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We analyze the phenomenon of preheating, i.e., explosive particle production due to parametric amplifica-
tion of quantum fluctuations in the unbroken symmetry case, or spinodal instabilities in the broken symmetry
phase, using the Minkowski spaceX)(vector model in the larg8l limit to study the nonperturbative issues
involved. We give analytic results for weak couplings and times short compared to the time at which the
fluctuations become of the same order as the tree level terms, as well as numerical results including the full
back reaction. In the case where the symmetry is unbroken, the analytical results agree spectacularly well with
the numerical ones in their common domain of validity. In the broken symmetry case, interesting situations,
corresponding to slow roll initial conditions from the unstable minimum at the origin, give rise to a new and
unexpected phenomenon: the dynamical relaxation of the vacuum energy. That is, particles are abundantly
produced at the expense of the quantum vacuum energy while the zero mode comes back to almost its initial
value. In both cases we obtain analytically and numerically the equation of state which in both cases can be
written in terms of an effective polytropic index that interpolates between vacuum and radiationlike domina-
tion. We find that simplified analyses based on the harmonic behavior of the zero mode, giving rise to a
Mathieu equation for the nonzero modes, miss important physics. Furthermore, such analyses that do not
include the full back reaction and do not conserve energy result in unbound particle production. Our results
rule out the possibility of symmetry restoration by nonequilibrium fluctuations in the cases relevant for new
inflationary scenarios. Finally, estimates of the reheating temperature are given, as well as a discussion of the
inconsistency of a kinetic approach to thermalization when a nonperturbatively large number of particles are
created[S0556-282(96)05524-5

PACS numbdss): 11.10.Wx, 11.15.Pg, 98.80.Cq

I. INTRODUCTION In this paper we analyze the details of this so-cafbee-
heatingprocess both analytically as well as numerically. Pre-
It has recently been realizdd—3] that as the zero mo- heating is a nonperturbative process, with typically par-
mentum mode of a quantum field evolves it can drive a larggicles being produced, where is the self-coupling of the
amplification of quantum fluctuations. This, in turn, givesfield. Because of this fact, any attempts at analyzing the de-
rise to copious particle production for bosonic fields, creatingailed dynamics of preheating must also be nonperturbative
guanta in a highly nonequilibrium distribution, radically in nature. This leads us to consider théNpvector model in
changing the standard picture of reheating the postinflationthe largeN limit. This is a nonperturbative approximation
ary universgd4—6]. This process has other possible applica-that has many important features that justify its use: unlike
tions, such as in understanding the hadronization stage of thibe Hartree or mean-field approximati8l, it can be sys-
guark-gluon plasm@7] as well as trying to understand out- tematically improved in the N expansion. It conserves en-
of-equilibrium particle production in strong electromagneticergy, satisfies the Ward identities of the underlying symme-
fields and in heavy ion collision8-11]. try, and again unlike the Hartree approximation it predicts
The actual processes giving rise to preheating can be dithe correct order of the transition in equilibrium.
ferent depending on the potential for the scalar field involved This approximation has also been used in other nonequi-
as well as the initial conditions. For example, in new infla-librium contexts[8-11]. In this work, we consider this
tionary scenarios, where the inflaton field's zero modemodel in Minkowski space, saving the discussion of the ef-
evolves down the flat portion of a potential admitting spon-fects of the expansion of the universe for later work.
taneous symmetry breaking, particle production occurs due Our findings are summarized as follows.
to the existence of unstable field modes which get amplified We are able to provide consistent nonperturbative analytic
until the zero mode leaves the instability region. These arestimates of the nonequilibrium processes occurring during
the instabilities that give rise to spinodal decomposition andhe preheating stage taking into account éxactevolution
phase separation. In contrast, if we start with chaotic initialof the inflaton zero mode for large amplitudes when the
conditions, so that the field has large initial amplitude, par-quantum back reaction due to the produced particles is neg-
ticles are created from the parametric amplification of thdigible, i.e., at early and intermediate times. We also compute
guantum fluctuations due to the oscillations of the zeradhe momentum space distribution of the particle number as
mode. well as the effective equation of state during this stage. Ex-
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54 ANALYTIC AND NUMERICAL STUDY OF PREHEATING ... 7571
plicit expressions for the growth of quantum fluctuations, thell. SCALAR FIELD DYNAMICS IN THE LARGE N LIMIT
preheating time scale, as well as the effectiitane-
dependent polytropic index defining the equation of state

are given in Sec. lIl. , ) , . theory is necessary. This leads us to consider the)Qfec-
We then go beyond the early or intermediate time redime . model in the largeN limit.

and evolve the equations of motion numerically, taking into | this section we introduce this model, obtain the non-
account back-reaction effecteThat is, the nonlinear quan- equilibrium evolution equations, the energy momentum ten-
tum field interaction. These results confirm the analytic re- gor, and analyze the issue of renormalization. We will then

sults in their domain of validity and show how, when back-pe poised to study each particular case in detail in the later
reaction effects are large enough to compete with tree levelections.

effects, dissipational effects arise in the zero mode. Energy The Lagrangian density is
conservation is guaranteed in the full back-reaction problem,
leading to the eventual shut off of particle production. This is B s 7 -
an important ingredient in the dynamics that determines the L= E&ﬂd" =V (- ),
relevant time scales.
We also find a novel dynamical relaxation of the vacuum N Y
energy in this regime when the theory is in the broken phase. V(o,m)= >m ¢ ¢+8_N(¢' ¢)%, 21
Namely, particles are produced at the expense of the quan-

tum vacuum energy while the zero mode contributes veryor \ fixed in the largeN limit. Here ¢ is an O(N) vector,
little. We find a radiation type equation of state for late timesq;:(g 7;) and 7 represents th&l—1 “pions.” In what

(p%,%s) despite the lack of thermal equilibrium. follows, we will consider two different cases of the potential
Flnally' we discuss the calculatlgn of thgz reheatlng.tem—v(a,q;)’ with (m2<0) or without (m>0) symmetry break-
perature in a class of models, paying particular attention t
when the kinetic approach to thermalization and equilibra-
tion is applicable.
There have been a number of pap@ee Refs[1,12—-15)

As mentioned above, preheating is a nonperturbative phe-
nomenon so that a nonperturbative treatment of the field

We can decompose the field into its zero mode and
fluctuationsy(x,t) about the zero mode:

dedicated to the analysis of the preheating process where Sy -
particle production and back-reaction are estimated in differ- 7 (X =0o()Fx(X,0). 22
ent approximation$16]. The generating functional of real time nonequilibrium

The layout of the paper is as follows. Section Il presentsgreen’s functions can be written in terms of a path integral
the model, the evolution equations, the renormalization Ogjong a Comp|ex contour in time, Corresponding to forward
the equations of motion, and introduces the relevant definiand backward time evolution and at finite temperature a
tions of particle number, energy, and pressure and the detailsranch down the imaginary time axis. This requires doubling
of their renormalization. The unbroken and broken symmetrythe number of fields which now carry a label correspond-
cases are presented in detail and the differences in their treagg to forward (+), and backward ) time evolution. The
ment are clearly explained. reader is referred to the literature for more det&il9,20).

In Secs. 1lI-V we present a detailed analytic and numeri-This generating functional along the complex contour re-
cal treatment of both the unbroken and broken symmetryuires the Lagrangian density along the contour, which for
phases emphasizing the description of particle productiorzero temperature is given ]
energy, pressure, and the equation of state. In the broken
symmetry case, when the inflaton zero mode begins very r[g+y* 7" ]—Llog+x ", 7]
close to the top of the potential, we find that there is a novel
phenomenon of relaxation of the vacuum energy that explic-
ity shows where the energy used to produce the particles
comes from. We also discuss why the phenomenon of sym- L L
metry restoration at preheating, discussed by various authors " iy 42 3 S, 13
[1,13,17,18 is not seen to occur in the cases treated by us _(EV (o0, )x ™"+ ﬁv[ (oo, ) (x ")
here and relevant for new inflationary scenafib§].

In Sec. VI we provide estimates, under suitably specified n iv[4]((r ) +)4)
assumptions, of the reheating temperature in thd)dtodel 4! 0 X
as well as other models in which the inflaton couples to . R
lighter scalars. In this section we argue that thermalization —{(XT=x ) (7= 7)) 2.3
cannot be studied with a kinetic approach because of the .
nonperturbatively large occupation number of long-The tadpole conditiody™(x,t))=0 will lead to the equa-
wavelength modes. tions of motion as discussed 8] and references therein.

Finally, we summarize our results and discuss future av- A consistent and elegant version of the lafgdimit for
enues of study in the conclusions. We also include an appemonequilibrium problems can be obtained by introducing an
dix where we gather many important technical details on thauxiliary field and is presented very thoroughly in Ref].
evaluation of the Floguet mode functions and Floquet indiced his formulation has the advantage that it can incorporate the
used in the main text. O(1N) corrections in a systematic fashion. Alternatively,

- oL 1 1 -
o TR S 2, = +12
Llog, ]"'500)( +2(o"#)( ) +2(&M7T )
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the largeN limit can be implemented via a Hartree-like fac-
torization [3] in which (i) there are no cross correlations
between the pions and sigma field atid the two point

correlation functions of the pion field are diagonal in the

O(N—1) space of the remaining unbroken symmetry group.

To leading order in largeN both methods are completely
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Gy (L.t )= 5we k(t)V (t"), (2.19
Gy (tt')= Vk(t Vi (1), (2.17

equivalent and for simplicity of presentation we chose the

factorization method.
The factorization of the nonlinear terms in the Lagrangian’
is (again for both= components

x*—6(x?) x?+ const, (2.9
xX*=3(x)x. (2.5)
(7 m) 2= 272w — (7?2 + O(1IN), (2.6)
72X (7?) X2+ T(XP), 2.7
w2 x—(m)x, 2.9
To obtain a largeN limit, we define
7(#1) = w@tﬁ%ﬁ ; oo(t) =¢OVN (29

where the largeN limit is implemented by the requirement
that

(¥»=0(1), (x»=0(1), $=0(1). (2.10
The leading contribution is obtained by neglecting the

O(1/N) terms in the formal larg&l limit. The resulting La-
grangian density is quadratic, with a linear termyin

Llogtx T, m 1= Llogtx 7]

={3 (0, x "2+ 5 (3, 7)2=x"V' (1)
— M) (x )2 EMEEt) (7))
—{(xT—=x ) (7 =)}, (2.11)
where
V' (g(t),t)= f¢<t>m+ S PO+ <w >}
(2.12
2> A A
M m(t)=m>+ §¢2(t)+§<(//2(t)>, (2.13
2, 3\ A
My=m+ =)+ (1) (214

Note that we have used spatial translational invariance tﬁl

write

(PP(x,0)=(¢A(1)). (2.19

The necessaryzero temperatujenonequilibrium Green’s
functions are constructed from the ingredients

while the Heisenberg field 0perat¢1(x t) can be written as

PED= = S 8V alVE (e ]
) \/]_} k 2Wk 1
(2.18
wherea, ,a, are the canonical destruction and annihilation

operators and’ the quantization volume.

The evolution equations for the expectation valfig)
and the mode functiong(t) can be obtained by using the
tadpole method3] and are given by

B+ (1)

A A
m2+§¢2(t)+§<w2<t)>}=0, (219

d? A A
[W+k2+m2+§¢2(t>+§<¢2(t)>}vk(t>=o,
Vi(0)=1, Vi (0)=—iW,, (2.20
d3k V(1)
(D)= f(zw)B 2W : (2.21
W= VK2 + mg. (2.22

The initial state|i) is chosen to be the vacuum for these
modes, i.e.a,|i)=0. The frequencie®V, (i.e., m(z)) will de-
termine the initial state and will be discussed for each par-
ticular case below.

The quctuationsx(i,t) obey an independent equation,
that does not enter in the dynamics of the evolution of the
expectation value or the fields to this order and decouples
in the leading order in the largd limit [3].

It is clear from the above equations that the Ward identi-
ties of Goldstone’'s theorem are satisfied. Because
V' (#(1),0)= VN (t) M2(t), whenevel’ (¢(1),t) vanishes
for ¢#0 then M ;=0 and the “pions” are the Goldstone
bosons. This observation will be important in the discussions
of symmetry breaking in a later section.

