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Gluino condensation in strongly coupled heterotic string theory
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Strongly coupled heterotic E83E8 string theory, compactified to four dimensions on a large Calabi-Yau
manifoldX, may represent a viable candidate for the description of low-energy particle phenomenology. In this
regime, heterotic string theory is adequately described by low-energyM theory onR43S1/Z23X, with the two
E8’s supported at the two boundaries of the world. In this paper we study the effects of gluino condensation as
a mechanism for supersymmetry breaking in thisM -theory regime. We show that when a gluino condensate
forms inM theory, the conditions for unbroken supersymmetry can still be satisfied locally in the orbifold
dimensionS1/Z2. Supersymmetry is then only broken by the global topology of the orbifold dimension, in a
mechanism similar to the Casimir effect. This mechanism leads to a natural hierarchy of scales, and elucidates
some aspects of heterotic string theory that might be relevant to the stabilization of moduli and the smallness
of the cosmological constant.@S0556-2821~96!04324-X#

PACS number~s!: 11.25.Mj, 11.25.Sq, 11.30.Pb
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I. INTRODUCTION: PHENOMENOLOGY OF M THEORY

Despite its remarkable phenomenological promise@1–3#,
string theory still leaves unanswered many pressing qu
tions about its contact with the low-energy world. Amon
the issues that we would certainly want to understand be
in a unified theory are the mechanism of supersymme
breaking with a large hierarchy of scales, the stabilization
moduli, and the smallness of the cosmological constant~for
reviews and references, see@4–11#!.

Our present understanding of this subject indicates t
string theory might be able to identify the right degrees
freedom in which phenomenology can be naturally und
stood. There are, however, equally strong indications tha
the regime directly relevant to phenomenology, the natu
degrees of freedom of perturbative string theory are stron
coupled@12–15#. Recently, we have witnessed a revolutio
that is rapidly changing our understanding of string theory
the strongly coupled regime, leading in many cases to a d
description of the physics in this regime in terms of mo
natural, weakly coupled degrees of freedom. One can won
whether these dual descriptions might lead to variables m
appropriate for the description of low-energy phenomen
ogy.

In the recent studies of string dualities, at least one s
new paradigm may have already appeared@16–18#. Compac-
tification of the strongly coupled heterotic E83E8 string
theory on a Calabi-Yau manifoldX is most naturally de-
scribed by 11-dimensionalM theory, compactified toR4 on a
manifold with one extra dimension,X3S1/Z2 @16#. This ex-
tra dimension, invisible at weak heterotic coupling, is
orbifold dimension, and the total space-time manifold ha
boundary with two components. At low energies, the effe
tive description ofM theory is in terms of 11-dimensiona
supergravity, coupled to one E8 Yang-Mills supermultiplet at
each boundary of the world@17#.

This picture gives an interesting new twist to the o
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Kaluza-Klein idea. For a low-energy observer, the world first
looks four dimensional. After crossing a certain threshold,
the world becomes effectively five dimensional, but the mat-
ter sector containing the standard model still lives at a four-
dimensional boundary. The bulk of the five-dimensional
space-time supports only gravity~as well as other fields com-
ing from the 11-dimensional supergravity multiplet!. At the
other end of the world, another gauge sector, the other E8 of
the heterotic string theory, is hidden and communicates with
the matter of the standard model only gravitationally. Fi-
nally, at even higher energies, the observer reaches the com
pactification scale and sees the additional six dimensions
compactified on the Calabi-Yau manifold, and the world be-
comes 11 dimensional.

This newly understood regime of heterotic string theory
seems very attractive phenomenologically. In@18#, Witten
used this regime to analyze the strongly coupled heterotic
string compactified on a large Calabi-Yau manifold, with the
four-dimensional grand-unified couplingaGUT acceptably
small. A detailed analysis reveals that for such compactifica-
tions, unlike in the weakly coupled heterotic string, the
strengths of all interactions including gravitational can be
naturally unified at the unification scale. In other words, the
unacceptable prediction of the size of the Newton constant
GN , as made generically by the weakly coupled heterotic
string theory, is alleviated at strong coupling, in the
M -theory regime.1 More recently, other interesting phenom-
enological implications of this scenario have been studied in
some detail in@20# ~see also@21#!.

Gluino condensate, supersymmetry breaking,
and the cosmological constant

The unification of couplings, essentially due to the pres-
ence of the extra dimension of the type discussed in@16#, can
be considered one of the first phenomenological successes o

1For a clear nontechnical exposition of this result, see Sec. 4.3 and
Fig. 6 of @19#.
7561 © 1996 The American Physical Society
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M theory. This makes one wonder whetherM theory has
anything to say about the mysteries of hierarchical sup
symmetry breaking and the smallness of the cosmolog
constant.

There are three known mechanisms that can trigger su
symmetry breaking in string theory: world-sheet instanto
space-time instantons, and strong infrared dynamics. Su
potentials generated by instantons have been recently stu
in @22#, where three-dimensional compactifications ofF
theory were used to gain information about four-dimension
physics.

