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Self-dual sector of QCD amplitudes
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We provide an action for self-dual Yang-Mills theory which is a simple truncation of the usual Yang-Mills
action. Only vertices that violate helicity conservation maximally are included. One-loop amplitudes in the
self-dual theory then follow as a subset of the Yang-Mills ones. In light-cone gauges this action is almost
identical to previously proposed actions, but in this formulation the vanishing of all higher-loop amplitudes is
obvious; the explicit perturbative S-matrix is known. Similar results apply to gravity.
@S0556-2821~96!04122-7#

PACS number~s!: 12.38.Bx, 11.25.Db, 11.55.Ds
I. INTRODUCTION

CertainS-matrix amplitudes in the high-energy, or mas
less, limit of quantum chromodynamics take a particula
simple form both at the tree and one-loop levels. These
plitudes describe processes where~almost! all external out-
going lines possess the same helicity. Such single-hel
configurations have a natural interpretation in terms of
scattering of a self-dual gauge field.

Specifically, then-point gluon tree amplitudes with all, o
all but one, helicities the same vanish~as implied by a su-
persymmetric identity@1,2#!. Those with two helicities oppo
site, the Parke-Taylor amplitudes, have the momentum
pendence@3#
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We have written the result in a color-ordered form and u
the twistor language@4#, also known as spinor helicity@5#, to
express the helicities and on-shell massless momenta
quantities are written in terms of two-component SL(2,C)
~Weyl! spinors; in both matrix and~van der Waerden! index
notation we have, forp25k250,

p5up&@pu⇔paḃ5papḃ , ~2a!

^pk&5paka , @pk#5pȧkȧ , ~2b!

where a four-vector is represented as a 232 matrix ~whose
determinant is the usual Lorentz square!. The amplitude with
the opposite helicity configuration is found by complex co
jugation.

Furthermore, the leading-color component of then-point
one-loop gluon amplitudes with all helicities the same
the simple dependence@6#
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where the sum is over cyclic orderings of any four numbers
i , j ,k,l in the range 1 ton. The nonleading-color component
is a sum of permutations of the leading term@7#. ~We refer
the reader to@2,8# for a detailed discussion on the techniques
used in calculating tree and loop amplitudes in gauge theo-
ries.! In a supersymmetric theory the corresponding gluon
amplitude vanishes to all orders in perturbation theory. The
loop amplitudes~3! have only two-particle poles and no cuts,
and thus resemble tree graphs. The absence of cuts is due to
the vanishing of the on-shell maximally helicity-violating
~MHV ! tree amplitudes appearing in the Cutkosky rules. No
higher-loop amplitudes in pure Yang-Mills theory have these
simple features; the cuts of two- or more-loop amplitudes are
proportional to phase space integrals of nonvanishing lower-
order amplitudes.

Bardeen@9# proposed that the simple form of these am-
plitudes could be derived from a self-dual Yang-Mills
theory. Previously one of us had pointed out@10# that the
light-cone @11# superspace action for self-dualN54 super
Yang-Mills theory is a truncation of the corresponding non-
self-dual action @12# to chiral terms, and had given a
Lorentz-covariant component action that generates it. In this
paper we show that the self-dual theory based on the chiral
truncation gives the subset of the Yang-Mills light-cone ver-
tices that are maximally helicity violating. TheS matrices
derived in our formulation of self-dual Yang-Mills theory are
automatically the subset of those in light-cone Yang-Mills
theory consisting of amplitudes of 12 l gluons with helicity
21 and all the rest11, where l is the number of loops.
Explicitly, they consist of~1! the tree graphs with one helic-
ity 21 and all the rest11, ~2! the one-loop graphs with all
helicities11, and~3! no graphs at all at two or more loops.