Since in this approximation the dynamics for theand
fields decouple, and the dynamics yfdoes not influence
at of ¢, the mode functions of?), we will only concen-
trate on the solution for ther fields. We note however, that
if the dynamics is such that the asymptotic valuesof O the
masses fory and the “pion” multiplet% are different, and
the original O(N) symmetry is broken down to the
O(N—1) subgroup.
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where we have introduced th@rbitrary) renormalization

We briefly review the most relevant features of the renor-Sc@lex. Equations(2.23 and(2.29 lead to the renormaliza-

malization program in the larg8l limit that will be used

frequently in our analysis. For more details the reader is

referred t0[9,3,11].

tion conditions valid in the larg®l limit.
At this point it is convenient to absorb a furthénite
renormalization in the definition of the mass and introduce

In this approximation, the Lagrangian is quadratic, andn€ quantities

there are no counterterms. This implies that the equations for

the mode functions must be finite. This requires that

A A A A
M?+ 5 (1) + 5 (P(0) =M+ 5 50+ 5 (Y1)

=—v(t). (2.23
Defining
V(1) 1 - )
—= 1), 0)=—, 0)=—1VyW,,
\/Wk (Pk( ) ‘Pk( ) \/Wk (Pk( ) | \/_(2 24)

the function ¢, (t) is written as linear combinations of

WKB solutions of the form
t
+Bkexr( J Rl’g(t’)dt’)
0

(2.29

t
QDk(t) :AkeXF< fo Rk(t/)dt/

with R,(t) obeying a Riccati equatiofil1] and the coeffi-
cientsA,,By are fixed by the initial conditions. After some
algebra we find

1 wv(t)

3v(t)2—0v(t)
(AT

T +0O(k™7)

low(t)]? ~

K— o0
+ oscillatory terms,

) ) v(t)
~ k———+

— 0

0(t)—v(t)?

813 +0(k™®)

(2.2

+ oscillatory terms.

Using this asymptotic form, we obtair8,11] the renor-
malized quantities

m2+%4A2 m%ln(—”=m§, (2.27
Ae (A
A 1- 16qu|n( K) AR, (2.29
and
k?dk 1 0(k-—«)
<‘/’2(t)>R:J4_7T2 |<Pk(t)|2_E+T3K
A A
X mé+§¢2<t>+§<¢2<t>>R)},
(2.29

Mg=mz+ %W(o»a (2.30
=|Mglt, q= k Q _ W (2.30)
T= RIS q_|MR|1 q_|MR|, .
2<r>=L¢2<t> (2.32
7 2|Mg|? ' '

A
92(7)=m[<¢2(t)>R—W2(O)>R], (2(0)=0),

(2.33

A
9=g.2, (2.3
@q(7)=|MgleK(t). (2.39

For simplicity in our numerical calculations later, we will
choose the renormalization scake=|Mg|. The evolution
equations are now written in terms of these dimensionless
variables, in which overdots now stand for derivatives with
respect tor.

B. Unbroken symmetry

In this caseM%=|Mg|?, and in terms of the dimension-
less variables introduced above we find the equations of mo-
tion

n+n+73+gn(n2(7)=0, (2.36

d2
P+q2+ 1+ 9(7)?+92(7) |¢q(1)=0, (2.37

1 .
(0)=—"—, @q(0)=—iQq, (2.39
Pq /_Qq Pq q
7(0)=79, 7(0)=0. (2.39

As mentioned above, the choice 6f, determines the
initial state. We will choose these such that at0 the quan-
tum fluctuations are in the ground state of the oscillators at
the initial time. Recalling that by definitiog>(0)=0, we
choose the dimensionless frequencies to be

Q= a?+1+ 75. (2.40
The Wronskian of two solutions of EqR.37) is given by

while g2 (7) is given by
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_ 2 2 = - -
gE(T)—gL q dq[lq:q(r)l o I (t)= E[akgok(t)+aik<p;‘(t)], (2.49
+ 6’(2__31)[_ e+ A1)+ g3 ()]} with the time—indepenQentreatiorj gnd annihilation opera-
q tors, such thag, annihilates the initial Fock vacuum state.

(2.4  Using the initial conditions on the mode functions, the
Heisenberg field operators are written as

C. Broken symmetry

1 -
In the case of broken symmetiy2=—|M3| and the field (t) =L{’1(t)z//k(0)u(t)=W[ak(t)+a Q)
equations in théN=o limit become K (2.50
n—n+n*+gn(r)E(r)=0, (2.43 W
o M) =t {OTOUD =~/ 5T -7 (1],
g2 a1 n(n)?*+g2(7) |¢q(71)=0, (249 (2.51)
where3,(7) is given in terms of the mode functions,(7) At =U"(tad(t), (2.52

by the same expression of the previous case(E¢2. Now . . . .
the choice of boundary conditions is more subtle. The situa\—"”th U(Y) the time-evolution operator W'thlhe bgundary con-
dition Z(0)=1. The Heisenberg operatogg(t),a E(t) are

tion of interest is when & 77(2)<1, corresponding to the situ- i i ;
; i _related toa, ,a; by a Bogoliubov(canonical transformation
ation where the expectation value rolls down the potential k1 9k |
(see Ref[3] for details.

hill from the origin. The modes with?< 1— 52 are unstable
g . 70 The particle number defined with respect to the initial

and thus do not represent simple harmonic oscillator quanli K is defined i fthe di ionl
tum states. Therefore, onaust choose a different set of 0ock vacuum state Is defined in term of the dimensionless
ayanables introduced above as

boundary conditions for these modes. Our choice will be th
corresponding to the ground state of apright harmonic

. h . s " _ _ Q |<P (7')|2 1
oscillator. This particular initial condition corresponds to a Ng(7)=(3 Tt (1)) =—2 lpq(7)|2+ ASELIN
quench type of situation in which the initial state is evolved 4 Qg 2

in time in an inverted parabolic potentiélor early times (2.53
t>0). Thus we shall use the following initial conditions for

the mode functions: It is this definition of particle number that will be used for

the numerical study.

1 . ) In order to define the particle number with respect to the
<Pq(0)=\/T, @q(0)=—iVQq, (249  adiabatic vacuum state we note that the mode equations
q (2.37 and(2.44 are those of harmonic oscillators with time-
Q= \/m for g2<1— 7}3, (2.46 dependent squared frequencies
wi(1) =02 1+ n*(7) +g3(7) (2.59

Qq= VoZ—1+ 72 for g2>1- 752, 0=zi<1,
(240 with + for the unbroken symmetry case ardfor the bro-
. _ . ) ken symmetry case, respectively. When the frequencies are
along with the initial conditions for the zero mode given by re5| the adiabatic modes can be introduced in the following

Eqg. (2.39. manner:
D. Particle number 1 [t
Although the notion of particle number is ambiguous in a ()= o) ak(t)exp{ - Jowk(t )t }

time-dependent nonequilibrium situation, a suitable defini-
tion can be given with respect to some particular pointer T N ter
state. We consider two particular definitions that are physi- +O‘Tk(t)ex+j ap(t')dt }
cally motivated and relevant as we will see later. The first is
when we define particles with respect to the initial Fock w(D) ¢
vacuum state, while the second corresponds to defining par- I, (t)=—i {ak(t)exr{ _If wk(t’)dt’}
ticles with respect to the adiabatic vacuum state. 2

In the former case we write the spatial Fourier transform

t
of the fluctuating field(x,t) in Eq. (2.9 and its canonical —aTk(t)EXF{i Jowk(t')dt’
momentumlI(x,t) as

(2.595

}, (256

1 where nowe,(t) is a canonical operator that destroys the
. : ! T

)= —[aer(t) +a o ()], 24 adiabatic vacuum state, and is relatedatga, by a Bogo-

i \/5[ <o)+ aei (b)) (249 liubov transformation. This expansion diagonalizes the in-
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stantaneous Hamiltonian in terms of the canonical operators T=(E), Tii :<p>5ii, T0=0. (2.62
a(t),a’(t). The adiabatic particle number is
We want to emphasize that the full evolution of the zero
1 mode plus the back reaction with quantum fluctuations con-
o serves energy. Such is obviousigt the case in most treat-
(2,57  ments of reheating in the literature in which back reaction
effects on the zero mode are neglected. Without energy con-
As mentioned above, the adiabatic particle number caiservation, the quantum fluctuations grow without bound. In
only be defined when the frequencieg(t) are real. Thus, in  cosmological scenarios energy is not conserved but its time
the broken symmetry state they can only be defined for wavdependence is not arbitrary; in a fixed space-time back-
vectors larger than the maximum unstable wave vectorground metric it is determined by the covariant conservation
k>k,=|Mg/V1— 7702_ These adiabatic modes and the corre-of the energy momentum tensor. There again only a full
sponding adiabatic particle number have been used prevaccount of the quantum back reaction will maintain covariant
ously within the nonequilibrium contex8—10] and will be ~ conservation of the energy momentum tensor.
very useful in the analysis of the energy below. Both defini- We can write the integral in Eq2.61) as
ti%r(}s coincide att=0 becausewy(0)=(),. Notice that 1 (A
.Ng.(O)qu(O)ZO due to the.fact that we are ch_oq;mg zero _zf K2d k[|‘Pk(t)|2+wi(t)|§0k(t)|z]
initial temperature.(We considered a nonzero initial tem- 87 Jo
perature in Refd.3,11]).

|‘Pq( 7')|2
()

NEF(7) = (af(D (1)) =257

|‘Pq(7')|2+

1 1A 1
=gyt —zf kd ka)k(t)< N29(t) + —) :
E. Energy and pressure 27 J, 2

The energy momentum tensor for this theory is given by (2.63
TH=gl - 0" d— gt [d,d- 0"d— V(- $)]. (2.59 1 [k .
#7gAd TOTNSD)] fu=g2 | A IaOI+ W20l 0I), (264
Using the largeN factorization, Eqs(2.4—(2.7), (2.9 we
find the energy density operator to be whereA is a spatial upper momentum cutoff, taken to infin-
E 1 1 N ity after renormalization. In the broken symmetry casgis
— = Z2(t) + =m2PA(t) + = p*(1) the contribution to the energy momentum tensor from the
NV 2 2 8 unstable modes with negative squared frequencies,

k2=|Mg|q[1— 73] andN2%(t) is the adiabatic particle num-

+ %} Ek: [ () _i () + 02 (1) (D) _ i ()] ber given by Eq.2.57). For the unbroken symmetry case
ey=0 andk,=0.

A This representation is particularly useful in dealing with
— = {(yA(1))? renormalization of the energy. Since the energy is conserved,
8 a subtraction at=0 suffices to render it finite in terms of the
+linear terms iny+ O(1/N) (2.59  renormalized coupling and mass. Using energy conservation

and the renormalization conditions in the lafgelimit, we
find that the contributiorffukzd kwk(t)Nﬁd(t) is finite. This
also follows from the asymptotic behavia(.26).

In terms of dimensionless quantities, the renormalized en-
Taking the expectation value in the initial state and the infi-ergy density is, after taking — o,
nite volume limit, definings =(E)/NV, and recalling that the

wi(t)=k*+m?+ %¢2(t)+ %(wz(t)>. (2.60

tadpole condition requires that the expectation valuajof 2|Mg|* 7" 7P 5 MA(7)
vanishes, we find the expectation value of the energy tobe &= 5 | 5 T M (D +er——
R
1. 1 A 1 . 1 4
e= §¢2(t)+ §m2¢2(t)+ §¢4(t)+ Wf k’d k[|(pk(t)|2 +—|1— i2< 1/12(0)>R MZ( 7)+ 9 M(7)
ZARRTVIN 8| 4
A

+of(]en(D[2 - g (vAD)2 (2.60 M)A ag MP(7) = 2au[ g5+ MA(7) ]2

It is now straightforward to prove that this bare energy is + MA()In[qy+ Vag+ M*(7)] ]+C, (2.69

conserved using the equations of moti@19—(2.21). It is
important to account for the last term when taking the time g (a
d_envatlv_e b.ecause2 this term cancels a similar term in the SFZEJ qqu[|¢q|2+w§(7)|%|z]
time derivative ofw;(t). 0

Since we consider translationally as well as rotationally "
|fr(;\r/r?1rlant states, the expectation valueTdf” takes the fluid +2g fq qquwq(r)Ngd( 7, (2.66
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M3(1)=x1+%(7)+g3(7), w3(7)=q2+ M3(7), effective potential in the larg® limit, but the termeg de-

(2.67) scribes the profuse particle production via parametric ampli-
fication, the mode functions in the unstable bands give a
where the lower sign and,= y1— 7702 apply to the broken contribution to this term that eventually becomes nonpertur-
symmetry case while the upper sign apg@=0 correspond to  batively large and comparable to the tree level terms as will
the unbroken symmetry case. The constaig chosen such be described in detail below. Clearly, both in the broken and

thate coincides with the classical energy for the zero modeunbroken symmetry cases the effective potential misdles
The quantityM(7) is identified as the effectivedimension-  of the interesting nonperturbative dynamics, that is the expo-
les§ mass for the “pions.” nential growth of quantum fluctuations and the ensuing par-

We find using the renormalized Eq&.36), (2.37), (2.42, ticle production, either associated with unstable bands in the
(2.42—(2.44 that the renormalized energyis indeedcon-  unbroken symmetry case or spinodal instabilities in the bro-
servedboth for unbroken and for broken symmetry. ken symmetry phase.