Gluino condensation in the hidden sector is a represen
tion of the third class. It has been extensively studied a
mechanism of supersymmetry breaking, ever since the p
neering papers in supergravity@23# and in string theory
@24,25#; for reviews and references on this subject,2 see
@26,27#.

In addition to providing a natural mechanism of supe
symmetry breaking, gluino condensation could also be r
evant to the cosmological constant problem and the stab
zation of moduli in string theory. At a very early stage of th
studies of gluino condensates in weakly coupled hetero
string theory, it has been noticed@24,25# that certain terms in
the Lagrangian of the ten-dimensional heterotic supergrav
conspire in a very particular way, leading to a potential o
very special, ‘‘no-scale’’ type, first considered in@32,33#.
Potentials of the no-scale type have been argued to br
supersymmetry while keeping the cosmological const
naturally zero without fine-tuning. The main problem wit
this mechanism seems to be the apparent absence of a s
factory symmetry principle that could explain and prote
this particular form of the potential and lead to supersymm
try breaking with zero cosmological constant in the presen
of quantum effects.

In this paper, we will study gluino condensation in th
strongly coupled,M -theory regime of the heterotic string
theory, to the lowest nontrivial order in a long-waveleng
expansion. We will assume that a gluino condensate de
ops in the E8 sector hidden at the other end of the world an
will study its consequences for supersymmetry breakin3

Our analysis will reveal some unexpected properties
gluino condensation in the heterotic string theory at stro
coupling. Since the rest of the paper will be somewhat te
nical, we summarize our results here:

2The simplest version of gluino condensation in weakly coupl
heterotic string theory does not successfully explain the hierar
of scales and the stabilization of moduli. Several suggestions h
to alleviate these problems without abandoning the regime of w
string coupling have been made@3#, among them the racetrack
models with multiple gluino condensates@28,29# or modified
gauge-kinetic functions@30,31#.
3The formation of a gluino condensate is exactly what one expe

on the basis of a simple physical argument. For the compactifi
tions studied in@18# and in the present paper, strong coupling in th
hidden E8 develops exactly when the other couplings attain ph
nomenologically interesting values. With strong gauge coupling
the hidden sector, we can expect that a gluino condensate is
namically generated. This aspect of the strong gauge dynam
should be stable under the effects caused by the coupling to gra
er-
cal

er-
s,
er-
died

al

ta-
a
io-

r-
el-
ili-
e
tic

ity
a

eak
nt
h
atis-
ct
e-
ce

e

h
el-
d
g.
of
ng
h-

In the low-energy Lagrangian ofM theory, we find a
‘‘conspiration of terms’’ similar to the one observed in the
low-energy Lagrangian of the weakly coupled heterotic
string theory. Incidentally, this explains some rather singular
terms encountered in@17# in the construction of the low-
energy effective Lagrangian ofM theory on a manifold with
boundary. It also suggests that when a gluino condensate
develops at the boundary, the field strengthG of the three-
form C from the 11-dimensional supergravity multiplet de-
velops a compensating vacuum expectation value supported
at the boundary. We also encounter first indications that the
11-dimensional variables ofM theory might be more appro-
priate for the description of supersymmetry breaking by the
gluino condensate—the role of the would-be Goldstino is
played by the normal componentc11 of the 11-dimensional
gravitino.

Even in the presence of the gluino condensate, we will
still be able to solve the unbroken supersymmetry conditions
in any given coordinate system. This phenomenon might
come as a surprise and is intimately related to the existence
of the extra dimension inM theory.

The solution of unbroken supersymmetry conditions ex-
ists locally, but not globally in the extra dimension. When
we try to extend the local solution globally overS1/Z23X,
we encounter a topological obstruction~essentially, the total
cohomology class of the gluino condensate!. Therefore, su-
persymmetry is broken by the global topology of the extra,
orbifold dimension, in a process similar to the Casimir effect.

The fact that the unbroken supersymmetry conditions can
be satisfied in any coordinate system onR43S1/Z23X leads
to an intriguing refinement of the phenomenology of super-
symmetry breaking in these models. We have argued that in
the M -theory scenario, observers at intermediate energies
will see the world as five dimensional. At length scales larger
than the Calabi-Yau compactification radius, but still much
smaller than the radius of the fifth dimension, these observ-
ers should see unbroken supersymmetry, even if they are
directly at the other end of the world where the gluino con-
densate has formed. As the resolution is diminished, the su-
persymmetry breaking effects, caused by the compactness o
the fifth dimension, become visible, and at even larger length
scales, the world will be effectively four dimensional and
supersymmetry will be broken. However, this breakdown
should be rather mild, since it is only caused by effects sen-
sitive to the global topology of the fifth dimension.

This mechanism of supersymmetry breaking generates a
natural hierarchy of scales. In the phenomenologically inter-
esting regime, the radius of the fifth dimension can be ex-
pected@20# to be at least an order of magnitude larger than
the 11-dimensional Planck length. The mass of the five-
dimensional gravitino is only induced quantum mechanically
by loop effects sensitive to the size of the fifth dimension and
is therefore suppressed by a power of the inverse radius of
the fifth dimension.

