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Self-dual sector of QCD amplitudes
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We provide an action for self-dual Yang-Mills theory which is a simple truncation of the usual Yang-Mills
action. Only vertices that violate helicity conservation maximally are included. One-loop amplitudes in the
self-dual theory then follow as a subset of the Yang-Mills ones. In light-cone gauges this action is almost
identical to previously proposed actions, but in this formulation the vanishing of all higher-loop amplitudes is
obvious; the explicit perturbative S-matrix is known. Similar results apply to gravity.
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I. INTRODUCTION where the sum is over cyclic orderings of any four numbers
i,j,k,I in the range 1 to. The nonleading-color component
CertainS-matrix amplitudes in the high-energy, or mass-is a sum of permutations of the leading tefi}. (We refer
less, limit of quantum chromodynamics take a particularlythe reader t¢2,8] for a detailed discussion on the techniques
simple form both at the tree and one-loop levels. These amused in calculating tree and loop amplitudes in gauge theo-
plitudes describe processes wheaémosy all external out-  ries) In a supersymmetric theory the corresponding gluon
going lines possess the same helicity. Such single-helicitéamplitude vanishes to all orders in perturbation theory. The
configurations have a natural interpretation in terms of th@oop amplitude$3) have only two-particle poles and no cuts,
scattering of a self-dual gauge field. and thus resemble tree graphs. The absence of cuts is due to
Specifically, then-point gluon tree amplitudes with all, or the vanishing of the on-shell maximally helicity-violating
all but one, helicities the same vanighs implied by a su- (MHV) tree amplitudes appearing in the Cutkosky rules. No
persymmetric identity1,2]). Those with two helicities oppo- higher-loop amplitudes in pure Yang-Mills theory have these
site, the Parke-Taylor amplitudes, have the momentum desimple features; the cuts of two- or more-loop amplitudes are
pendencé3] proportional to phase space integrals of nonvanishing lower-
124 order amplitudes.
ARG 95,059 ) =i (12) RGN Bardeen[9] proposed that the simple form of these am-
n 291052 083 0rEn (12)(23)---(n1) plitudes could be derived from a self-dual Yang-Mills
theory. Previously one of us had pointed ¢@0] that the
We have written the result in a color-ordered form and Usedight-cone[ll] superspace action for self-dubll=4 super
the twistor languagp4], also known as spinor helicifp], to  yang-Mills theory is a truncation of the corresponding non-
express the helicities and on-shell massless momenta. Adlelf-dual action [12] to chiral terms, and had given a
quantities are written in terms of two-component SKIP, | grentz-covariant component action that generates it. In this
(Weyl) spinors; in both matrix anvan der Waerdenndex  paper we show that the self-dual theory based on the chiral

notation we have, fop’=k?=0, truncation gives the subset of the Yang-Mills light-cone ver-
_ _ tices that are maximally helicity violating. Th® matrices

p=Ip)Pl=Pap=Pabp. (28 derived in our formulation of self-dual Yang-Mills theory are

. automatically the subset of those in light-cone Yang-Mills
(PKY=p“Ke, [PKI=pKs, (2b)  theory consisting of amplitudes of-1l gluons with helicity

) ) —1 and all the rest+1, wherel is the number of loops.
where a four-vector is represented as>&22matrix (whose  gypjicitly, they consist o 1) the tree graphs with one helic-
determinant is the usual Lorentz squaiEhe amplitude with ity —1 and all the rest-1, (2) the one-loop graphs with all
Fhe o.pposite helicity configuration is found by complex CoN-pelicities +1, and(3) no graphs at all at two or more loops.
jugation. _ _ The two physical polarizations of the gauge field in the

Furthermore, the leading-color component of theoint  |ight-cone action are represented in our formulation by the
one-loop gluon amplitudes with all helicities the same hagyighest and lowest components of a chiral superfield, as de-
the simple dependen¢é] fined in theN=4 light-cone supersymmetric action given

