical limit.
To show that such a decoupling actually takes place—albeit
only in the classical limit—we start from the gauge-fixed
action, Eq.(24). Since we are interested in the classical limit,
we may further simplify the discussion by considering in-
stead

so it is invariant too.
The effective action now takes the form

Ser=So+a(A;g” ) +a'(Ajg7h) SG(AT )
BG(AY ) —?%

!
’

. o _ SLe=Sy(A,X
+fAG(A,g;c,c,c’,c',B)Jrfé[cF(A)]. (22) =it ol )+J -

(26)

; ; .1
Note that the gauge freedom of the BRST-invariant theoryjorget,t'nq tgpporanly the one loop countertera;g )
(22) is represented by thérbitrary gauge-fixing function andﬁ (Ajg™) in Eq. (24). , )
F(A) while each different choice of “pseudo-gauge- The secend term in Eq26), i.e., the “pseudo-gauge-
function” G(A) defines a new model. fixing term,” certainly cannot be interpreted as the gauge

Each choice ofG(A) then results in a gauge-invariant fixing term for the original gauge symmetfwhich has been

model, which must then be gauge fixed by choosing a parf_ixed already. On the other hand, one may still wonder if

ticular form for F(A). In the limit of singular gauge there can be any accidentgl gauge SymmWCh may be
anomalous at one logpealized in the action Eq24).

Let us consider the altered gauge transformations

F(A)—G(A) (23
A—A'=A",
the effecti tiori22) gi th i f models d di (G)) X=XI=X7, . @
e effective actiori22) gives the series of models depending g—g'=ygy*

on G(A) alone. The corresponding effective action can be

formally written as These transformations differ from the original gauge trans-
formations of Eq.(15), only by the transformation of the

Sui=So+ (Aig~ Y+ a' (Aig™h) Faddev-Shatashvili field(x). In Eqg. (15) we have

- __SG((AT HM A—A =AY
+ | [Bo(A )T ———| | (29 (G)] XX =X
h=1 9—g' =79

Note that in Eq.(24) the gauge is already fixe@vith a  so thatA9 " is invariant.
singular gauge To see the gauge-invariance property of the  Starting from Eq(27), we define the new BRST transfor-
model(24), one must go back to E¢22) with Eq. (20):i.e.,  mations corresponding t¢G') with FP ghostsc’ and c’
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replacingc andc. We must therefore define, apart from the ever, notG invariant(g’ would be the new FS fie)d Thus,

BRST variation ofA, X, andg, at one loop, one loses the new ghosts,€¢’) free definition
S, of the physicalS-matrix elements and th&-BRST invari-
s'c’=3zc'lc’, antsc’ and ¢’ start to contribute to the physical particle

spectrum. In other words, beyond zero loops, the symmetry
G’ (and correspondings’) cannot discriminate against
gauge-noninvariant’ andc’. However, as we have shown,
the new ghosts’ and ¢’ should decouple in the classical
limit by virtue of behaving like true FP ghosts of the acci-
dental(exact at zero loopggauge symmetr@’ of Eq. (27).

s'c’=B(not B'),
s'B=0.

Note here that the neWG’) transformation ofg(x) field
causes the linear transformation of the “mean field(x)

defined by
I1l. TWO-DIMENSIONAL INDUCED GRAVITY

g(x)=e™™, . . .
In this section we would like to apply the FS method of

while the originalgy— g’ = yg induces the nonlinear transfor- Sec. | to analyze the quantization problem of 2D grajity]
mation of the field. (off critical string) in conformal gaugd14]. The theory at

With the new BRST operatcs’ defined above, one can the classical level is defined in terms of the Polyakov action
see immediately that the pseudo-gauge-fixing terms in Eq.