This hidden 11-dimensional supersymmetry, broken only
by the global topology of the orbifold dimension, explains
the ‘‘conspiracy’’ that leads in the weakly coupled heterotic
string theory to the no-scale potential with supersymmetry
breaking and zero cosmological constant at the tree level.
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54 7563GLUINO CONDENSATION IN STRONGLY COUPLED . . .
II. GLUINO CONDENSATION IN HETEROTIC
STRING THEORY AND M THEORY

In this paper we will study the heterotic E83E8 string
theory compactified toR4 on a Calabi-Yau threefoldX. In
the strong coupling limit, the low-energy description of th
theory is in terms of 11-dimensionalM theory compactified
onR43S1/Z23X, with the two E8 gauge groups supported a
the two space-time boundaries in the orbifold dimensi
S1/Z2. We will deal with various supergravities that describ
the low-energy physics of such compactifications.

Our 10-dimensional and 11-dimensional conventions
as in @16#. The space-time signature is21•••1. Eleven-
dimensional vector indices will be written asI ,J,K, . . . . The
11-dimensionalG matrices are 32332 real matrices satisfy-
ing $G I ,GJ%52gIJ , with gIJ5hmneI

meJ
n the 11-dimensional

metric. Each of the two boundary components of the 1
dimensional manifold supports one E8 Yang-Mills supermul-
tiplet. One of the E8’s will be broken by the spin connection
embedding to a grand-unified E6 group, while the other E8
will be strongly coupled and hidden at the other end of t
world. The adjoint index of this hidden E8 will be denoted by
a,b, . . . .

On R43S1/Z23X, we will use four-dimensional vector
indices m,n, . . . , which parametrize the flat Minkowsk
spaceR4, and vector indicesi , j ,k, . . . andtheir complex
conjugatesī , j̄ ,k̄, . . . , which correspond to a complex coor
dinate system on the Calabi-Yau threefoldX. The ten-
dimensional vector indices that parametrizeR43X will be
written asA,B,C, . . . . Ourother conventions onX3S1/Z2
are as in@18#.

A. Gluino condensation and the potential at weak coupling

First, we recall some aspects of the gluino condensation
the hidden sector of the weakly coupled heterotic stri
theory that will be relevant for our purposes.

Consider, as in@24#, the weakly coupled heterotic E83E8
string theory compactified on a Calabi-Yau threefoldX. On
any givenX, we have a covariantly constant holomorph
three-formei jk ~and its antiholomorphic complex conjugat
ē i j k̄ !. In ten dimensions,x̄aGABCx

a is the only gluino bilin-
ear that is not identically zero by Fermi statistics and chir
ity. If this bilinear develops a nonzero vacuum expectati
value proportional to the covariantly constant holomorph
three-form onX,

^x̄aG i jkx
a&5cLE8

3 e i jk ~2.1!

~and similarly for the complex conjugate!, the four-
dimensional observer will interpret this expectation value
a nonzero gluino condensate^x̄axa& @and^x̄ag5x

a&#. In Eq.
~2.1!, LE8

is the characteristic scale of the hidden gau
sector, at which the gauge coupling becomes strong, andc is
a ~complex! number of order 1.

In the process of analyzing the physics of the gluino co
densate in weakly coupled heterotic string theory, it has b
noticed@24# ~see also@2#, Vol. 2, p. 326! that the Lagrangian
of ten-dimensional heterotic supergravity exhibits a spec
feature that could lead, at least at the tree level, to supers
metry breaking with zero cosmological constant witho
fine-tuning. The argument is roughly as follows. The L
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grangian contains a gluino self-interaction term which is
quartic in xa; it also contains an interaction between the
gluino bilinear x̄aGABCx

a and the three-form field strength
HABC . Together with the kinetic termH2, these terms con-
spire in such a way that they can be assembled into a perfe
square,

2
3k10

2

4l10
4 E

M10
d10xAg

1

f3/2 @HABC2l10
2 &f3/4~ x̄aGABCx

a!#2.

~2.2!

~We have used the normalizations of@24#; f is the ten-
dimensional dilaton, whilek10 and l10 denote the ten-
dimensional gravitational and gauge coupling, respectively.!
Consider now the situation in which a gluino condensate ha
formed, proportional to the covariantly constant three-form
on X as in Eq.~2.1!. If we assume that the three-form field
strengthHABC develops a compensating vacuum expectation
value,

Hi jk5cLE8
3 l10

2 &f3/4e i jk , ~2.3!

such that the perfect square term~2.2! in the potential van-
ishes, the cosmological constant will be zero at the tree leve
At the same time, one can show that supersymmetry is bro
ken by the condensates~2.1! and ~2.3!.