The pressure is obtained from the spatial components of The expression for the renormalized energy density given
the energy momentum tengaee Eq(2.62] and we find the by Egs.(2.65—(2.67) differs from the effective potential in
expectation value of the pressure dengity (P)/NV to be  several fundamental aspects: it is always real as opposed
given by to the effective potential that becomes complex in the spin-

, odal region(ii) it accounts for particle production and time-
. 1 . dependent phenomena.
p=¢*+ 4_772J k2dk{|@k(t)|2+§|@k(t)|2 —é& The effective potential is a useless tool to study the dy-
(2.69 namics precisely because it misses the profuse particle pro-
duction associated with these dynamical, nonequilibrium and
Using the largek behavior of the mode functior(®.26, we  nonperturbative processes.
find that aside from the time-independent divergence that is
present also in the energy the pressure needs an extra sub-
traction $2/k® compared with the energy. Such a term cor- Il. THE UNBROKEN SYMMETRY CASE
responds to an additive renormalization of the energy- A. Analytic results

momentum tensor of the form . . .
In this section we turn to the analytic treatment of Egs.

STH = A(9** 32— 9#3") 2 (269 (2.36, (2.37, and (2.42 in the unbroken symmetry case.
Our approximations will only be valid in the weak coupling
with A a (divergen} constanf21]. Performing the integra- regime and for times small enough so that the quantum fluc-
tions with a spatial ultraviolet cutoff, and in terms of the tuations, i.e.,g%(7) are not large compared to the “tree
renormalization scal& introduced before, we find level” quantities. We will see that this encompasses the
times in which most of the interesting physics occurs.
SinceX (0)=0, the back-reaction terg (1) is expected
' (2.70 to be small for smallg during an interval, say € 7<7;.
This time 74, to be determined below, determines the rel-
In terms of dimensionless quantities and after subtractingvant time scale for preheating and will be called the pre-
a time-independent quartic divergence, we finally find, setheating time.
ting A=, During the interval of time in which the back-reaction
term g2 (7) can be neglected, we can solve E3.36 in
terms of elliptic functions, with the result

n(7)= 1o cn( 71+ 75,K),

A

K

A=—gln

2

2|Mg|* q : 4
== T leaMI+leq(n 2= 34

%+ fw 2d
- [71 g a*dg

1 0(q—1) d* s
—EM (T)+l—2qrd7_z[77 +oX(n)]| —e.

2.71 k= —10 (3.)

V2(1+ 7h)

At this stage we can recognize why the effective potential
is an irrelevant quantity to study the dynamics. ) _ _

The sum of termsvithout ¢ in Eq. (2.69 for q,=0 are wht_are cn stands for the Jacobi cosme_. Notice th@at) has
identified with the effective potential in this approximation Period 4w=4K(k)/y1+ ng, whereK(k) is the complete el-
for a time_independenb;gz_ These arise from the “zero ||pt|C integral of first kind. In addition we note that since
point” energy of the oscillators with time-dependent fre-
quency in Eq(2.63.

In the broken symmetry case the tewp describes the
dynamics of the spinodal instabilitigd 1] since the mode
functions will grow in time. Ignoring these instabilities and if we neglect the back reaction in the mode equations, the
setting g,=0, as is done in a calculation of the effective “potential” [—1— 7?(7)] is periodic with period 2. In-
potential, result in an imaginary part. In the unbroken sym-erting this form for»(7) in Eq. (2.37) and neglecting
metry (g,=0) case the sum of terms withost gives the g3 (7) yields

n(7+2w)=—1(7), (3.2
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d? 94(0)9,(v+ 7/2w)
SO L+ ST noz,k)} oq(1)=0. Uq(r)=exd — 71+ 722K (K)v)] ‘1‘91(0)1;:( T/;w;" ,
(3.3 (3.10

This is the Lameequation for a particular value of the coef- where v is_a function of g in the forbidden band
ficients that makes it solvable in terms of Jacobi functiond=0q=< 770/\/5 defined by
[22]. We summarize here the results for the mode functions.

The derivations are given in the Appendix. _ "o 2K(K)o k). O<p< 1 31
Since the coefficients of E¢3.3) are periodic with period g \/Ecn( (K)v.k), v=2 313

2w, the mode functions can be chosen to be quasiperiodic ) . .

(Floquet-type with quasiperiod 2: andZ(u) is the Jacobi zeta functid24]. It can be expanded

in series as
Ug(7+2w)=€eF@Uy(7), (3.9 .
q"

where the Floquet indicgs(q) are independent of. In the 2 K(k)Z(ZK(k)v)_A'anl 1—&2“S'n(2nm))’
allowed zonesF(q) is a real number and the functions are (3.12
bounded with a constant maximum amplitude. In the forbid- R ) ]
den zones(q) has a nonzero imaginary part and the ampli-where g=exg —#K'(k)/K(k)]. The Jacobid functions can
tude of the solutions either grows or decreases exponentiallj?€ expanded in series 5]

Obviously, the Floquet modds,(7) cannot obey in gen- %
eral the initial conditions given by E¢2.20 and the proper S (vla)=2 — )+ 1= 1276y 2 — 1
mode functions with these initial conditions will be obtained 1(0]&) ngl (=™ sin( )T,

as linear combinations of the Floquet solutions. We normal-
ize the Flogquet solutions as

]

Sa(v|§)=1+2, (-1)"§"cog2nmv). (3.13
Uq4(0)=1. (3.5 =t
We explicitly see in Eq(3.10 thatU(7) factorizes into

a real exponential with an exponent linear7rand an anti-
periodic function ofr with period 2». Recall that

We chooseUy(7) and Uy(—7) as an independent set of
solutions of the second order differential £8.3). It follows
from Eq.(3.4) thatUy(— 7) has—F(q) as its Floquet index.

We can now express the modeg(7) with the proper I (X+1)=—9,(X), x+1)=+I,x). (3.14
boundary conditiongsee Eq.(2.20] as the following linear
combinations olJ(7) andUy(—7): We see that the solutiod ,(7) decreases withr. The other

independent solutiok ,(— 7) grows with 7.
The Floquet indices can be read comparing E)4),
) (3.10, and(3.14),

(3.6 F(q)=2iK(k)Z(2K(K)v)= . (3.15

210,
1= T Va7

1+ qu)u

1
(Pq(T)_ 2\/Q_q

where), is the Wronskian of the two Floquet solutions Uq(7) turns out to be a real function in the forbidden
. band. It has real zeros at
We=W[U JUg(—7)]=—2U4(0). 3.
o= WU4(7).Ug(=7)] al0) S r=20(n—v), nez, (3.16
Equation (3.3) corresponds to a Schiimger-like equation
with a one-zone potentidR3]. We find two allowed bands
andtwo forbidden bands. The allowed bands correspond to r=20n;+(2n,+ o', NynyeZ 3.17)

and complex poles at

2 2

wherew’ is the complex period of the Jacobi functions. No-
—1—%sq2s0 and%Sq2S+00, (3.9 * pexp

tice that the pole positions argq independent, and that
Uq(7) becomes an antiperiodic function on the borders of
and the forbidden bands to this forbidden bandg=0 andq= 7,/+/2. We find, using Eq.
(3.10 and Ref.[24],

2 2
7 Y
—ocsqzs—1—70 and 0sq2s7°. (3.9 Uq(7)]gq=0=cn(7y1+ 75,k) (3.19
. . . . 1
The last forbidden band is fopositive ¢ and hence will lim [vUq(7)]= —o—snm/1+ 72k), (3.19
contribute to the exponential growth of the fluctuation func- . ,70,\37[ o) m95(0) " 7o

tion X (7).

The mode functions can be written explicitly in terms of respectively.
Jacobid functions for each band. We find, for the forbidden  The functionsU(7) transform under complex conjuga-
band, tion in the forbidden band as
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[Ug(n)]*=Uq(7). (3.20

For the allowed band;;ol\/isqsoo, we find for the
mode functions

_ T ﬁi(.K’(k) )
Uq(T)—eX _Zﬁ_l | K(k)v

iK'(k) 7
K’ (k)

o (3.21)
ﬁ“(' K(K) ”)ﬁ“(ﬂ)

X

where

d
q=n5+1 £(2K'(k)v,k'), (3.22

0<U<1 0=(q= 70
== \E, = =

= (3.23

We see thaty(7) in this allowed band factorizes into a
phase proportional te and a complex periodic function with

period 2w. This functionU () hasno real zerosn 7 except
whenq is at the lower bordeq= 7,/+2 . Its poles inr are
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11+ -(1+ gy
2 (14 )V (1+ /)M

(3.28

The quantityh can be computed and is a small number: for
O0=ny=<w, we find 0sA=<0.04321%8.... Therefore, to
very good approximation, with an error smaller than
~10"7, we may use

L L (L)Y = (14 pg2)™

2 (1 ) (1+ i) 7 3.29

We find in the forbidden band from E¢B.10 and[24],

Uq(7) = exp{ — 471+ ngasin(2mv)[ 1+ 20 (cos2mv — 2)

I
v+ —

~ sinm
2w

+0(6)1} g
1- 2&c05{ ?)

X[1+0(%)],

sinmv

(3.30

where now we can relate to g in the simpler form

q independent and they are the same as those in the forbid-;— % cosmu[ 1— 4§sirPmo + 4g2sirao (1 + 4coda)

den bandsee Eq(3.17)].

The Floquet indices can be read off by comparing Egs.

(3.4), (3.19, and(3.21),

01 [ K'(k)
F(q)=|ﬂ—l(| K(K) v).

These indices are real in the allowed band.

(3.29

The functionsU(7) transform under complex conjuga-

tion in the allowed band as

[Ug(D]*=Uq(— 7). (3.29

+0(6%)1, (3.39
which makes it more convenient to writv) in the inte-
grals, and

ar ~ ~ ~
5= Vi+95[1-43+1262+0(9%], (3.32

where Osv<3.
The Floquet indices can now be written in a very compact
form amenable for analytical estimates

Obviously these modes will give contributions to the fluc-
tuation,(7) which are always bounded in time and at long
times will be subdominant with respect to the contributions
of the modes in the forbidden band that grow exponentially.

The form of these functions is rather complicated, and it
is useful to find convenient approximations of them for cal-
culational convenience.

The expansion of thed functions in powers of
g=exd — 7K’ (K)/K(k)] converges quite rapidly in our case.
Since 0<k=<1/\2 [see Eq(3.1)], we have

F(q)=4imqsin(27v)[ 1+ 2qcos2rv + O(G?) ]+ .
(3.33

In this approximation the zero moda.1) becomes

maT

This expression is very illuminating because we find that
a Mathieu equation approximation, based on the first term of
Eq. (3.34) to the evolution of the mode functions lievera
good approximation. The reason for this is that the second
and higher order terms are of the same order as the secular
terms in the solution which after resummation lead to the
identification of the unstable bands. In fact, whereas the
Mathieu equation ha@finitely manyforbidden bands, the
exact equation has onlyneforbidden band. Even for small

+0(g%) |. (3.39

~ . mT
1—4qsm2<z

0=qg<e "=0.043213.... (3.2
g can be computed with high precision from the sef2s]
q=A+2\5+ 15\ %+ 1513+ 170+ - - -

where(not to be confused with the coupling consjant

)\21 1- \/W 39 g, the Mathieu equation is not a good approximation to the
T2 1+k" (327 Lame equation[29].