. o . below or itsN=0,1,2 truncations. Both fields appear in the

Al(gt gl gt)= ! , (17 GGk LK) _ theory’s truncation to self-dual form. However, the self-dual
mEL o E2 " ik Syeic 19277 (12)(23)--+(nl) action given here is not identical to previous self-dual actions

3 [11,13,14, which have the field content of only one of the

two physical polarizations. Specifically, as required by Lor-

entz covariance, the light-cone Yang-Mills field has two
*Electronic addressgnterne}: chalmers and transverse components describing the two helicities, which
siegel@insti.physics.sunysb.edu are present irboth the self-dual and non-self-dual theories.
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In the self-dual theory one of the two components appears S=S,+S3c+ S5+ S, (78
only linearly in the classical action, and thus to orderllin
perturbation theory. 1

In the following section we derive the self-dual action by ngz Tr J d*x d*0 340 ¢, (7b)
truncation of the usual Yang-Mills action in the light-cone
formalism. We prove this action describes self-duality and 1 .
that the truncation preserves Lorentz covariance by deriving Ssc=— Tr J’ d*x d*0 5ip(9S ) (I 50), (70
it from a Lorentz-covariant self-dual form in a way that is 9
exact within perturbation theory. In Sec. Ill we compare our 1
action with other actions proposed to describe self-dual g —— ¢ f d*x d*6 d*6(L[ ¢, b1~ L[ b,0. ; b]
Yang-Mills theory. The other actions, unlike ours, are not g
Lorentz covariant, have a dimensionful coupling constant, o, =
and at more than one loop generate nonvanishing diagrams X(9+3) .0+ 5 8)), (7d)
that do not relate to Yang-Mills theory. Finally, in Sec. IV

. : . where S;is the complex conjugate . (Note that
we speculate on relations to anomalies and string theory. ere Sy p 1ug 083, (

. %Pd, yb=—09,,09,.“¢.) Further,S, is real becauseb
satisfies the reality conditiof6). Using_this constraint the
Il. N=4 SUPERSYMMETRY action may be written with onlyd*6 d*6 in a way where
AND SELF-DUAL LAGRANGIANS reality is manifest. We have further writtep in matrix no-
tation with Hermitian group generators.
The usual transverse componeAts: of the gauge fields
appear in¢g as

We first consider the light-cone action fdé=4 super-
symmetric Yang-Mills theory{12]; the reduction to pure
Yang-Mills theory is achieved by simply dropping the lower-
spin fields. 1

We adopt the notation df15], so that all quantities are b= o A_i+-—0%, A, -. 8
written in terms of SL(Z7) two-component spinor indices. T

Four-vectors are written as?, and the component The two circular polarizations of the gauge fields then reduce
represents the “time” coordinate of the light-cone formal- 1, harticle and antiparticle assignments of the complex field
ism. Spinor indices are raised and lowered according t9\+;_

X =Fixys, x ==*iyxs, and the Lorentz inner product is The total helicity of the external fields at any vertex in the

p’= —detp,s- action (7) follows from counting the powers ap and ¢: S,

In the light-cone formalism the field content of the=4 ~ and S, have total helicity 0S;. has+1, andS;-has —1.
vector multiplet is described by a complex chiral superfield(Since total angular momentum is conserved, the helicity
whose components contain only the physical states. The chinay alternatively be read off from the spacetime derivatives,
ral superfields relevant tdl=4 light-cone superspace are which give the orbital angular momentumThe vertex
defined by the chirality condition which gives the maximal helicity violation iS;., while