d
(24) or Eq.(26) can be written as S,= ME:l A2x\/g g X L apX, (29)
gt —ﬁG((Agil)h) , ere(Ad !
BG(AY )—c'——5—— h:1C =s'[c'G(A% )], where{X*(x)},,4 are the bosonic matter fields coupled to

the 2D metricg,, (in the string language, the string is im-

i.e., the effective actiori26) is invariant unders’ and the ~Mersed in a-dimensional target space
pseudo-gauge-fixing becomes a true one with respect to the W€ useé a Euclidian metric and introduce the complex

gauge symmetr’. The gauge-fixing functioG(A® ') de- coordinates

pends explicitly on the extra “scalar” field(x) in the same z=X;+iX5,
way as the 't Hooft gauge fixing for the “spontaneously
broken” gauge field theor{Higgs). TheG’ gauge symmetry Z=X,—iX,.

and the corresponding BRST operatigrhave nothing to do

with the original gauge symmetry of the thedigg. (25].  The invariant line element can be written as

But they have all the necessary characteristics for defining a

BRST invariant system. ds’=g,pdx*dx°=e’|dz+ udZ?. (29)
Formally (i.e., without worrying about loop corrections

one can define the new BRST opera@ such that Thus, one can conveniently parametrize the metric as

s'd=[Q’, ] 9= ne’, gzz=ue’,
with the nilpotencyQ’?=0. Thus, the theory defind@brget- o 1+pp ¢
; ; 9,27 972z=—— — €".
ting the anomaly problem for a momerty the effective 2
action (26) can be interpreted as an ordinary gauge field o
theory with gauge fixing: In terms of the parameteys, w, and ¢ the classical action
(28) takes the forn{15]
IT AT -1 _ — =
J s'[c'G(A? ], So‘% dz0dz (09— pd)X (39— ma)X*
_ = 2i 1—up '
where the FP ghosts are’ and ¢’ and with original #ot pt
metry was good to all orders, then one could have further
restricted the physicab-matrix elements so that the new |ul?<1.

ghostsc’ andc” would not have entered the physical spec-
trum. One could have repeated the whole Kugo-Ojima argu- The classical actio, is invariant under the gauge group
ment[11] starting from the definition of the physical state G, which is the semidirect product of diffeomorphisfgen-
eral coordinate transformationand Weyl transformations.
Q’|phys=0 These symmetry groups imply, respectively) the symme-

] o ] try under the general coordinate transformation
(together withQ|phy9=0). As it is, G’ is broken by the one

loop effects, which aré) « andea’ in Eq. (24), which are not z—27'=1(z,2),
G’ invariant, and(ii) the anomaly caused by the matter- L (30)
gauge coupling irSy(A,X), Eg. (). Point (ii) could be, in 7—27'=1(2,2),

principle, dealt with exactly as before, i.e., by introducing
the counterterma(A,g’ Y anda’(A,g’ 1), which are, how-  where the relevant fields transform as
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X*(z2,2)—X'"z',2)=X"(2,2) (scalal, — 1 dddz] 1 — —
B A(M,M.qb)——if 5 1_M7{(f9—w9)¢(r9—w9)
. f—waf — — —
Wz on @ ———2 o, @ X ¢~ 237l o)+ (- 1) 1)
d f—uof
- _ Flu.m)|, 36
(0 f—uof )(of — pof ) R ) (39

(22— ' (2',2)=¢p(z2,2)+In

2 ’ _ _
Df whereF(u,u) is a local function ofu and u only. We do
not need the explicit form of [17].
where The new effective action
o de( of ot Weorl ot ) = W( 1) +W(a1) + A (1, 11, )
f_ I .
of of

is invariant under diffeomorphisms.