The two physical polarizations of the gauge field in the
light-cone action are represented in our formulation by the
highest and lowest components of a chiral superfield, as de-
fined in theN54 light-cone supersymmetric action given
below or itsN50,1,2 truncations. Both fields appear in the
theory’s truncation to self-dual form. However, the self-dual
action given here is not identical to previous self-dual actions
@11,13,14#, which have the field content of only one of the
two physical polarizations. Specifically, as required by Lor-
entz covariance, the light-cone Yang-Mills field has two
transverse components describing the two helicities, which
are present inboth the self-dual and non-self-dual theories.
7628 © 1996 The American Physical Society
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54 7629SELF-DUAL SECTOR OF QCD AMPLITUDES
In the self-dual theory one of the two components appe
only linearly in the classical action, and thus to order 12 l in
perturbation theory.

In the following section we derive the self-dual action
truncation of the usual Yang-Mills action in the light-co
formalism. We prove this action describes self-duality a
that the truncation preserves Lorentz covariance by deri
it from a Lorentz-covariant self-dual form in a way that
exact within perturbation theory. In Sec. III we compare o
action with other actions proposed to describe self-d
Yang-Mills theory. The other actions, unlike ours, are n
Lorentz covariant, have a dimensionful coupling consta
and at more than one loop generate nonvanishing diag
that do not relate to Yang-Mills theory. Finally, in Sec. I
we speculate on relations to anomalies and string theory

II. N54 SUPERSYMMETRY
AND SELF-DUAL LAGRANGIANS

We first consider the light-cone action forN54 super-
symmetric Yang-Mills theory@12#; the reduction to pure
Yang-Mills theory is achieved by simply dropping the lowe
spin fields.

We adopt the notation of@15#, so that all quantities ar
written in terms of SL(2,C) two-component spinor indices
Four-vectors are written asxaȧ, and the componentx22̇

represents the ‘‘time’’ coordinate of the light-cone form
ism. Spinor indices are raised and lowered according

x657 ix7 , x6̇56 ix7̇ , and the Lorentz inner product
p252detpaḃ .

In the light-cone formalism the field content of theN54
vector multiplet is described by a complex chiral superfi
whose components contain only the physical states. The
ral superfields relevant toN54 light-cone superspace a
defined by the chirality condition

D̄af50⇒f~x,u,ū !5exp~uaūai ]11̇!f̂~x,u! ~4!

in terms of the anticommuting derivatives

Da5
]

]ua
1 ūai ]11̇ , D̄a5

]

]ūa
1uai ]11̇ . ~5!

Herea is a four-valued index of the internal SU~4! symmetry
of N54 supersymmetry, and we adopt the normalizat
* d4u u451. In addition, we impose the ‘‘reality’’ condition
on f:

D4f5~ i ]11̇!2f̄. ~6!

Expandingf in ua gives the various component fields, b
only those corresponding to physical polarizations. InN54
light-cone superspace,f andd4u have helicity assignment
1,22, respectively~and opposite for the conjugates!. The u
expansion off is an expansion in the component fields
helicity equal to 1 minus half the order inu; there are
1,4,6,4,1 fields possessing helicity11,11/2,0,21/2,21.

TheN54 light-cone action can be written simply in ligh
cone superspace@12# as
ars
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S5S21S3,c1S3,c̄1S4 , ~7a!

S25
1

g2
Tr E d4x d4u 1

2fhf, ~7b!

S3,c5
1

g2
Tr E d4x d4u 1

3 if~]1
ȧ f!~]1ȧf!, ~7c!

S45
1

g2
Tr E d4x d4u d4ū~ 1

8 @f,f̄#22 1
4 @f,]11̇f#

3~]11̇!22@f̄,]11̇f̄# !, ~7d!

where S3,c̄ is the complex conjugate ofS3,c. ~Note that
]1

ȧf]1ȧf52]1ȧf]1
ȧf.! Further,S2 is real becausef

satisfies the reality condition~6!. Using this constraint the
action may be written with onlyd4u d4ū in a way where
reality is manifest. We have further writtenf in matrix no-
tation with Hermitian group generators.

