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We analyze the phenomenon of preheating, i.e., explosive particle production due to parametric amplifica-
tion of quantum fluctuations in the unbroken symmetry case, or spinodal instabilities in the broken symmetry
phase, using the Minkowski space O(N) vector model in the largeN limit to study the nonperturbative issues
involved. We give analytic results for weak couplings and times short compared to the time at which the
fluctuations become of the same order as the tree level terms, as well as numerical results including the full
back reaction. In the case where the symmetry is unbroken, the analytical results agree spectacularly well with
the numerical ones in their common domain of validity. In the broken symmetry case, interesting situations,
corresponding to slow roll initial conditions from the unstable minimum at the origin, give rise to a new and
unexpected phenomenon: the dynamical relaxation of the vacuum energy. That is, particles are abundantly
produced at the expense of the quantum vacuum energy while the zero mode comes back to almost its initial
value. In both cases we obtain analytically and numerically the equation of state which in both cases can be
written in terms of an effective polytropic index that interpolates between vacuum and radiationlike domina-
tion. We find that simplified analyses based on the harmonic behavior of the zero mode, giving rise to a
Mathieu equation for the nonzero modes, miss important physics. Furthermore, such analyses that do not
include the full back reaction and do not conserve energy result in unbound particle production. Our results
rule out the possibility of symmetry restoration by nonequilibrium fluctuations in the cases relevant for new
inflationary scenarios. Finally, estimates of the reheating temperature are given, as well as a discussion of the
inconsistency of a kinetic approach to thermalization when a nonperturbatively large number of particles are
created.@S0556-2821~96!05524-5#

PACS number~s!: 11.10.Wx, 11.15.Pg, 98.80.Cq
-

I. INTRODUCTION

It has recently been realized@1–3# that as the zero mo-
mentum mode of a quantum field evolves it can drive a lar
amplification of quantum fluctuations. This, in turn, give
rise to copious particle production for bosonic fields, creati
quanta in a highly nonequilibrium distribution, radicall
changing the standard picture of reheating the postinflati
ary universe@4–6#. This process has other possible applic
tions, such as in understanding the hadronization stage of
quark-gluon plasma@7# as well as trying to understand out
of-equilibrium particle production in strong electromagnet
fields and in heavy ion collisions@8–11#.

The actual processes giving rise to preheating can be
ferent depending on the potential for the scalar field involv
as well as the initial conditions. For example, in new infl
tionary scenarios, where the inflaton field’s zero mo
evolves down the flat portion of a potential admitting spo
taneous symmetry breaking, particle production occurs d
to the existence of unstable field modes which get amplifi
until the zero mode leaves the instability region. These
the instabilities that give rise to spinodal decomposition a
phase separation. In contrast, if we start with chaotic init
conditions, so that the field has large initial amplitude, pa
ticles are created from the parametric amplification of t
quantum fluctuations due to the oscillations of the ze
mode.
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In this paper we analyze the details of this so-calledpre-
heatingprocess both analytically as well as numerically. Pre-
heating is a nonperturbative process, with typically 1/l par-
ticles being produced, wherel is the self-coupling of the
field. Because of this fact, any attempts at analyzing the de-
tailed dynamics of preheating must also be nonperturbative
in nature. This leads us to consider the O~N! vector model in
the largeN limit. This is a nonperturbative approximation
that has many important features that justify its use: unlike
the Hartree or mean-field approximation@3#, it can be sys-
tematically improved in the 1/N expansion. It conserves en-
ergy, satisfies the Ward identities of the underlying symme-
try, and again unlike the Hartree approximation it predicts
the correct order of the transition in equilibrium.

This approximation has also been used in other nonequi-
librium contexts @8–11#. In this work, we consider this
model in Minkowski space, saving the discussion of the ef-
fects of the expansion of the universe for later work.

Our findings are summarized as follows.
We are able to provide consistent nonperturbative analytic

estimates of the nonequilibrium processes occurring during
the preheating stage taking into account theexactevolution
of the inflaton zero mode for large amplitudes when the
quantum back reaction due to the produced particles is neg
ligible, i.e., at early and intermediate times. We also compute
the momentum space distribution of the particle number as
well as the effective equation of state during this stage. Ex-
7570 © 1996 The American Physical Society
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plicit expressions for the growth of quantum fluctuations, t
preheating time scale, as well as the effective~time-
dependent! polytropic index defining the equation of stat
are given in Sec. III.

We then go beyond the early or intermediate time regim
and evolve the equations of motion numerically, taking in
account back-reaction effects.~That is, the nonlinear quan
tum field interaction.! These results confirm the analytic re
sults in their domain of validity and show how, when bac
reaction effects are large enough to compete with tree le
effects, dissipational effects arise in the zero mode. Ene
conservation is guaranteed in the full back-reaction proble
leading to the eventual shut off of particle production. This
an important ingredient in the dynamics that determines
relevant time scales.

We also find a novel dynamical relaxation of the vacuu
energy in this regime when the theory is in the broken pha
Namely, particles are produced at the expense of the qu
tum vacuum energy while the zero mode contributes ve
little. We find a radiation type equation of state for late tim
(p' 1

3«) despite the lack of thermal equilibrium.
Finally we discuss the calculation of the reheating te

perature in a class of models, paying particular attention
when the kinetic approach to thermalization and equilib
tion is applicable.

There have been a number of papers~see Refs.@1,12–15#!
dedicated to the analysis of the preheating process wh
particle production and back-reaction are estimated in diff
ent approximations@16#.

The layout of the paper is as follows. Section II presen
the model, the evolution equations, the renormalization
the equations of motion, and introduces the relevant defi
tions of particle number, energy, and pressure and the de
of their renormalization. The unbroken and broken symme
cases are presented in detail and the differences in their tr
ment are clearly explained.

In Secs. III–V we present a detailed analytic and nume
cal treatment of both the unbroken and broken symme
phases emphasizing the description of particle producti
energy, pressure, and the equation of state. In the bro
symmetry case, when the inflaton zero mode begins v
close to the top of the potential, we find that there is a no
phenomenon of relaxation of the vacuum energy that exp
itly shows where the energy used to produce the partic
comes from. We also discuss why the phenomenon of sy
metry restoration at preheating, discussed by various auth
@1,13,17,18# is not seen to occur in the cases treated by
here and relevant for new inflationary scenarios@16#.

In Sec. VI we provide estimates, under suitably specifi
assumptions, of the reheating temperature in the O(N) model
as well as other models in which the inflaton couples
lighter scalars. In this section we argue that thermalizat
cannot be studied with a kinetic approach because of
nonperturbatively large occupation number of lon
wavelength modes.

Finally, we summarize our results and discuss future
enues of study in the conclusions. We also include an app
dix where we gather many important technical details on
evaluation of the Floquet mode functions and Floquet indic
used in the main text.
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II. SCALAR FIELD DYNAMICS IN THE LARGE N LIMIT

As mentioned above, preheating is a nonperturbative phe-
nomenon so that a nonperturbative treatment of the field
theory is necessary. This leads us to consider the O(N) vec-
tor model in the largeN limit.

In this section we introduce this model, obtain the non-
equilibrium evolution equations, the energy momentum ten-
sor, and analyze the issue of renormalization. We will then
be poised to study each particular case in detail in the later
sections.

The Lagrangian density is

L5
1

2
]mfW •]mfW 2V~fW •fW !,

V~s,pW !5
1

2
m2fW •fW 1

l

8N
~fW •fW !2, ~2.1!

for l fixed in the largeN limit. Here fW is an O(N) vector,
fW 5(s,pW ), and pW represents theN21 ‘‘pions.’’ In what
follows, we will consider two different cases of the potential
V(s,pW ), with (m2,0) or without (m2.0) symmetry break-
ing.

We can decompose the fields into its zero mode and
fluctuationsx(xW ,t) about the zero mode:

s~xW ,t !5s0~ t !1x~xW ,t !. ~2.2!

The generating functional of real time nonequilibrium
Green’s functions can be written in terms of a path integral
along a complex contour in time, corresponding to forward
and backward time evolution and at finite temperature a
branch down the imaginary time axis. This requires doubling
the number of fields which now carry a label6 correspond-
ing to forward (1), and backward (2) time evolution. The
reader is referred to the literature for more details@19,20#.
This generating functional along the complex contour re-
quires the Lagrangian density along the contour, which for
zero temperature is given by@3#

L@s01x1,pW 1#2L@s01x2,pW 2#

5HL@s0 ,pW
1#1

dL
ds0

x11
1

2
~]mx1!21

1

2
~]mpW 1!2

2S 12! V9~s0 ,pW
1!x121

1

3!
V[3]~s0 ,pW

1!~x1!3

1
1

4!
V[4]~s0 ,pW

1!~x1!4D J
2$~x1→x2!,~pW 1→pW 2!%. ~2.3!

The tadpole condition̂x6(xW ,t)&50 will lead to the equa-
tions of motion as discussed in@3# and references therein.

A consistent and elegant version of the largeN limit for
nonequilibrium problems can be obtained by introducing an
auxiliary field and is presented very thoroughly in Ref.@9#.
This formulation has the advantage that it can incorporate the
O(1/N) corrections in a systematic fashion. Alternatively,
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the largeN limit can be implemented via a Hartree-like fac
torization @3# in which ~i! there are no cross correlation
between the pions and sigma field and~ii ! the two point
correlation functions of the pion field are diagonal in th
O(N21) space of the remaining unbroken symmetry grou
To leading order in largeN both methods are completel
equivalent and for simplicity of presentation we chose t
factorization method.

The factorization of the nonlinear terms in the Lagrangi
is ~again for both6 components!

x4→6^x2&x21const, ~2.4!

x3→3^x2&x, ~2.5!

~pW •pW !2→2^pW 2&pW 22^pW 2&21O~1/N!, ~2.6!

pW 2x2→^pW 2&x21pW 2^x2&, ~2.7!

pW 2x→^pW 2&x, ~2.8!

To obtain a largeN limit, we define

~2.9!

where the largeN limit is implemented by the requiremen
that

^c2&5O~1!, ^x2&5O~1!, f5O~1!. ~2.10!

The leading contribution is obtained by neglecting t
O(1/N) terms in the formal largeN limit. The resulting La-
grangian density is quadratic, with a linear term inx:

L@s01x1,pW 1#2L@s01x2,pW 2#

5$ 1
2 ~]mx1!21 1

2 ~]mpW 1!22x1V8~ t !

2 1
2Mx

2~ t !~x1!22 1
2M

2
pW ~ t !~pW 1!2%

2$~x1→x2!,~pW 1→pW 2!%, ~2.11!

where

V8„f~ t !,t…5ANf~ t !Fm21
l

2
f2~ t !1

l

2
^c2~ t !&G ,

~2.12!

M2
pW ~ t !5m21

l

2
f2~ t !1

l

2
^c2~ t !&, ~2.13!

Mx
2~ t !5m21

3l

2
f2~ t !1

l

2
^c2~ t !&. ~2.14!

Note that we have used spatial translational invariance
write

^c2~xW ,t !&[^c2~ t !&. ~2.15!

The necessary~zero temperature! nonequilibrium Green’s
functions are constructed from the ingredients
-
s

e
p.
y
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to

Gk
.~ t,t8!5

i

2Wk
Vk~ t !Vk* ~ t8!, ~2.16!

Gk
,~ t,t8!5

i

2Wk
Vk~ t8!Vk* ~ t !, ~2.17!

while the Heisenberg field operatorc(xW ,t) can be written as

c~xW ,t !5
1

AV (
k

1

A2Wk

@akVk~ t !e
ikW•xW1ak

†Vk* ~ t !e2 ikW•xW#,

~2.18!

whereak ,ak
† are the canonical destruction and annihilation

operators andV the quantization volume.
The evolution equations for the expectation valuef(t)

and the mode functionsVk(t) can be obtained by using the
tadpole method@3# and are given by

f̈~ t !1f~ t !Fm21
l

2
f2~ t !1

l

2
^c2~ t !&G50, ~2.19!

F d2dt2 1k21m21
l

2
f2~ t !1

l

2
^c2~ t !&GVk~ t !50,

Vk~0!51, V̇k~0!52 iWk , ~2.20!

^c2~ t !&5E d3k

~2p!3
uVk~ t !u2

2Wk
, ~2.21!

Wk5Ak21m0
2. ~2.22!

The initial stateu i & is chosen to be the vacuum for these
modes, i.e.,aku i &50. The frequenciesWk ~i.e.,m0

2) will de-
termine the initial state and will be discussed for each par-
ticular case below.

The fluctuationsx(xW ,t) obey an independent equation,
that does not enter in the dynamics of the evolution of the
expectation value or thepW fields to this order and decouples
in the leading order in the largeN limit @3#.

It is clear from the above equations that the Ward identi-
ties of Goldstone’s theorem are satisfied. Because
V8„f(t),t…5ANf(t)MpW

2 (t), wheneverV8„f(t),t… vanishes
for fÞ0 thenMpW 50 and the ‘‘pions’’ are the Goldstone
bosons. This observation will be important in the discussions
of symmetry breaking in a later section.

Since in this approximation the dynamics for thepW and
x fields decouple, and the dynamics ofx does not influence
that off, the mode functions or̂c2&, we will only concen-
trate on the solution for thepW fields. We note however, that
if the dynamics is such that the asymptotic value offÞ0 the
masses forx and the ‘‘pion’’ multipletpW are different, and
the original O(N) symmetry is broken down to the
O(N21) subgroup.
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A. Renormalization of the O„N… model

We briefly review the most relevant features of the ren
malization program in the largeN limit that will be used
frequently in our analysis. For more details the reader
referred to@9,3,11#.