From Eq.(3.21) analogous formulas can be obtained for

We find from Eq.(3.2) the allowed band
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imTT 7K' (K) 1-2q g2 () is of the same order of the classical contributions to
Uq(7)=exp — 5—cot v the equations of motion. In order to obtain an estimate for
2w K(k) . T . .
1-2 the latter, we consider the average over a period of the clas-
sical zero mode:

1—2&00{%’—2ivln€] , , [2E(K)
_ _ a2 1+(n°(1))=(1+np) ——1} (3.40
1-2qcosh2vinQ) [1+0(aD], (339 K(k)
where which yields for small and large initial amplitudes the results
/ 772+ 2)1/4 l 2,\ “2 I ,\) )
~ +2qcos n 7
o o (g |\ g | thrdeoshzving () ~ 2, (3.4
K(k) ° 700
2
+O(4)}- (3.39 (7A(7)) ~ 0.458...72. (3.42
Here, o
1 7o Therefore the average over a period #f(7) is to a very
O<v=<s3, ”quﬁ- good approximation;3/2 for all initial amplitudes. This re-
sult provides an estimate for the preheating time seale
Note that Eq.(3.32 holds in all bands. this occurs whemy2 (71)~ (1+ 7o 2/2). Furthermore, at long

We can now estimate the size and growth of the quantunimes [but beforeg2~(1+ 770/2)] we need only keep the
fluctuations, at least for relatively short times and weak couexponentially growing modes ang(7) can be approxi-
plings. For small times & r<7; (to be determined consis- mated by
tently latey and small couplingy<1, we can safely neglect

the back-reaction terrg2(7) in Eq. (2.37) and express the g (702 1 032
modeseq(7) in terms of the functiond) () andU,(—7); O sl 7) = ZJ qquQ— 1+ W—ghuq( - 7|2
for this, however, we need the Wronskian, which in the for- 0 q q
bidden band is found to be given by (343
1 d 94(v) _ cnd Moreover, choosingr such that the oscillatory factors in
Wq__aﬁlnm(v) =-2 1+’70 (ZUK(k) k). Uq(—7) attain the value 1the envelopg and using Eq.

(3.397  (3.10 we finally obtain:

In terms of the variabley? this becomes, after using Eq. 1 3 1 Qz
no/N 2
(311), Eest_en&T)zzJo q dqQ 1+qu
2 2
W= 24 \/%+1+q2 / T (338 xexi2r1+ n3Z(2K(K)v K], (3.44
This Wronskian is regular and nonzero except at the fouwvherev depends on the integration variable through Eq.
borders of the bands. (3.1D.
We find from Eq.(3.6) that|<pq(7')|2 is given by The Jacobk function can be accurately represented using
Eqg.(3.12
1
2__ _ 2
|#q(7)] _4Qq{[uq(7)+uq( 7] Z(2K (K)v,K)=4 gsin2arv[ 1— 2 §(2— cos2mv)]+O(§?),
2 (3.49

40)
a _ 12
" W qz [Uo(n)=Uqg(=n]", (3:39 where we recall thafj<0.0433.

The integral(3.44) will be dominated by the poing that

where we took into account Eq3.20 and (3.29. Notice  maximizes the coefficient of in the exponent. This happens
that both terms in théRHS) of Eq. (3.39 are real and posi- atq=q;,v=v;, where

tive for realq. For very weak coupling and after renormal-

ization, the contribution tg2 (7) from the stable bands will _1 _A n2

always be perturbatively small, while the contribution from 1=z 70(1—Q)+0O(q), (3.46
the modes in the unstable band will grow exponentially in . . <3

time eventually yielding a nonperturbatively large contribu- Z(2K(k)vy,k)=4q(1-40q)+0O(q). (3.47)
tion. Thus these are the only important modes for the fluc-

tuations and the back reaction. An estimate of the preheating We can compute the integréB.44 by saddle point ap-
time scale can be obtained by looking for the time whenproximation to find
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TABLE I. Quantum fluctuation& ()~ 1/N\/7€®” during the preheating period.
7o q B N
1 0.01797238. .. 0.188716 . .. 37B...
3 0.0372955% . . . 0.802754 . .. 0.623...
4 0.0396657 . . . 1.100774 . .. 04...
No—® 0.04321398 . .. 0.28595318,+ O( 7, ) 3.147p, 31+ 0(74 )]
49(21 We notice that the limiting values oB and N for
q§ 1+ ! no— Yyield a very good approximation even foy,~
A . Namely,
Sestend )= exA8 71+ n5a(1-43)]
’ S(rm /B (3.53
oo T)~ —_— , .
x | doext - 6ar(a- a2 TF mg N.
X (1—28)][1+0(d)] with the asymptotic values given by
407 B.,=8e "(1—4e ™)[1+0(7y?)]
S ml 1+
7o Wy 2 0.28598 . ..[1+O(532)] (3.54
~ = V. P 770 y .
= ——ex{ 8 71+ 7§
6A(1+ né)l"vr_qﬂql & o
. 1 »=—=\5e" "[1+0(75y?)]=3.147 .. .[1+O(79)].
«(1-48)] 1+0 _” (3.48 J_f [ o)1= -.[1+0(752)]
T (3.55

We can relat&] to 5, using Eq.(3.29, and we have used the
small g expansion

Z"(2K(k)vy,k)=—169(1—-40)+0(9%, (3.49
dgj 1 - a2
5 ——Z(l—QQ)'FO(q ) (3.5@

U1

In summary, during the preheating time where parametrlé

resonance is importan, .i.onf7) Can be represented to a
very good approximation by the formula

1 e 35
N\/;e (3.5

whereB andN are functions ofpq given by

2est—en\( T)=

B=8 1+ 750(1-48)+0(8%),

64 O 75 YNGQ,,
o2 407,
1+
d

(4+372)\J4+57;

770(1+ )3/4

3
7o

[1+0(Q)], (352

-G

and Eq.(3.29 givesq as a function ofp,. This is one of the
main results of this work.

We display in Table | some relevant valuesmB, and
N as functions ofy,.

These rather simple expressidss1)—(3.55 allow us to
perform analytic estimates with great accuracy and constitute
one of our main analytic results. The accuracy of this result
will be discussed below in connection with the full numerical
analysis including back reaction.

Using this estimate for the back-reaction term, we can
now estimate the value of the preheating time scaleat
which the back reaction becomes comparable to the classical
erms in the differential equations. Such a time is defined by
2(7-1) (1+ 770/2) From the results presented above, we

1 N(1+5%2)

~—|ln———
m g\VB

B

The time interval fromr=0 to 7~ 7, is when most of the
particle production takes place. After~r; the quantum
fluctuation becomes large enough to shutoff the growth of
the modes and particle production essentially stops. We will
compare these results to our numerical analysis below.

We can now use our analytic results to study the different
contributions to the energy and pressure coming from the
zero mode and the quantum fluctuations and begin by ana-
lyzing the contribution to the energy and pressure, from
the zero modey(7).

The dimensionless energy and press(rermalized by
the factor EM‘,QI)\R) are given by the expressions

(3.59

eo( )= 3 [P+ n(1)2+3 n(1)4],

po(7) =3[ 7°— n(7)?— § n(1)*]. (357
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0.25 T T T T T

0.2

0.15
&
=~
A FIG. 1. The ratio{po)/e, for zero mode vs
§ 0.1 Areo/2|Mgl|* for the unbroken symmetry case.
0.05
0
&g
When the back-reaction terg® (1) can be neglected, we 1 0.609... 4
can use Eq(3.1) as a good approximation tg(7). In this (Po) ~ €0 3” TJFO(% )| (3.63
approximation, 0% 0

Thus, we see that for small amplitudes the zero-mode
stress energy, averaged over an oscillation period, behaves as
dust while for large amplitudes, the behavior is that of a
j— 2 2 2 1
Po(7) + €0= np(1+ 7g) S dP(7y1+70.K). (358 r4gjiation fluid. The ratio< Po>/e for zero mode v is

_ shown in Fig. 1.
The zero mode energy is conserved and the pressure oscil- The contribution from thé=0 modes originates in the

lates between plus and mineg with period 2o. quantum fluctuations during the the stage of parametric am-
Averagingpg(7) over one period yields

2 2
€=3 o[ 1+ 3 7],

plification.
1 2 Since we have fluid behavior, we can define an effective
(po)= 2_] d7po(7). (3.59 (time-dependentpolytropic indexy(7) as
wJo
(1)
Inserting Eq.(3.58 into Eq. (3.59 yields[26] y(1)= pTJrl, (3.69
1, 1, 2 | EK)
(Po)=— g 70|15 m|+3(1+mn)|1- Kk |" where renormalized quantities are understood throughout.

(3.60 Within a cosmological setting wheneve(7) reaches a con-
stant value, such equation of state implies a scale factor
wherek is given by Eq.(3.1). R(7)=Rp7”'?. _ ) ) )
(po) vanishes for smal, faster thane,, .In .the case being studied here, that of Mmkqu;kl space,
¢ is time independent and hence equal to the initial energy
(3.61) density(divided byN and restoring prefactorsvhich after a

~ 1.4 6
{Po) 22 0t O70), suitable choice of the constafitis given by

70—0
so that the zero mode contribution to the equation of state is 2Mgl* (1, 1,
that of dust for smallp,. For large 7, we find from Eq. £= s |27 1+5m|(- (3.69

(3.60,

1 1 2 E(l/\/i) . A; argued before, for weak c;oupling the important con-
(po) ~ =7+ 77%{—— - _} +0(1), tribution to the quantum fluctuations comes from the modes
—— 2 3K(1W2) in unstable bands, since these grow exponentially in time and
(3.62  give rise to a nonperturbatively large contribution. Thus, we
concentrate only on these modes in calculating the pressure.
where 1—2E(1/y/2)/K(1//2)=0.014% . ... The equation The contribution of the forbidden band to the renormal-
of state approaches that of radiation figy— o°: ized p(7) + & can be written as
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2|Mgl* 701V2 ) stage. In terms of dimensionless quantities, the particle num-
[p(7)+8]unstz)\—[gf g°dg| |q(7)[? ber, defined with respect to the initial Fock vacuum state, is
R 0 given by Eq.(2.53.
1 This particle number will only obtain a significant contri-
+ §C12|<Pq(7)|2 ] (3.66  bution from the unstable modes in the forbidden band where

to leading order iy we can approximate(r) and ¢q(r)
After renormalization, the terms that we have neglected ifPy its exponentially growing piecdsee Eq(3.39], as

this approximation are perturbatively smdbf order g)

whereas the terms inside the brackets eventually become of 2

order 1(comparable to the tree level contributjoilVe now leq(n)*= 49,

only keep the exponentially growing pieces in the mode

functions ¢4(7) and ¢q(r) since these will dominate the ) , ) T ) .

contribution to the pressure. This is simplified considerably |@q(7)[?=(1+ ng)cotd’| | v— Z) leq(7)]“+0(0).

by writing, to leading order i, (3.74

r
V1+ 77000{ w(v— 2w

2

14q
97
q

Ug(—=7I% (373

+O((q))_ The total number of produced particlBg 7) per volume

¢q(7)=¢q(7) IMg|? is given by

(3.67
3

Averaging over a period of oscillation yields N= |,I\\I/I(Fj|)35 ((2177q)3 Ng(7). (3.79

2|Mgl*[g [m/2g°dq . _ .

[D(T)+8]unst=T 2 @n? The asymptotic behaviof2.26) ensures that this integral
R 0 converges.
1 4 g Following the same steps as in E¢B.44 and(3.68), we
XZQqsian; 1+ Wﬁ} (3.68 find
1 1+ 73
xXexg27y1+ W(%Z(ZK(k)Uak)] N(T)unstzgzzest—en\w') Q—+ qu
a1

1
X[ 1+ 3+ §q2

]_ (3.69 1 4+ 37
= )\_R m[gzest-en& 1], (3.76

where we used E¢(3.46 and 3. .cnf7) is given by the
simple formula(3.51). Notice that by the end of the preheat-
13 ing stage, whemg3(7)~1+ 7;%/2 the total number of par-
1+ 1—2773) , ticles produced is nonperturbatively large, both in the ampli-
tude as well as in the coupling

This integral is similar to the one in E43.44 and we
find that they are proportional in the saddle point approxima
tion. In fact,

2|Mgl*
[P(7)+&]uns= N
R

92 est-en{ )

(3.70
whereS oqenf 7) is given by Eq.(3.51). 1 (44 293)(1+ 73/2)
The effective polytropic index(7) is: Noor= )\_R \/4+5m2) : (3.77)
12+ 137} o :
Y1) =02 estend T o7 - (3.70 The total number oaidiabatic particles can also be com-
370(mp+2) puted in a similar manner with a very similar result insofar as

the nonperturbative form in terms of coupling and initial

Whengs esrené 71) ~ 1+ 75/2, i.e., at the end of the preheat- amplitude.

ing phase,y(7) is given by

12+ 1372 B. Numerical results

Yert™ 675 3.72 We now evolve our equations for the zero and nonzero

modes numerically, including the effects of back reaction.