The usual transverse componentsA67̇ of the gauge fields
appear inf as

f5
1

]11̇
A21̇1•••2u4]11̇A12̇ . ~8!

The two circular polarizations of the gauge fields then reduce
to particle and antiparticle assignments of the complex field
A12̇ .

The total helicity of the external fields at any vertex in the
action ~7! follows from counting the powers off andu: S2
andS4 have total helicity 0,S3,c has11, andS3,c̄ has21.
~Since total angular momentum is conserved, the helicity
may alternatively be read off from the spacetime derivatives,
which give the orbital angular momentum.! The vertex
which gives the maximal helicity violation isS3,c, while
S3,c̄ gives the minimal~negative! violation. Consider the
truncation toS2 andS3,c:

S5
1

g2
Tr E d4x d4u 1

2fhf1 1
3 if~]1

ȧ f!~]1ȧf!. ~9!

The u expansion generates all of the~three-point! couplings
between theN54 matter fields in which the total outgoing
helicity is 1; it generates Feynman diagrams, and amplitudes
possessing maximal helicity violation when regarded as a
subset of the complete Lagrangian~7!. In the supersymmet-
ric form ~9!, we may replacef by f̂ since there is noū
dependence.

Upon further reduction to just the nonsupersymmetric
Yang-Mills fields, the action~9! becomes

S5
1

g2
Tr E d4x f2@hf11 i ~]1

ȧ f1!~]1ȧf1!#.

~10!

We have written the fields as they naturally appear in theu
expansion off: f1 is the lowest component andf2 is the
highest. This results in a Jacobian factor of 1 in going from
A21̇ to f1 andA12̇ to f2 , where the complex fields are
formally treated as independent. Sincef2 appears only lin-
early in both terms in Eq.~10!, it can be used to count loops;
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the number of externalf2 lines is just 12 l . ~It can absorb
the factor 1/\ multiplying the action in the functional inte
gral, just like the dilaton in string theory.! Note that the
action ~10! does not require a dimensionful coupling co
stant;f2 andf1 have mass dimensions 0 and 2.

Thus the action~10! is unable to generate diagrams wi
externalf2 lines except at tree level, in which case only o
externalf2 state is possible. The one-loop contributio
generate the amplitudes~2!, as seen upon comparison wit
the pure Yang-Mills~YM ! sector of the non-self-dual light
cone theory~7!. The other vertices in the YM action~7! are
quadratic inf2 , and thus generate contributions toSmatri-
ces with more external lines of helicity21 ~i.e., amplitudes
that are not MHV!. There are no further loop corrections t
the S matrix from the action~10!. Furthermore, as we will
prove below, this action can be obtained by quantization
an action that describes self-dual Yang-Mills theory in
manifestly Lorentz-covariant way.

@The MHV gluon amplitudes calculated in the supersy
metric theory~9! vanish to all orders in perturbation theor
@1,2#. TheSmatrix of external gauge bosons is trivial in th
case, although there are nonvanishing contributions to am
tudes between lower-spin fields.#

Self-dual Yang-Mills theory is defined only in four spac
time dimensions, and because of reality properties, only w
an even number of time dimensions. If we include spin
~twistors or physical fermions!, then only 212 dimensions
are allowed because 410 has no Majorana spinors.~This is
also the case relevant to theN52 string@16#.! However, we
are interested in using the self-dual theory to describe a
tor of the physical~non-self-dual! theory, which resides in
311 dimensions. We now briefly clarify the differences b
tween the actions~9! and ~10! in spacetimes with these two
signatures. In 311 dimensions the fieldsf andf̄ are treated
asymmetrically—they are complex conjugates, as areua and

ūa , while Aaḃ andxaḃ are Hermitian matrices. In this case
the two truncated actions~9! and ~10! are then complex.