In this approximation, the Lagrangian is quadratic, a
there are no counterterms. This implies that the equations
the mode functions must be finite. This requires that

m21
l

2
f2~ t !1

l

2
^c2~ t !&5mR

21
lR

2
f2~ t !1

lR

2
^c2~ t !&R

52v~ t !. ~2.23!

Defining

Vk~ t !

AWk

5wk~ t !, wk~0!5
1

AWk

, w k̇~0!52 iAWk,

~2.24!

the functionwk(t) is written as linear combinations o
WKB solutions of the form

wk~ t !5AkexpS E
0

t

Rk~ t8!dt8D 1BkexpS E
0

t

Rk* ~ t8!dt8D
~2.25!

with Rk(t) obeying a Riccati equation@11# and the coeffi-
cientsAk,Bk are fixed by the initial conditions. After som
algebra we find

uwk~ t !u2 ;
k→`

1

k
1
v~ t !

2 k3
1
3 v~ t !22 v̈~ t !

8k5
1O~k27!

1oscillatory terms,

uẇk~ t !u2 ;
k→`

k2
v~ t !

2k
1
v̈~ t !2v~ t !2

8k3
1O~k25!

1oscillatory terms. ~2.26!

Using this asymptotic form, we obtain@3,11# the renor-
malized quantities

m21
l

16p2 FL22mR
2 lnS L

k D G5mR
2 , ~2.27!

lF12
lR

16p2 lnS L

k D G5lR , ~2.28!

and

^c2~ t !&R5E k2dk

4p2 H uwk~ t !u22
1

k
1

Q~k2k!

2k3

3SmR
21

lR

2
f2~ t !1

lR

2
^c2~ t !&RD J ,

~2.29!
or-

is

nd
for

f

e

where we have introduced the~arbitrary! renormalization
scalek. Equations~2.23! and~2.29! lead to the renormaliza-
tion conditions valid in the largeN limit.

At this point it is convenient to absorb a furtherfinite
renormalization in the definition of the mass and introduce
the quantities

MR
25mR

21
lR

2
^c2~0!&R, ~2.30!

t5uMRut, q5
k

uMRu
, Vq5

Wk

uMRu
, ~2.31!

h2~t!5
lR

2uMRu2
f2~ t !, ~2.32!

gS~t!5
lR

2uMRu2 @^c2~ t !&R2^c2~0!&R#, ~S~0!50!,

~2.33!

g5
lR

8p2 , ~2.34!

wq~t![uMRuwk~ t !. ~2.35!

For simplicity in our numerical calculations later, we will
choose the renormalization scalek5uMRu. The evolution
equations are now written in terms of these dimensionless
variables, in which overdots now stand for derivatives with
respect tot.

B. Unbroken symmetry

In this caseMR
25uMRu2, and in terms of the dimension-

less variables introduced above we find the equations of mo-
tion

ḧ1h1h31gh~t!S~t!50, ~2.36!

F d2dt2
1q2111h~t!21gS~t!Gwq~t!50, ~2.37!

wq~0!5
1

AVq
, ẇq~0!52 iAVq, ~2.38!

h~0!5h0 , ḣ~0!50. ~2.39!

As mentioned above, the choice ofVq determines the
initial state. We will choose these such that att50 the quan-
tum fluctuations are in the ground state of the oscillators at
the initial time. Recalling that by definitiongS(0)50, we
choose the dimensionless frequencies to be

Vq5Aq2111h0
2. ~2.40!

The Wronskian of two solutions of Eq.~2.37! is given by

W @wq ,w̄q#52i , ~2.41!

while gS(t) is given by
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gS~t!5gE
0

`

q2dqH uwq~t!u22
1

Vq

1
u~q21!

2q3
@2h0

21h2~t!1gS~t!#J .
~2.42!

C. Broken symmetry

In the case of broken symmetryMR
252uMR

2 u and the field
equations in theN5` limit become

ḧ2h1h31gh~t!S~t!50, ~2.43!

F d2dt2
1q2211h~t!21gS~t!Gwq~t!50, ~2.44!

whereS(t) is given in terms of the mode functionswq(t)
by the same expression of the previous case, Eq.~2.42!. Now
the choice of boundary conditions is more subtle. The sit
tion of interest is when 0,h0

2,1, corresponding to the situ
ation where the expectation value rolls down the poten
hill from the origin. The modes withq2,12h0

2 are unstable
and thus do not represent simple harmonic oscillator qu
tum states. Therefore, onemust choose a different set o
boundary conditions for these modes. Our choice will be t
corresponding to the ground state of anupright harmonic
oscillator. This particular initial condition corresponds to
quench type of situation in which the initial state is evolv
in time in an inverted parabolic potential~for early times
t.0). Thus we shall use the following initial conditions fo
the mode functions:

wq~0!5
1

AVq
, ẇq~0!52 iAVq, ~2.45!

Vq5Aq2111h0
2 for q2,12h0

2 , ~2.46!

Vq5Aq2211h0
2 for q2.12h0

2 , 0<h0
2,1,

~2.47!

along with the initial conditions for the zero mode given b
Eq. ~2.39!.

D. Particle number

Although the notion of particle number is ambiguous in
time-dependent nonequilibrium situation, a suitable defi
tion can be given with respect to some particular poin
state. We consider two particular definitions that are phy
cally motivated and relevant as we will see later. The firs
when we define particles with respect to the initial Fo
vacuum state, while the second corresponds to defining
ticles with respect to the adiabatic vacuum state.

In the former case we write the spatial Fourier transfo
of the fluctuating fieldc(xW ,t) in Eq. ~2.9! and its canonical
momentumP(xW ,t) as

ck~ t !5
1

A2
@akwk~ t !1a2k

† wk* ~ t !#, ~2.48!
ua-
-
tial

an-
f
hat

a
ed

r

y

a
ni-
ter
si-
t is
ck
par-

rm

Pk~ t !5
1

A2
@akẇk~ t !1a2k

† ẇk* ~ t !#, ~2.49!

with the time-independentcreation and annihilation opera-
tors, such thatak annihilates the initial Fock vacuum state.
Using the initial conditions on the mode functions, the
Heisenberg field operators are written as

ck~ t !5U21~ t !ck~0!U~ t !5
1

A2Wk

@ ãk~ t !1ã 2k
† ~ t !#,

~2.50!

Pk~ t !5U21~ t !Pk~0!U~ t !52 iAWk

2
@ ãk~ t !2ã 2k

† ~ t !#,

~2.51!

ãk~ t !5U21~ t !akU~ t !, ~2.52!

with U(t) the time-evolution operator with the boundary con-
dition U(0)51. The Heisenberg operatorsãk(t),ã k

†(t) are
related toak ,ak

† by a Bogoliubov~canonical! transformation
~see Ref.@3# for details!.

The particle number defined with respect to the initial
Fock vacuum state is defined in term of the dimensionless
variables introduced above as

Nq~t!5^ã k
†~ t !ãk~ t !&5

Vq

4 F uwq~t!u21
uẇq~t!u2

Vq
2 G2

1

2
.

~2.53!

It is this definition of particle number that will be used for
the numerical study.

In order to define the particle number with respect to the
adiabatic vacuum state we note that the mode equations
~2.37! and~2.44! are those of harmonic oscillators with time-
dependent squared frequencies

vq
2~t!5q2611h2~t!1gS~t! ~2.54!

with 1 for the unbroken symmetry case and2 for the bro-
ken symmetry case, respectively. When the frequencies are
real, the adiabatic modes can be introduced in the following
manner:

ck~ t !5
1

A2vk~ t !
ak~ t !expF2 i E

0

t

vk~ t8!dt8G
1a2k

† ~ t !expF i E
0

t

vk~ t8!dt8G , ~2.55!

Pk~ t !52 iAvk~ t !

2 H ak~ t !expF2 i E
0

t

vk~ t8!dt8G
2a2k

† ~ t !expF i E
0

t

vk~ t8!dt8G J , ~2.56!

where nowak(t) is a canonical operator that destroys the
adiabatic vacuum state, and is related toak ,ak

† by a Bogo-
liubov transformation. This expansion diagonalizes the in-
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stantaneous Hamiltonian in terms of the canonical opera
a(t),a†(t). The adiabatic particle number is

Nq
ad~t!5^ak

†~ t !ak~ t !&5
vq~t!

4 F uwq~t!u21
uẇq~t!u2

vq
2~t!

G2
1

2
.

~2.57!

As mentioned above, the adiabatic particle number
onlybe defined when the frequenciesvk(t) are real. Thus, in
the broken symmetry state they can only be defined for w
vectors larger than the maximum unstable wave vec
k.ku5uMRuA12h0

2. These adiabatic modes and the cor
sponding adiabatic particle number have been used pr
ously within the nonequilibrium context@8–10# and will be
very useful in the analysis of the energy below. Both defi
tions coincide att50 becausevq(0)5Vq . Notice that
Nq
ad(0)5Nq(0)50 due to the fact that we are choosing ze

initial temperature.~We considered a nonzero initial tem
perature in Refs.@3,11#!.

E. Energy and pressure

The energy momentum tensor for this theory is given

Tmn5]mfW •]nfW 2gmn@]afW •]afW 2V~fW •fW !#. ~2.58!

Using the largeN factorization, Eqs.~2.4!–~2.7!, ~2.9! we
find the energy density operator to be

E

NV5
1

2
ḟ2~ t !1

1

2
m2f2~ t !1

l

8
f4~ t !

1
1

2V (
k

@ċk~ t !ċ2k~ t !1vk
2~ t !ck~ t !c2k~ t !#

2
l

8
^c2~ t !&2

1 linear terms inc1O~1/N! ~2.59!

vk
2~ t !5k21m21

l

2
f2~ t !1

l

2
^c2~ t !&. ~2.60!

Taking the expectation value in the initial state and the in
nite volume limit, defining«5^E&/NV, and recalling that the
tadpole condition requires that the expectation value oc
vanishes, we find the expectation value of the energy to

«5
1

2
ḟ2~ t !1

1

2
m2f2~ t !1

l

8
f4~ t !1

1

8p2E k2dk@ uẇk~ t !u2

1vk
2~ t !uwk~ t !u2#2

l

8
^c2~ t !&2. ~2.61!

It is now straightforward to prove that this bare energy
conserved using the equations of motion~2.19!–~2.21!. It is
important to account for the last term when taking the tim
derivative because this term cancels a similar term in
time derivative ofvk

2(t).
Since we consider translationally as well as rotationa

invariant states, the expectation value ofTmn takes the fluid
form
tors

can

ave
tor,
re-
evi-

ni-

ro
-

by

fi-

f
be

is

e
the

lly

T005^E&, Ti j5^P&d i j , Ti050. ~2.62!

We want to emphasize that the full evolution of the zero
mode plus the back reaction with quantum fluctuations con
serves energy. Such is obviouslynot the case in most treat-
ments of reheating in the literature in which back reaction
effects on the zero mode are neglected. Without energy con
servation, the quantum fluctuations grow without bound. In
cosmological scenarios energy is not conserved but its tim
dependence is not arbitrary; in a fixed space-time back
ground metric it is determined by the covariant conservation
of the energy momentum tensor. There again only a ful
account of the quantum back reaction will maintain covarian
conservation of the energy momentum tensor.

We can write the integral in Eq.~2.61! as

1

8p2E
0

L

k2dk@ uẇk~ t !u21vk
2~ t !uwk~ t !u2#

5«U1
1

2p2E
ku

L

k2dkvk~ t !SNk
ad~ t !1

1

2D ,
~2.63!

«U5
1

8p2E
0

ku
k2dk@ uẇk~ t !u21vk

2~ t !uwk~ t !u2#, ~2.64!

whereL is a spatial upper momentum cutoff, taken to infin-
ity after renormalization. In the broken symmetry case,«U is
the contribution to the energy momentum tensor from the
unstable modes with negative squared frequencies
ku
25uMRu2@12h0

2# andNk
ad(t) is the adiabatic particle num-

ber given by Eq.~2.57!. For the unbroken symmetry case
«U50 andku50.

This representation is particularly useful in dealing with
renormalization of the energy. Since the energy is conserved
a subtraction att50 suffices to render it finite in terms of the
renormalized coupling and mass. Using energy conservatio
and the renormalization conditions in the largeN limit, we
find that the contribution*ku

` k2dkvk(t)Nk
ad(t) is finite. This

also follows from the asymptotic behaviors~2.26!.
In terms of dimensionless quantities, the renormalized en

ergy density is, after takingL→`,

«5
2uMRu4

lR
H ḣ2

2
1

h2

2
M2~t!1«F2

M4~t!

4

6
1

2
S 12

lR

uMRu2^
c2~0!&RDM2~t!1

g

8
FM4~t!

4

1M2~t!quAqu21M2~t!22qu@qu
21M2~t!#3/2

1M4~t!ln@qu1Aqu21M2~t!#G J 1C, ~2.65!

«F5
g

2E0
qu
q2dq@ uẇqu21vq

2~t!uwqu2#

12gE
qu

`

q2dqvq~t!Nq
ad~t!, ~2.66!
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M2~t!5611h2~t!1gS~t!, vq
2~t!5q21M2~t!,

~2.67!

where the lower sign andqu5A12h0
2 apply to the broken

symmetry case while the upper sign andqu50 correspond to
the unbroken symmetry case. The constantC is chosen such
that« coincides with the classical energy for the zero mod
The quantityM(t) is identified as the effective~dimension-
less! mass for the ‘‘pions.’’