The easiest way to see supersymmetry breaking in th
presence of the condensates is to look at the relevant part
the supersymmetry variation of the fermions. There are two
relevant fermions in the theory: the ten-dimensional grav
itino CA and the dilatinol. Schematically, the relevant parts
of their supersymmetry variations are given by

dCA5
1

k10
DAh1

&

32 S k10

l10
2 D 1

f3/4 HBCD

3~GA
BCD29dA

BGCD!h2
1

256
k10~ x̄aGBCDxa!

3~GA
BCD25dA

BGCD!h1••• ,

dl5•••1
1

8 S k10

l10
2 D 1

f3/4 HABCG
ABCh

~2.4!

1
&

384
k10~ x̄aGABCx

a!GABCh1••• .

~Here the ellipsis corresponds to terms that are either propo
tional to the gravitino and dilatino or contain the space-time
derivative of the dilaton.! We can see from Eq.~2.4! that in
the presence of the condensates~2.1! and~2.3!, the unbroken
supersymmetry conditionsdCA50 anddl50 cannot be sat-
isfied. A particular linear combination ofCA andl behaves
as a Goldstone fermion and gives a nonzero tree-level ma
to the gravitino, and supersymmetry is broken in this ap
proximation.



7564 54PETR HOŘAVA
In four dimensions, the perfect square structure~2.2! of
the heterotic supergravity Lagrangian leads to the super
tential and Ka¨hler potential of the very special, no-scale typ
@32,33#. Superpotentials and Ka¨hler potentials of the no-scale
type were proposed@32# in earlier attempts to link supersym
metry breaking with the solution of the cosmological co
stant problem~see also the discussion in@11#!. One of the
main drawbacks of this approach so far has been the appa
lack of a symmetry principle that could explain and prote
this particular form of the potential.4
po-
e

-
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ct

B. Strong coupling andM theory

At strong string coupling and large radius of the Calabi-
Yau manifold, the compactification is effectively described
by low-energyM theory onR43S1/Z23X. The effective La-
grangian for this theory has been constructed in@17#. It con-
tains the 11-dimensional supergravity multipleteI

m, cJ , and
CIJK in the bulk, coupled to one E8 Yang-Mills supermulti-
plet AB

a , xa at each of the two ten-dimensional boundaries.
To orderk2/3, the Lagrangian is given by
L5
1

k2 E
M11

d11xAgF2
1

2
R2

1

2
c̄ IG

IJKDJS V1V̂

2 DcK2
1

48
GIJKLG

IJKL2
&

384
~ c̄ IG

IJKLMNcN112c̄JGKLcM !~GJKLM

1ĜJKLM!2
&

3456
e I1I2•••I11CI1I2I3

GI4•••I7
GI8•••I11G1

1

2p~4pk2!2/3
E
M10

d10xAgS 2
1

4
FAB
a FaAB2

1

2
x̄aGADA~V̂!xa

2
1

8
c̄AGBCGA~FBC

a 1F̂BC
a !xa1

&

48
~ x̄aGABCxa!ĜABC11D . ~2.5!
n

-

t

~Explicit expressions for the supercovariant objectsV̂, F̂ AB
a ,

and ĜIJKL can be found in@17#.! The fields of the bulk
supergravity multiplet satisfy natural orbifold boundary co
ditions, discussed in detail in@17#. It was also shown in@17#
that the four-form field strengthGIJKL satisfies a modified
Bianchi identity

dG11ABC52
3&

2p S k

4p D 2/3d~x11!~ trF [ABFCD]

2 1
2R[ABRCD] !, ~2.6!

which will be important later in the paper.
The effective Lagrangian~2.5! is invariant under local

supersymmetry, whose parameterh satisfies the orbifold
conditionh(2x11)5G11h(x

11). For the purposes of this pa
per, we will only need the rules for the supersymmetry tran
formations of the fermions: the relevant supersymme
transformations are

dcA5DAh1
&

288
GIJKL~GA

IJKL28dA
I GJKL!h

2
1

576p S k

4p D 2/3d~x11!~ x̄aGBCDxa!

3~GA
BCD26dA

BGCD!h1••• , ~2.7!

4Recently, some attempts have been made@30# to substantiate the
no-scale potentials usingS duality.
-

s-
ry

dc115D11h1
&

288
GIJKL~G11

IJKL28d11
I GJKL!h

1
1

576p S k

4p D 2/3d~x11!~ x̄aGABCx
a!GABCh1••• ,

dxa52 1
4FAB

a GABh1••• .

The ellipsis denotes terms of orderk4/3, as well as known
terms of orderk2/3 bilinear in the gravitinos that we will not
need.