Alternatively, one can treat our actions inD5212 di-
mensions after a Wick rotation. In this case all coveri
groups for ~super-!space-time symmetries become real.
particular, the SL(2,C) Lorentz symmetry become
SL~2!^SL~2!, and the internal SU~4! goes into SL~4!. @Fur-
thermore, conformal SU~2,2!→SL~4! and super-conforma

SU~2,2u4!→SL~4u4!.# Thus all the objectsf, f̄, Aaḃ, xaḃ,
ua, ūa become separately real;u andū are then independent
while the constraint~6! determinesf̄ in terms off.

We complete our discussion of the light-cone self-du
actions in ~9! and ~10! by giving a manifestly Lorentz-
covariant theory which reproduces them upon going to
light cone. We start with theN54 supersymmetric self-dua
action @10#

S5
1

g2
Tr E d4x 1

2G
abFab1xaa¹a

ḃxaḃ

1eabcd~ 1
8fabhfcd1

1
4fabxc

ȧxdȧ!. ~11!

The fieldGab is an anti-self-dual Lagrange multiplier~which
has mass dimension 2!; the anti-self-dual part of the Yang
Mills field strength is
-
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Fab5] (a
ġAb)ġ1 i @Aa

ġ,Abġ#. ~12!

All the components are related byN54 supersymmetry;
when truncated toN<2 super-Yang-Mills theories, the fields
form two separate multiplets.

The action can be reduced to the light-cone form at the
quantum level. We only examine here the nonsupersymme
ric gauge sector,S5(1/g2)Tr* d4x 1

2G
abFab . The equations

of motion are

Fab50, ¹aȧGab50, ~13!

which classically choose only the self-dual partF ȧḃ of the
Yang-Mills field strength to survive, while giving the anti-
self-dual fieldGab the same field equation that would be
satisfied byFab in the non-self-dual theory. The various Lor-
entz components expanded out give

L5 1
2G

abFab52 1
2G22F111G12F122 1

2G11F22 ,
~14!

where, explicitly,

F11522i ~]11̇A12̇2]12̇A11̇!12@A11̇ ,A12̇#,
~15a!

F1252 i ~]11̇A22̇2]12̇A21̇1]21̇A12̇2]22̇A11̇!

1~@A11̇ ,A22̇#1@A21̇ ,A12̇# !, ~15b!

F22522i ~]21̇A22̇2]22̇A21̇!12@A21̇ ,A22̇#.
~15c!

We first choose the light-cone gaugeA11̇50; as usual, the
Faddeev-Popov ghosts decouple. In this gauge theG22 term
has only an Abelian component,

L22
LC 5 iG22]11̇A12̇ , ~16!

and may also be functionally integrated out; this enforce
A12̇50. ~The constant Jacobian det]11̇ decouples, as in the
Faddeev-Popov determinant of the previous step.! The sur-
viving contribution forG12 is now also Abelian,

L12
LC 52 iG12~]11̇A22̇2]12̇A21̇!, ~17!

and can be solved to give the final expression for the gaug
potentials:

A1ȧ50, A2ȧ5]1ȧf1 . ~18!

We are left with theL11
LC term; upon relabelingG115 if2

we find the action~9!.
The manipulations we have just performed are exac

within perturbation theory, and prove the equality of the co-
variant ~11! and light-cone~10! forms of theS matrix ele-
ments to all orders, in the gauge sector. The complex
conjugate Lagrangian may be derived using an~anti-! self-
dual covariant action, i.e., with dotted and undotted indice
reversed in Eq.~11!. ~As usual, we freely invert the ‘‘spa-
tial’’ derivative ]11̇ , which is legal with appropriate bound-
ary conditions. Also, since the theory is Lorentz covariant
]

11̇

21
cannot generate poles by itself inD.2. Furthermore,
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since we neglect only determinants of free derivatives, a
modes which might be missed by inverting such derivativ
are those that decouple.!