We find using the renormalized Eqs.~2.36!, ~2.37!, ~2.42!,
~2.42!–~2.44! that the renormalized energy« is indeedcon-
servedboth for unbroken and for broken symmetry.

The pressure is obtained from the spatial components
the energy momentum tensor@see Eq.~2.62!# and we find the
expectation value of the pressure densityp5^P&/NV to be
given by

p5ḟ21
1

4p2E k2dkF uẇk~ t !u21
k2

3
uwk~ t !u2G2«.

~2.68!

Using the large-k behavior of the mode functions~2.26!, we
find that aside from the time-independent divergence tha
present also in the energy the pressure needs an extra
traction 1

6f̈
2/k3 compared with the energy. Such a term co

responds to an additive renormalization of the ener
momentum tensor of the form

dTmn5A~hmn]22]m]n!f2 ~2.69!

with A a ~divergent! constant@21#. Performing the integra-
tions with a spatial ultraviolet cutoff, and in terms of th
renormalization scalek introduced before, we find

A52
g

12
lnFLk G . ~2.70!

In terms of dimensionless quantities and after subtract
a time-independent quartic divergence, we finally find, s
ting L5`,

p5
2uMRu4

lR
H ḣ21gE

0

`

q2dqFq23 uwq~t!u21uẇq~t!u22
4

3
q

2
1

3q
M2~t!1

u~q21!

12q3
d2

dt2
@h21gS~t!#G J 2«.

~2.71!

At this stage we can recognize why the effective poten
is an irrelevant quantity to study the dynamics.

The sum of termswithout «F in Eq. ~2.65! for qu50 are
identified with the effective potential in this approximatio
for a time-independenth;gS. These arise from the ‘‘zero
point’’ energy of the oscillators with time-dependent fr
quency in Eq.~2.63!.

In the broken symmetry case the term«F describes the
dynamics of the spinodal instabilities@11# since the mode
functions will grow in time. Ignoring these instabilities an
setting qu50, as is done in a calculation of the effectiv
potential, result in an imaginary part. In the unbroken sy
metry (qu50) case the sum of terms without«F gives the
e.

of

t is
sub-
r-
gy-

e

ing
et-

tial

n

e-

d
e
m-

effective potential in the largeN limit, but the term«F de-
scribes the profuse particle production via parametric ampl
fication, the mode functions in the unstable bands give
contribution to this term that eventually becomes nonpertu
batively large and comparable to the tree level terms as w
be described in detail below. Clearly, both in the broken an
unbroken symmetry cases the effective potential missesall
of the interesting nonperturbative dynamics, that is the expo
nential growth of quantum fluctuations and the ensuing pa
ticle production, either associated with unstable bands in th
unbroken symmetry case or spinodal instabilities in the bro
ken symmetry phase.

The expression for the renormalized energy density give
by Eqs.~2.65!–~2.67! differs from the effective potential in
several fundamental aspects:~i! it is always real as opposed
to the effective potential that becomes complex in the spin
odal region,~ii ! it accounts for particle production and time-
dependent phenomena.

The effective potential is a useless tool to study the dy
namics precisely because it misses the profuse particle pr
duction associated with these dynamical, nonequilibrium an
nonperturbative processes.

III. THE UNBROKEN SYMMETRY CASE

A. Analytic results

In this section we turn to the analytic treatment of Eqs
~2.36!, ~2.37!, and ~2.42! in the unbroken symmetry case.
Our approximations will only be valid in the weak coupling
regime and for times small enough so that the quantum flu
tuations, i.e.,gS(t) are not large compared to the ‘‘tree
level’’ quantities. We will see that this encompasses th
times in which most of the interesting physics occurs.

SinceS(0)50, the back-reaction termgS(t) is expected
to be small for smallg during an interval, say 0<t,t1.
This time t1, to be determined below, determines the rel
evant time scale for preheating and will be called the pre
heating time.

During the interval of time in which the back-reaction
term gS(t) can be neglected, we can solve Eq.~2.36! in
terms of elliptic functions, with the result

h~t!5h0 cn~tA11h0
2,k!,

k5
h0

A2~11h0
2!
, ~3.1!

where cn stands for the Jacobi cosine. Notice thath(t) has
period 4v[4K(k)/A11h0

2, whereK(k) is the complete el-
liptic integral of first kind. In addition we note that since

h~t12v!52h~t!, ~3.2!

if we neglect the back reaction in the mode equations, th
‘‘potential’’ @212h2(t)# is periodic with period 2v. In-
serting this form forh(t) in Eq. ~2.37! and neglecting
gS(t) yields
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F d2dt2
1q2111h0

22h0
2sn2~tA11h0

2,k!Gwq~t!50.

~3.3!

This is the Lame´ equation for a particular value of the coef
ficients that makes it solvable in terms of Jacobi functio
@22#. We summarize here the results for the mode function
The derivations are given in the Appendix.

Since the coefficients of Eq.~3.3! are periodic with period
2v, the mode functions can be chosen to be quasiperio
~Floquet-type! with quasiperiod 2v:

Uq~t12v!5eiF ~q!Uq~t!, ~3.4!

where the Floquet indicesF(q) are independent oft. In the
allowed zones,F(q) is a real number and the functions ar
bounded with a constant maximum amplitude. In the forbi
den zonesF(q) has a nonzero imaginary part and the amp
tude of the solutions either grows or decreases exponentia

Obviously, the Floquet modesUq(t) cannot obey in gen-
eral the initial conditions given by Eq.~2.20! and the proper
mode functions with these initial conditions will be obtaine
as linear combinations of the Floquet solutions. We norm
ize the Floquet solutions as

Uq~0!51. ~3.5!

We chooseUq(t) and Uq(2t) as an independent set o
solutions of the second order differential Eq.~3.3!. It follows
from Eq.~3.4! thatUq(2t) has2F(q) as its Floquet index.

We can now express the modeswq(t) with the proper
boundary conditions@see Eq.~2.20!# as the following linear
combinations ofUq(t) andUq(2t):

wq~t!5
1

2AVq
F S 12

2iVq

Wq
DUq~2t!1S 11

2iVq

Wq
DUq~t!G ,

~3.6!

whereWq is the Wronskian of the two Floquet solutions

Wq[W@Uq~t!,Uq~2t!#522U̇q~0!. ~3.7!

Equation ~3.3! corresponds to a Schro¨dinger-like equation
with a one-zone potential@23#. We find two allowed bands
and two forbidden bands. The allowed bands correspond

212
h0
2

2
<q2<0 and

h0
2

2
<q2<1`, ~3.8!

and the forbidden bands to

2`<q2<212
h0
2

2
and 0<q2<

h0
2

2
. ~3.9!

The last forbidden band is forpositive q2 and hence will
contribute to the exponential growth of the fluctuation fun
tion S(t).

The mode functions can be written explicitly in terms o
Jacobiq functions for each band. We find, for the forbidde
band,
-
ns
s.

dic

e
d-
li-
lly.

d
al-

f

to

c-

f
n

Uq~t!5exp@2tA11h0
2Z„2K~k!v…#

q4~0!q1~v1t/2v!

q1~v !q4~t/2v!
,

~3.10!

where v is a function of q in the forbidden band
0<q<h0 /A2 defined by

q5
h0

A2
cn„2K~k!v,k…, 0<v<

1

2
, ~3.11!

andZ(u) is the Jacobi zeta function@24#. It can be expanded
in series as

2K~k!Z„2K~k!v…54p (
n51

`
q̂n

12q̂2n
sin~2npv !,

~3.12!

where q̂[exp@2pK8(k)/K(k)#. The Jacobiq functions can
be expanded in series as@25#

q1~vuq̂!52(
n51

`

~21!n11q̂~n21/2!2sin~2n21!pv,

q4~vuq̂!5112(
n51

`

~21!nq̂n
2
cos~2npv !. ~3.13!

We explicitly see in Eq.~3.10! thatUq(t) factorizes into
a real exponential with an exponent linear int and an anti-
periodic function oft with period 2v. Recall that

q1~x11!52q1~x!, q4~x11!51q4~x!. ~3.14!

We see that the solutionUq(t) decreases witht. The other
independent solutionUq(2t) grows witht.

The Floquet indices can be read comparing Eq.~3.4!,
~3.10!, and~3.14!,

F~q!52iK ~k!Z„2K~k!v…6p. ~3.15!

Uq(t) turns out to be a real function in the forbidden
band. It has real zeros at

t52v~n2v !, neZ, ~3.16!

and complex poles at

t52vn11~2n211!v8, n1 ,n2eZ, ~3.17!

wherev8 is the complex period of the Jacobi functions. No-
tice that the pole positions areq independent, and that
Uq(t) becomes an antiperiodic function on the borders of
this forbidden band,q50 andq5h0 /A2. We find, using Eq.
~3.10! and Ref.@24#,

Uq~t!uq505cn~tA11h0
2,k! ~3.18!

lim
q→ h0/A2

@vUq~t!#5
1

pq3
2~0!

sn~tA11h0
2,k!, ~3.19!

respectively.
The functionsUq(t) transform under complex conjuga-

tion in the forbidden band as
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@Uq~t!#*5Uq~t!. ~3.20!

For the allowed bandh0 /A2<q<`, we find for the
mode functions

Uq~t!5expF2
t

2v

q18

q1
S i K8~k!

K~k!
v D G

3

q4~0!q4S iK 8~k!

K~k!
v1

t

2v D
q4S i K8~k!

K~k!
v Dq4S t

2v D , ~3.21!

where

q5Ah0
211

dn

sn
„2K8~k!v,k8…, ~3.22!

0<v<
1

2
, `>q>

h0

A2
. ~3.23!

We see thatUq(t) in this allowed band factorizes into
phase proportional tot and a complex periodic function with
period 2v. This functionUq(t) hasno real zerosin t except
whenq is at the lower borderq5h0 /A2 . Its poles int are
q independent and they are the same as those in the for
den band@see Eq.~3.17!#.

The Floquet indices can be read off by comparing E
~3.4!, ~3.14!, and~3.21!,

F~q!5 i
q18

q1
S i K8~k!

K~k!
v D . ~3.24!

These indices are real in the allowed band.
The functionsUq(t) transform under complex conjuga

tion in the allowed band as

@Uq~t!#*5Uq~2t!. ~3.25!

Obviously these modes will give contributions to the flu
tuationS(t) which are always bounded in time and at lon
times will be subdominant with respect to the contributio
of the modes in the forbidden band that grow exponentia

The form of these functions is rather complicated, and
is useful to find convenient approximations of them for c
culational convenience.

The expansion of theq functions in powers of
q̂5exp@2pK8(k)/K(k)# converges quite rapidly in our case
Since 0<k<1/A2 @see Eq.~3.1!#, we have

0<q̂<e2p50.0432139 . . . . ~3.26!

q̂ can be computed with high precision from the series@25#

q̂5l12l5115l91150l1311707l171•••,

where~not to be confused with the coupling constant!

l[
1

2

12Ak8
11Ak8

. ~3.27!

We find from Eq.~3.1!
a

bid-

qs.

-

c-
g
ns
lly.
it

al-

.

l5
1

2

~11h0
2!1/42~11h0

2/2!1/4

~11h0
2!1/41~11h0

2/2!1/4
. ~3.28!

The quantityl can be computed and is a small number: for
0<h0<`, we find 0<l<0.0432136 . . . . Therefore, to
very good approximation, with an error smaller than
;1027, we may use

q̂5
1

2

~11h0
2!1/42~11h0

2/2!1/4

~11h0
2!1/41~11h0

2/2!1/4
. ~3.29!

We find in the forbidden band from Eq.~3.10! and @24#,

Uq~t!5exp$24tA11h0
2q̂sin~2pv !@112q̂~cos2pv22!

1O~ q̂2!#%
122q̂

122q̂cosS pt

v D
sinpS v1

t

2v D
sinpv

3@11O~ q̂2!#, ~3.30!

where now we can relatev to q in the simpler form

q5
h0

A2
cospv@124q̂sin2pv14q̂2sin2pv~114cos2pv !

1O~ q̂3!#, ~3.31!

which makes it more convenient to writeq(v) in the inte-
grals, and

p

2v
5A11h0

2@124q̂112q̂21O~ q̂4!#, ~3.32!

where 0<v< 1
2.

The Floquet indices can now be written in a very compact
form amenable for analytical estimates

F~q!54ipq̂sin~2pv !@112q̂cos2pv1O~ q̂2!#1p.
~3.33!

In this approximation the zero mode~3.1! becomes

h~t!5h0cosS pt

2v D F124q̂sin2S pt

2v D1O~ q̂2!G . ~3.34!

This expression is very illuminating because we find that
a Mathieu equation approximation, based on the first term of
Eq. ~3.34! to the evolution of the mode functions isnevera
good approximation. The reason for this is that the second
and higher order terms are of the same order as the secular
terms in the solution which after resummation lead to the
identification of the unstable bands. In fact, whereas the
Mathieu equation hasinfinitely manyforbidden bands, the
exact equation has onlyone forbidden band. Even for small
q̂, the Mathieu equation is not a good approximation to the
Laméequation@29#.

From Eq.~3.21! analogous formulas can be obtained for
the allowed band
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Uq~t!5expH 2
ipt

2v
cothFpK8~k!

K~k!
v G J 122q̂

122q̂cosS pt

v D

3

122q̂cosFpt

v
22iv lnq̂G

122q̂cosh~2v lnq̂!
@11O~ q̂2!#, ~3.35!

where

q5
Ah0

23/2sinhS pK8~k!

K~k!
v D S

h0
212

q̂ D 1/4$112q̂cosh~2v lnq̂!