S;c gives the minimal(negative violation. Consider the

Eld,:o:d,(x,g,g_): exp( gag_aiaﬂ)g},(x,g) (4  truncation toS, and S,

. . . oo 1 .
in terms of the anticommuting derivatives S= & Tr f d* d*0 L+ 2ip(9% ) (34 0h). (9)
J  — — J ; : .
D.=——+0.id... D3=—+ 6%, . 5 The 6 expansion generates all of tiiaree-point couplings
g7 TETTT 90, o ) petween theN=4 matter fields in which the total outgoing

helicity is 1; it generates Feynman diagrams, and amplitudes,

Herea is a four-valued index of the internal $4) symmetry possessing maximal helicity vio_Iation when regarded as a
of N=4 supersymmetry, and we adopt the normalizationsubset of the complete Lagrangié), In the supersymmet-

/ d*¢ 6*=1. In addition, we impose the “reality” condition "¢ form (9), we may replacep by ¢ since there is na
on ¢: dependence.

Upon further reduction to just the nonsupersymmetric
Yang-Mills fields, the actior{9) becomes

D4p=(id,})%¢. 6)

1 _

Expanding¢ in 62 gives the various component fields, but S= I Tr f d'% ¢_[Oy +1(95 b1 )(04004)]-

only those corresponding to physical polarizationsNi# 4 (10)

light-cone superspace andd*¢ have helicity assignments

1,—2, respectively(and opposite for the conjugaje§he ¢  We have written the fields as they naturally appear in@he

expansion of¢ is an expansion in the component fields of expansion ofg: ¢, is the lowest component anfl_ is the

helicity equal to 1 minus half the order ifi; there are highest. This results in a Jacobian factor of 1 in going from

1,4,6,4,1 fields possessing helicityl,+1/2,0-1/2,—1. A_; to ¢, andA, - to ¢_, where the complex fields are
TheN=4 light-cone action can be written simply in light- formally treated as independent. Singe appears only lin-

cone superspadd 2] as early in both terms in Eq10), it can be used to count loops;
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the number of externap_ lines is just 1. (It can absorb Fa;;=(9(a'yAﬁ)'y+i[Aa'7,A,g'y]- (12)
the factor 1% multiplying the action in the functional inte-

gral, just like the dilaton in string theopyNote that the All the components are related By=4 supersymmetry;
action (10) does not require a dimensionful coupling con-when truncated thl<2 super-Yang-Mills theories, the fields
stant; ¢_ and ¢, have mass dimensions 0 and 2. form two separate multiplets.

Thus the actior(10) is unable to generate diagrams with  The action can be reduced to the light-cone form at the
externalé_ lines except at tree level, in which case only onequantum level. We only examine here the nonsupersymmet-
external ¢_ state is possible. The one-loop contributionsric gauge sectoS=(1/g%) Trf d*x3G*#F ;. The equations
generate the amplitudg®), as seen upon comparison with of motion are
the pure Yang-Mills(YM) sector of the non-self-dual light- _
cone theory(7). The other vertices in the YM actiofT) are Fop=0, V*G,z=0, (13
guadratic in¢_, and thus generate contributionsSanatri-
ces with more external lines of helicity1 (i.e., amplitudes ~which classically choose only the self-dual p&rf; of the
that are not MHV. There are no further loop corrections to Yang-Mills field strength to survive, while giving the anti-
the S matrix from the action10). Furthermore, as we will self-dual fieldG,; the same field equation that would be
prove below, this action can be obtained by quantization osatisfied byF 5 in the non-self-dual theory. The various Lor-
an action that describes self-dual Yang-Mills theory in aéntz components expanded out give
manifestly Lorentz-covariant way. 18 L .

[The MHV gluon amplitudes calculated in the supersym- L=3G"Fap=—26GF 4 +G, Fy =36 F
metric theory(9) vanish to all orders in perturbation theory (14)
[1,2]. TheS matrix of external gauge bosons_ is t_rivial in this where, explicitly,
case, although there are nonvanishing contributions to ampli-
tudes between lower-spin fields. — 9 . . . . .