As we recalled in the previous subsection, the effective
supergravity Lagrangian of the weakly coupled ten-
dimensional heterotic string theory describes the interaction
between the gluino bilinearsx̄aGABCx

a and the three-form
field strengthHABC , by the perfect square term~2.2!, leading
to the no-scale potential and the corresponding mechanism
of supersymmetry breaking. At first, one would not expect
such a perfect square structure to also appear in the effective
Lagrangian ofM theory. Indeed, the gluinos ofM theory
live at the space-time boundary and can only contribute to
the Lagrangian through surface terms. On the other hand, the
three-formCIJK , whose field strength four-formGIJKL is the
M -theory counterpart of the heterotic field strengthHABC ,
belongs to the supergravity multiplet, and its kinetic term is
supported by the bulk of the 11-dimensional manifold. We
have indeed seen that the effective Lagrangian~2.5! contains
the corresponding terms,

2
1

12k2 E
M11

d11xAgGABC11
2

1
&

24~4p!5/3k4/3 E
M10

d10xAgGABC11~ x̄aGABCxa!. ~2.8!

Nevertheless, it is intriguing to notice that, in fact, the
perfect square structure of the interaction between the glui-
nos and the bosonic field strength persists also inM theory.



54 7565GLUINO CONDENSATION IN STRONGLY COUPLED . . .
In the construction of the Lagrangian@17#, an unusual
boundary interaction term was encountered. This term
pears at relative orderk4/3, is quartic in the gluinos, and
most importantly, is proportional to the boundary delta fun
tion d~x11! evaluated at zero:

2
d~0!

96~4p!10/3k2/3 E
M10

d10xAg~ x̄aGABCx
a!2. ~2.9!
ap-
,
c-

In @17#, the presence of this term in the effective Lagrangian
has been inferred from the requirement of local supersym-
metry. That argument was rather formal and involved can-
cellations of infinities. Still, it is interesting that this term
turned out@17# with precisely the right coefficient so that it
can be combined with the two terms in Eq.~2.8! into a per-
fect square:
2
1

12k2 E
M11

d11xAgGABC11
2 1

&

24~4p!5/3k4/3 E
M10

d10xAgGABC11~ x̄aGABCxa!2
d~0!

96~4p!10/3k2/3 E
M10

d10xAg~ x̄aGABCx
a!2

52
1

12k2 E
M11

d11xAgSGABC112
&

16p S k

4p D 2/3d~x11!x̄aGABCx
aD 2. ~2.10!
Of course, we can turn this argument around and cla
that the perfect square structure of the Lagrangian provide
rationale for the existence of the rather singular term~2.9! in
the effective Lagrangian of@17#. This statement can be given
the following more precise meaning. Inspired by the perfe
square structure of the Lagrangian as found in Eq.~2.10!, we
can reassemble terms in the Lagrangian and redefine
fields, so that the Lagrangian and the supersymmetry tra
formations no longer contain any explicit terms proportion
to infinite coefficients such asd~0!. In what follows, we will
shift the field strength four-formGIJKL by a term supported
at the boundary and bilinear in the gluinos, and define
modified field strengthG̃IJKL by

G̃ABC115GABC112
&

16p S k

4p D 2/3d~x11!x̄aGABCx
a,

~2.11!

G̃ABCD5GABCD .

This set of redefined fields is probably better suited for t
description of the physics at the relevant scales, since
makes the effective Lagrangian free of formal infinities, t
the order to which the low-energy field theory was claime
to make sense in@17#.

In the next section we will be interested in configuration
onR43S1/Z23X that preserve four-dimensional Poincare´ in-
variance. In those cases, all componentsG̃mJKL , with m the
vector index onR4, will vanish. The equations of motion for
the nonzero components of the modified field strength
R43X3S1/Z2 are then

DIG̃
IJKL50; ~2.12!

i.e., they formally coincide with the equations of motion fo
the unmodified field strengthGIJKL in the absence of the
gluino condensate. Of course, this fact depends crucially
the perfect square structure of the Lagrangian.

The field strengthGIJKL of the three-formC has to satisfy
the Bianchi identity~2.6!. In the transformed variables, the
Bianchi identity becomes
im
s a
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dG̃11ABCD52
3&

2p S k

4p D 2/3d~x11!~ trF [ABFCD]

2 1
2R[ABRCD] !

1
&

4p S k

4p D 2/3d~x11!] [A~ x̄aGBCD]x
a!.

~2.13!

For a covariantly constant gluino condensate, such as the
one in Eq. ~2.1!, proportional to the covariantly constant
holomorphic three-formei jk on X, the last term in Eq.
~2.13! vanishes identically. The Bianchi identity then
formally coincides with the Bianchi identity for the unmodi-
fied field strengthGIJKL in the absence of the gluino conden-
sate.

III. GLUINO CONDENSATE AND SUPERSYMMETRY
IN M THEORY

Now we would like to solve the equations of motion in
the presence of the gluino condensate. Our strategy will be as
follows. First, we find a solution of the equations of motion
and the Bianchi identity for the four-formG̃IJKL . Then we
will try to solve the conditions for unbroken supersymmetry,
a priori expecting an obstruction that should prevent us from
finding unbroken supersymmetry in the presence of a gluino
condensate. It will come as a surprise that, because of the
presence of the extra orbifold dimension ofM theory, the
unbroken supersymmetry conditionscan actually be satis-
fied, locally in the extra dimension. The expected obstruction
will only be topological in nature and will prevent us from
extending the local solution globally over the extra dimen-
sion.