(2) The symmetry under the local rescaling of the 2D metric One can writeWeo (.4, ¢) compactly in the form

. _ dz0dz (9— ) ®(9— ua)®
Jab—€ Jab Wcov(/J«wUHd’):f 2 1_,‘41“_
or in terms of theu, u, and ¢ variables,
= f d2x\/gg?a, 5, P, (37)

u—p, p—p, p—dto. (32

] . . where®=¢—In o"ga_g and M=0_§/a{(_l3eltrami differentials.
It is well known that the theory is anomalous; i.e., oneThe nonlocafwith respect tqu andw) parametet(z,z) is a
cannot regularize the path integral in a way that conservepglyakov meson field13) in 2D gravity.
the wholeG =diffeoxWeyl group. One can see this easily,  QOne characterizes the diffeomorphism-invariant measure
examining the matter integral measurx”. With the sim-  p_. x~ py
plest (translationally invariant or “flat’) regularization
DoX*, one has

d
— d _
I1 j Ddiﬁeox"eso(x’”’”):eXF< ~ 527 Weok it #) |
d _ d _ u=1 T
11 Dox“eso““’“&exp( o [W<u>+W<m]) : (38)
u=1 ar

(33 (One can understand the appearance of¢gtield, which is
absent in the classical action, as due to the introduction of a
whereW(p) is Polyakov’s “light cone gauge” actiofil3].  covariant regularizationA,,, ds*~e?|dz|>>A2,,.)
This is naturally Weyl invarian{S, does not contain the Following, for instance, Distler, David, and Kaw@DK)
variable¢). On the other hand, it is equally clear that one had14], in what follows we consistently make use of the
lost diffeomorphism’s invariance, since the invariance undediffeomorphism-invariant measure. Thus, except when indi-
general coordinate transformations means cated explicitly otherwise,

SW(u)=0 (34) DX*=1DyjtreoX", (39

under@u:(a__,wﬂ d)(e+ we), which corresponds to the and more geperallngpzpdiﬁepcp fo_r any other filede. Evi-
infinitesimal version of Eq(31) with f(z,2) = e(z,z), f(z,2) dently, the diffeomorphism-invariant measul®* cannot

=¢e(z,2). be invariant under the Weyl transformation
Equation(34) is equivalent to the functional differential
equation ¢p—¢+o.

o SW Thus, one establishes that the theorgianomalous. Having

(0— wd—290p) ———=0. seen that our model for 2D gravity is anomalous, one would
6p(2,2) like to apply to it the Faddeev-Shatashvili method of
“‘gauge-invariant” quantization of Sec. I. As in Sec. I, we

A well-known computatior{ 16] gives, instead, “preestablish” the gauge choice for the full gro@-=diffeo
XWeyl:
o 7 3
(0—pud—20u) S(ZD) °u#0. (395 L=,
Thus, DeX* cannot be invariant under diffeomorphisms. u=po diffeomorphisms,

One can define the diffeomorphism-invariant measure
DyitiecX™ by introducing the local counterterm F(¢)=0 Weyl. (40
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Since our regularization preserves the diffeomorphismsroduce an extra degree of freedom, a scalar figld,z),
we assume that the gauge-fixing problegmith relevant corresponding to the element of Weyl symmetry grayp
“b,c” ghosts for diffeomorphisms has been already taken
care of.

To deal with anomalous Weyl symmetry, we have to in-FS is then given by

=e7(22) The anomaly canceling counterterm suggested by

_ _ _ 1 dz\dz 1 — — —
MMJM¢k%ﬂ=WhMM¢M¢—0%4Nm¢u4u¢%=—5 [ T l_M;{w—ﬂﬂﬁﬂﬁ—M®0+2w—ﬂﬂﬁr
X (09— ) p—2[ap(d— ud) + op(d— ud) 1 4}. (4D)
|
Note that the nonlocal part ofV., is canceled and Formally, one can write thé\(¢—o) factor as a local

a(u,u,¢,—0) is perfectly local. Naturally, one needs the action with the help of the “Weyl ghosts’y and
counterterma for each covariant one Iodop integral corre- SF (-

sponding not only to the matter fiefX,}%_,, but also to 3 J’ f—

the diffeomorphism ghosts,c andb,c, gsﬂwell as to thep Al Dy D¢ ex lﬂ - (46
field contained inW o (1, ).