Self-dual Yang-Mills theory is defined only in four space- Faa=m 20043 Arm0r A )+ 2 Ars 1A+7]E156)
time dimensions, and because of reality properties, only with
an even number of time dimensions. If we include spinors F, = —j(9, A_-—d,-A_+d_ A, -—d_-A,})
(twistors or physical fermionsthen only 2+2 dimensions
are allowed becauset® has no Majorana spinoréThis is (AL A JH[A L AL, (15b
also the case relevant to the=2 string[16].) However, we
are interested in using the self-dual theory to describe asec- F- - =—-2i(d_;A_-—d A _)+2[A | A -]
tor of the physical(non-self-dual theory, which resides in (150
3+1 dimensions. We now briefly clarify the differences be- . ) A
tween the actiong9) and (10) in spacetimes with these two We first choose the light-cone gauge ; =0; as usual, the
signatures. In 31 dimensions the fieldsé and ¢ are treated Faddeev-Popov ghosts decouple. In this gaug&the term

asymmetrically—they are complex conjugates, astérand has only an Abelian component,

0,, While A5 andx®? are Hermitian matrices. In this case, LLC =iG__d,.A, - (16)
the two truncated action®) and (10) are then complex. T '
Alternatively, one can treat our actions B=2+2 di-  and may also be functionally integrated out; this enforces

mensions after a Wick rotation. In this case all coveringa, . —q.(The constant Jacobian d&t decouples, as in the
groups for (superjspace-time symmetries become real. In Faddeev-Popov determinant of the previous $t&pe sur-

particular, the SL(Z) Lorentz symmetry becomes yjying contribution forG, _ is now also Abelian,
SL(2)®SL(2), and the internal S(4) goes into Sk4). [Fur-

thermore, conformal S(2,2—SL(4) and super-conformal L';Fciz_iG#(ﬁgAi;_&;A%), (17)
SU(2,24)—SL(4]4).] Thus all the objectsp, ¢, AP, x5,
62, 6, become separately read;and @ are then independent, and can be solved to give the final expression for the gauge
while the constraint6) determinesp in terms of ¢. potentials:

We complete our discussion of the light-cone self-dual
actions in (9) and (10) by giving a manifestly Lorentz- Ai;=0, A_;=0::0. (18)
covariant theory which reproduces them upon going to the

; LC . : .
light cone. We start with thél=4 supersymmetric self-dual W& are left with thel == term; upon relabelings, , =i
action[10] we find the action9).

The manipulations we have just performed are exact
within perturbation theory, and prove the equality of the co-
S= 32 Tr f d4X%GaﬁFaﬁ+Xaavabxab variant (11) and Iight—cpne(lO) forms of theS matrix ele-
ments to all orders, in the gauge sector. The complex-
. conjugate Lagrangian may be derived using(anti-) self-
+ €25 bapd et 7 PanXc“Xdi)- (11 dual covariant action, i.e., with dotted and undotted indices
reversed in Eq(11). (As usual, we freely invert the “spa-

The fieldG*# is an anti-self-dual Lagrange multiplievhich  tial” derivative 4. ., which is legal with appropriate bound-

has mass dimension);2the anti-self-dual part of the Yang- ary conditions. Also, since the theory is Lorentz covariant,
1

Mills field strength is a;; cannot generate poles by itself iv>2. Furthermore,
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since we neglect only determinants of free derivatives, anyHowever, the action we use has several important differ-
modes which might be missed by inverting such derivativesnces. The most important is that, after truncation to the
are those that decouple. nonsupersymmetric Yang-Mills sector, we hawveo polar-
Finally, we make a few remarks about how helicity is izations, as required for Lorentz invariance, not one. In the
defined and its relation in the self-dual and non-self-duakinetic term the lowest order i@ component of the super-
actions. The simplest way to define helicity is in terms offield ¢ (helicity +1) couples to the highest orikelicity —1).
field strengths. This method is not only Lorentz and gauge The fact that the LMP action has only one field has two
covariant, but also applies to interacting states. For examplénmediate consequencg4) The LMP action is not Lorentz
F.z describes helicity+1, while F 5 (or G,z in the self- invariant, not even in a hidden wag2) The coupling con-
dual formulation, wheré ,;=0) describes-1. The helicity ~ stant in the LMP action has the wrottgngineering dimen-
is simply half the number of dotted minus undotted indicession. The aboveN=4 action, and its¢.. truncation, have
which follows from the fact that any field strength satisfies aneither of these problems.
Weyl equation on each spinor index. This translates into We now compare th& matrices of our action to those of
counting the twistors that carry these indices: In the fregehe LMP action in the nonsupersymmetric caSéhe super-