Finally, we make a few remarks about how helicity
defined and its relation in the self-dual and non-self-du
actions. The simplest way to define helicity is in terms
field strengths. This method is not only Lorentz and gau
covariant, but also applies to interacting states. For exam
F ȧḃ describes helicity11, while Fab ~or Gab in the self-
dual formulation, whereFab50! describes21. The helicity
is simply half the number of dotted minus undotted indice
which follows from the fact that any field strength satisfies
Weyl equation on each spinor index. This translates in
counting the twistors that carry these indices: In the fr
theory, or for asymptotic states,

F ȧḃ5pȧpḃ f1 , Fab or Gab5papb f2 ~19!

in terms of some scalar twistor-space functionsf6 . These
expressions have close analogs in ordinary coordinate~or
momentum! space; in the usual Yang-Mills theory in th
light-cone gauge, whereA11̇50 andA22̇ is eliminated by
its field equation, we have

F ȧḃ52 i ]1ȧ]1ḃ]11̇
21A21̇1O~A2!,

Fab52 i ]a1̇]b1̇]11̇
21A12̇1O~A2! ~20!

on shell. In the LMP-type light-cone gauge for self-du
Yang-Mills theory we have

F ȧḃ52 i ]1ȧ]1ḃf1 , Fab50, ~21!

Gab5]11̇
21¹a1̇]11̇

21¹b1̇f25]a1̇]b1̇]11̇
22f2

1O~f2!. ~22!

In 212 dimensions, we have the freedom to scalepa and
pȧ oppositely inpaḃ5papḃ . ~In 311 the invariance is a
phase, and we generally have to writepaḃ56papḃ to treat
both positive and negative energy. These problems are
avoided by our Wick rotation from 212.! This allows us to
choose

p151⇒pȧ5p1ȧ . ~23!

This makes Feynman graph calculations in the self-d
theory almost indistinguishable from twistor calculation
since noncovariant vertex factorsp1ȧ can be replaced with
covariant twistorspȧ after being expressed in terms of~on-
shell! external momenta.

III. RELATIONS TO OTHER PROPOSED SELF-DUAL
ACTIONS

Except for theu integration, the above truncatedN54
light-cone action~9! is the one proposed by Leznov an
Mukhtarov, and Parkes~LMP! @11# to describe self-dual
Yang-Mills theory,

SLMP5
1

l2 Tr E d4x 1
2fhf1 1

3 if~]1
ȧ f!~]1ȧf!. ~24!
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However, the action we use has several important diffe
ences. The most important is that, after truncation to th
nonsupersymmetric Yang-Mills sector, we havetwo polar-
izations, as required for Lorentz invariance, not one. In th
kinetic term the lowest order inu component of the super-
fieldf ~helicity11! couples to the highest one~helicity21!.

The fact that the LMP action has only one field has tw
immediate consequences:~1! The LMP action is not Lorentz
invariant, not even in a hidden way.~2! The coupling con-
stant in the LMP action has the wrong~engineering! dimen-
sion. The aboveN54 action, and itsf6 truncation, have
neither of these problems.

We now compare theSmatrices of our action to those of
the LMP action in the nonsupersymmetric case.~The super-
symmetric forms are almost trivial since all loop amplitude
vanish for both theories.! ~1! In our case the propagator has a
‘‘ 1’’ at one end and a ‘‘2’’ at the other; the vertex has 21’s
and a2. In the LMP case no lines are distinguished.~2!
There is no difference at the tree level, since treeSmatrices
vanish, except for the three-point vertex, which is nonvan
ishing in 212 dimensions.~In 311, kinematic constraints
force it to vanish.! The three-point contribution is indistin-
guishable in the two theories because of the symmetry of t
vertex, and because the normalization can be absorbed b
redefinition of the coupling or off2 . ~3! At the one-loop
level the LMP action gives the same resultexceptfor an
additional factor of 1/2, since there is only one field and no
two. As usual for one-loop graphs, this normalization cann
be modified.~4! At higher loops all graphs vanish for our
action. There is no such implication for the LMP action
which apparently has higher-loop contributions.