We note here that for very large, the effective polytropic We will see that up to the preheating time, our analytic re-
index is yer=13/6~0(1). It is clear then that the physics sults agree extremely well with the full numerical evolution.
can be interpreted in terms of two fluids, one the contribution The procedure used was to solve E(36) and(2.37)
from the zero mode and the other from the fluctuations, eachith the initial conditions(2.38—(2.40 and (2.42 using a
with an equation of state that is neither that of dust nor offourth order Runge-Kutta algorithm for the differential equa-
radiation, but described in terms of an effective polytropiction and an 11-point Newton-Cotes integrator to compute the
index. fluctuation integrals. We tested the cutoff sensitivity by run-

We can now use our approximations to obtain an estimataing our code for cutoffsA/|Mg|=100,70,50,20 and for
for the number of particles produced during the preheatingery small couplings(which is the case of interestWe
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FIG. 2. (a) 7(7) vs 7 for the unbroken symmetry case wiify=4, g= 10" *2 (b) g=(r) for the same values of the parameters a&jn
The agreement with the analytic prediction is to within 5% fet £<30. (c) g\ 7) for the same parameters as(@. (d) gN,(7) vsq for
7=40 for the same values of parameters again (€) gNq(7) vs. g for 7=120 for the same values of parameters agn(f) gNy(7) vs
q for =200 for the same values of parameters agan (g) (Ag/2|Mg|*)p(7) for the same values of the parameters agan (h)
Asymptotically the average over a period giyes~e/3.

found no appreciable cutoff dependence. The typical numerigs.(7)~1+ 72/2 as the evolution ofy(7) begins to damp
cal error both in the differential equations and the integrals isut. This happens for~25, in excellent agreement with the
less than one part in 20 analytic prediction given by Eq3.56) 7;=26.2 . . ., thdif-
Figure 2a) shows#(7) vs 7 for ,=4.0,g=10 12 For  ference between the analytic estimate ¥qrr) given by Eq.
this weak coupling, the effect of back reaction is negligible(3.53 and the numerical result is less than 5% in the range
for a long time, allowing several undamped oscillations of0< 7<30. Figure 2c) showsg\{(7) vs r and we see that the
the zero mode. Figure(B®) showsgs,(7) vs 7. It can be seen analytic expressiori3.77) gives an approximate estimation
that the back reaction becomes important whemgN;,=74.6... for thefinal number of produced particles.
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Figures 2d)—2(f), showgNy(7) for 7=40,120,200; We \here we have made explicit that we have neglected terms of
see that the prediction of the width of the unstable bancbrderg in Egs. (3.79—(3.79. The terms multiplied by in
0<q<7o/2 is excellent and is valid even for very long Egs.(3.78 and(3.79 become of order 1 during the preheat-
times beyond the regime of validity of the small time, Weaking stage. For the parameters used in Figs. 2, we have
coupling approximation. However, we see that the peak beghecked numerically that the ener¢§.78 is conserved to
comes higher, narrower and moves towagds0.5 as ime  grder g within our numerical error. Figure(g) shows the
evolves beyondr;. This feature persists in all numerical pressure M g|*p(7)/\g Vs 7. Initially, p(0)=—& (vacuum

studies of the unbroken phase that we have carried out; theg@yminateg but at the end of preheating the equation of state
changes in the peak width, height, and position are clearly §ocomes almost that of radiatiqn, = & /3.

result of back-reaction effects. We have searched for un- g, very small coupling g~10"1?), the back reaction
stable bands for €q<20 and we only found one band pre- gpts off suddenly the particle production at the end of the
cisely in the region predicted by the analytic estimate. A”preheating[see Fig. 20)]. Later on ¢ larger than 100 for
throughout the evolutiorthere is only one unstable band g~10"13) the time evolution is periodic in a very good
The band develops some structure with the height, positiory,roximation. That is, this nonlinear system exhibits a lim-

and width of the peak varying at long times but no otheriing cycle behavior. The modulus of themodes does not

unstable bands develop and the width of the band remairbc,roW in time and no particle production takes place. This

constant. For vaIH%s af outside the unstable band we find (o5 ys that no forbidden bands are presentgfor 0 in the
typically gNg<<10" - at all times. This is a remarkable and |56 time regime.

unexpected feature. We have numerically studied several different values of

Obviously, this is very different from the band structure ,, o finding the same qualitative behavior for the evolution
of a Mathieu equation. The Mathieu equation gives rise t0 an¢ the zero mode, particle production, and pressure. In all

infinite number of narrowing bands, so that quantitative est,5es we have found remarkable agreentahtmost 5%

timates of particle production, etc. using the Mathieu equayitterence with the analytical predictions in the time regime
tion approximation would be gross misrepresentations of th?or which 0<g3(r)<1. The asymptotic value of the pres-

actual dynamics, with discrepancies that are nonperturbas e - however, only becomes consistent with a radiation
tively large when the back reaction becomes importd6l.  yominated case for large initial amplitudes. For smaller am-
Since particle production essentially happens in the forbid- litudes 7,=1 we find that asymptotically the polytropic

d_en bands,_ the quantitative_ p_re_dictions obtained _from dex is smaller than 4/3. This asymptotic behavior is be-
single forbbiden band and an infinite number, as predicted b%nd the regime of validity of the approximations in the

WKB or Mathieu equation analysis, will yield different analytic treatment and must be studied numerically. This

physics. : . L . polytropic index depends crucially on the band structure be-
We have carrle_d the numerical e_volutlon mclt_;dmg Only_cause most of the contribution comes from the unstable
the wave vectors in the unstable region and we find that th'?hodes

region ofg wave vectors is the most relevant for the numer-

ics. Even using a cutoff as low ag.=4 in this case gives

results that are numerically indistinguishable from those ob- IV. THE BROKEN SYMMETRY CASE
tained with much larger cutoffg,=70-100. The occupation
number of modes outside the unstable bands very quickly
becomes negligibly small and far~4 it is already of the As in the unbroken case, fog<l we can neglect
same order of magnitude as the numerical erct0 °. g2(7) in Eq. (2.43 until a time 7, at which point the fluc-
Clearly, this is a feature of the weak coupling case undetuations have grown to be comparable to the ‘tree level
consideration. Keeping only the contribution of the modes interms.

the unstable band, the energy and pressure can be written asWe then find, for 6= o<1,

A. Analytic results
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7o

77( T): 772 H
dn( T\/l— 7°k)
1_
k= 7o (4.1)
1- 0
2

Notice thaty(7) has period 2=2K(k)/\1— 7;02/2. The el-
liptic modulusk is given by Eq.(4.1).
For 1< 5,<+/2 we find

(1) =10 dn(T70//2 K),
k=v2(1—1n0"9).

This solution follows by shifting Eq(4.1) by a half-period
and changing 7;(2)%2— 7;3. It has a period
20=2./2/5,K(K). For ny—1, 2w— w2 and the oscilla-
tion amplitude vanishes, since=1 is a minimum of the
classical potential.

For 77> 2 we obtain

7(7)= 1o cn(\ 75— 17,K),

k= —T0 4.3

V2(m0°—1)

This solution has A;E4K(k)/\/7;02— 1 as period.

The solutions forp,<+2 and 5> /2 are qualitatively
different since in the second casg ) oscillates over the
two minima = *1. In the limiting casern,= 2 these so-
lutions degenerate into the instanton solution

V2

7(7)= coshr’

4.2)

4.9

and the period becomes infinite.
Inserting this form fory(7) in Eq. (2.44 and neglecting
g2 (7) yields, for O< o<1,

d2

W-qu—l-"

2
Mo

2
T\/l— ?O,k

¢q(7)=0.
dr?

(4.9

This is again a Lamequation for a one-zone potential and
can also be solved in closed form in terms of Jacobi func-

7585
7]2 7]2
—0=<q?<0 and70$q2s1—70. 4.7

The last forbidden band exists for positigg and hence
contributes to the growth at. (7).

The Floquet solutions obey Eqg&.4) and (3.5 and the
modes ¢4(7) can be expressed in terms &f,(7) and
Uqy(—7) following Eg. (3.6).

It is useful to write the solutiotd(7) in terms of Jacobi
9 functions. For the forbidden bangf/2<q?<1— 73/2 af-
ter some calculatiofisee the Appendix

r
vt —

¥3(0)d, o

Uq(m)=exf — 7y1— 7§/2Z(2K (k)v)] :

192@)"%(%)
(4.8

where O<v <3 is related withq through

2

q2:1_%—(1—7]g)snz(2 K(k)v,k), (4.9

andk is a function ofz, as defined by Eq4.1).

We see explicitly here thatl,(7) factorizes into a real
exponential with an exponent linear inand an antiperiodic
function of 7 with period 2w.

The Floquet indices for this forbidden band are given by

F(q)=2iK (K)Z@2K(K)v)* . (4.10

For the allowed band 4 73/2<q?< +, we find for the
modes,

ia+ T
03<0)63( — )

4 30 o 5]

(4.11

Ug(r)= exp[ —( T/2w)z91/191( %) }

whereq and a are related by

N

2

q= S’-(a\/l_z

tions. We summarize here the results for the mode functions,

with the derivations again given in the Appendix.
As for unbroken symmetry case, there & allowed

bands andtwo forbidden bands. The allowed bands for

0=<7y=<1 correspond to

2

Osq%% and 1—%<q2<+oo, (4.6)

and the forbidden bands to

with K’(k)/\/l—nozzazo. The Floquet indices for this
first allowed band are given by

__ﬁi(ia
F(q)_'ﬂ_l Z) (4.12

Analogous expressions hold in the other allowed band,

0=<qg?< 53/2:
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V3(0) Fa| —
(4 13
Here, q=7o/\2;sn(a\1—52/2,k’) and K’(k)/\1- 72

a
Uq(T)ZEX[{ (T/2a))192/192< ”

=a=0, and the Floquet indices for this band are given by
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1‘}3(v|d)=1+221 q"“cod 2mno), (4.20
n=

V4(0]0) = F3(v+3]0), (4.21)

we can derive expressions for the mode functibhg 7)
valid for small %:

Uqy(7)=exd — rtanfu(1+ 75/8)]

V(i 7]3
F(a)=i 3, 20 (4.14 1— —g-coshucoshiu+217)
X 2 [1+0(7p)].
For no=~1 the situation is very similar to the unbroken 1— @cosm
symmetry case; the zero mode oscillates quasiperiodically 8
around the minimum of the tree level potential. There are (4.22

effects from the curvature of the potential, but the dynamics

can be analyzed in the same manner as in the unbroken casgereu is related withq through Eq.(4.18. We see that the

with similar conclusions and will not be repeated here.
The caseny<1 is especially interesting3] for broken
symmetry because of new and interesting phenonij&fa

function U,(—7) grows with 7 almost ase” for q near the
lower border of the forbidden bang=A. This fast growth
can be interpreted as the joint effect of the nonperiodic ex-

that have been recently associated with symmetry restoratiofonential factor in Eq(4.8) and the growth of the periodic

[1,13,17,18
In this limit, the elliptic modulusk [see Eq.(4.1)] ap-
proaches unity and th@eal) period 20 grows as

+0(73). (4.15

2
2w22K(k)+O(77(2)):2|n(\{7i—
0

In this limit, both the potential in Eq(4.5 and the mode

¥ functions. Since the real period is here of the ordethe

two effects cannot be separated. The unstable growth for
7<w also reflects the spinodal instabilities associated with
phase separatioi1].

In this case, there is a range of parameters for which the
quantum fluctuations grow to become comparable to the tree
level contribution within just one or very few periods. The
expression(4.22 determines thak (7)~e?" from the con-

function (4.8) can be approximated by hyperbolic functions tributions of modes near the lower edge of the band. The

[24]:
1 2
5 = coshr+O(77), (4.19
dn(r\/l—%,k
Z(u)—tath—AJrO(r;O) (4.1
where
B (PR B L
coshu ﬂ%(q q? 5> |[1+0(70)]
AEIﬂ(EZ),
7o
O<u=A (4.18

Using the imaginary Jacobi transformatifz#],

. [K® )
Padvld) = \ig gy X[ (K/K(K)]o?)

K(k
X194’3 _|(—,)U

d>, (4.19

— K (K')IK(K)

whereg=e q=e" "KW/K(K) and the series ex-

pansiong 24]

condition for the quantum fluctuations to become of order 1
within just one period of the elliptic function ige**~1
which leads to the conclusion that fg0)<g'* the quan-
tum fluctuations grow very large before the zero mode can
actually execute a single oscillation. In such a situation an
analysis in terms of Floquétuasiperiodit solutions is not
correct because the back reaction prevents the zero mode
from oscillating enough times for periodicity to be a reason-
able approximation.

We now analyze the behavior of the pressure for the zero
mode to compare to the previous case. In the approximation
where Eqs(4.1)—(4.3 hold and adjusting the constafitin
the definition of the energy, we have

€0= %(77%_ 1)21

Po(7)=— o+ 7(7)2. (4.23

Inserting Eqs(4.1)—(4.3) in Eq. (4.23 yields

1—8srfcr?