theory, or for asymptotic states, symmetric forms are almost trivial since all loop amplitudes
vanish for both theories(1) In our case the propagator has a
Fap=PaPsfs, Fag OF Gug=pabgf- (19  “+7atoneendand a*” at the other; the vertex hastZs

and a—. In the LMP case no lines are distinguish&g)
in terms of some scalar twistor-space functidns. These  There is no difference at the tree level, since Bematrices
expressions have close analogs in ordinary coordif@te vanish, except for the three-point vertex, which is nonvan-
momentum space; in the usual Yang-Mills theory in the jshing in 2+2 dimensions(In 3+1, kinematic constraints
light-cone gauge, whera, . =0 andA__ is eliminated by  force it to vanish. The three-point contribution is indistin-
its field equation, we have guishable in the two theories because of the symmetry of the
vertex, and because the normalization can be absorbed by a
redefinition of the coupling or oth_. (3) At the one-loop
level the LMP action gives the same resakceptfor an
Fap= 1001051043 A, +0O(A?) (200 additional factor of 1/2, since there is only one field and not
] two. As usual for one-loop graphs, this normalization cannot
on shell. In the LMP-type light-cone gauge for self-dual he modified.(4) At higher loops all graphs vanish for our

de: —i(9+ar9+'g(9+'+_lA4+O(A2),

Yang-Mills theory we have action. There is no such implication for the LMP action,
' , . which apparently has higher-loop contributions.
Fap=—10:+40+p¢+, Fap=0, (2D Another action to compare against is that proposed by
1o 1o o . Donaldson, and Nair and Schift4], based on Yang'§13]
Gap=0d+i Vaidii Vpid =0d410p1045 “@- form of the self-dual equationd’DNS). We find a similar
+0(?). 22) action from the above covariant for(t1) by slightly modi-

fying the above steps to the light cone. As before, we choose
In 2+2 dimensions, we have the freedom to scpjeand the gaugéA, ;. =0 in Eq.(14) and functionally integrate out

. i i S - i ; : G__, so A, -=0. Instead of examining th&, _ term
oppositely inp,z= . (In 3+1 the invariance is a ' + + '
Eﬁasgp and v)\//e ggﬁfarallal;pﬁavfe o Wiitg;= = p,p; to treat however, we Abelianize th€, , term by the field redefini-

both positive and negative energy. These problems are aldipns
avoided by our Wick rotation from-22.) This allows us to

A_-=—ie ?%y__¢'¢
choose ’
Py=1=p.=Psa. (23 Ai=—leTa- i +iAl,)e?,
This makes Feynman graph calculations in the self-dual G,,.=e %G/ e (25)

theory almost indistinguishable from twistor calculations, _
since noncovariant vertex factops. ;, can be replaced with ThelL . ., termis then
covariant twistorg,, after being expressed in terms @h-

shel) external momenta. L,,= —G;_+r9,;AL~+ . (26)
Ill. RELATIONS TO OTHER PROPOSED SELF-DUAL Integrating outG', , setsA” ; =0, after dropping the irrel-
ACTIONS evant Jacobian factor det - .