1O~ q̂2!%. ~3.36!

Here,

0<v<
1

2
, `>q>

h0

A2
.

Note that Eq.~3.32! holds in all bands.
We can now estimate the size and growth of the quantu

fluctuations, at least for relatively short times and weak co
plings. For small times 0<t,t1 ~to be determined consis-
tently later! and small couplingg!1, we can safely neglect
the back-reaction termgS(t) in Eq. ~2.37! and express the
modeswq(t) in terms of the functionsUq(t) andUq(2t);
for this, however, we need the Wronskian, which in the fo
bidden band is found to be given by

Wq52
1

v

d

dv
ln

q1~v !

q4~v !
522A11h0

2cn dn

sn
„2vK~k!,k….

~3.37!

In terms of the variableq2 this becomes, after using Eq.
~3.11!,

Wq522qAh0
2

2
111q2Y h0

2

2
2q2. ~3.38!

This Wronskian is regular and nonzero except at the fo
borders of the bands.

We find from Eq.~3.6! that uwq(t)u2 is given by

uwq~t!u25
1

4Vq
H @Uq~t!1Uq~2t!#2

1
4Vq

2

W q
2 @Uq~t!2Uq~2t!#2J , ~3.39!

where we took into account Eqs.~3.20! and ~3.25!. Notice
that both terms in the~RHS! of Eq. ~3.39! are real and posi-
tive for realq. For very weak coupling and after renormal-
ization, the contribution togS(t) from the stable bands will
always be perturbatively small, while the contribution from
the modes in the unstable band will grow exponentially i
time eventually yielding a nonperturbatively large contribu
tion. Thus these are the only important modes for the flu
tuations and the back reaction. An estimate of the preheat
time scale can be obtained by looking for the time whe
m
u-

r-

ur

n
-
c-
ing
n

gS(t) is of the same order of the classical contributions t
the equations of motion. In order to obtain an estimate fo
the latter, we consider the average over a period of the cla
sical zero mode:

11^h2~t!&5~11h0
2!F2E~k!

K~k!
21G ~3.40!

which yields for small and large initial amplitudes the result

^h2~t!& ;
h0→0

h0
2

2
, ~3.41!

^h2~t!& ;
h0→`

0.4569 . . .h0
2 . ~3.42!

Therefore the average over a period ofh2(t) is to a very
good approximationh0

2/2 for all initial amplitudes. This re-
sult provides an estimate for the preheating time scalet1;
this occurs whengS(t1)'(11h0

2/2). Furthermore, at long
times @but beforegS'(11h0

2/2)# we need only keep the
exponentially growing modes andgS(t) can be approxi-
mated by

gSest~t!5
g

4E0
h0 /A2

q2dq
1

Vq
F11

4Vq
2

W q
2G uUq~2t!u2.

~3.43!

Moreover, choosingt such that the oscillatory factors in
Uq(2t) attain the value 1~the envelope!, and using Eq.
~3.10! we finally obtain:

Sest-env~t!5
1

4E0
h0 /A2

q2dq
1

Vq
F11

4Vq
2

W q
2G

3exp@2tA11h0
2Z„2K~k!v,k…#, ~3.44!

where v depends on the integration variable through Eq
~3.11!.

The JacobiZ function can be accurately represented usin
Eq. ~3.12!

Z„2K~k!v,k…54 q̂sin2pv@122 q̂~22cos2pv !#1O~ q̂3!,

~3.45!

where we recall thatq̂,0.0433.
The integral~3.44! will be dominated by the pointq that

maximizes the coefficient oft in the exponent. This happens
at q5q1 ,v5v1, where

q15
1
2 h0~12q̂!1O~ q̂2!, ~3.46!

Z„2K~k!v1 ,k…54q̂~124q̂!1O~ q̂3!. ~3.47!

We can compute the integral~3.44! by saddle point ap-
proximation to find
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TABLE I. Quantum fluctuationsS(t)'1/NAteBt during the preheating period.

h0 q̂ B N

1 0.017972387 . . . 0.1887167 . . . 3.778 . . .
3 0.037295557 . . . 0.8027561 . . . 0.623 . . .
4 0.03966577 . . . 1.1007794 . . . 0.4 . . .
h0→` 0.043213918 . . . 0.28595318h01O(h0

21) 3.147h0
23/2@11O(h0

22)#
Sest-env~t!5

q1
2F11

4Vq1
2

W q1
2 G

2Vq1

exp@8 tA11h0
2q̂~124q̂!#

3E
2`

`

dqexp@264t~q2q1!
2q̂A11h0

2h0
22

3~122q̂!#@11O~ q̂!#

5

h0
3ApF11

4Vq1
2

W q1
2 G

64~11h0
2!1/4Atq̂Vq1

exp@8 tA11h0
2q̂

3~124q̂!#F11OS 1t D G . ~3.48!

We can relateq̂ to h0 using Eq.~3.29!, and we have used the
small q̂ expansion

Z9„2K~k!v1 ,k…5216q̂~124q̂!1O~ q̂3!, ~3.49!

dq

dv U
v1

52
1

2p
~129q̂!1O~ q̂2!. ~3.50!

In summary, during the preheating time where parametr
resonance is important,Sest-env(t) can be represented to a
very good approximation by the formula

Sest-env~t!5
1

NAt
eBt, ~3.51!

whereB andN are functions ofh0 given by

B58A11h0
2q̂~124q̂!1O~ q̂3!,

N5
64

p1/2

~11h0
2!1/4Aq̂Vq1

h0
3F11

4Vq1
2

Wq1
2 G

5
4

Ap
Aq̂

~413h0
2!A415h0

2

h0
3~11h0

2!3/4
@11O~ q̂!#, ~3.52!

and Eq.~3.29! givesq̂ as a function ofh0. This is one of the
main results of this work.

We display in Table I some relevant values ofq̂,B, and
N as functions ofh0.
ic

We notice that the limiting values ofB and N for
h0→` yield a very good approximation even forh0;1.
Namely,

S~t!'Ah0
3

t

eB`h0t

N`
, ~3.53!

with the asymptotic values given by

B`58e2p~124e2p!@11O~h0
22!#

50.285953 . . . @11O~h0
22!#, ~3.54!

N`5
12

Ap
A5e2p/2@11O~h0

22!#53.147 . . . @11O~h0
22!#.

~3.55!

These rather simple expressions~3.51!–~3.55! allow us to
perform analytic estimates with great accuracy and constitute
one of our main analytic results. The accuracy of this result
will be discussed below in connection with the full numerical
analysis including back reaction.

Using this estimate for the back-reaction term, we can
now estimate the value of the preheating time scalet1 at
which the back reaction becomes comparable to the classical
terms in the differential equations. Such a time is defined by
gS(t1);(11h0

2/2). From the results presented above, we
find

t1'
1

B
ln
N~11h0

2/2!

gAB
. ~3.56!

The time interval fromt50 to t;t1 is when most of the
particle production takes place. Aftert;t1 the quantum
fluctuation becomes large enough to shutoff the growth of
the modes and particle production essentially stops. We will
compare these results to our numerical analysis below.

We can now use our analytic results to study the different
contributions to the energy and pressure coming from the
zero mode and the quantum fluctuations and begin by ana-
lyzing the contribution to the energye0 and pressurep0 from
the zero modeh(t).

The dimensionless energy and pressure~normalized by
the factor 2MR

4/lR) are given by the expressions

e0~t!5 1
2 @ḣ21h~t!21 1

2 h~t!4#,

p0~t!5 1
2 @ḣ22h~t!22 1

2 h~t!4#. ~3.57!
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FIG. 1. The ratio^p0&/«0 for zero mode vs
lR«0/2uMRu4 for the unbroken symmetry case.
s

.

When the back-reaction termgS(t) can be neglected, we
can use Eq.~3.1! as a good approximation toh(t). In this
approximation,

e05
1
2 h0

2@11 1
2 h0

2#,

p0~t!1e05h0
2~11h0

2! sn2 dn2~tA11h0
2,k!. ~3.58!

The zero mode energy is conserved and the pressure o
lates between plus and minuse0 with period 2v.

Averagingp0(t) over one period yields

^p0&[
1

2vE0
2v

dtp0~t!. ~3.59!

Inserting Eq.~3.58! into Eq. ~3.59! yields @26#

^p0&52
1

6
h0
2F12

1

2
h0
2G1

2

3
~11h0

2!F12
E~k!

K~k!G ,
~3.60!

wherek is given by Eq.~3.1!.
^p0& vanishes for smallh0 faster thane0,

^p0& ;
h0→0

1
24 h0

41O~h0
6!, ~3.61!

so that the zero mode contribution to the equation of stat
that of dust for smallh0. For largeh0 we find from Eq.
~3.60!,

^p0& ;
h0→`

1

12
h0
41h0

2F122
2

3

E~1/A2!

K~1/A2!
G1O~1!,

~3.62!

where 1
22

2
3E(1/A2)/K(1/A2)50.01437 . . . . The equation

of state approaches that of radiation forh0→`:
scil-

e is

^p0& ;
h0→`

e0F132
0.6092 . . .

h0
2 1O~h0

24!G . ~3.63!

Thus, we see that for small amplitudes the zero-mode
stress energy, averaged over an oscillation period, behaves a
dust while for large amplitudes, the behavior is that of a
radiation fluid. The ratio,p0./«0 for zero mode vs«0 is
shown in Fig. 1.

The contribution from thekÞ0 modes originates in the
quantum fluctuations during the the stage of parametric am-
plification.

Since we have fluid behavior, we can define an effective
~time-dependent! polytropic indexg(t) as

g~t![
p~t!

«
11, ~3.64!

where renormalized quantities are understood throughout.
Within a cosmological setting wheneverg(t) reaches a con-
stant value, such equation of state implies a scale factor
R(t)5R0t

2/3g.
In the case being studied here, that of Minkowski space,

« is time independent and hence equal to the initial energy
density~divided byN and restoring prefactors! which after a
suitable choice of the constantC is given by

«5
2uMRu4

lR
H 12h0

2F11
1

2
h0
2G J . ~3.65!

As argued before, for weak coupling the important con-
tribution to the quantum fluctuations comes from the modes
in unstable bands, since these grow exponentially in time and
give rise to a nonperturbatively large contribution. Thus, we
concentrate only on these modes in calculating the pressure

The contribution of the forbidden band to the renormal-
ized p(t)1« can be written as
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@p~t!1«#unst5
2uMRu4

lR
H gE

0

h0 /A2
q2dqF uẇq~t!u2

1
1

3
q2uwq~t!u2G J . ~3.66!

After renormalization, the terms that we have neglected
this approximation are perturbatively small~of order g)
whereas the terms inside the brackets eventually become
order 1~comparable to the tree level contribution!. We now
only keep the exponentially growing pieces in the mod
functions wq(t) and ẇq(t) since these will dominate the
contribution to the pressure. This is simplified considerab
by writing, to leading order inq̂,

ẇq~t!5wq~t!HA11h0
2cotFpS v2

t

2v D G1O~ q̂!J .
~3.67!

Averaging over a period of oscillation yields

@p~t!1«#unst5
2uMRu4

lR
H g4E0h0 /A2 q2dq~4p!2

3
1

2Vqsin
2pv F11

4Vq
2

Wq
2 G ~3.68!

3exp@2tA11h0
2Z„2K~k!v,k…#

3F11h0
21

1

3
q2G J . ~3.69!

This integral is similar to the one in Eq.~3.44! and we
find that they are proportional in the saddle point approxim
tion. In fact,

@p~t!1«#unst5
2uMRu4

lR
FgSest-env~t!S 11

13

12
h0
2D G ,

~3.70!

whereSest-env(t) is given by Eq.~3.51!.
The effective polytropic indexg(t) is:

g~t!5gSest-env~t!
12113h0

2

3h0
2~h0

212!
. ~3.71!

WhengSest-env(t1);11h0
2/2, i.e., at the end of the preheat

ing phase,g(t) is given by

geff}
12113h0

2

6h0
2 . ~3.72!

We note here that for very largeh0 the effective polytropic
index is geff.13/6;O(1). It is clear then that the physics
can be interpreted in terms of two fluids, one the contributio
from the zero mode and the other from the fluctuations, ea
with an equation of state that is neither that of dust nor
radiation, but described in terms of an effective polytrop
index.

We can now use our approximations to obtain an estim
for the number of particles produced during the preheati
in

of

e

ly

a-

-

n
ch
of
ic
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ng

stage. In terms of dimensionless quantities, the particle num
ber, defined with respect to the initial Fock vacuum state, is
given by Eq.~2.53!.

This particle number will only obtain a significant contri-
bution from the unstable modes in the forbidden band wher
to leading order inq̂ we can approximatewq(t) and ẇq(t)
by its exponentially growing pieces@see Eq.~3.39!#, as

uwq~t!u2.
1

4Vq
F11

4Vq
2

Wq
2 G uUq~2t!u2, ~3.73!

uẇq~t!u2.~11h0
2!cotg2FpS v2

t

2v D G uwq~t!u21O~ q̂!.

~3.74!

The total number of produced particlesN(t) per volume
uMRu3 is given by

N5
N~t!

uMRu3
[E d3q

~2p!3
Nq~t!. ~3.75!

The asymptotic behavior~2.26! ensures that this integral
converges.