Thus, the effective action in sense of Sec. Il. is given The pathintegral argument of Sec. | is at best heuristic. It
by may suggest the possible models but one cannot prove in this
way their consistency. As argued in Sec. |, one may start a
Sori= So( X, 1, ) + S “’)(b c, b c. B wn) more precise discussion after setting up the BRST quantiza-
tion procedure.
+y a(p,p,d;— o), (42 The BRST properties of the type of models we are dealing

with here have been studied in detail for the critical case, i.e.,
whereS{) is the gauge fixing term with respect to the nona-for d=26, where the theory is not anomalous. In Réf],

nomalous diffeomorphism symmetry. the BRST transformation properties of the fields are given.
As explained above, the coefficient is contnbuted by They may be used to study o(ff critical) model.
all the relevant fields, that is {X*}%_,= One hagsee Eq(31)]
d,(b,c,b,c)=—26,¢p=1, which givesy’' = (d— 26+ 1)/2477 -
=(d—25)/24. Note that the contribution of the field is OXH=(&- ) X*,
due to the fact thaD .0 # Do, OF in the terminology Sec. PO —
ll; that one needs the “second” FS counterteu( ;o). 0,=(d—upd+duc,
One can now write down the partition functi@nwith the FS - —_
prescription[within the path integral formalism of Ref7], 0=+ (£9) p+(9E) + pd&+pdg,
see EQq.(8) of Sec. I. Integrating out the “matter fields” - (47)
(X*,b,c,b,c,), one has 66=(&-9)¢,
dz/\dz 1 éc=cdc,
2 [ ovslod v [ 5 ] ;
o Sy=(& )y,

X{(0— prod) (= o) (9~ prod) (P~ — -
(0= pod)(& U)( #od)($=0) where &-9 meanséi+£&d. Here § stands for the both Weyl

and diffeomorphism symmetries. The diffeomorphism ghosts
c,c are related to the original¢,é) [corresponding tosz

=€(z,2), 6z=e(z,2)] by

_2[07Mo(07 pod) + dpo(d— pod) ](d’ o)}

XA(p—0a)S(F()), (43) —
c=¢&+ ué,
where the local action in the exponential is essentially a o
Liouville action S{(¢') (¢'=¢—0). The last two factors c=&+pué. (48)

come from thea-function insertion To Eq. (47), we must add the transformation of the aux-

iliary field o(z,z). Sinceo must be a scalar with respect to
A(¢)j Do S(F(p+0a))=1. (44)  diffeomorphisms one has

, So=y+ (& d)o. (49)
Note that, SINCEDo=D o0 F Do (Dyo “flat’” measure)
Together with the formulas in Eq$47)—(49), one consis-

A(p—o)#A(e). (450  tently finds
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52=0. (50)  The expression foBey contains two arbitrary functiors ()
and G(¢). Their roles are completely different. Whike(¢)

One should add also the diffeomorphism antighdsby IS @ genuine gauge-fixing function, each choiceGgfp) ac-
and Weyl antighosty with the corresponding Nakanishi- tually defines a new model.
Lantrup fieldsB andD. Their transformation properties are ~ Naturally, the “series” of modelgat arbitrary gaugein-
cludes the familiar cases. For example, if one fixes the model
Sb=B, sbh=B, Ssy=D, by choosing
(51

3B=3B=3D=0. G=0,

one reproduces the physically equivalent formulations of the

We have seen, however, that the Faddeev-Popov fact@hpi model. Alternatively, for any giver&, one may con-
A(¢) is not Weyl invarianfEq. (45)]. Thus, according to the sider the singular gauge limit

result of Sec. I, one needs to correct the effective aciign
by modifying the factorA(¢—o)S&(F(¢)) into a BRST F_G.
gauge-fixing term. As we have seen in Sec. |, such a pre-

scription is not unique. Formally, any action of the form | this limit the model formally corresponds to the action

BRST(invariany + [ ¢/F () ](BRST exact - — 5G
Seff=8[(¢—fr)+J DG(¢—o)+y' 5—¢(¢>—0)¢’ :
will do the job.
Now the factorA(¢—o)S8(F(¢)) can be rewritten in the (55
form This is the type of model treated in RdfL8]. One may
further add the BRST invariant terth/2) [ D? and transform