) ) Up till now all Jacobians have been constants. Another
~ Except for thed integration, the above truncatédi=4  type of trivial Jacobian is one of a functional determinant
light-cone action(9) is the one proposed by Leznov and inyolving no derivatives: If such determinants are written in
Mukhtarov, and Parke¢LMP) [11] to describe self-dual terms of Faddeev-Popov-like ghosts, the ghosts have non-
Yang-Mills theory, derivative propagators. Such determinants proddd@®)

1 terms, which can be neglectedor example, they vanish in
- 4,1 1i 40 a , dimensional regularizationThe Jacobian from the change
Stup=yz T f dXz b +31 (% h) (0 06). (24 of variables(25) reduces to that for the first redefinition,
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times nonderivative determinants of this type. This remain- . 5°Syons . Sf
ing contribution to the effective action can be represented by ~ Sefr,yons= — 2 In de =—3Inde ik

. . ApA A
a Faddeev-Popov-like expression PAP
(34)
S 8°S
S.=Tr f d*x CQ(e "?9_-€'*) with Qp=C, . ApAgp  APSG, -
Serf=—3 In det 2 2
27) 6°S o°S
5G,_A¢p 6G,_6G, _
where Q is a Becchi-Rouet-Stora-TyutinBRST-)like op-
; . S . sh  of
erator, which acts in the same way as a derivative or varia- -
tion. The action may be reorganized as . Ap Ag of
=—3 In det =—In det —|.
5f 0 Ao
S.=-Tr J d*x(e 1*Cel?)g_- (e 1?Q€?). (29) Ao

We have thus proven the equivalence of our modifications of

We next perform two successive field redefinitions on thegh® LMP and YDNS actions, and that the original LMP and

ghosts, the Jacobians of which are triviat(0) and constant  YPNS actions give the same one-lo§pmatrices(both dif-
terms, respectively fering from ours by a factor of 1j2

The YDNS action has also been proposed to describe the
1 N=2 (open string[16]. However, it is also possible to in-
C=e?C'e ¢, C'=—C", (29)  terpret that string in terms of our two-field modification of
- that action: States in that string in different pictures are usu-
ally interpreted as the same state, since their couplings are
and obtain the contribution the same. However, in ordinary QCD we know maximally
helicity violating couplings are helicity independent. If we
- ‘ , use helicity (i.e., Lorentz transformatiopsto distinguish
Sc=Tr f d*x C"(e”'?Q€?). (300 otherwise-identical statdd.7], then (at least two different
states appear in Lorentz-invariant amplitudes.

Similar remarks can be made regarding gravity. The ana-
log of the YDNS action for self-dual gravity, the Plelskn
action[ 18], must be modified to contain the fields describing

. _ both +2 helicities. The light-cone action for gravif20] can
AL.=0, A_,=—ie '?_.e". (3D easily be truncated for maximal helicity violation to give the
analog of the LMP actiofil9]; the infinite number of terms
The resulting action comes from th&C term, and gives the reduce to one interaction plus the kinetic term. All the other
Yang field equation, but from a two-field action terms generate amplitudes which contain at least one more
negative-helicity external state.
o ' Remarks made in the introduction carry over to the gravi-
S=—iTr f d* G, _d,%e %9_,e'?). (32)  tational case. As with Yang-Mills theory, the MHV graviton
scattering amplitudes vanish at tree level and must be cut

This ghost term may be path-integrated out since it is alge,
braic. The final expression for the potential is

. . ) , free at one loop. However, the all-plus one-loop scattering
This action thus also giveS matrices equal to those of non- amplitudes have not been calculated beyond four-d@ii

self-dual Yang-Mills theory restricted to certain helicities. complete solutions to the self-dual theory, unlike SDYM, are
On the other hand, the YDNS action giv@snatrices that 5t known explicitly.

disagree in the same way as described above for the LMP
action. The YDNS action gives the same field equations as