Following the same steps as in Eqs.~3.44! and~3.68!, we
find

N~t!unst5
1

8p2Sest-env~t!F11h0
2

Vq1

1Vq1G
5

1

lR

41 9
2 h0

2

A415h0
2@gSest-env~t!#, ~3.76!

where we used Eq.~3.46! and Sest-env(t) is given by the
simple formula~3.51!. Notice that by the end of the preheat-
ing stage, whengS(t)'11h0

2/2 the total number of par-
ticles produced is nonperturbatively large, both in the ampli-
tude as well as in the coupling

Ntot'
1

lR

~41 9
2h0

2!~11h0
2/2!

A415h0
2

. ~3.77!

The total number ofadiabaticparticles can also be com-
puted in a similar manner with a very similar result insofar as
the nonperturbative form in terms of coupling and initial
amplitude.

B. Numerical results

We now evolve our equations for the zero and nonzero
modes numerically, including the effects of back reaction.
We will see that up to the preheating time, our analytic re-
sults agree extremely well with the full numerical evolution.

The procedure used was to solve Eqs.~2.36! and ~2.37!
with the initial conditions~2.38!–~2.40! and ~2.42! using a
fourth order Runge-Kutta algorithm for the differential equa-
tion and an 11-point Newton-Cotes integrator to compute the
fluctuation integrals. We tested the cutoff sensitivity by run-
ning our code for cutoffsL/uMRu5100,70,50,20 and for
very small couplings~which is the case of interest!. We
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FIG. 2. ~a! h(t) vs t for the unbroken symmetry case withh054, g510212. ~b! gS(t) for the same values of the parameters as in~a!.
The agreement with the analytic prediction is to within 5% for 0,t<30. ~c! gN(t) for the same parameters as in~a!. ~d! gNq(t) vs q for
t540 for the same values of parameters as in~a!. ~e! gNq(t) vs. q for t5120 for the same values of parameters as in~a!. ~f! gNq(t) vs
q for t5200 for the same values of parameters as in~a!. ~g! (lR/2uMRu4)p(t) for the same values of the parameters as in~a!. ~h!
Asymptotically the average over a period givesp`'«/3.
found no appreciable cutoff dependence. The typical num
cal error both in the differential equations and the integrals
less than one part in 109.

Figure 2~a! showsh(t) vs t for h054.0, g510212. For
this weak coupling, the effect of back reaction is negligib
for a long time, allowing several undamped oscillations
the zero mode. Figure 2~b! showsgS(t) vs t. It can be seen
that the back reaction becomes important wh
eri-
is

le
of

en

gS(t)'11h0
2/2 as the evolution ofh(t) begins to damp

out. This happens fort'25, in excellent agreement with the
analytic prediction given by Eq.~3.56! t1526.2 . . . , thedif-
ference between the analytic estimate forS(t) given by Eq.
~3.53! and the numerical result is less than 5% in the range
0,t,30. Figure 2~c! showsgN(t) vs t and we see that the
analytic expression~3.77! gives an approximate estimation
lRNtot'74.6 . . . for thefinal number of produced particles.
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«5
2uMRu4

lR
H ḣ2

2
1

h2

2
1

h4

4
12gE

0

qc
q2dqVqNq~t!

1
g

2
S~t!Fh2~t!2h0

21
g

2
S~t!G1O~g!J , ~3.78!

p5
2uMRu4

lR
H gE

0

qc
q2dqFq23 uwq~t!u21uẇ~t!u2G

1ḣ21O~g!J 2«, ~3.79!

qc5
h0

A2
, ~3.80!

FIG. 2 ~Continued!.
f

e

l

Figures 2~d!–2~f!, show gNq(t) for t540,120,200; we
see that the prediction of the width of the unstable ba
0,q,h0 /A2 is excellent and is valid even for very long
times beyond the regime of validity of the small time, wea
coupling approximation. However, we see that the peak b
comes higher, narrower and moves towardsq'0.5 as time
evolves beyondt1. This feature persists in all numerica
studies of the unbroken phase that we have carried out; th
changes in the peak width, height, and position are clearl
result of back-reaction effects. We have searched for u
stable bands for 0,q,20 and we only found one band pre
cisely in the region predicted by the analytic estimate. A
throughout the evolutionthere is only one unstable band.
The band develops some structure with the height, positi
and width of the peak varying at long times but no oth
unstable bands develop and the width of the band rema
constant. For values ofq outside the unstable band we find
typically gNq,10213 at all times. This is a remarkable and
unexpected feature.

Obviously, this is very different from the band structur
of a Mathieu equation. The Mathieu equation gives rise to
infinite number of narrowing bands, so that quantitative e
timates of particle production, etc. using the Mathieu equ
tion approximation would be gross misrepresentations of t
actual dynamics, with discrepancies that are nonpertur
tively large when the back reaction becomes important@16#.
Since particle production essentially happens in the forb
den bands, the quantitative predictions obtained from
single forbbiden band and an infinite number, as predicted
WKB or Mathieu equation analysis, will yield different
physics.

We have carried the numerical evolution including on
the wave vectors in the unstable region and we find that t
region ofq wave vectors is the most relevant for the nume
ics. Even using a cutoff as low asqc54 in this case gives
results that are numerically indistinguishable from those o
tained with much larger cutoffsqc570–100. The occupation
number of modes outside the unstable bands very quic
becomes negligibly small and forq'4 it is already of the
same order of magnitude as the numerical error<10210.
Clearly, this is a feature of the weak coupling case und
consideration. Keeping only the contribution of the modes
the unstable band, the energy and pressure can be writte
nd
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where we have made explicit that we have neglected terms o
orderg in Eqs.~3.78!–~3.79!. The terms multiplied byg in
Eqs.~3.78! and~3.79! become of order 1 during the preheat-
ing stage. For the parameters used in Figs. 2, we hav
checked numerically that the energy~3.78! is conserved to
order g within our numerical error. Figure 2~g! shows the
pressure 2uMRu4p(t)/lR vs t. Initially, p(0)52« ~vacuum
dominated! but at the end of preheating the equation of state
becomes almost that of radiationp`5«/3.

For very small coupling (g;10212), the back reaction
shuts off suddenly the particle production at the end of the
preheating@see Fig. 2~c!#. Later on (t larger than 100 for
g;10212), the time evolution is periodic in a very good
approximation. That is, this nonlinear system exhibits a lim-
iting cycle behavior. The modulus of thek modes does not
grow in time and no particle production takes place. This
tells us that no forbidden bands are present forq2.0 in the
late time regime.

We have numerically studied several different values of
h0 ,g finding the same qualitative behavior for the evolution
of the zero mode, particle production, and pressure. In al
cases we have found remarkable agreement~at most 5%
difference! with the analytical predictions in the time regime
for which 0,gS(t)<1. The asymptotic value of the pres-
sure, however, only becomes consistent with a radiation
dominated case for large initial amplitudes. For smaller am-
plitudes h051 we find that asymptotically the polytropic
index is smaller than 4/3. This asymptotic behavior is be-
yond the regime of validity of the approximations in the
analytic treatment and must be studied numerically. This
polytropic index depends crucially on the band structure be-
cause most of the contribution comes from the unstable
modes.

IV. THE BROKEN SYMMETRY CASE

A. Analytic results

As in the unbroken case, forg!1 we can neglect
gS(t) in Eq. ~2.43! until a timet2 at which point the fluc-
tuations have grown to be comparable to the ‘tree level’
terms.

We then find, for 0<h0<1,
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h~t!5
h0

dnS tA12
h0
2

2
,kD ,

k5A12h0
2

12
h0
2

2

. ~4.1!

Notice thath(t) has period 2v[2K(k)/A12h0
2/2. The el-

liptic modulusk is given by Eq.~4.1!.
For 1<h0<A2 we find

h~t!5h0 dn~th0 /A2,k!,

k5A2~12h0
22!. ~4.2!

This solution follows by shifting Eq.~4.1! by a half-period
and changing h0

2→22h0
2. It has a period

2v[2A2/h0K(k). For h0→1, 2v→pA2 and the oscilla-
tion amplitude vanishes, sinceh51 is a minimum of the
classical potential.

For h0.A2 we obtain

h~t!5h0 cn~Ah0
221t,k!,

k5
h0

A2~h0
221!

. ~4.3!

This solution has 4v[4K(k)/Ah0
221 as period.

The solutions forh0,A2 andh0.A2 are qualitatively
different since in the second caseh(t) oscillates over the
two minimah561. In the limiting caseh05A2 these so-
lutions degenerate into the instanton solution

h~t!5
A2
cosht

, ~4.4!

and the period becomes infinite.
Inserting this form forh(t) in Eq. ~2.44! and neglecting

gS(t) yields, for 0<h0<1,

F d2

dt2
1q2211

h0
2

dn2S tA12
h0
2

2
,kD Gwq~t!50.

~4.5!

This is again a Lame´ equation for a one-zone potential an
can also be solved in closed form in terms of Jacobi fun
tions. We summarize here the results for the mode functio
with the derivations again given in the Appendix.

As for unbroken symmetry case, there aretwo allowed
bands andtwo forbidden bands. The allowed bands fo
0<h0<1 correspond to

0<q2<
h0
2

2
and 12

h0
2

2
<q2<1`, ~4.6!

and the forbidden bands to
c-
s,

r

2`<q2<0 and
h0
2

2
<q2<12

h0
2

2
. ~4.7!

The last forbidden band exists for positiveq2 and hence
contributes to the growth ofS(t).

The Floquet solutions obey Eqs.~3.4! and ~3.5! and the
modes wq(t) can be expressed in terms ofUq(t) and
Uq(2t) following Eq. ~3.6!.

It is useful to write the solutionUq(t) in terms of Jacobi
q functions. For the forbidden bandh0

2/2<q2<12h0
2/2 af-

ter some calculation~see the Appendix!,

Uq~t!5exp@2tA12h0
2/2Z„2K~k!v…#

q3~0!q2S v1
t

2v D
q2~v !q3S t

2v D ,

~4.8!

where 0<v< 1
2 is related withq through

q2512
h0
2

2
2~12h0

2!sn2„2K~k!v,k…, ~4.9!

andk is a function ofh0 as defined by Eq.~4.1!.
We see explicitly here thatUq(t) factorizes into a real

exponential with an exponent linear int and an antiperiodic
function of t with period 2v.

The Floquet indices for this forbidden band are given by

F~q!52iK ~k!Z„2K~k!v…6p. ~4.10!

For the allowed band 12h0
2/2<q2<1`, we find for the

modes,

Uq~t!5expF2~t/2v!q18/q1S ia2v D Gq3~0!q3S ia1t

2v D
q3S ia2v Dq3S t

2v D ,
~4.11!

whereq anda are related by

q5

A12
h0
2

2

snS aA12
h0
2

2
,k8D ,

with K8(k)/A12h0
2>a>0. The Floquet indices for this

first allowed band are given by

F~q!5 i
q18

q1
S ia2v D . ~4.12!

Analogous expressions hold in the other allowed band,
0<q2<h0

2/2:
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Uq~t!5expF2~t/2v!q28/q2S ia2v D Gq3~0!q4S ia1t

2v D
q4S ia2v Dq3S t

2v D .
~4.13!

Here, q5h0 /A2;sn(aA12h0
2/2,k8) and K8(k)/A12h0

2

>a>0, and the Floquet indices for this band are given by

F~q!5 i
q28

q2
S ia2v D . ~4.14!

For h0'1 the situation is very similar to the unbroken
symmetry case; the zero mode oscillates quasiperiodica
around the minimum of the tree level potential. There ar
effects from the curvature of the potential, but the dynamic
can be analyzed in the same manner as in the unbroken ca
with similar conclusions and will not be repeated here.

The caseh0!1 is especially interesting@3# for broken
symmetry because of new and interesting phenomena@3#
that have been recently associated with symmetry restorati
@1,13,17,18#.

In this limit, the elliptic modulusk @see Eq.~4.1!# ap-
proaches unity and the~real! period 2v grows as

2v.2K~k!1O~h0
2!.2 lnSA32h0

D 1O~h0
2!. ~4.15!

In this limit, both the potential in Eq.~4.5! and the mode
function ~4.8! can be approximated by hyperbolic functions
@24#:

1

dnS tA12
h0
2

2
,kD 5cosht1O~h0

2!, ~4.16!

Z~u!5tanhu2
u

L
1O~h0

2!, ~4.17!

where

coshu5
4

h0
2 S q2Aq22

h0
2

2
D @11O~h0

2!#,

L[ lnSA32h0
D ,

0<u<L. ~4.18!

Using the imaginary Jacobi transformation@24#,

q2,3~vuq̂!5A K~k!

K~k8!
exp$2@pK~k!/K~k8!#v2%

3q4,3S 2 i
K~k!

K~k8!
vUq̇D , ~4.19!

whereq̂5e2pK(k8)/K(k), q̇5e2pK(k)/K(k8), and the series ex-
pansions@24#
ly

s
se,

n

q3~vuq̂!5112(
n51

`

q̂n
2
cos~2pnv !, ~4.20!

q4~vuq̂!5q3~v1 1
2 uq̂!, ~4.21!

we can derive expressions for the mode functionsUq(t)
valid for smallh0:

Uq~t!5exp@2ttanhu~11h0
2/8!#

3

12
h0
2

8
coshucosh~u12t!

12
h0
2

8
coshu

@11O~h0
2!#.

~4.22!

Hereu is related withq through Eq.~4.18!. We see that the
functionUq(2t) grows with t almost aset for q near the
lower border of the forbidden bandu.L. This fast growth
can be interpreted as the joint effect of the nonperiodic ex-
ponential factor in Eq.~4.8! and the growth of the periodic
q functions. Since the real period is here of the orderL, the
two effects cannot be separated. The unstable growth for
t<v also reflects the spinodal instabilities associated with
phase separation@11#.