Ser INtO

__oF
ex;{—f (DF(¢)+W' %Uﬁ_ﬂ')w’

Thus, in order to follow this expression as close as pos-Seft= S’L’(¢—U)+J
sible, we suggest to add a counterterm of the form of Eq.
(20) in Sec. |,

1 . — 0G )
oy CH(d= )+ 52 (-0)y
(56)

- . Note that the Weyl-invariant “new ghostsi/ and ¢’
Ac(, o, ¢, 4" 4" ,D) should decouple from the theory in the classical limit, as we
have explained at the end of Sec. Il. Under the “accidental”
gauge symmetr’, the BRST transformations @f and’

— oG
DG(¢—0a)+y' 5% (p—o)y'

are
__6G o
—~|DG(¢)+ 5—¢<¢>¢}, (52) '¢'=D,
. . o oY =(& Y.
where we have introduced the functi@i¢) to distinguish it
from the true gauge-fixing terrs[ /F(¢)]. The new fields Because the Weyl transformation is Abelian, the transfor-

¢ andy’ in Eq.(52) [¢" andc” in Eq.(20)] are Weyl singlet  mation (27) for the FS fieldo is
and transform as
J— 0g—0,
oy’ =0,
A (53)  while under the originals, one has of course
Sy =(& Dy
o—0o+a.
With the addition of the counterterig , the effective action

now reads Equation(55) [or Eq. (56)] seems to be the closest BRST

gquantization scheme corresponding to the FS prescription
given by the insertion

Se=S{(¢— o)+ f Aa(b.05 0,00 ¢y’ D)

1-4(9) | Do 8G9+ 0)). 57
+f SLyF(¢)]
In Ref.[18], and in some later works, the choice
— 6G
:S'ﬂ(¢_0)+f DG(¢p—a)+ ¢’ 5—¢(¢—0)1//' G(#)=R(¢)—R, (58)

" with R the scalar curvature, has been made. Using(&8),
+f SLH(F=C)(o)]. (54) the effective actior{56) becomes
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géﬁ[(¢, —p—a), ) ,I] [Eg. (52) of Sec. Il may indeed influence the physics in any
way. In fact, it is very probable that such an influence is
1 , ) washed away for a large class of “pseudo-gauge-functions”
2N [R(¢") —Ro] G(¢) by the renormalization-group argument.
However, for the specific choice of Rdf18], i.e., [Eq.
(58) of Sec. I,

:Sﬁ(¢')+f

— OR
X(¢p=—o)+ ¢ 5—¢(¢—0)¢’ :
G(¢)=R(¢)—R,

~ Note that the model defined by EG9) is fully interact- it gives actually the possibility to modify the classical
ing. In particular(a) the presence of propagating and ¢’ Knizhnik-Polydkov-ZamolodchikoWKPZ) [28] results on
fields and(b), more importantly, the presence ¢f, ¢/, and  the string tension and anomalous conformal dimensions.

¢" (Yukawa interaction in Eq.(59), change the parameters  The effective action that corresponds to the above choice
in the Liouville-type actionS/(¢'). Such a change, which of G(¢) is given by Eq.(59). As remarked previously, this
affects the low-energy dynamics of E9), cannot be cal- action is equivalent to the well-known Kawai-NakayaRa

culated exactly. It is not easy to develop a systematic perturmodel[21], if one omits precisely the “fake” FP term
bation expansiofi20]. We believe 18,19 that the modifica-

(59

tion represented by Eq59) may result in deviations from — O0R )

the classical DDK result, when one uses E§) to calculate J v 8¢ (¢=o)y (65
physical quantities such as the string tension and the anoma-

lous dimensions. in Eq. (59).