Eq. (32), but in terms of one field instead of two: IV. DISCUSSION

Bardeen has conjectured that these amplitudes are related
to anomalies. The effective action for our self-dual theory
0S= f f(¢)6G._+h(¢,G._)Ag, receives contributions only at one loop. A possible candidate
for this one-loop contribution is the trace anomaly, which
leads to very simple effective actions in two-dimensional
SYDNSIJ f(p)Ad; Ad=—ie 1¢5el: (33 theories. For example, iQ the Schwinger.modeI. a fermion
loop generates exactly(1~ 1F for the effective action. The
four-dimensional analog would beFOF/e=F%e
where we have used the covariant variatib¢. (Using the  +F(In O)F, where the divergent term vanishes upon inte-
covariant variation instead of the naive one just introducegration for self-duaF (and is gauge covariaint We have
another trivial determinant.The one-loopS matrix is ex-  been unable to verify, however, that the latter term is in fact
pressed in terms of the one-loop effective action, which ighe complete effective action.
the determinant of the second functional derivative of the Another, more interesting, possibility is that the one-loop
classical action: contribution might be generated byiacal term in the effec-
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tive action through the introduction of extra fields. This alsothough it has a nontrivial kinetic teprmAlso, it couples to

has an analog in the Schwinger model, where the fermion’she trace of the energy-momentum tensor, which relates to

contribution toS.4[ A] may be reproduced by introducing an the previous conjecture concerning the trace anomaly.

extra scalar fieldthe fermion-antifermion condensate that Explicit calculations in string theorf23], however, have

comes from bosonizatignresulting in the Stueckelberg ac- indicated the vanishing of all one-loop graphs with more

tion for a massive vector. than three external lines in aNl=2 string theories. These
The existence of a local term is suggested not only by thetring results are in direct contradiction with field theory.

appearance of only poles in the one-lo®pnatrices, but by This suggests some subtlety was missed, possibly signaling

string theory: TheN=2 open string is known to describe the presence of an anomaly in the world-sheet theory de-

self-dual Yang-Mills theory12] (or its supersymmetric gen- scribing the string.

eralizations[15]). One-loop diagrams in open-string theory  Note added After this work was completed, Cangemi

are equivalent taree graphs in the combined theory of open [24] showed by explicit calculation that the light-cone action

and closed string$§22]. In the one-loop planar graph, the for self-dual Yang-Mills theory gives the one-lo@matri-

loop can be pulled out to represent a closed string propagat@es for ordinary Yang-Mills theory with all external helici-

connecting an open string tree to the vacuum; the one-loopies the same.

double-twisted graph can be stretched to produce a closed

string propagator connecting two open string trees. This sug- ACKNOWLEDGMENTS

gests the introduction of fields without physical polarizations

to represent the closed string. A likely candidate would be a We thank Zvi Bern for bringing Bardeen’s paper to our

dilaton, namely the Weyl scale mode of the metric, which inattention. This work was supported in part by the National

ordinary gravity has no physical degrees of freed@ht  Science Foundation Grant No. PHY 9309888.

[1] M. T. Grisaru, H. N. Pendleton, and P. van Nieuwenhuizen, Leznov and M. A. Mukhtarov, J. Math. Phy@\.Y.) 28, 2574

Phys. Rev. Lett15, 996 (1977; M. T. Grisaru and H. N. (1987; A. Parkes, Phys. Lett. R86, 265 (1992.
Pendleton, Nucl. Phys8124, 333 (1977). [12] S. Mandelstam, Nucl. Phy$213 149 (1983; L. Brink, O.
[2] M. Mangano and S. J. Parke, Phys. R2@0, 301 (1991). Lindgren, and B. E. W. Nilssoribid. B212, 401 (1983.