In this case, there is a range of parameters for which the
quantum fluctuations grow to become comparable to the tree
level contribution within just one or very few periods. The
expression~4.22! determines thatS(t)'e2t from the con-
tributions of modes near the lower edge of the band. The
condition for the quantum fluctuations to become of order 1
within just one period of the elliptic function isge4v'1
which leads to the conclusion that forh(0),g1/4; the quan-
tum fluctuations grow very large before the zero mode can
actually execute a single oscillation. In such a situation an
analysis in terms of Floquet~quasiperiodic! solutions is not
correct because the back reaction prevents the zero mode
from oscillating enough times for periodicity to be a reason-
able approximation.

We now analyze the behavior of the pressure for the zero
mode to compare to the previous case. In the approximation
where Eqs.~4.1!–~4.3! hold and adjusting the constantC in
the definition of the energy, we have

e05
1
4 ~h0

221!2,

p0~t!52e01ḣ~t!2. ~4.23!

Inserting Eqs.~4.1!–~4.3! in Eq. ~4.23! yields

0<h0<1: p0~t!52e0F128sn2cn2

3S ~t1K !A12
h0
2

2
,kD G ,

1<h0<A2: p0~t!52e0@128sn2cn2~th0 /A2,k!#,

h0>A2: p0~t!52e0@128k2sn2dn2~tAh0
221,k!#.

~4.24!



54 7587ANALYTIC AND NUMERICAL STUDY OF PREHEATING . . .
FIG. 3. The ratio^p0&/«0 for zero mode vs
lR«0/2uMRu4 for the broken symmetry case.
Notice that the functional form of the elliptic modulusk as a
function of h0 is different in each interval@see Eqs.~4.1!–
~4.3!#.

Let us now average the pressure over a period as in
~3.59!. We find

^p0&5e0H 83 Fk222

k4 S 12
E~k!

K~k! D1
1

k2G21J
for 0<h0<A2,

^p0&5e0H 83 F ~122k2!S 12
E~k!

K~k! D1k2G21J for h0>A2.
~4.25!

The dimensionless energye0 tends to 1/4 both as
h0→0 andh0→A2, in both cases we find using Eq.~4.25!

^p0&
e0
→212

16

3lnu 1
4 2e0u

1O~e02
1
4 !. ~4.26!

This result is recognized as vacuum behavior in this limit.
For h0→1, Eq. ~4.25! yields

^p0&
e0

;
h0→1

O~h021!2. ~4.27!

That is a dust-type behavior, which is consistent with th
small amplitude limit of the unbroken symmetry case studi
before.

Finally, for h0→`, when the zero mode is released from
high up the potential hill, we find that the pressure a
proaches radiation behavior~from above!

^p0&
e0

;
h0→`

1

3
1
4

3 F 1A2211S 22
1

A2D E~1/A2!

K~1/A2!
G 1h0

2 1OS 1

h0
4D

5
1

3
1
0.86526 . . .

h0
2 1OS 1

h0
4D . ~4.28!
Eq.

e
ed

p-

Figure 3 showŝp0&/«0 vs «0.
As mentioned before, we expect that forh0!1 the con-

clusion will be modified dramatically by the quantum correc-
tions.

B. Numerical results

In the regionh0'1 the analytic estimates are a good
approximation for large times and weak couplings. We have
studied numerically many different cases withh0>0.5 and
weak coupling and confirmed the validity of the analytic
estimates. These cases are qualitatively similar to the unbro-
ken symmetry case with almost undamped oscillations for a
long time compatible with the weak coupling approximation
and whengS(t) grows by parametric amplification to be of
order 1 with a consequently large number of produced par-
ticles and the evolution of the zero mode damps out.

However, as argued above, forh0!1 the analytic ap-
proximation will not be very reliable because the quantum
fluctuations grow on a time scale of a period or so~depend-
ing on the coupling! and the back-reaction term cannot be
neglected. Thus, this region needs to be studied numerically.

We numerically solved Eqs.~2.43! and ~2.44! with the
initial conditions ~2.42!, ~2.45!–~2.47!. The numerical rou-
tines are the same as in the unbroken symmetry case. Again
we tested cutoffsL/uMRu5100,70,50,20 and for very small
couplings ~which is the case of interest,
g51026 . . .g510212) we found no appreciable cutoff de-
pendence, with results that are numerically indistinguishable
even for cutoffs as small asqc'2. The typical numerical
error both in the differential equations and the integrals are
the same as in the unbroken case, less than one part in 109.

We begin the numerical study by considering first the
case of very small coupling andh0!1; later we will deal
with the case of larger couplings and initial values of the
zero mode. Figure 4~a! shows h(t) vs t for h051025,
g510212. In this case we see that within one period of the
classical evolution of the zero mode,gS(t) becomes of or-
der 1, the quantum fluctuations become nonperturbatively
large and the approximation valid for early times and weak
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FIG. 4. ~a! h(t) vs t for the broken symmetry case withh051025, g510212. ~b! gS(t) for the same values of the parameters as in~a!.
~c! gN(t) for the same parameters as in~a!. ~d! gNq(t) vs q for t530 for the same values of parameters as~a!. ~e! gNq(t) vs q for
t590 for the same values of parameters as~a!. ~f! gNq(t) vs q for t5150 for the same values of parameters as~a!. ~g!M2(t) vs t for the
same parameters as~a!. ~h! «cl(t) vs t for the same parameters as~a!. ~i! «N(t) vs t for the same parameters as~a!. ~j! «C(t) vs t for the
same parameters as~a!. ~k! (lR/2uMRu4)p(t) for the same values of the parameters as in~a!. Asymptotically the average over a period gives
p`5«/3.
i
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-

t
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s

g

couplings breaks down. Figure 4~b! showsgS(t) and Fig.
4~c! showsgN(t) vs t for these parameters. We find tha
only the wave vectors in the region 0,q,1 are important,
i.e., there is only one unstable band whose width rema
constant in time. This is seen in Figs. 4~d!–~f!, which show
the particle number~defined with respect to the initial state!
as a function of wave vector for different times
gNq(t530), gNq(t590), gNq(t5150), respectively. Al-
t

ns

though the analytic approximation breaks down, the predic
tion equation~4.7! for the band width agrees remarkably
well with the numerical result. As in the unbroken case, the
band develops structure but its width is constant throughou
the evolution. As can be seen in these figures the peak of th
distribution becomes higher, narrower, and moves toward
smaller values ofq. The concentration of particles at very
low momentum is a consequence of the excitations bein
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FIG. 4 ~Continued!.
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effectively massless in the broken symmetry case. The f
tures are very distinct from the unbroken symmetry case
which the peak approachesq'0.5.

We found in all cases that the asymptotic behavior cor
sponds to

M2~t!5211h2~t!1gS~t! →
limt→`

0. ~4.29!

This is a consistent asymptotic solution that describes ma
less ‘‘pions’’ and broken symmetry in the caseh(`)Þ0.

For times t'100–150 the value of the zero mode
somewhat larger than the initial value
ea-
, in

re-

ss-

is
:

h(t5150)'231025. This result, when combined with the
result that the average of the effective mass approaches ze
is clearly an indication that the symmetry isbroken. We
found numerically that the final value of the zero mode de
pends on the initial value and the coupling and we will pro
vide numerical evidence for this behavior below.

Figure 4~a! presents a puzzle. Since the zero mode begi
very close to the origin with zero derivative andends upvery
close to the origin with zero derivative, the classical energ
of the zero mode is conserved. At the same time, howeve
the dynamical evolution results in copious particle produc
tion as can be seen from Fig. 4~c!. We have shown in Sec.
II E that the total energy is conserved and this was nume
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cally checked within the numerical error. Thus the puzz
how is it possible to conserve thetotal energy, conserve the
classical zero mode energy, and at the same time cr
O(1/g) particles? The answer is that there is a new term
the total energy that acts as a ‘‘zero point energy’’ that
minishes during the evolution and thus maintains total
ergy conservation with particle production. The most imp
tant contribution to the energy arises from the zero mode
the unstable modes 0,q,qu . The energy and pressure a
given by~adjusting the constantC such that the energy coin
cides with the classical value!

«5
2uMRu4

lR
$«cl1«N1«C1O~g!%, ~4.30!

«cl5
ḣ2

2
1
1

4
~h221!2, ~4.31!

«N52gE
0

qu
q2dqVqNq~t!, ~4.32!

«C5
g

2
S~t!F212h0

21M2~t!2
g

2
S~t!G , ~4.33!

p5
2uMRu4

lR
H gE

0

qu
q2dqFq23 uwq~t!u21uẇ~t!u2G

1ḣ21O~g!J 2«, ~4.34!

M2~t!5211h2~t!1gS~t!, ~4.35!

whereM(t)2 is the effective squared mass of theN21
‘‘pions’’ and again O(g) stands for perturbatively smal
terms of orderg. The terms displayed in Eq.~4.31!–~4.34!
are all ofO(1) during the preheating stage.

We find that whereas«N grows with time, the term«C
becomes negative and decreases. In all the cases tha
studied, the effective massM(t) approaches zero asymp
totically; this is seen in Fig. 4~g! for the same values of the
parameters as in Figs. 4~a!–~c!. This behavior and an asymp
totic valueh`Þ0 are consistent with broken symmetry an
massless pions by Goldstone’s theorem. The term«C in Eq.
~4.33! can be identified with the ‘‘zero’’ of energy. It con
tributes to the equation of state as a vacuum contributi
that is,pC52«C and becomes negative in the broken sy
metry state. It is this term that compensates for the contri
tion to the energy from particle production.

This situation is generic for the cases of interest for wh
h0!1; such is the case for the slow roll scenario in infl
tionary cosmology. Figures 4~h!–4~k! show «cl(t) vs t,
«N(t) vs t, «C(t) vs t, and (lR/2uMRu4)p(t) vs t for the
same values of parameters as Fig. 4~a!. The pressure has a
remarkable behavior. It begins withp52« corresponding to
vacuum domination and ends asymptotically with a rad
tionlike equation of statep5«/3. A simple explanation for
radiationlike behavior would be that the equation of state
dominated by the quantum fluctuations which as argu
above correspond to massless pions and, therefore, ultra
tivistic. It must be noted that we obtain a radiationlike equ
le:
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tion of state in spite of the fact that the the distribution is ou
of equilibrium and far from thermal as can be seen from
Figs. 4~d!–4~f!.

An important question to address at this point is: wh
does the zero mode reach an asymptotic valuedifferentfrom
the minimum of the effective potential? The answer to thi
question is that the effective potential is an irrelevant qua
tity to study the dynamics@3,11#. Once there is profuse par-
ticle production, a feature completely missed by the effectiv
potential, the zero mode evolves in a nonequilibrium bath
these excitations. Through the time evolution, more of the
particles are produced and the zero mode evolves in a high
excited, nonequilibrium state. Furthermore we have seen
detail that this mechanism of particle production modifie
dramatically the zero point origin of energy and therefore th
minimum of the effective action, which is now the appropri
ate concept to use. The final value reached by the zero mo
in the evolution will be determined by all of thesenonper-
turbativeprocesses, and only a full numerical study will cap
ture the relevant aspects. As we have argued above, appro
mations based on Mathieu-type equations or the WK
approximation are bound to miss important details and w
lead to a completely different evolution.

V. SYMMETRY RESTORATION AT PREHEATING?

The numerical result depicted by Figs. 4~a!–4~c!, which
are very similar to results obtained previously@3#, has moti-
vated the suggestion that the growth of quantum fluctuatio
is so strong that the nonequilibrium fluctuations restore th
symmetry @1,13#. The argument is that the nonequilibrium
fluctuations given by the terml^c2(t)& in Eq. ~2.20! for the
mode functions grow exponentially and eventually this term
overcomes the term2um2u leading to an effective potential
with a positivemass squared for the zero mode@see Eq.
~2.19!#.

Although this is a very interesting suggestion, it isnot
borne out by our numerical investigation. The signal for bro
ken or restored symmetry is the final value of the zero mod
when the system reaches an equilibrium situation. Any arg
ment about symmetry restoration based solely on the dyna
ics of the fluctuation terml^c2(t)& is incomplete if it does
not address the dynamics of the zero mode. In particular, f
the case of Figs. 4~a!–~c!, the initial value of the zero mode
h0Þ0 and the final value is very close to the initial value bu
still different from zero.

At the same time, the asymptotic effective mass of th
‘‘pions’’ is on average zero. Clearly, this is a signal for sym
metry breaking. Because the initial and final values of th
order parameter are so small on the scale depicted in t
figures, one is tempted to conclude that the symmetry orig
nally broken by a very small value of the order parameter
restored asymptotically by the growth of nonequilibrium
fluctuations. To settle this issue we show a different set
parameters in Figs. 5~a! and 5~b! that unambiguously show
that the final value of the order parameterh`Þ0, while the
effective mass of the pionsM(t)→0. Here,h050.01 and
g51025, and asymptotically we findh(t5150)'0.06, the
average of the effective mass squaredM2(t)50, and the
symmetry is broken, despite the fact that the fluctuation
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FIG. 5. ~a! h(t) vs t for the broken symmetry case withh051022, g51025. ~b! M2(t) vs t for the same parameters as~a!.
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have grown exponentially and a number of partic
O(1/g) has been produced.

The reason that the symmetry isnot restored is that when
the effective mass becomes positive, the instabilities shu
and the quantum fluctuations become small. When this h
pensgS is no longer of order 1 and the instabilities appe
again, producing the oscillatory behavior that is seen in
figures forgS(t) at long times, such that the contributio
of the oscillatory terms average to zero. It is rather straig
forward to see that there is a self-consistent solution of
equations of motion for the zero mode and the fluctuati
with constanth` andM2(`)50. Equation~2.43! takes the
asymptotic form@3#

h`@211h`
21gS~`!#50.