Another action to compare against is that proposed b
Donaldson, and Nair and Schiff@14#, based on Yang’s@13#
form of the self-dual equations~YDNS!. We find a similar
action from the above covariant form~11! by slightly modi-
fying the above steps to the light cone. As before, we choo
the gaugeA11̇50 in Eq.~14! and functionally integrate out
G22 , so A12̇50. Instead of examining theG12 term,
however, we Abelianize theG11 term by the field redefini-
tions

A22̇52 ie2 if]22̇e
if,

A21̇52 ie2 if~]21̇1 iA21̇
8 !eif,

G115e2 ifG118 eif. ~25!

TheL11 term is then

L1152G118 ]22̇A21̇
8 . ~26!

Integrating outG118 setsA21̇
8 50, after dropping the irrel-

evant Jacobian factor det]22̇ .
Up till now all Jacobians have been constants. Anothe

type of trivial Jacobian is one of a functional determinan
involving no derivatives: If such determinants are written in
terms of Faddeev-Popov-like ghosts, the ghosts have no
derivative propagators. Such determinants produced4~0!
terms, which can be neglected.~For example, they vanish in
dimensional regularization.! The Jacobian from the change
of variables~25! reduces to that for the first redefinition,
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times nonderivative determinants of this type. This rema
ing contribution to the effective action can be represented
a Faddeev-Popov-like expression

Sc5Tr E d4x C̃Q~e2 if]22̇e
if! with Qf5C,

~27!

whereQ is a Becchi-Rouet-Stora-Tyutin-~BRST-!like op-
erator, which acts in the same way as a derivative or va
tion. The action may be reorganized as

Sc52Tr E d4x~e2 ifC̃eif!]22̇~e2 ifQeif!. ~28!

We next perform two successive field redefinitions on
ghosts, the Jacobians of which are trivial@d4~0! and constant
terms, respectively#,

C̃5eifC̃8e2 if, C̃85
1

]22̇
C̃9, ~29!

and obtain the contribution

Sc5Tr E d4x C̃9~e2 ifQeif!. ~30!

This ghost term may be path-integrated out since it is a
braic. The final expression for the potential is

A1ȧ50, A2ȧ52 ie2 if]2ȧe
if. ~31!

The resulting action comes from theL12
LC term, and gives the

Yang field equation, but from a two-field action

S52 i Tr E d4x G12]1
ȧ~e2 if]2ȧe

if!. ~32!

This action thus also givesSmatrices equal to those of non
self-dual Yang-Mills theory restricted to certain helicities

On the other hand, the YDNS action givesSmatrices that
disagree in the same way as described above for the L
action. The YDNS action gives the same field equations
Eq. ~32!, but in terms of one field instead of two:

dS5E f ~f!dG121h~f,G12!Df,

SYDNS5E f ~f!Df; Df[2 ie2 ifdeif; ~33!

where we have used the covariant variationDf. ~Using the
covariant variation instead of the naive one just introdu
another trivial determinant.! The one-loopS matrix is ex-
pressed in terms of the one-loop effective action, which
the determinant of the second functional derivative of
classical action:
in-
by

ria-

the

lge-
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is
the

Seff,YDNS52 1
2 ln detS d2SYDNS

DfDf D52 1
2 ln detS d f

Df D ,
~34!

Seff52 1
2 ln detS d2S

DfDf

d2S

DfdG12

d2S

dG12Df

d2S

dG12dG12

D
52 1

2 ln detS dh

Df

d f

Df

d f

Df
0
D 52 ln detS d f

Df D .
We have thus proven the equivalence of our modifications of
the LMP and YDNS actions, and that the original LMP and
YDNS actions give the same one-loopSmatrices~both dif-
fering from ours by a factor of 1/2!.