As a first step, we have to solve the equations of motion
and the Bianchi identity for the four-form field strength,
which in the presence of a covariantly constant gluino con-
densate onX are
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DIG̃IJKL50,

dG̃ABCD1152
3&

2p S k

4p D 2/3d~x11!~ trF [ABFCD]

2 1
2R[ABRCD] !2

3&

2p S k

4p D 2/3d~x112R11!

3~ trF [ABFCD]2
1
2R[ABRCD] !. ~3.1!

~Here we have explicitly included, unlike in our previou
discussion, the contribution from the other boundary, loca
at x115R11.!

The Bianchi identity in Eqs.~3.1! cannot be satisfied un-
less the total cohomology class of its right-hand side va
ishes,

( @F∧F#2@R∧R#50. ~3.2!

In the compactifications most directly relevant to pheno
enology, this condition is satisfied by embedding the sp
connection into one of the gauge groups, which is then b
ken from E8 to E6. This embedding makes trF∧F2R∧R
vanish pointwise in the Calabi-Yau manifold, but does n
make the right-hand side of the Bianchi identity in Eqs.~3.1!
zero pointwise. As argued in@18#, this generates a gradien
for the four-form field strength, which is therefore gene
cally nonzero in this particular class ofM -theory
compactifications.5 Since the source ofdG̃ is of orderk2/3 in
the long-wavelength expansion,G̃IJKL will also be of order
k2/3.

We have seen in the previous section that Eq.~3.1! for
G̃IJKL in the presence of a covariantly constant condens
coincide with the equations for the unmodified four-for
GIJKL in the absence of the condensate. These equat
have been solved, to the same order ink2/3 that we are inter-
ested in, by Witten in@18#. To solve Eqs.~3.1!, we can take
any solutionGIJKL from @18# and set

G̃IJKL5GIJKL . ~3.3!

Notice that in accordance with the argument presented at
end of the previous subsection, it is indeed the modified fi
strengthG̃IJKL , rather than the originalGIJKL , that is better
behaved near the boundary in the presence of the glu
condensate. In particular, when a gluino condens
^x̄aGABCx

a& forms at the boundary,G̃IJKL stays finite and
continuous in the vicinity of the boundary, while the origin
field strengthGIJKL develops a rather singular, compensati
vacuum expectation value supported at the bounda
GABC11;d(x11)^x̄aGABCx

a&.
The next step is to look at the unbroken supersymme

conditions dcA5dc115dxa50, with the supersymmetry
variations dcA , dc11, and dxa given by Eqs.~2.7!. The
gluino condensate is of order 1 at the scale where the str
coupling develops in the Yang-Mills sector; therefore, t

5This fact could be relevant to the stabilization of moduli inM
theory.
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contribution of the gluino condensate to the supersymmetry
variations~2.7! is of orderk2/3. On the other hand,G̃IJKL
contributes already at orderk0, but since it only acquires
nonzero values of orderk2/3, both effects are of the same
order in the long-wavelength expansion in powers ofk2/3.

In terms of the redefined fields, the supersymmetry varia-
tions ~2.7! take the interesting form6

dcA5DAh1
&

288
G̃IJKL~GA

IJKL28dA
I GJKL!h1••• ,

dc115D11h1
&

288
G̃IJKL~G11

IJKL28d11
I GJKL!h ~3.4!

1
1

192p S k

4p D 2/3d~x11!~ x̄aGABCx
a!GABCh1••• .

Here the ellipsis again denotes terms of orderk4/3.
Two aspects of these formulas are worth pointing out.
~1! The gluino condensate drops out from the supersym-

metry variation ofcA , and it is therefore the normal compo-
nentc11 of the 11-dimensional gravitino that plays the role
of the would-be Goldstino in the theory. This indicates that
the variables ofM theory are perhaps better suited for the
description of the super-Higgs effect in the heterotic string
than those of the weakly coupled theory.

~2! In the supersymmetry variation ofc11, the term bilin-
ear in the gluinos is accompanied by a term that depends on
the normal derivative of the spinor,D11h.

These two facts represent yet another ‘‘conspiracy’’ in the
microscopic Lagrangian ofM theory on the manifold with
boundary and will be crucial in our subsequent analysis of
supersymmetry breaking in the presence of the gluino con-
densate. In particular, this ‘‘conspiracy’’ will allow us to
solve the unbroken supersymmetry conditions in the vicinity
of the boundary where the gluino condensate forms. Indeed,
with the gluino condensate appearing only in the condition
for the vanishing ofdc11, where theD11h term appears, one
can now hope to solve these conditions by allowingh to
depend onx11 appropriately. This is to be contrasted with the
analogous situation in the theory dimensionally reduced to
ten dimensions, which corresponds to the weakly coupled
heterotic theory. In the dimensionally reduced theory, the
D11h term will be absent fromdc11, and supersymmetry will
necessarily be broken by the gluino condensate in this ap-
proximation.