In addition, Eq.~2.44! yields whenM(`)250,

wq~t! ;
t→`

Aqe
2 iqt1Bqe

iqt,

whereAq andBq depend on the initial conditions andg. We
get from Eqs.~2.42! and ~2.53!,

h`
25124gE

0

` q2Vq

q21Vq
2Nq~`!dq2gS~h0!, ~5.1!

where

S~h0![
1

4
~12h0

2!F ln12h0
2

4
2

p

2 G1
1

2
~11h0

2!

3FArgThA12h0
2

2
2arctanA12h0

2

2 G .
We see that the value ofh` depends on the initial condi

tions. Whereas the last term in Eq.~5.1! is perturbatively
small, the contribution from the produced particles is n
perturbatively large, asNq(`)'1/g for the unstable wave
vectors. Thus, the asymptotic value of the zero mode is d
tically modified from the tree level vacuum expectati
value ~VEV! ~in terms of renormalized parameters! because
of the profuse particle production because of the nonequ
rium growth of fluctuations.
es
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Another way to argue that the symmetry is indeed broken
in the final state is to realize that the distribution of ‘‘pions’’
at late times will be different than the distribution of the
quanta generated by the fluctuations in thes field, if for no
other reason than that the pions are asymptotically massless
while thes quanta are massive, as long ash` is different
from zero. If the symmetry were restored during preheating,
these distributions would have to be identical.

The conclusion is that the final value of the zero mode
depends strongly on the initial conditions and couplings,
though symmetry restoration can take place for other situa-
tions.

A consistent study of the evolution of the zero mode and
quantum fluctuations determines what happens in each case
@29#. Thus we emphasize that the ultimate test for symmetry
restoration is asymptotic in time evolution of the zero mode,
which is the order parameter for symmetry breaking.

VI. THE REHEATING TEMPERATURE

The arena in which these results become important is that
of inflationary cosmology. In particular, the process of pre-
heating is of vital importance in understanding how the big-
bang cosmology is regained at the end of inflation, i.e., the
reheating mechanism.

While our analysis has been entirely a Minkowski space
one, we can make some comments concerning the reheating
temperature. However, a more detailed analysis incorporat-
ing the expanding universe must eventually be done along
the lines suggested in this work, to get more accurate results.

Since the particles created during the preheating stage are
far from equilibrium, thermalization and equilibration will be
achieved via collisional relaxation. In the approximation that
we are studying, however, collisions are absent and the cor-
responding contributions are ofO(1/N) @9#. The difficulty
with the next order calculation and incorporation of scatter-
ing terms is that these are nonlocal in time and very difficult
to implement numerically.

However, we can obtain an estimate for the reheating
temperature under some reasonable assumptions: in the cos
mological scenario,if the equilibration time is shorter than
the inverse of the expansion rateH, then there will not be
appreciable redshifting of the temperature because of the ex-
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pansion and we can use our Minkowski space results.
The second assumption is that the time scales betwe

particle production and thermalization and equilibration ar
well separated. Within the largeN approximation this is
clearly correct because at largeN, scattering processes are
suppressed by 1/N. If these two time scales are widely sepa-
rated then we can provide a fairly reliable estimate of th
reheating temperature as follows.

Equilibration occurs via theredistributionof energy and
momentum via elastic collisional processes. Assuming th
thermalization occurs on time scales larger than that of pa
ticle production and parametric amplification, then we ca
assume energy conservation in the scattering processes.
though a reliable and quantitative estimate of the reheatin
temperature can only be obtained after a detailed study of t
collisional processes which depend on the interactions, w
can provide estimates in two important cases. If the scatte
ing processes do not change chemical equilibrium, that i
conserve particle number, the energy per particle is co
served. Since the energy~density! stored in the nonequilib-
rium bath and the total number of particles per unit volum
are, as shown in the previous sections:

«'
uMRu4

lR
, ~6.1!

N'
uMRu3

lR
, ~6.2!

with proportionality constants of order 1, we can estimate th
reheating temperature to be

«

N
'T'uMRu. ~6.3!

Here uMRu is the inflaton mass. This is consistent with pre
vious results@3#.

This result seems puzzling, since naively one would ex
pect«'TR

4 ;N'TR
3 but the powers ofl do not match. This

puzzle arises from intuition based on an ultrarelativistic-fre
particle gas. However, the ‘‘medium’’ is highly excited with
a large density of particles and the ‘‘in medium’’ properties
of the equilibrated particles may drastically modify this re-
sult as is known to happen in most theories at high temper
ture, where the medium effects are strong and perturbatio
theory breaks down requiring hard thermal loop resumma
tion.

In the case in which the collisional processes do not con
serve particle number and, therefore, change chemical eq
librium, the only conserved quantity is the energy. Such i
the case for massless particles interacting with a quartic co
plings for example, or higher order processes in a quart
theory with massive particles. Processes in which 3→1 con-
serving energy and momentum can occur. The inverse pr
cess 1→3 occurs with far less probability since the high
momentum modes are much less populated than the low m
mentum modes in the unstable bands. In this case only e
ergy is conserved whereas the total number of particles isnot
conservedand in this case an estimate of the reheating tem
en
e
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perature compares the energy density in the bath of produced
particles to that of an ultrarelativistic gas in equilibrium at
temperatureTR ,

«'
uMRu4

lR
'TR

4, ~6.4!

leading to the estimate

TR'
uMRu
lR

1/4. ~6.5!

Thus we can at least provide a bound for the reheating
temperature

uMRu<TR<
uMRu

l
~6.6!

and a more quantitative estimate requires a deeper under
standing of the collisional processes involved.

Within the largeN approximation, scattering terms will
appear at order 1/N and beyond. The leading contribution
O(1/N) to collisional relaxation conserves particle number
in the unbroken symmetry state because the product particles
are massive. This can be seen from the fact that the self-
energy to this order is given by the same chain of bubbles
that gives the scattering amplitude but with two external legs
contracted. All cut diagrams~that give the imaginary part!
correspond to 2→2 processes that conserve particle number
because of kinematic reasons. Certainly, at higher order in
1/N there will be processes that change chemical equilib-
rium, but for largeN these are suppressed formally. This
argument based on the leading collisional contribution in the
1/N expansion allows us to provide a further consistent esti-
mate in the unbroken symmetry case~when the produced
particles are massive!. In this approximation and consistently
with energy and particle number conservation we can as-
sume that the final equilibrium temperature is of the order of
the typical particle energy before thermalization. Recalling
that the unstable band remains stable during the evolution
with the peak shifting slightly in position we can estimate the
typical energy per particle by the position of the peak in the
distribution atq1, and use the analytical estimate for the peak
given in Sec. II. Restoring the units we then obtain the esti-
mate

TR'uMRuq1'uMRu
h0

2
'AlR

8
F0 , ~6.7!

which displays the dependence onh0 explicitly. Equation
~6.7! is an improvement of the simple estimate~6.3!.

It must be noticed that the peak in the momentum distri-
bution decreases with time fort.t reh @see Figs. 2~f!–2~h!#.
This drift follows from the nonlinear interaction between the
modes. For the case of Fig. 2, one sees thatTR reduces by
approximately a factor 3 with respect to the value~6.7!.

The largeN model studied in this article is not a typical
model used in inflationary cosmology, and since we want to
make a quantitative statement for inflationary scenarios
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~within the approximation of only considering Minkowsk
space! we now study a model that incorporates other sca
fields coupled to the inflaton.

The simplest model@4,5# contains, in addition to the in-
flaton, a lighter scalar fields with agsF2 coupling. That is,
we consider the Lagrangian@3#,

L52
1

2
F~]21m21gs!F2

l

4!
F4

2
1

2
s~]21ms

2 !s2
ls

4!
s4. ~6.8!

We will consider again the preheating regime of we
couplings and early times such that we can neglect the b
reaction of the quantum fluctuations of thes field as well as
the back reaction of the quantum fluctuations of the inflat
itself, focusing only on the parametric growth of thes fluc-
tuations in the unbroken symmetry case. The mode equat
for thes field take the form

F d2dt2 1k21ms
21gf2~ t !GVk~ t !50 . ~6.9!

In dimensionless variables this equation becomes

F d2dt2
1q21Sms

m D 21 6g

l
h2~t!GVk~t!50 . ~6.10!

In the short time approximation we can replaceh(t) by the
classical form~3.1!. We then find a Lame´ equation which
admits closed form solutions for@18#

12g

l
5n~n11!, n51,2,3,. . . . ~6.11!

Although these are not generic values of the couplin
the solubility of the model and the possibility of analyt
solution for these cases make this study worthwhile. In
simplest case, (n51,6g5l), there is only one forbidden
band for q2.0. It goes from q2512(ms /m)

2 to
q2512(ms /m)

21h0
2/2. That is,

forbidden band: m22ms
2,k2,m22ms

21
l

4
F0

2 .

~6.12!

The Floquet index in this forbidden band takes the form

F~q!52iK ~k!Z„2K~k!v…6p, ~6.13!

where nowv andq are related by the equation

q2512Sms

m D 21 h0
2

2
cn2„2K~k!v,k…, ~6.14!

and 0<v<1/2.
The imaginary part of the Floquet index is now maxim

atq1
2512(ms /m)

21h0
2/4 and we can use this value to pro

vide an estimate for the reheating temperature in this mo
in the same manner as for Eq.~6.7!, yielding the following
estimate for the reheating temperature
i
lar

ak
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ic
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-
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Treh.Am22ms
21

l

8
F0

2. ~6.15!

In the special casems5m5uMRu, we recover Eq.~6.7!, as
expected.

Again, the nonlineal field evolution fort.t reh decreases
Treh. In the third reference under@3#, we found for late times
a Treh ten times smaller than the value~6.15! for g51.6p2.

The estimates on the reheating temperature provide
above should not be taken rigorously, but as an approxima
guide. A consistent estimate of the reheating temperature a
the thermalization time scales would, in principle, involve
setting up a Boltzmann equation@5#. Under the assumption
of a separation between the preheating and thermalizatio
time scales one could try to use the distribution function
Nq at the end of the preheating stage as input in the kinet
Boltzmann equation. However, we now argue that such
kinetic description isnot valid to study thermalization. A
kinetic approach based on the Boltzmann equation, with b
nary collisions, for example, would begin by writing the rate
equation for the distribution of particles

Ṅk}l2E d3k1d
3k2d

3k3d
4~k11k21k31k!

3@~11nk!~11nk1!nk2nk3nknk1~11nk2!~11nk3!#.

~6.16!

However, this equation is only valid in thelow densityre-
gime. In particular for the case under study, the occupatio
numbers for wave vectors in the unstable bands are nonpe
turbatively large}1/l and one would be erroneously led to
conclude that thermalization occurs on the same time sca
or faster thanpreheating.

Clearly such a statement would be too premature. Withou
a separation of time scales, the kinetic approach is unwa
ranted. The solution of the Boltzmann equation provides
partial resummation of the perturbative series which is vali
whenever the time scales for relaxation are much longer tha
the microscopic time scales@27#, in this case that of particle
production.

In the case under study there is an expansion parame
1/N and clearly these scattering terms are subleading in th
formal limit, so that the separation of time scales is con
trolled. In the absence of such an expansion parameter, so
resummation scheme must be invoked to correctly incorpo
rate scattering. In particular when the symmetry is broken
the asymptotic excitations are Goldstone bosons, the mediu
is highly excited but with very long-wavelength Goldstones
and these have very small scattering cross sections. Such
resummation is also necessary in the large temperature lim
of field theories in equilibrium. In this case the perturbative
expansion of the scattering cross section involves powers
lT/m with m being the mass. A correct resummation of the
~infrared! divergent terms leads tol(T)→m/T in the large
T/m limit @28#. In particular the 1/N corrections in the for-
mal largeN limit involve such a resummation, but in the
nonequilibrium situation, the numerical implementation o
this resummation remains a formidable problem.
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VII. CONCLUSIONS

It is clear that preheating is both an extremely importa
process in a variety of settings, as well as one involving ve
delicate analysis. In particular, its nonperturbative natu
renders any treatment that does not take into account eff
such as the quantum back reaction due to the produced
ticles, consistent conservation~or covariant conservation! of
the relevant quantities and Ward identities, incapable of c
rectly describing the important physical phenomena dur
the preheating stage.

In this work, we dealt with these issues by using t
O(N) vector model in the largeN limit. This allows for a
controlled nonperturbative approximation scheme that c
serves energy and the proper Ward identities, to study
nonequilibrium dynamics of scalar fields. Using this mod
we were able to perform a full analysis of the evolution
the zero mode as well as of the particle production duri
this evolution.

Our results are rather striking. We were able to provi
analytic results for the field evolution as well as the partic
production and the equation of state for all these compone
in the weak coupling regime and for times for which th
quantum fluctuations, which account for back-reaction
fects, are small. What we found is that, in the unbrok
symmetry situation, the field modes satisfy a Lame´ equation
that corresponds to a Schro¨dinger equation with a two-zone
potential. There are two allowed and two forbidden ban
which isdecidedlyunlike the Mathieu equation used in pre
vious analysis@1,12#. The difference between an equatio
with two forbidden bands and one with an infinite number
profound. We were also able to estimate analytically the ti
scale at which preheating would occur by asking when
quantum fluctuations as calculated in the absence of b
reaction would become comparable to the tree level term
the equations of motion. The equations of state of both
zero mode and ‘‘pions’’ were calculated and were found
be describable as polytropes. These results were then
firmed by numerical integration of the equations, and w
found that the analytic results were in great agreement w
the numerical ones in their common domain of validity.