The YDNS action has also been proposed to describe the
N52 ~open! string @16#. However, it is also possible to in-
terpret that string in terms of our two-field modification of
that action: States in that string in different pictures are usu-
ally interpreted as the same state, since their couplings are
the same. However, in ordinary QCD we know maximally
helicity violating couplings are helicity independent. If we
use helicity ~i.e., Lorentz transformations! to distinguish
otherwise-identical states@17#, then ~at least! two different
states appear in Lorentz-invariant amplitudes.

Similar remarks can be made regarding gravity. The ana-
log of the YDNS action for self-dual gravity, the Pleban´ski
action@18#, must be modified to contain the fields describing
both62 helicities. The light-cone action for gravity@20# can
easily be truncated for maximal helicity violation to give the
analog of the LMP action@19#; the infinite number of terms
reduce to one interaction plus the kinetic term. All the other
terms generate amplitudes which contain at least one more
negative-helicity external state.

Remarks made in the introduction carry over to the gravi-
tational case. As with Yang-Mills theory, the MHV graviton
scattering amplitudes vanish at tree level and must be cu
free at one loop. However, the all-plus one-loop scattering
amplitudes have not been calculated beyond four-point@21#;
complete solutions to the self-dual theory, unlike SDYM, are
not known explicitly.

IV. DISCUSSION

Bardeen has conjectured that these amplitudes are relate
to anomalies. The effective action for our self-dual theory
receives contributions only at one loop. A possible candidate
for this one-loop contribution is the trace anomaly, which
leads to very simple effective actions in two-dimensional
theories. For example, in the Schwinger model a fermion
loop generates exactlyFh21F for the effective action. The
four-dimensional analog would be FheF/e5F2/e
1F~ln h!F, where the divergent term vanishes upon inte-
gration for self-dualF ~andh is gauge covariant!. We have
been unable to verify, however, that the latter term is in fact
the complete effective action.

Another, more interesting, possibility is that the one-loop
contribution might be generated by alocal term in the effec-
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tive action through the introduction of extra fields. This als
has an analog in the Schwinger model, where the fermio
contribution toSeff[A] may be reproduced by introducing an
extra scalar field~the fermion-antifermion condensate tha
comes from bosonization!, resulting in the Stueckelberg ac
tion for a massive vector.

The existence of a local term is suggested not only by t
appearance of only poles in the one-loopSmatrices, but by
string theory: TheN52 open string is known to describe
self-dual Yang-Mills theory@12# ~or its supersymmetric gen-
eralizations@15#!. One-loop diagrams in open-string theor
are equivalent totreegraphs in the combined theory of ope
and closed strings@22#. In the one-loop planar graph, the
loop can be pulled out to represent a closed string propaga
connecting an open string tree to the vacuum; the one-lo
double-twisted graph can be stretched to produce a clo
string propagator connecting two open string trees. This su
gests the introduction of fields without physical polarization
to represent the closed string. A likely candidate would be
dilaton, namely the Weyl scale mode of the metric, which
ordinary gravity has no physical degrees of freedom~al-
o
n’s

t
-

he

y
n

tor
op
sed
g-
s
a
in

though it has a nontrivial kinetic term!. Also, it couples to
the trace of the energy-momentum tensor, which relates to
the previous conjecture concerning the trace anomaly.

Explicit calculations in string theory@23#, however, have
indicated the vanishing of all one-loop graphs with more
than three external lines in allN52 string theories. These
string results are in direct contradiction with field theory.
This suggests some subtlety was missed, possibly signaling
the presence of an anomaly in the world-sheet theory de-
scribing the string.

Note added. After this work was completed, Cangemi
@24# showed by explicit calculation that the light-cone action
for self-dual Yang-Mills theory gives the one-loopS matri-
ces for ordinary Yang-Mills theory with all external helici-
ties the same.
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