A. Local solution of the unbroken supersymmetry conditions

In the previous section we have noticed that both the
equations of motion and the Bianchi identity of the modified
field strengthG̃IJKL coincide with the equations for the un-
modified GIJKL in the absence of the condensate and can
therefore be solved using the results of@18#. SincedcA was
also shown to be independent of the gluino condensate, we

6Since there are no corrections at this order ink2/3 to dxa @17#, the
corresponding equationdxa50 is solved at orderk0 just as in the
Calabi-Yau compactifications at weak coupling, and we will drop it
from now on.
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can extend this argument and start with any solution of
system of equations studied in@18# and use it directly to
solve our equationsin the presenceof the condensate.

A solution of the unbroken supersymmetry conditions
the absence of the gluino condensate to orderk2/3 is repre-
sented@18# by a four-form field strengthGIJKL of orderk2/3
~which we set equal to our modified field strengthG̃IJKL!, a
metric onX3S1/Z2 ~which differs by effects of orderk2/3

from the product of the Ricci-flat metric onX and the ca-
nonical metric onS1/Z2!, and a spinorh ~which differs from
the covariantly constant spinorh0 on X by terms of order
k2/3!. The existence of such a solution in the absence of
gluino condensate has been shown in@18#.

The formation of a gluino condensate is also an effect
order k2/3 and will further modify h̃. On the other hand,
since the gluino condensate decouples in our modified v
ables from all equations exceptdc1150, the four-form field
strength and the metric will not be modified by the presen
of the condensate.

To find a solution of the unbroken supersymmetry con
tions in the presence of the gluino condensate to orderk2/3,
the last equation that remains to be satisfied isdc1150 or,
more explicitly,

D11h852
&

288
G̃IJKL~G11

IJKL28d11
I GJKL!h8

2
1

192p S k

4p D 2/3d~x11!~ x̄aGABCx
a!GABCh81••• ,

~3.5!

with the ellipsis again denoting higher order terms ink2/3.
Given thath̃ solves Eq.~3.5! in the absence of the gluino

condensate, the equation to be actually solved at orderk2/3 is

]11~h82h̃ !52
1

192p S k

4p D 2/3d~x11!~ x̄aGABCx
a!GABCh0 .

~3.6!

This equation has a very simple solution:

h85h̃2
1

384p S k

4p D 2/3e~x11!~ x̄aGABCx
a!GABCh0 . ~3.7!

This spinorh8, which differs fromh̃ and therefore from the
covariantly constant spinorh0 on X by terms of orderk2/3,
thus satisfies the last of the unbroken supersymmetry co
tions, Eq.~3.5!, in the vicinity of the gluino condensate to th
required order ink2/3.

Of course, we have to check thath8 still satisfies the rest
of the unbroken supersymmetry conditionsdcA50. This is
indeed the case to orderk2/3, as the gluino condensate i
covariantly constant. Also, for this spinor to be well define
on the 11-dimensional orbifold, it has to be even under
Z2 action that defines the orbifold:

h8~2x11!5G11h8~x11!. ~3.8!

Theh8 of Eq. ~3.7! indeed satisfies this chirality condition, in
an interesting way. Whileh̃ is chiral in ten dimensions and
satisfiesG11h̃5h̃, the second term in Eq.~3.7! is propor-
he
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tional to GABCh̃ which is antichiral in ten dimensions,7

G11GABCh̃52GABCh̃. In h8, this antichiral spinor is, how-
ever, multiplied by the step functione~x11! which is odd
under the change of orientation of the 11th dimension
x11→2x11. Thush8 is even under the combined action of
ten-dimensional chirality and orientation reversal of the 11th
dimension, and satisfies the orbifold condition~3.8!. Hence,
surprisingly enough, the presence of the 11th dimension o
M theory has allowed us to solve the unbroken supersymme
try conditions in the vicinity of the space-time boundary that
supports the gluino condensate.

So far, we have not taken into account the global topology
of the orbifold dimension. Strictly speaking, our analysis
therefore shows that in the presence of the gluino conden
sate, supersymmetry is unbroken in the formal limit of infi-
nitely strong heterotic string coupling, i.e., as we sendR11 to
infinity. In this limit, h8 of Eq. ~3.7! would be a globally
well-defined solution of the unbroken supersymmetry condi-
tions, to orderk2/3.

B. Global obstructions and supersymmetry breaking

So far, we have seen that even the observer located d
rectly at the boundary where the gluino condensate form
will see unbroken supersymmetry, as long as the other
weakly coupled boundary is far away. Now we will try to
extend the local solution~3.7! of the unbroken supersymme-
try conditions to a global solution defined everywhere in
R43S1/Z23X, for a finite radius of the orbifold dimension.