When the O(N) symmetry is spontaneously broken, mo
subtle effects can arise, again in the weak coupling regime
the zero mode starts off very near the origin, then the qu
tum back reaction grows to be comparable to the tree le
terms within one or at most a few oscillations even for ve
weak coupling. In this case the periodic approximation f
the dynamics of the zero mode breaks down very early
and the full dynamics must be studied numerically.

When numerical tools are brought to bear on this case
find some extremely interesting behavior. In particular, the
are situations in which the zero mode starts near the ori
~the initial value depends on the coupling! and then in one
oscillation, comes back to almost the same location. Ho
ever, during the evolution it has produced 1/g particles.
Given that the total energy is conserved, the puzzle is to fi
where the energy came from to produce the particles.
found the answer in a term in the energy density that has
interpretation of a ‘‘vacuum energy’’ that becomesnegative
during the evolution of the zero mode and whose contrib
tion to the equation of state is that of ‘‘vacuum.’’ The energ
nt
ry
re
ects
par-

or-
ing

he
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given up by this term is the energy used to produce the
particles.

This example also allows us to study the possibility of
symmetry restoration during preheating@1,13,26#. While
there have been arguments to the effect that the produce
particles will contribute to the quantum fluctuations in such a
way as to make the effective mass squared of the mode
positive and thus restore the symmetry, we argued that the
were unfounded. Whereas the effective squared mass osc
lates, taking positive values during the early stages of the
evolution, its asymptotic value is zero, compatible with
Goldstone bosons as the asymptotic states.

Furthermore, this says nothing about whether the symme
try is restored or not. This is signaled by the final value of
the zero mode. In all the situations examined here, the zer
mode is driven to anonzerofinal value. At this late time, the
‘‘pions’’ become massless, i.e., they truly are the Goldstone
modes required by Goldstone’s theorem.

The arguments presented in favor of symmetry restoratio
rely heavily on the effective potential. We have made the
point of showing explicitly why such a concept is completely
irrelevant for the nonequilibrium dynamics when profuse
particle production occurs and the evolution occurs in a
highly excited, out of equilibrium state.

Finally, we dealt with the issue of how to use our results
to calculate the reheating temperature due to preheating in a
inflationary universe scenario. Since our results are particula
to Minkowski space, we need to assume that preheating an
thermalization occur on time scales shorter than the expan
sion time, i.e.,H21. We also need to assume that there is a
separation of time scale between preheating and thermaliz
tion. Under these assumptions we can estimate the reheati
temperature asTreh}uMRu in the case when the collisional
processes maintain chemical equilibrium~conserve particle
number! or Treh}uMRu/l1/4 in the case in which particle
number is not conserved in the collisions~such is the case for
massless particles in general!.

We have made the important observation that due to th
large number of long-wavelength particles in the forbidden
bands, a kinetic or Boltzmann equation approach to therma
ization is inconsistenthere. A resummation akin to that of
hard thermal loops, that consistently arises in the next orde
in 1/N must be employed. In equilibrium such a resumma-
tion shows that the scattering cross section for soft modes
perturbatively small despite their large occupation numbers

There is a great deal left to explore. Clearly the first step
from this work would be to generalize what we have done to
include the expansion of the Universe. This should be don
both in order to understand preheating in more detail, as we
as to understand the evolution of the scalar field during the
inflationary period. Further steps should certainly include
trying to incorporate thermalization effects systematically
within the 1/N expansion.

As we were finishing the writeup of this work, we learned
about complementary work by Cooper, Kluger, Habib, and
Mottola @30# who studied similar issues in the broken sym-
metry phase with results that are consistent with those foun
by us.
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APPENDIX: SOME RESULTS ON ELLIPTIC FUNCTIONS

Here we detail some of the derivations used in the ma
text for the analytic results.

1. The unbroken symmetry case

We derive here the solutions of the mode equation~3.3!,

F d2dt2
1q2111h0

22h0
2sn2~tA11h0

2,k!Gwq~t!50,

~A1!

wherek5h0 /A2(11h0
2).

It is convenient to express the Jacobi sine in terms of t
WeierstrassP function through@25#

sn2~tA11h0
2,k!5

1

k2sn2@tA11h0
21 iK 8~k!,k#

5
1

k2~e12e3!
FPS tA11h0

21 iK 8~k!

Ae12e3
D 2e3G ,

~A2!

k25
e22e3
e12e3

. ~A3!

We assume that the discriminantD of the functionP is here
positive and that the rootse1 ,e2 ,e3 of the cubic equation
obeyinge11e21e350 are ordered as

e3,e2,0,e1 . ~A4!

In addition, without any loss of generality we choos
e12e3511h0

2. With such a choice we find the roots to be
3e15

3
2h0

212,3e2521, and 3e352 3
2h0

221.
Collecting all factors the mode equation~A1! becomes

F d2dt2
1q21 1

3 22P~t1v8!Gwq~t!50, ~A5!

wherev8[ iK 8(k)/A11h0
2.

Equation~A5! is a Laméequation that can be solved in
closed form in terms of Weierstrass functions. The solutio
is @23#

Uq~t!5
s~t1v81z!s~v8!

s~t1v8!s~v81z!
e2tz~z!, ~A6!

wherez is defined through

P~z!52 1
3 2q2, ~A7!
.

r
lts
h
E

in

he

e
:

n

s(x) andz(x) are Weierstrass functions. We normalize the
functionsUq(t) according to Eq.~3.5!.

Changingt by 2t in Eq. ~A6! provides an independent
solution of Eq.~A5!.

Equation~A7! maps the realq2 axis into the sides of the
fundamental square in thez plane@26,30#. That is,

z5b, 0<b<v, 2`<q2<212
h0
2

2
,

z5v1 ia, 0<a<v8/ i , 212
h0
2

2
<q2<0 ,

z5v81b, v>b>0, 0<q2<
h0
2

2
,

z5 ia, v8/ i>a>0,
h0
2

2
<q2<1`, ~A8!

wherev5K(k)/A11h0
2. Notice that 2v is the period int

of the potential in Eqs.~3.3! and ~A5!.
The mapping of the realq2 axis into the sides of the

fundamental square in thez plane is made explicit by writing
the WeierstrassP(z) function in terms of Jacobi sn and cn
functions@25,30,26#:

q252 1
3 2P~b!5

h0
2

2
2

h0
211

sn2~bA11h0
2,k!

,

q252 1
3 2P~v1 ia!

5212
h0
2

2
1S 11

h0
2

2 D sn2~aA11h0
2,k8!,

q252 1
3 2P~v81b!5

h0
2

2
cn2~bA11h0

2,k!,

q252 1
3 2P~ ia!5212

h0
2

2
1

h0
211

sn2~aA11h0
2,k8!

.

~A9!

Here, a and b are real variables. @Recall that
0< sn(u,k)<1 for 0<u<K(k) and that
sn(u,k)21 cn(u,k)251.#
Generically, a periodic potential possesses aninfinite

number of allowed and forbidden~Floquet! bands that alter-
nate for 0<q2,1`. A detailed study of the Floquet indices
reveals that this is not the case for Eq.~A1!.

Let us now compute the Floquet indices for the mode
function ~A6!. The quasi-periodicity property of the Weier-
strasss functions states that@25,30,26#

s~x12v!52s~x!e2~x1v!h, ~A10!

whereh[z(v). Using Eqs.~A10! and ~3.4!, we find, from
Eq. ~A6!,

Uq~t12v!5Uq~t!exp$2@zh2vz~z!#%,

F~q!52i @vz~z!2zh#. ~A11!
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The quantity q belongs to an allowed band when
2@zh2vz(z)# is purely imaginary andq belongs to a for-
bidden band when this quantity has a nonzero real part.

Using the properties of the Weierstrass functions@20#, we
find two allowed bands

z5 ia and z5 ia1v, ~A12!

with reala,0,a,v8/ i , and two forbidden bands

z5b and z5b1v8, ~A13!

with realb,0,b,v.
In terms ofq2 the allowed bands correspond to

212
h0
2

2
<q2<0 and

h0
2

2
<q2<1`, ~A14!

and the forbidden bands to

2`<q2<212
h0
2

2
and 0<q2<

h0
2

2
. ~A15!

The last forbidden band is forpositive q2 and hencedoes
contribute to the fluctuation functionS(t). S(t) will grow
exponentially in time due to the presence of such unsta
modes.

Let us investigate the Floquet indices for the forbidde
band 0<q2<h0

2/2. Settingz5b1v8 we find

2@zh2vz~z!#52

q18S z

2v D
q1S z

2v D 5 ip2

q48S b

2v D
q4S b

2v D , ~A16!

where we used the relation between the Weierstrassz func-
tion and the Jacobiq functions@24#

z~z!5
h

v
z1

1

2v

q18S z

2v D
q1S z

2v D . ~A17!

Here,h[z(v).
In summary, we have on the forbidden ban

0<q2<h0
2/2,

F~q!56p1 i
q48~v !

q4~v !
56p12iK ~k!Z„2K~k!v…,

~A18!

where v[b/2v,0<v<1/2, and Z(u)[E(u,k)
2uE(k)/K(k) is the Jacobi zeta function@24#. Equation
~3.12! gives its series expansion. We see that the soluti
Uq(t) decreases witht. The other independent solution
Uq(2t) grows witht.

Notice thatUq(t) becomes just an antiperiodic function
on the borders of this forbidden band,v50 andv51/2.

It is useful to write the solutionUq(t) in terms of Jacobi
q functions. Using Eqs.~A6! and ~A17! and @19#
ble

n

d

on

s~z!5
2v

q18~0!
ehz2/2vq1S z

2v D , ~A19!

we found Eq.~3.10! after some calculation.
For the allowed bandh0/A2<q<`, we find Eq.~3.21!

using ~A6!, Eq. ~A17!, and Eq.~A19!.

2. Broken symmetry case

We derive here the solution of the mode equation~4.5!,

F d2

dt2
1q2211

h0
2

dn2S tA12
h0
2

2
,kD Gwq~t!50.

~A20!

It is convenient to express the Jacobi function dn in terms
of the WeierstrassP function through@20#

1

dn2~u,k!
5

1

e12e2
Fe12PS u1K~k!1 iK 8~k!

Ae12e3
D G .

~A21!

Where now for convenience and without loss of generality
we choose e12e3512h0

2/2. Then, we find
3e151,3e2512 3

2h0
2, and 3e35

3
2h0

222.
Collecting all factors the mode equation~A20! becomes

F d2dt2
1q22 1

322P~t1v1v8!Gwq~t!50, ~A22!

wherev8[ iK 8(k)/A12h0
2. This equation is equivalent to

Eq. ~A5! up to the sign in front of the13 and a shift
t→t1v.

The solution of Eq.~A22! is given by

Uq~t!5
s~t1v1v81z!s~v81v!

s~t1v1v8!s~v81v1z!
e2tz~z!. ~A23!

z andq2 are now related by

P~z!51 1
3 2q2. ~A24!

We continue to use the normalization~3.5!. Changingt by
2t in Eq. ~A23! provides in general an independent solution
of Eq. ~A20!.

Equation~A24! maps the realq2 axis into the four sides
of the fundamental square in thez plane. This mapping is
better seen writing the WeierstrassP(z) function in terms of
Jacobi sn and cn functions@25# in the four cases. That is,

z5b, 0<b<v, 2`<q2<0,

q25
1

3
2P~b!5S 12

h0
2

2 D cn
2S bA12

h0
2

2
,kD

sn2S bA12
h0
2

2
,kD ,

z5v1 ia, 0<a<v8/ i , 0<q2<
h0
2

2
,
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q25
1

3
2P~v1 ia!5

h0
2

2
sn2S aA12

h0
2

2
,k8D ,

z5v81b, v>b>0,
h0
2

2
<q2<12

h0
2

2
,

q25
1

3
2P~v81b!512

h0
2

2
2~12h0

2!sn2S bA12
h0
2

2
,kD ,

z5 ia, v8/ i>a>0, 12
h0
2

2
<q2<1`,

q25
1

3
2P~ ia!5

12
h0
2

2

sn2S aA12
h0
2

2
,k8D , ~A25!

wherev[K(k)/A12h0
2/2. Notice that 2v is the period in

t of the potential in Eqs.~A20! and ~A22!.
Equation ~3.4! holds for the mode function~A23! too.

Hence, there aretwo allowed bands

z5 ia and z5 ia1v, ~A26!
with reala,0,a,v8/ i , and two forbidden bands

z5b and z5b1v8, ~A27!

with realb,0,b,v.
In terms ofq2 the allowed bands correspond to

0<q2<
h0
2

2
and 12

h0
2

2
<q2<1`, ~A28!

and the forbidden bands to

2`<q2<0 and
h0
2

2
<q2<12

h0
2

2
. ~A29!

The last forbidden band is forpositive q2 and hencedoes
contribute to the fluctuation functionS(t). S(t) will grow
exponentially in time due to the presence of such unstable
modes.

It is useful to write the solutionUq(t) in terms of Jacobi
q functions. For the forbidden bandh0

2/2<q2<12h0
2/2,

we obtain Eq.~4.8!, using Eqs.~A23!, ~A17!, and ~A19!,
after some calculation.

For the allowed band 12h0
2/2<q2<1`, we find Eq.

~4.11! from Eqs. ~A23!, ~A17!, and ~A19!. The analogous
expression~4.13! holds in the allowed band 0<q2<h0
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