Lastly, it must be mentioned that the BRST-invariant term  Now, in Ref.[21], it has been shown that the Kawai-
Nakayama model with th&? [or (R—R,)?] term gives the

— 5G same scaling behavior for large distances as the original
f P’ 50 (p—o)y’ (600 DDK model. That is, for the fixed area partition function
in Eg. (55) could also be obtained from the alternative gauge Z(A)= j D(fields)(Jacobians
fixing
[—8G Xexp{—SeﬁX 5“ dx? g—A”
SGF:J S lﬂ%hﬁ—a)cr : (61)

~constA~ (-3 (66)

In this case, one can dispense with the extra BRST-

invariant (for Weyl transformation ¢/ and ' degrees of asA—o», except for the X correction in the exponent. The
y! trans . "/’. i 9 string tension is the same as the KPZ reshlis the genus
freedom. The gauge-fixing function is

25—d++/(1—d)(25—d)

56(4—0) r(h)=(1-h) o (67)

50 (¢p—0)o. (62
It is not a simple matter to calculate the possible change
It looks as if this model is gauge equivalent to the DDK with respect to this result in the presence of the pseudo-FP
model, since the gauge choi€(¢)=¢ gives the effective term Eq.(65). The difficulty is due to the fact that we have
action here the genuine interacting theory instead of an effective
Gaussian model such as the original DDK cglsg. Here we
, — , present the approximate analysis, which is, at best, valid for
Set=Si (¢~ ) + f (Y +Do)~S((¢) (0=0). 63 e ow-energylarge distanceregime.
Writing down the pseudo-FP term EB5) in detail, we
The Liouville actionS| here is identical to Eq(44) without  have
further renormalizatiofiEq. (59) is a free-field actioh d2ANdz
In the next section, we apply the DDK-typ#4] consis- S":J’ . @J[_ﬁﬁ (9(9_(¢_0)+ R]y’ (69)
tency arguments to analyze the consequences of the model 2i
[Eqg. (589)], paying attention to the influence of the Yukawa

term (" ¢) in Eq. (59).

F(¢,0)=

(in the conformal gauge whepe=uy=0, u=uy=0).
In S', the free part fory’ and ¢/ has the structure of the

so-calledbc ghost system
IV. PHYSICAL CONSEQUENCES

(MODIFIED KPZ-DDK MODEL ) — dz\dz

S’(free = | bdc > (69
After reading the last section, one may wonder if the, ) -
counterterm such as if one identifies
—5G =3y,
DG($=0)+y 5o (d=0)y (64) =, 70
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with the stress energy tensor and ghost number current givegravity (DDK model) has been suggested in the gds,23.

by More recently, Cangemi, Jackiw, and Zwiebach have given
the thorough field theoretical analysis of such a system for
T=-bdc, B=0, treating it as the “dilatation gravity[24]. Here, how-
ever, the presence of the ¢’ coupling term(B+#0) is cru-
J=bc (71 cial for the possible modification of the KPZ-DDK result.

The origin of such a term is, of course, the Yukawa coupling
in the original counterterni64).

At this point, one can in principle apply the techniques of
Ref. [20] to get the perturbative estimate of the constant

(note that the conformal dimensions lofandc here is, re-
spectively, 1 and 0
Then one can give an equivalent bosonic system with

T =—1[(9¢)?+ Q' #¢], (i.e., B). We leave such an analysis for further publication
(72) and content ourselves with repeating the original DDK con-
J =idep, sistency arguments to indicate that indeed one has the possi-

bility of changing the KPZ-DDK result.
which reproduces the same algebraic structure as the system Thus, we would like to apply the effective acti¢n6) to
Eq. (72) for the suitable value oQ’(=1), if the new scalar estimate(a) string tensionI'(h), and (b) renormalization
field ¢ satisfies Ag—A of the conformal dimension of a primary opera@r
From the effective actioki76), one can derive the expres-

~— —wl2 . S
¢(2) (W)~ —In|z—w|*. sion for the gravitational stress energy tensor

One should still take account of the interactidfukawa

term in Eq.(68). To do so, we write Torar= —3(M;j 0091 +BQ; oY), (77)
3?91/ =iAdp+-- (73) which contributes to the central charge by the amount
where the ellipsis represents the higher-order corrections. Cagra=2+3M"QQ;, (78)

Thus, the low energy equivalent of E@8) is _ _
whereM™*M,;= 5}.