=1

po(7)=— e[ 1—8srferf(77/4/2 k)1,

Po(7) = — o[ 1— 8k2srRdr?(7y/ 72— 1,k)1.
(4.24

Po(7)=—¢€

X| (7+K)

1<mo=<+2:
no=2:
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Notice that the functional form of the elliptic moduldsas a  Figure 3 showspg)/eq VS &q.

function of 7, is different in each intervélsee Eqs(4.1)— As mentioned before, we expect that fgg<<1 the con-
(4.39)]. clusion will be modified dramatically by the quantum correc-
Let us now average the pressure over a period as in Edions.
(3.59. We find
8[k2—2 E(k) 1 B. Numerical results
<p0>260[ 5[ K2 ( - K(k)) e ] In the regionny,~1 the analytic estimates are a good

approximation for large times and weak couplings. We have
for 0< pp< V2, studied numerically many different cases witg=0.5 and
weak coupling and confirmed the validity of the analytic
estimates. These cases are qualitatively similar to the unbro-
- 1]f0f 7= V2. ken symmetry case with almost undamped oscillations for a
(4.25 long time compatible with the weak coupling approximation
and whengX (7) grows by parametric amplification to be of
The dimensionless energy, tends to 1/4 both as order 1 with a consequently large number of produced par-
70— 0 and7,— 2, in both cases we find using E@t.25 ticles and the evolution of the zero mode damps out.
However, as argued above, fofy<1 the analytic ap-
(po) 16 L proximation will not be very reliable because the quantum
5_0_>_ - 3In| 3 — €| 0o~ 7). 426 fyctuations grow on a time scale of a period or(depend-
‘"0 ing on the coupling and the back-reaction term cannot be
neglected. Thus, this region needs to be studied numerically.
We numerically solved Eq92.43 and (2.44) with the
initial conditions (2.42), (2.45—(2.47). The numerical rou-

8 E(k)
<po>:€o( 5{(1—2k2)( 1- m) k?

This result is recognized as vacuum behavior in this limit.
For no—1, Eq.(4.25 yields

(po) tines are the same as in the unbroken symmetry case. Again
2
o O(7mo— 1)~ (427 we tested cutoffs\/|Mg|=100,70,50,20 and for very small
70—t couplings (which is the case of interest,

9=10"°%...g=10""9 we found no appreciable cutoff de-
OIDendence, with results that are numerically indistinguishable
even for cutoffs as small ag.~2. The typical numerical
error both in the differential equations and the integrals are
the same as in the unbroken case, less than one parfin 10
We begin the numerical study by considering first the
case of very small coupling angy<<1; later we will deal

That is a dust-type behavior, which is consistent with th
small amplitude limit of the unbroken symmetry case studie
before.

Finally, for ny— <, when the zero mode is released from
high up the potential hill, we find that the pressure ap-
proaches radiation behavi@from above

(po) 1 1 1\ E(1/\2)] 1 1 with the case of larger couplings and initial values of the
i §+ 3 ﬁ—1+(2—ﬁ) m —2+O(—4 zero mode. Figure (4 shows 5(7) vs 7 for 7,=10"5,
0 mo—e ( )70 o g=10*2 In this case we see that within one period of the
1 08655 1 classical evolution of the zero modgs. (7) becomes of or-
e O(—4>- (4.28  der 1, the quantum fluctuations become nonperturbatively
3 7o 7o large and the approximation valid for early times and weak
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FIG. 4. (8 5(7) vs 7 for the broken symmetry case withy=10"°, g=10 2 (b) g= () for the same values of the parameters a&jn
(0) gM(7) for the same parameters as (@. (d) gN,(7) vs g for 7=30 for the same values of parameters(@s (e) gNy(7) vs g for
7=90 for the same values of parametergas(f) gNy(7) vs g for 7= 150 for the same values of parametergas(g) M?(7) vs 7 for the
same parameters &3. (h) e (7) vs 7 for the same parameters @. (i) e\(7) vs 7 for the same parameters @. (j) ec(7) vs 7 for the
same parameters &. (k) (A\g/2|Mg|*)p(7) for the same values of the parameters a@inAsymptotically the average over a period gives
p.=¢l3.

couplings breaks down. Figurgb} showsg2(7) and Fig. though the analytic approximation breaks down, the predic-
4(c) showsgAM(7) vs 7 for these parameters. We find that tion equation(4.7) for the band width agrees remarkably
only the wave vectors in the regiony<1 are important, well with the numerical result. As in the unbroken case, the
i.e., there is only one unstable band whose width remainband develops structure but its width is constant throughout
constant in time. This is seen in Figqd#(f), which show the evolution. As can be seen in these figures the peak of the
the particle numbe(defined with respect to the initial state distribution becomes higher, narrower, and moves towards
as a function of wave vector for different times, smaller values ofj. The concentration of particles at very
gNy(7=30), gNg(7=90), gNy(7=150), respectively. Al- low momentum is a consequence of the excitations being
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FIG. 4 (Continued.

effectively massless in the broken symmetry case. The fean(7=150)~2x 10 °. This result, when combined with the
tures are very distinct from the unbroken symmetry case, imesult that the average of the effective mass approaches zero,

which the peak approaches=0.5. is clearly an indication that the symmetry isoken We
We found in all cases that the asymptotic behavior correfound numerically that the final value of the zero mode de-
sponds to pends on the initial value and the coupling and we will pro-
vide numerical evidence for this behavior below.
lim r— o0 Figure 4a) presents a puzzle. Since the zero mode begins

M?(7)=—1+7%(1)+g3(7) — O. (4.29  very close to the origin with zero derivative aadds upvery
close to the origin with zero derivative, the classical energy
This is a consistent asymptotic solution that describes mas®f the zero mode is conserved. At the same time, however,
less “pions” and broken symmetry in the cagg«)+#0. the dynamical evolution results in copious particle produc-
For times r~100-150 the value of the zero mode is tion as can be seen from Fig(c} We have shown in Sec.
somewhat larger than the initial value: Il E that the total energy is conserved and this was numeri-
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cally checked within the numerical error. Thus the puzzle:tion of state in spite of the fact that the the distribution is out
how is it possible to conserve thetal energy, conserve the of equilibrium and far from thermal as can be seen from
classical zero mode energy, and at the same time creafgs. 4d)—4(f).

O(1/g) particles? The answer is that there is a new term in  An important question to address at this point is: why
the total energy that acts as a “zero point energy” that di-does the zero mode reach an asymptotic valitferentfrom
minishes durlng the evolution and thus maintains total €eNthe minimum of the effective potentia|? The answer to this
ergy conservation with particle production. The most impor-qyestion is that the effective potential is an irrelevant quan-
tant contribution to the energy arises from the zero mode an ty to study the dynamicg3,11]. Once there is profuse par-
the unstable modes<0q<q,. The energy and pressure are icie production, a feature completely missed by the effective
given by (adjusting the constait such that the energy coin- aential, the zero mode evolves in a nonequilibrium bath of

cides with the classical valuie these excitations. Through the time evolution, more of these

2|Mgl* partjcles are proq_uc_ed and the zero mode evolves in a high_ly
= )\—{sc,+sN+sC+O(g)}, (4.30  excited, nonequilibrium state. Furthermore we have seen in
R detail that this mechanism of particle production modifies
.2 dramatically the zero point origin of energy and therefore the
e :77_+ }( 2_1)2 4.31) minimum of the effective action, which is now the appropri-
T g ' ' ate concept to use. The final value reached by the zero mode

in the evolution will be determined by all of thes®nper-
_ W, turbativeprocesses, and only a full numerical study will cap-
8N_ZQJO q°daQgNg(7), (432 ture the relevant aspects. As we have argued above, approxi-
mations based on Mathieu-type equations or the WKB
approximation are bound to miss important details and will
, (4.33 lead to a completely different evolution.

9
8C=§E(T)

—1— 5+ M?(7)— gz(r)

2|Mgl* du
p=—_—19 J q°dg
R 0
The numerical result depicted by Figda$-4(c), which
n '7;2+O(g)] —e. (4.34 are very similar to results obtained previoufB{, has moti-

2
q?|<pq(r)|2+|¢(r)|2 V. SYMMETRY RESTORATION AT PREHEATING?

vated the suggestion that the growth of quantum fluctuations
is so strong that the nonequilibrium fluctuations restore the
M?(1)=—1+ (1) +93(7), (4.35 symmetry[1,13]. The argument is that the nonequilibrium
fluctuations given by the term(?(t)) in Eq. (2.20 for the
where M(7)? is the effective squared mass of the-1 mode functions grow exponentially and eventually this term
“pions” and again O(g) stands for perturbatively small overcomes the term-|m?| leading to an effective potential
terms of orderg. The terms displayed in Eq4.31)—(4.34) with a positive mass squared for the zero mofiee Eq.
are all ofO(1) during the preheating stage. (2.19].

We find that whereag, grows with time, the terme; Although this is a very interesting suggestion, itriet
becomes negative and decreases. In all the cases that werne out by our numerical investigation. The signal for bro-
studied, the effective mass1(7) approaches zero asymp- ken or restored symmetry is the final value of the zero mode
totically; this is seen in Fig. @) for the same values of the when the system reaches an equilibrium situation. Any argu-
parameters as in Figs(&—(c). This behavior and an asymp- ment about symmetry restoration based solely on the dynam-
totic value 7,.#0 are consistent with broken symmetry andics of the fluctuation term.(?(t)) is incomplete if it does
massless pions by Goldstone’s theorem. The tegnin Eq.  not address the dynamics of the zero mode. In particular, for
(4.33 can be identified with the “zero” of energy. It con- the case of Figs.(4)—(c), the initial value of the zero mode
tributes to the equation of state as a vacuum contributiongg# 0 and the final value is very close to the initial value but
that is,pc= — e¢ and becomes negative in the broken sym-still different from zero
metry state. It is this term that compensates for the contribu- At the same time, the asymptotic effective mass of the
tion to the energy from particle production. “pions” is on average zero. Clearly, this is a signal for sym-

This situation is generic for the cases of interest for whichmetry breaking. Because the initial and final values of the
no<1; such is the case for the slow roll scenario in infla-order parameter are so small on the scale depicted in the
tionary cosmology. Figures(W)-4(k) show e, (7) vs 7,  figures, one is tempted to conclude that the symmetry origi-
en(7) vs 7, ec(7) vs 7, and (\r/2/Mg|*)p(7) vs 7 for the  nally broken by a very small value of the order parameter is
same values of parameters as Fi(p)4The pressure has a restored asymptotically by the growth of nonequilibrium
remarkable behavior. It begins wifh= — & corresponding to  fluctuations. To settle this issue we show a different set of
vacuum domination and ends asymptotically with a radiafparameters in Figs.(8 and 5b) that unambiguously show
tionlike equation of stat@=e/3. A simple explanation for that the final value of the order parametgr+ 0, while the
radiationlike behavior would be that the equation of state isffective mass of the piong1(r)—0. Here, 7,=0.01 and
dominated by the quantum fluctuations which as argue@=10 >, and asymptotically we findy(7=150)~0.06, the
above correspond to massless pions and, therefore, ultrarelaverage of the effective mass squatk¢?(7)=0, and the
tivistic. It must be noted that we obtain a radiationlike equa-symmetry is broken, despite the fact that the fluctuations
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FIG. 5. (a) n(7) vs 7 for the broken symmetry case withy=10"2, g=10"°. (b) M?(7) vs 7 for the same parameters &s.

have grown exponentially and a number of particles Another way to argue that the symmetry is indeed broken
O(1/g) has been produced. in the final state is to realize that the distribution of “pions”
The reason that the symmetryristrestored is that when at late times will be different than the distribution of the
the effective mass becomes positive, the instabilities shut offfjuanta generated by the fluctuations in théield, if for no
and the quantum fluctuations become small. When this hapsther reason than that the pions are asymptotically massless
pensg2, is no longer of order 1 and the instabilities appearwhile the o quanta are massive, as long as is different
again, producing the oscillatory behavior that is seen in thédrom zero. If the symmetry were restored during preheating,
figures forg3(7) at long times, such that the contributions these distributions would have to be identical.
of the oscillatory terms average to zero. It is rather straight- The conclusion is that the final value of the zero mode
forward to see that there is a self-consistent solution of thelepends strongly on the initial conditions and couplings,
equations of motion for the zero mode and the fluctuationshough symmetry restoration can take place for other situa-
with constanty., and M?(»)=0. Equation(2.43 takes the tions.

asymptotic form 3] A consistent study of the evolution of the zero mode and
quantum fluctuations determines what happens in each case
N[ — 1+ 75+ g2 ()]=0. [29]. Thus we emphasize that the ultimate test for symmetry
N ) ) restoration is asymptotic in time evolution of the zero mode,
In addition, Eq.(2.44 yields whenM()“=0, which is the order parameter for symmetry breaking.