[3] S. J. Parke and T. Taylor, Nucl. Phy&269, 410(1986; Phys.  [13] C. N. Yang, Phys. Rev. Let88, 1377(1977.
Rev. Lett.56, 2459(1986; F. A. Berends and W. T. Giele, [14] S. Donaldson, Proc. London Math. Sd&®, 1 (1985; V. P.
Nucl. Phys.B306, 759 (1988. Nair and J. Schiff, Phys. Lett. B46, 423 (1990.

[4] R. Penrose, J. Math. Phy@\.Y.) 8, 345(1967); Int. J. Theor. [15] S. J. Gates, Jr., M. T. Grisaru, M. Rel and W. SiegelSu-
Phys.1, 61 (1968; M. A. H. MacCallum and R. Penrose,

Phys. Rep. Phys. Let6C, 241(1973; A. Ferber, Nucl. Phys.
B132 55(1978.

[5] P. De Causmaecker, R. Gastmans, W. Troost, and T. T. WJ,
Nucl. Phys.B206, 53 (1982; F. A. Berends, R. Kleiss, P. De
Causmaecker, R. Gastmans, W. Troost, and T. T. hid, .
B206 61 (1982: Z. Xu, D.-H. Zhang, and L. Changbid. -/ W- Siegel, Phys. Rev. Let69, 1493(1992.

B291, 392 (1987: J. F. Gunion and Z. Kunszt, Phys. Lett. 18] J- F. Plebaski, J. Math. Phys(N.Y.) 16, 2395(1975.

161B, 333(1985; R. Kleiss and W. J. Sterling, Nucl. Phys. [19] W. Siegel, Phys. Rev. B7, 2504(1993.

perspace or One Thousand and One Lessons in Supersymme-
try (Benjamin/Cummings, Reading, MA, 1983
16] H. Ooguri and C. Vafa, Mod. Phys. Lett. B, 1389 (1990;
Nucl. Phys.B361, 469 (1991); B367, 83 (1991); N. Marcus,
ibid. B387, 263(1992.

B262, 235(1985. [20] J. Scherk and J. H. Schwarz, Gen. Relativ. Gragjt517
[6] Z. Bern, G. Chalmers, L. Dixon, and D. A. Kosower, Phys. (1979; M. Kaku, Nucl. PhysB91, 99 (1975; M. Goroff and
Rev. Lett.72, 2134(1994; G. D. Mahlon, Phys. Rev. 29, J. H. Schwarz, Phys. Let127B, 61 (1983.
4438(1994). [21] M. T. Grisaru and J. Zak, Phys. Le®0B, 237 (1980; Z.
[7] Z. Bern and D. A. Kosower, Nucl. PhyB362, 389(1991); Z. Bern, D. C. Dunbar, and T. Shimada, Phys. Lett3®, 277
Bern, L. Dixon, D. C. Dunbar, and D. A. Kosowebjd. B425, (1993; D. C. Dunbar and P. S. Norridge, Nucl. Phg?#33
217 (1994. 181 (1995.
[8] Z. Bern, L. Dixon, and D. A. Kosower, Report No. SLAC- [22] D. J. Gross, A. Neveu, J. Scherk, and J. H. Schwarz, Phys.
PUB-7111, hep-ph/9602280, 19%96npublished Lett. 31B, 592(1970; C. Lovelace,bid. 34B, 500(197)). E.
[9] W. A. Bardeen, “Self-dual Yang-Mills Theory, Integrability Cremmer and J. Scherk, Nucl. Phy50, 222 (1972.
and Multiparton Amplitudes,” Report No. FERMILAB- [23] N. Berkovits and C. Vafa, Nucl. Phy8433 123(1995.
CONF-95-379-T, 199%unpublishegl [24] D. Cangemi, “Self-dual Yang-Mills Theory and One-Loop
[10] W. Siegel, Phys. Rev. @6, R3235(1992. Like-Helicity QCD Multigluon Amplitudes,” Report No.

[11] A. N. Leznov, Theor. Math. Phys73, 1233 (1988; A. N. UCLA/96/TEP/16, hep-th/9605211, 1996npublished