S"~J' Vo[ — 0dde—i(1+A)eR+iaApdid'] (74) i i
A. String tension

(¢'=¢—0, see Sec. Il The details of how to generalize the DDK argument to get
The undetermined constart represents the first-order the string tensiod’(h) in our model are given in Ref18].

correction due to the interaction. The constaris the usual We limit ourselves, therefore, to the more relevant results.

gravitational correction d,,=e%g,,—e*?9,,). To avoid The consistency conditions lead to the determination of

the imaginary coupling constant in Eq4) (problem of uni- Q;'s as

tarity in the BRST approaghwe “Wick rotate” ¢, ¢—i¢.

Then, with the redefinition of constants in E§4), one can

write a low-energy approximation as

1
—_ _ 2 _
Q,= ‘/j[B\/lJrBd J1+B’F(B—1yd|,

(79
112

1 - _ _ ~ ~
Sﬂ:gj\/§(<paa<p—28<paa¢’+Q<pR). (75 _(HBD
=
3

Putting this together with the rest of the effective action in _ _ o _ _
Eq. (59), our low-energy approximation consists of taking a  Then the string tensioki(h) is given, just as in Ref.14],

Gaussian model with two scalars: by
~ 1 dz\dz P Q;
Ser( ¢ .¢)=—f — \3(—M;;®'A; DI - QRDY), I'(h)=x(h) —+2
8 2i a
(76)
h [x(h)=2(1—h) is the Euler indek « can be calculated
where again as in Ref[14] from
D= (01D =(¢',¢), ,
~ dim(e®?'Jg)=1,
Qi=(Q1,Q2)=(Q,—Q), o
which gives
and
V1+B?
1 B a=— {\/25+(B—1)d—\/1+(B—1)d . (80)
Mij: B -1/ 2V3

Such a two-boson system with a “Lorentzian” metric as  Thus, one obtains the string tension in our model as the
a kind of improvement over the standard Liouville type 2D function of B,
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2(1-h) BJ1+Bd—(1+B?%)25+(B—1)d anomalous gauge-field theories. In contrast with other au-
I'(h)= ) +2, thors[5(b)], we did not try to show the equivalence with the
V1+B?  \25+(b—1)d—V1+(B—1)d gauge-noninvariant method of which the Jackiw-Rajaraman

treatment of the chiral Schwinger model is a distinguished
example. On the contrary, we have argued that, in certain
cases of physical interest, the FS method can be used to
generate models. The series of 2D gravity models proposed
here includes the models in Ref48] and[19] as well as the
Kawai-Nakayama type R—Ry)? (or R?) models[21,22.
The analysis presented in Sec. IV with respect to the model

Bx(d—1) Eq. (59) is at best heuristic and we certainly cananad do

not) claim to have “solved” the famousl=1 barrier prob-

[wheref(x) is the step functiohbut it would be very hardto lem in 2D gravity. We merely indicate possible ways to
show such behavior by the limited techniques availdd®.  modify the original DDK model.
For the various “improvements” and applications to statis- To see if the possibility of enlarging in this way the 2D

which reduces to the KPZ expressionBf=0 (i.e., d<1).
Note thatl'(h) is real forB=1—1/d with an arbitrary posi-
tive d. In view of excellent agreement between the KPZ
formula and “experiments” fod<1, we might expect some
sort of phase transition behavior

tical mechanic of Eq(81) we refer to[19]. (induced gravity models really throws some light on the
problem of thed=1 barrier in 2D gravity, we need a more
B. Anomalous dimension thorough analysis of the consistency of these models as well

as a better understanding of their physical consequences. We

e o) o ke t end by menilnin a urthr pecularty abou
mensions of an operatad be (Ao,A_o)- We would like to the anomalous diffeomorphism-Weyl gauge symmetry of 2D