@q(7) ~ Age 97+ Bye'Y",
T— 0

VI. THE REHEATING TEMPERATURE

whereA, andB, depend on the initial conditions argd We The arena in which these results become important is that
get from Eqs(2.42 and(2.53, of inflationary cosmology. In particular, the process of pre-
2 heating is of vital importance in understanding how the big-
2 _ 47 bang cosmology is regained at the end of inflation, i.e., the
77x—1—49j —2Ng(*)dg—gS(79), (6.1 gc 9y IS reg r 1S
0 q°+ Qg reheating mechanism.

While our analysis has been entirely a Minkowski space
where one, we can make some comments concerning the reheating
. temperature. However, a more detailed analysis incorporat-

o 2 2 ing the expanding universe must eventually be done along
S(70)= Z(l_ o) 4 2 * 5(1+ o) the lines suggested in this work, to get more accurate results.
Since the particles created during the preheating stage are
1- 7)3 1- 773 far from equilibrium, thermalization and equilibration will be
ArgTh\ ———arctamy/ ——|. achieved via collisional relaxation. In the approximation that
we are studying, however, collisions are absent and the cor-
We see that the value of,, depends on the initial condi- responding contributions are @(1/N) [9]. The difficulty
tions. Whereas the last term in E€b.1) is perturbatively with the next order calculation and incorporation of scatter-
small, the contribution from the produced particles is non-ing terms is that these are nonlocal in time and very difficult
perturbatively large, adl,(=)~1/g for the unstable wave to implement numerically.
vectors. Thus, the asymptotic value of the zero mode is dras- However, we can obtain an estimate for the reheating
tically modified from the tree level vacuum expectation temperature under some reasonable assumptions: in the cos-
value (VEV) (in terms of renormalized parametetsecause mological scenarioif the equilibration time is shorter than
of the profuse particle production because of the nonequilibthe inverse of the expansion ratg then there will not be
rium growth of fluctuations. appreciable redshifting of the temperature because of the ex-

1—7}(2) T
n——-—

X
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pansion and we can use our Minkowski space results. perature compares the energy density in the bath of produced
The second assumption is that the time scales betwegqparticles to that of an ultrarelativistic gas in equilibrium at
particle production and thermalization and equilibration aretemperaturely,
well separated. Within the larghl approximation this is
clearly correct because at lar@g scattering processes are [Mg|* .
suppressed by B If these two time scales are widely sepa- e~ r ~Tr, (6.9
rated then we can provide a fairly reliable estimate of the
reheating temperature as follows.
Equilibration occurs via theedistribution of energy and
momentum via elastic collisional processes. Assuming that

leading to the estimate

thermalization occurs on time scales larger than that of par- To~ M (6.5
. . . e . R )\ 174' *
ticle production and parametric amplification, then we can R

assume energy conservation in the scattering processes. Al-
though a reliable and quantitative estimate of the reheating Thus we can at least provide a bound for the reheating
temperature can only be obtained after a detailed study of themperature
collisional processes which depend on the interactions, we
can provide estimates in two important cases. If the scatter- |
ing processes do not change chemical equilibrium, that is, IMgl<Tg=
conserve particle number, the energy per particle is con-
served. Since the enerdgensity stored in the nonequilib- . : .

and a more quantitative estimate requires a deeper under-

rium bath and the total number of particles per unit volumeStandin of the collisional processes involved
are, as shown in the previous sections: 9 P ’

Within the largeN approximation, scattering terms will
appear at order i and beyond. The leading contribution

Mgl

(6.6)

e~ IMgl* (6.1) O(1/N) to collisional relaxation conserves particle number
AR ' in the unbroken symmetry state because the product particles
are massive. This can be seen from the fact that the self-
IMg/3 energy to this order is given by the same chain of bubbles
N~ . (6.2  that gives the scattering amplitude but with two external legs
R

contracted. All cut diagraméhat give the imaginary part
correspond to 2»2 processes that conserve particle number
with proportionality constants of order 1, we can estimate theyecause of kinematic reasons. Certainly, at higher order in
reheating temperature to be 1/N there will be processes that change chemical equilib-
rium, but for largeN these are suppressed formally. This
€ argument based on the leading collisional contribution in the
ﬁ“T”“V' rl- (6.3 1/N expansion allows us to provide a further consistent esti-
mate in the unbroken symmetry cagehen the produced
particles are massiyeln this approximation and consistently
X with energy and particle humber conservation we can as-
vious resultd3]. , _ , sume that the final equilibrium temperature is of the order of
This re4su|t seems puzzling, since naively one would exyhe typical particle energy before thermalization. Recalling
pecte~Tg;N~Tg but the powers ok do not match. This  hat the unstable band remains stable during the evolution
puzzle arises from intuition based on an ultrarelativistic-fregith the peak shifting slightly in position we can estimate the
particle gas. However, the “medium” is highly excited with typical energy per particle by the position of the peak in the
a large density of particles and the “in medium” properties gistribution atq,, and use the analytical estimate for the peak

of the equilibrated particles may drastically modify this re- given in Sec. II. Restoring the units we then obtain the esti-
sult as is known to happen in most theories at high tempergy gte

ture, where the medium effects are strong and perturbation
theory breaks down requiring hard thermal loop resumma- 7o \/)\»R
tion. ~ ~ Lo /=2

In the case in which the collisional processes do not con- Tr~Meldz~|M| 2 8 o (6.7
serve particle number and, therefore, change chemical equi-
librium, the only conserved quantity is the energy. Such iswhich displays the dependence agg explicitly. Equation
the case for massless particles interacting with a quartic cou6.7) is an improvement of the simple estimd&3).
plings for example, or higher order processes in a quartic It must be noticed that the peak in the momentum distri-
theory with massive particles. Processes in whichBcon-  bution decreases with time fae-t,., [See Figs. &)—2(h)].
serving energy and momentum can occur. The inverse proFhis drift follows from the nonlinear interaction between the
cess -3 occurs with far less probability since the high modes. For the case of Fig. 2, one sees Thateduces by
momentum modes are much less populated than the low m@pproximately a factor 3 with respect to the valéey).
mentum modes in the unstable bands. In this case only en- The largeN model studied in this article is not a typical
ergy is conserved whereas the total number of particlastis model used in inflationary cosmology, and since we want to
conservedand in this case an estimate of the reheating temmake a quantitative statement for inflationary scenarios

Here|Myg| is the inflaton mass. This is consistent with pre-
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(within the approximation of only considering Minkowski / N
space we now study a model that incorporates other scalar Tren= m2—m§+ §CI>(2). (6.15
fields coupled to the inflaton.

The simplest moddl4,5] contains, in addition to the in-
flaton, a lighter scalar field with agod®? coupling. Thatis, In the special casen,=m=|Mg|, we recover Eq(6.7), as
we consider the Lagrangidi], expected.

Again, the nonlineal field evolution far>t,., decreases
Tien- In the third reference undég], we found for late times
a T en ten times smaller than the valié.15 for g=1.6m72.

The estimates on the reheating temperature provided
above should not be taken rigorously, but as an approximate
guide. A consistent estimate of the reheating temperature and
the thermalization time scales would, in principle, involve

We will consider again the preheating regime of weaksetting up a Boltzmann equatidh]. Under the assumption
couplings and early times such that we can neglect the bacf a separation between the preheating and thermalization
reaction of the quantum fluctuations of thefield as well as  time scales one could try to use the distribution functions
the back reaction of the quantum fluctuations of the inflatioqu at the end of the preheating stage as input in the kinetic
itself, focusing only on the parametric growth of thefluc-  Boltzmann equation. However, we now argue that such a
tuations in the unbroken symmetry case. The mode equationgnetic description isnot valid to study thermalization. A

L=— 1q)((92+ m?+go)®d— ACI>4
2 41

1 A
T 202y Nooyg
20’(& +mi)o TR (6.8

for the o field take the form kinetic approach based on the Boltzmann equation, with bi-
o2 nary collisions, for example, would begin by writing the rate
2. 2 2 _ equation for the distribution of particles
WH( +mi+ge (t)}vk(t) 0. (6.9
In dimensionless variables this equation becomes Nk“)\zf 3k, 03k, 03k 8% (Ky + Ko+ K+ K)
>, (m,\? 6g ,
P‘f—q + H +T7] (7') Vk(’T):O (61@ X[(1+nk)(l+nkl)nkznksnknkl(l+nkz)(l+nk3)].
(6.16

In the short time approximation we can replaggr) by the
classical form(3.1). We then find a Lamesquation which

admits closed form solutions f¢2.8] However, this equation is only valid in tHew densityre-

gime. In particular for the case under study, the occupation

129 numbers for wave vectors in the unstable bands are nonper-
- n(n+1), n=123,.... (6.1  turbatively largex1/\ and one would be erroneously led to

conclude that thermalization occurs on the same time scale

Although these are not generic values of the couplings?" faster thanpreheating. _
the solubility of the model and the possibility of analytic ~ Clearly such a statement would be too premature. Without
solution for these cases make this study worthwhile. In thé® Separation of time scales, the kinetic approach is unwar-
simplest case,(=1,6g=\), there is only one forbidden ranted. The solution of the Boltzmann equation provides a
band for g>0. It goes from g?=1—(m,/m)? to partial resummation of the perturbative series which is valid

q2=1—(m,/m)2+ 77(2)/2_ That is, Whene_:ver the _tim_e scales for re_laxaFion are much Ionggr than
the microscopic time scalg27], in this case that of particle
A production.
forbidden band: m?—m2<k?<m?—m2+ ZCDS. In the case under study there is an expansion parameter

1/N and clearly these scattering terms are subleading in this
(6.12 L . . .
formal limit, so that the separation of time scales is con-

The Floquet index in this forbidden band takes the form  trolled. In the absence of such an expansion parameter, some
resummation scheme must be invoked to correctly incorpo-

F(gq)=2iK(k)Z(2K(k)v) = r, (6.13 rate scattering. In particular when the symmetry is broken,
the asymptotic excitations are Goldstone bosons, the medium
where nowv andq are related by the equation is highly excited but with very long-wavelength Goldstones

and these have very small scattering cross sections. Such a
resummation is also necessary in the large temperature limit
of field theories in equilibrium. In this case the perturbative
expansion of the scattering cross section involves powers of
and Osv=<1/2. NT/m with m being the mass. A correct resummation of the
The imaginary part of the Floguet index is now maximal (infrared divergent terms leads to(T)—m/T in the large
atq?=1—(m,/m)?+ 73/4 and we can use this value to pro- T/m limit [28]. In particular the I corrections in the for-
vide an estimate for the reheating temperature in this modeghal largeN limit involve such a resummation, but in the
in the same manner as for E@.7), yielding the following  nonequilibrium situation, the numerical implementation of
estimate for the reheating temperature this resummation remains a formidable problem.