When we try to do so, we encounter an obstruction. We
have already solved the unbroken supersymmetry condition
at the end with the strongly coupled E8 sector, where the
gluino condensate forms. The unbroken supersymmetry con
ditions are also satisfied everywhere in the bulk, and so the
only remain to be satisfied at the weakly coupled E6 end.
Since there is no gluino condensate at this weakly couple
end, the unbroken supersymmetry conditions simply require
h8 to be continuous across this boundary:

h8~2R11!5h8~R11!. ~3.9!

However, the chirality properties ofh8 discussed in the pre-
vious subsection can be used to show that the condition~3.9!
is violated if the gluino condensate at the strongly coupled
end is nonzero. Indeed, whileh̃ is even underx11→2x11,
the term proportional toe~x11! in h8 is odd under this trans-
formation. Therefore, a topological obstruction must exist
that breaks supersymmetry globally, even though we ca
solve the unbroken supersymmetry conditions locally in any
chosen coordinate system.

Now we would like to understand more precisely the na-
ture of this topological obstruction. To do so, it is natural to
consider a slightly more general case, in which gluino con
densates are allowed to form at both boundaries of the spac
time manifold.

Notice first that the gluino condensate^x̄aGABCx
a& is pro-

portional to the components of a three-form onX, but it is

7Thus the spinor that represents the unbroken supersymmetry do
not have a definite ten-dimensional chirality; however, it still satis-
fies the chirality condition in four dimensions,g5h85h8.
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actually better to think of it as a four-form onX3S1/Z2.
Indeed, thed function localized at the space-time bounda
transforms as thedx11 component of a one-form whose othe
components are identically zero. We will write the gluin
condensate at theath component of the space-time bounda
as a four-formv~a! , in the following coordinate-free way:

v~a![d~x11!dx11∧^x̄aGABCx
a&dxA∧dxB∧dxC. ~3.10!

Hered~x11! is the delta function supported at theath bound-
ary component andx’s are the corresponding gluinos. For
covariantly constant condensate,v~a! is closed andZ2 invari-
ant, and therefore defines aZ2-equivariant cohomology class
on X3S1/Z2. More importantly for our purposes,v~a! is
closed under the nilpotent operatord11[dx11]11, which rep-
resents the exterior derivative along the 11th dimension,
we denote by@v~a!# the correspondingZ2-equivariant coho-
mology class in the cohomology defined byd11.

For Eq.~3.5! to have a global solution, the right-hand sid
of Eq. ~3.6! has to be exact with respect tod11, as a
Z2-equivariant form onX3S1/Z2. Thus the topological con-
dition that allows us to extend the local solution of the u
broken supersymmetry conditions to a global one is that
Z2-equivariantd11-cohomology class ofv~a! , summed over
all boundary components, vanish:

(
a

@v~a!#50. ~3.11!

In general, this condition is violated, and supersymmetry
broken by the global topology of the extra dimension ofM
theory.

There is, however, one simple way to satisfy the cohom
logical condition~3.11!, which leads to ana posterioriplau-
sibility argument indicating that we could have perhaps e
pected locally unbroken supersymmetry in the presence
gluino condensate inM theory, with supersymmetry broken
only by global topological effects.8 Set G̃IJKL to zero, and
consider the case when strong coupling of equal streng
develops in the two gauge groups at the two ends of
world. Now if we put equally strong and opposite gluin
condensates at the two boundaries, the topological obst
tion ~3.11! vanishes, and supersymmetry is unbroken. T
can be understood if we start from the limit of weak hetero

8This argument was pointed out to me by E. Witten.
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coupling, described by ten-dimensional heterotic supergrav-
ity. Indeed, it is clear that in the presence of two equally
strong gluino condensates that differ only by a minus sign,
supersymmetry stays unbroken in ten dimensions. Next, we
enlarge the string coupling and go back to the 11-
dimensional description. Assuming that the mechanism in
which supersymmetry is preserved is local in the 11th di-
mension, supersymmetry should be locally preserved in the
vicinity of each gluino condensate. Now if we change the
value of one of the condensates, supersymmetry will be bro-
ken, but since it is preserved locally in the neighborhood of
each condensate, it can only be broken by effects that in-
volve the global topology of the orbifold dimension. Indeed,
it is easy to find the globally defined spinorh9 that represents
the unbroken supersymmetry in the background of such
equally strong but opposite condensates:

h95h02
1

384p S k

4p D 2/3e~x11!~ x̄aGABCx
a!GABCh0 ,

~3.12!

with h0 the covariantly constant spinor onX. Clearly,h9 has
a jump at both ends of the world, with opposite values cor-
responding to the strengths of the two gluino condensates.

In the phenomenologically most interesting
compactifications—notably, those with the spin connection
embedding that breaks one of the E8’s to E6—one end of the
world supports the grand-unified degrees of freedom that are
weakly coupled, while the hidden E8 sector is strongly
coupled and should develop a nonzero gluino condensate
With a gluino condensate at only one end of the world, the
cohomology condition~3.11! cannot be satisfied, and super-
symmetry is broken by the global topology of the extra di-
mension ofM theory, in a mechanism that is reminiscent of
the Casimir effect.
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