. wd 7 gravity. It is natural to ask whether, instead of somehow
construct the globally defined operatorfe”g and trying to conserve the entire gauge symmetry of the anoma-

b . . o ( . . :
J€#?\/go. This requirement implies lous classic model, one may still have a physical consistent
b Ay guantum model by keeping only the “maximal” anomalous
dim(e ‘/6) (1., free part of the classical symmetifyp to local counter-

. ~ terms.
d|m(e5‘f’\/§O)—(1,1). Recently precisely such a suggestion has been made by
These conditions give rise to Jackiw and otherp25]. They counter the conventional argu-
ment favouring the diffeomorphism symmetfgver Wey)
a?+(Q,+BQ,)a+2(1+B?)=0, by pointing out the even greater difficulty of conserving the
(82  whole diffeomorphism symmetry in the quantum canonical
B2+(Q;+BQ,)B+2(1+B?)(1—Ay)=0. Hamiltonian approach26].

) ) ) Thus, in Ref[25], it has been suggested to conserve Weyl

read off from the asymptotic formula (i.e., diffeomorphismx*—x'#=f#(x) with the constrain
~ det[of#/9x"]1 =1).
FO(A):f D¢’D¢e*5éﬂ5 f e“¢'\/§—A) Jackiw’s formalism can be generalized to the series of
models that are symmetric under the modified diffeomor-
phismsD®:

xfOeW[g/ Z(A)

XH—x"#=1F{ (X)),

NKoAliA. (84)
This gives, just as in Refl14], . ax* gxP AN
g,uv(x)_)g/,w(x ):gaﬁ(x) X' H gx'Y de< &XI)\) ’
1-A= g. (83

where 0G<k<1. While k=1 corresponds to the usual
diffeomorphism-invariant DDK-like model, the limik—0

From Egs.(82) and(83), one gets the equation determin- . . . i
as(82) ®3 g g can be shown to give the improved Weyl invariant model of

ing A:
g Jackiw et al. Superficially, these models parametrized by
1 1 correspond to different gauge symmetries and, in particular,
A-Ao=— 5772 a’A(A-1) one might expect a drastic change of the physics between the

two limits k=1 (diffeomorphismg andk—0 (Weyl and area

Needless to say, this too reduces to the KPZ result wheRreserving diffeomorphismsHowever, there are reasons to
B=0. believe that they actually correspond to the same phygigs.
One can move formally from the “standard® invariant
model to theD®**Y) defined through Eq(84) by a simple
changing of variables. In terms of Beltrami parametrization

In this paper, we have tried to analyze further conseof the 2D metric in Sec. lll; this changing of variables is
guences of the Faddeev-Shatashvili method of quantizingiven by

V. CONCLUSION
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u—u®=p, 2D gravity), the implication for the anomalous gauge field
L o theory is not clear.
p—u=pu,

1

(85) This work has been completed while one of the authors
(K.Y.) stayed at National Laboratory of High Energy Phys-

At the quantum level, Eq(85 amounts to a different ics, Tsukuba, JapafiKEK). It is a pleasure to thank Profes-
choice of the local counterternf2) In Ref. [27], the two-  sor H. Sugawara and M. Ishibashi for the hospitality. K.Y.
dimensional Hawking radiation has been calculated usingicknowledges stimulating discussions with many members
Jackiw's Weyl-invariant model as well as the generalof KEK, in particular, H. Kawai, S. Aoki, T. Yukawa, and
D®-invariant model. In either case, the result is identicalM. Ishibashi. The constructive comments from K. Fujikawa,
with the standardD®-invariany model. This fact means N. Nakazawa, and K. Ogawa are also gratefully acknowl-
that at least the black-hole thermodynamics is independergdged. The authors thank G. C. Rossi for the thorough read-
from the parametek. ing of the manuscript. The work was partially supported by

If one conjectures from these facts that the choice of inANFN and Italian Minister of Science and University, MPI
variant gauge group is in some sense irreleahieast for  40%.
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