2
T

2
+ %cnz(ZK(k)v,k), 6.14)

9’=1-
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VII. CONCLUSIONS given up by this term is the energy used to produce the

. N . tparticles.
It is clear that preheating is both an extremely important” Thig example also allows us to study the possibility of

process in a variety of settings, as well as one involving vergymmetry restoration during preheatirid,13,26. While
delicate analysis. In particular, its nonperturbative naturehere have been arguments to the effect that the produced
renders any treatment that does not take into account effectsarticles will contribute to the quantum fluctuations in such a
such as the quantum back reaction due to the produced paray as to make the effective mass squared of the modes
ticles, consistent conservatigar covariant conservatiorof ~ positive and thus restore the symmetry, we argued that they
the relevant quantities and Ward identities, incapable of corwere unfounded. Whereas the effective squared mass oscil-
rectly describing the important physical phenomena durind®tes, taking positive values during the early stages of the
the preheating stage. evolution, its asymptotic value is zero, compatible with

In this work, we dealt with these issues by using theGolLduS;tt?\g?n?grséoqﬁis Ss;hg r?cs)%/hr?npt(gg:oiia\}\?hséther the symme-
O(N) vector model in the larg& limit. This allows for a ' Y 9 y

. L try is restored or not. This is signaled by the final value of
controlled nonperturbative approximation scheme that CONfhe zero mode. In all the situations examined here, the zero

serves energy and the proper Ward identities, to study thgode is driven to monzerdfinal value. At this late time, the
nonequilibrium dynamics of scalar fields. Using this model“pions” become massless, i.e., they truly are the Goldstone
we were able to perform a full analysis of the evolution of modes required by Goldstone’s theorem.
the zero mode as well as of the particle production during The arguments presented in favor of symmetry restoration
this evolution. rely heavily on the effective potential. We have made the
Our results are rather striking. We were able to providePoint of showing explicitly why such a concept is completely
analytic results for the field evolution as well as the particlei"elevant for the nonequilibrium dynamics when profuse
production and the equation of state for all these componenfRrticle production occurs and the evolution occurs in a
in the weak coupling regime and for times for which the Iglgly ?Ixcned,doutl of .eﬁ“;:'bf'“m St‘?ﬁ' |
fects, are small. What we found is that, in Ehe ur]br()kenlnflationar universe sce%ario pSince our resultps are art%cular
symmetry situation, the f[eld modes satisfy a Laeguiation to Minkowyski space, we need to assume that reher;tin and
that corresponds to a Schfiager equation with a two-zone thermalization gccu} on time scales shorter thpan the eg an-
potential. There are two allowed and two forbidden bands P

. - . 71 .
which is decidedlyunlike the Mathieu equation used in pre- Sion tlm_e, "e"H . We also need to assume that there IS a
vious analysis[1,12]. The difference between an equation separation of time scale between preheating and thermaliza-

with two forbidden bands and one with an infinite number ist°"" Under these assumptions we can esiimate the reheaiing

profound. We were also able to estimate analytically the timdemperature a.g—feh.oc|MR| In the case yvhen the coIhspnaI
scale at which preheating would occur by asking when thdrocesses maintain Che{,’}"?a' eqwhbm(qonsewe partl_cle
qguantum fluctuations as calculated in the absence of bacrw"'mbei' or Trer|Mgl/A™" in the case in which particle

reaction would become comparable to the tree level terms iHumber is not conserved in the collisiofssich is the case for

the equations of motion. The equations of state of both thénassless particles in g_eneral .
zero mode and “pions” were calculated and were found to We have made the important observation that due to the

be describable as polytropes. These results were then cot‘?—rge number of long-wavelength particles in the forbidden

firmed by numerical integration of the equations, and we ands, a kinetic or Boltzmann equation approach to thermal-

found that the analytic results were in great agreement withgation Is inconsistenthere. A resummation ka to that of
the numerical ones in their common domain of validity. hard thermal loops, that consistently arises in the next order

When the ON) symmetry is spontaneously broken morein 1/N must be employed. In equilibrium such a resumma-
' ion shows that the scattering cross section for soft modes is

subtle effects can arise, again in the weak coupling regime. if ; . . ;
the zero mode starts off very near the origin, then the quan}:_)erturbatl_\/ely small despite their large occupation n'umbers.
There is a great deal left to explore. Clearly the first step

tum back reaction grows to be comparable to the tree leve thi K d be t i hat h d :
terms within one or at most a few oscillations even for very_m:nd |sthwor woul ef(ihger&er_a 1z€ WT?].Weh a\llg bonde 0
weak coupling. In this case the periodic approximation for'NClUCE the expansion ot the Universe. 1his should be done

the dynamics of the zero mode breaks down very early oPOth in order to understand preheating in more detail, as well
and the full dynamics must be studied numerically as to understand the evolution of the scalar field during the
When numerical tools are brought to bear on this case Wénflatlonary period. Further steps should certainly include

find some extremely interesting behavior. In particular, therd™YINg to incorporate thermalization effects systematically

are situations in which the zero mode starts near the origiH"ithin the 1N egpan.sion. . .
(the initial value depends on the couplinand then in one As we were finishing the writeup of this work, we learned

oscillation, comes back to almost the same location. Howf"boUt Complementary. worl_< t_)y C_ooper,_KIuger, Habib, and
ever, during the evolution it has producedg lparticles. Mottola [30] who studied similar ISSUes In the_broken Sym-
Given that the total energy is conserved, the puzzle is to fin etry phase with results that are consistent with those found

where the energy came from to produce the particles. W y us.
found the answer in a term in the energy density that has the
interpretation of a “vacuum energy” that becomesgative
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z=p, 0=p=o0, —x=g’=-1--,
APPENDIX: SOME RESULTS ON ELLIPTIC FUNCTIONS
2
Here we detail some of the derivations used in the main Z=w+ia, O0<a<o'li, —1-— @sng(),
text for the analytic results. 2
2
1. The unbroken symmetry case z=0'+B, w=p=0, 0=g’< %’
We derive here the solutions of the mode equati®g),
d? 7%
i [ H 2
F+q2+1+7l§—m2)5nz(7 1+ 72.K) oq(T)=0, z=ia, o'fiza=0, S =q’s+x, (A8)
Al . . S
(A1) where w=K(k)/y1+ 7702. Notice that 2» is the period int
wherek= 7o/~/2(1+ ,]02). of the potential in Eqs(3.3) and (A5).
It is convenient to express the Jacobi sine in terms of the The mapping of the reafj” axis into the sides of the
WeierstrassP function through(25] fundamental square in tteplane is made explicit by writing
the Weierstras$(z) function in terms of Jacobi sn and cn
1 functions[25,30,26:
srR(Ty1+ 92,k)=
(V1 770.k) k2SI 71+ 72+iK ' (K),K] 2 241
2 1
=— =z _’P ): - ,
1 1+ p5+iK' (k) a PR srP(BV1+ 55,k)
= -e
k’(e;—ey) Je,—e l
' v g’=- 3 -Plo+ia)
(A2) , ,
7 7
e— e =—1- 2+ 1+ 5| s(a1+ n5.K'),
k?= . (A3)
€163 5
Y
We assume that the discriminafitof the functionP is here ’=—3-Plo'+B)= 70 cr?(BV1+ 75,k),
positive and that the roots; ,e,,e; of the cubic equation
obeyinge; +e,+e;=0 are ordered as , i ) 773 773+1
=—3-Pla)y=—1-—+ .
e;<e,<0<e;. (Ad) s 2 stf(ait 22K

A9
In addition, without any loss of generality we choose (A9)

e—e;=1+ 173. With such a choice we find the roots to be: Here, « and B are real variables.[Recall that
3e;=%72+2,3e,=-1, and ;=392 1. 0< sn(u,k)<1 for Osus<K(k) and that

Collecting all factors the mode equati¢Al) becomes sn(u,k)?+ cn(u,k)®=1]
Generically, a periodic potential possesses iafinite

d? - , number of allowed and forbiddeifrloque} bands that alter-
g2 At 3 " 2P(rt ') |e(1)=0, (AS) " nate for 0=g?< +=. A detailed study of the Floguet indices
reveals that this is not the case for E41).
Wherew'EiK'(k)/m_ Let us now compute the Floquet indices for the mode

Equation(A5) is a Lameequation that can be solved in function (A6)._ The quasi-periodicity property of the Weier-
closed form in terms of Weierstrass functions. The solutiorstrasso functions states thd25,30,26
is [23]

o(X+2w)=—a(x)e2x ), (A10)
Uy(7)= U(T+w,+z)(r,(w )e,mz)' (A6)  Where n={(w). Using Eqs.(A10) and(3.4), we find, from
q o(ttw')o(w'+2) Eq. (A6),
wherez is defined through Ug(7+20)=Uq(m)exp2[zn— wl(2)]},

P(z)=—3—0? (A7) F(a)=2i[w{(2)—2z7]. (A11)
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The quantity g belongs to an allowed band when 2w ) z
2[zp—wl(2)] is purely imaginary andj belongs to a for- o(z)= menz m’l‘h(z), (A19)
bidden band when this quantity has a nonzero real part. 1

Using the properties of the Weierstrass functif®@], we  \ye found Eq.(3.10 after some calculation.
find two allowed bands For the allowed band/\2<q=<oc, we find Eq.(3.21)
using (A6), Eqg. (A17), and Eq.(A19).

z=ia and z=ia+ w, (A12)
with real a,0< @< '/i, andtwo forbidden bands 2. Broken symmetry case
We derive here the solution of the mode equatiérb),
z=8 and z=B+w’, (A13)
2 2
with real 8,0< < w. F+q2—1+ o @q(7)=0.
In terms ofg? the allowed bands correspond to T 77%
dl’]2 T 1- ?,k
5 5 (A20)

7 7
—1- ?Osqzso and%’sqzs +oo,  (Al4)
It is convenient to express the Jacobi function dn in terms

and the forbidden bands to of the Weierstras® function through[20]

p 2 1 1 u+K(K) +iK'(K)
0 0 - 1 N; '
—oosqzs—l—7 and 0<g’< 5 (A15) drf(uk) e —e,| * €€

(A21)

Thet I.%Stt fotrbitcri]defrll bfmc:_ is imos!tige ¢ ;nd he_rlllcedoes Where now for convenience and without loss of generality
contribute to the fluctuation functiok (7). 2(7) will grow we  choose el—e3=1—77(2)/2. Then, we find

exponentially in time due to the presence of such unstabl
s ey P 8e,=1,3e,=1— {73 and ;= 373-2.

Let us investigate the Floquet indices for the forbidden Collecting all factors the mode equatigh20) becomes
band 0<g?< 73/2. Settingz= 8+ w’ we find d2
gRtat-i-2P(rtete’)

¢q(1)=0, (A22)

z B
ozl o) P
S 2m—wi(2)]=— Y20 i “\ 20 (A16) where o’ =iK’(k)/\/1— 3. This equation is equivalent to
7 z B\’ Eq. (A5) up to the sign in front of the} and a shift
¥y 20 By 20 T—Ttw. . o
The solution of Eq(A22) is given by
where we used the relation between the Weierstfasmc- ot o+ 'y
tion and the Jacobd functions[24] Uy(r) = o(rteto tz)o(e’ o) e @ (A23)
q o(7twtw)o(w +w+2z) '
z
= 2
o . . 1 191(2(») - z andq” are now related by
Z)=—2+— .
0 20 ( z ) P(z2)=+1%-q2 (A24)
Y20
We continue to use the normalizati¢8.5). Changingr by
Here, 7={(w). — 7in Eq. (A23) provides in general an independent solution
In summary, we have on the forbidden bandof Eq.(A20).
0=qg’< nglz, Equation(A24) maps the reaf)? axis into the four sides
of the fundamental square in tlreplane. This mapping is
AL . better seen writing the WeierstraB6z) function in terms of
F(Q)=*m+i NN * 7+ 2iK(K)Z(2K(K)v), Jacobi sn and cn functiof&5] in the four cases. That is,
(A18) ZZBi ogﬁsw, —OOSqZSO,
where  v=p/2w,0<sv=<1/2, and Z(u)=E(u,k)
—UuE(k)/K(k) is the Jacobi zeta functiof24]. Equation or? 1_@ K
(3.12 gives its series expansion. We see that the solution 5 1 S B 2’
Uy(7) decreases withr. The other independent solution Q=3P =175 T
Uq(—7) grows withr. sr?( ,3\/1— @,k)
Notice thatU,(7) becomes just an antiperiodic function 2
on the borders of this forbidden bang=0 andv =1/2. )
It is useful to write the solutiotJ,(7) in terms of Jacobi _ . it 2_ "o
q — < < < =< —
¥ functions. Using Eqs(A6) and(A17) and[19] z=otia, Osas<o'li, 0=q’< 2
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1 7t 2 with real a,0<a<w'/i, andtwo forbidden bands
2 .. To .,
Q2= —Plo+ia)=—srf| a\/1- K |,
3 2 2 z=p and z=8+w’, (A27)
72 ) 2 with real 8,0< < w.
z=0'+p, 0=p=0, S =q°<l-—, In terms ofg? the allowed bands correspond to
7]3 77(2)
1 7o % 0=@’<— and 1- —<g’<+, A28
q2=§—7>(w’+,8)=1—f—(l—né)srﬁ(ﬂ 1- k], T2 2~ A28
) and the forbidden bands to
. . U 2 2
z=ia, o'li=a=0, 1--—=g°<-+oo, n 7
2 = —0=<g?<0 and?osqzsl—?o. (A29)
2
1— 7o The last forbidden band is fguositive ¢ and hencedoes
2 (A25) contribute to the fluctuation functioB (7). 2(7) will grow
exponentially in time due to the presence of such unstable

modes.

It is useful to write the solutiotd4(7) in terms of Jacobi
¥ functions. For the forbidden bandé/quZsl— 77(2)/2,
we obtain Eq.(4.8), using Egs.(A23), (Al17), and (A19),
after some calculation.

For the allowed band 4 73/2<q?<+, we find Eq.
(4.11) from Egs.(A23), (Al17), and (A19). The analogous
expression(4.13 holds in the allowed band9g?< 73/2.

Sr12 o 1—?,k/

wherew=K(k)/+/1— 7/02/2. Notice that 2 is the period in
7 of the potential in Eqs(A20) and (A22).

Equation (3.4) holds for the mode functiortA23) too.
Hence, there aréwvo allowed bands

Zz=ia and z=ia+w, (A26)
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