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Gluino condensation in strongly coupled heterotic string theory
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Strongly coupled heterotic X Eg string theory, compactified to four dimensions on a large Calabi-Yau
manifold X, may represent a viable candidate for the description of low-energy particle phenomenology. In this
regime, heterotic string theory is adequately described by low-endrthyeory onR*x Sz ,x X, with the two
Eg's supported at the two boundaries of the world. In this paper we study the effects of gluino condensation as
a mechanism for supersymmetry breaking in tiistheory regime. We show that when a gluino condensate
forms in M theory, the conditions for unbroken supersymmetry can still be satisfied locally in the orbifold
dimensionSYZ,. Supersymmetry is then only broken by the global topology of the orbifold dimension, in a
mechanism similar to the Casimir effect. This mechanism leads to a natural hierarchy of scales, and elucidates
some aspects of heterotic string theory that might be relevant to the stabilization of moduli and the smallness
of the cosmological constarfiS0556-282196)04324-X]

PACS numbgs): 11.25.Mj, 11.25.Sq, 11.30.Pb

[. INTRODUCTION: PHENOMENOLOGY OF M THEORY Kaluza-Klein idea. For a low-energy observer, the world first
looks four dimensional. After crossing a certain threshold,
Despite its remarkable phenomenological proniise3],  the world becomes effectively five dimensional, but the mat-
string theory still leaves unanswered many pressing queder sector containing the standard model still lives at a four-
tions about its contact with the |ow-energy world. Among dimensional boundary. The bulk of the five-dimensional
the issues that we would certainly want to understand bettefpace-time supports only gravitgs well as other fields com-
in a unified theory are the mechanism of supersymmetryng from the 11-dimensional supergravity multipledt the
breaking with a large hierarchy of scales, the stabilization oPther end of the world, another gauge sector, the othafE
moduli, and the smallness of the cosmological constiamt  the heterotic string theory, is hidden and communicates with
reviews and references, spe-11]). the matter of the standard model only gravitationally. Fi-
Our present understanding of this subject indicates thafally, at even higher energies, the observer reaches the com-
string theory might be able to identify the right degrees ofpactification scale and sees the additional six dimensions
freedom in which phenomenology can be naturally undercompactified on the Calabi-Yau manifold, and the world be-
stood. There are, however, equally strong indications that i§omes 11 dimensional.
the regime directly relevant to phenomenology, the natural This newly understood regime of heterotic string theory
degrees of freedom of perturbative string theory are stronglg€ems very attractive phenomenologically.[I8], Witten
coupled[12—15. Recently, we have witnessed a revolution used this regime to analyze the strongly coupled heterotic
that is rapidly changing our understanding of string theory instring compactified on a large Calabi-Yau manifold, with the
the strongly coupled regime, leading in many cases to a dudpur-dimensional grand-unified couplinggyr acceptably
description of the physics in this regime in terms of moresmall. A detailed analysis reveals that for such compactifica-
natural, weakly coupled degrees of freedom. One can wondéions, unlike in the weakly coupled heterotic string, the
whether these dual descriptions might lead to variables morgtrengths of all interactions including gravitational can be
appropriate for the description of low-energy phenomenolhaturally unified at the unification scale. In other words, the
ogy. unacceptable prediction of the size of the Newton constant
In the recent studies of string dualities, at least one sucfn. @ made generically by the weakly coupled heterotic
new paradigm may have already appedt&-1§. Compac-  String theory, is alleviated at strong coupling, in the
tification of the strongly coupled heteroticg€E, string ~M-theory regime. More recently, other interesting phenom-
theory on a Calabi-Yau manifol&k is most naturally de- enological implications of this scenario have been studied in
scribed by 11-dimensionM theory, compactified tR* ona  some detail i{20] (see alsd21]).
manifold with one extra dimensioix xSY%Z, [16]. This ex-
tra dimension, invisible at weak heterotic coupling, is an Gluino condensate, supersymmetry breaking,
orbifold d|m_enS|on, and the total space-time manlfold has a and the cosmological constant
boundary with two components. At low energies, the effec- o ] )
tive description ofM theory is in terms of 11-dimensional ~ The unification of couplings, essentially due to the pres-

supergravity, coupled to one;ang-Mills supermultiplet at  €nce of the extra dimension of the type discussdd @), can
each boundary of the world.7]. be considered one of the first phenomenological successes of

This picture gives an interesting new twist to the old

1For a clear nontechnical exposition of this result, see Sec. 4.3 and
*Electronic address: horava@puhepl.princeton.edu Fig. 6 of [19].
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M theory. This makes one wonder whethdr theory has In the low-energy Lagrangian df1 theory, we find a
anything to say about the mysteries of hierarchical super“conspiration of terms” similar to the one observed in the
symmetry breaking and the smallness of the cosmologicdbw-energy Lagrangian of the weakly coupled heterotic
constant. string theory. Incidentally, this explains some rather singular
There are three known mechanisms that can trigger supeterms encountered ifil7] in the construction of the low-
symmetry breaking in string theory: world-sheet instantonsenergy effective Lagrangian & theory on a manifold with
space-time instantons, and strong infrared dynamics. Supelpoundary. It also suggests that when a gluino condensate
potentials generated by instantons have been recently studielévelops at the boundary, the field stren@lof the three-
in [22], where three-dimensional compactifications ©f form C from the 11-dimensional supergravity multiplet de-
theory were used to gain information about four-dimensionalelops a compensating vacuum expectation value supported
physics. at the boundary. We also encounter first indications that the
Gluino condensation in the hidden sector is a representat1-dimensional variables dfl theory might be more appro-
tion of the third class. It has been extenSively studied as ariate for the description of Supersymmetry breaking by the
mechanism of supersymmetry breaking, ever since the pigyiyino condensate—the role of the would-be Goldstino is
neering papers in supergravif3] and in string theory piaved by the normal componeni, of the 11-dimensional
[24,29; for reviews and references on this subjectee gravitino.
[26,27. . - . Even in the presence of the gluino condensate, we will
S rl;lmaec:dltlgrne;i"f)rovudmg a nzztural {_nechanllzm IOf SbuDer'l_stiII be able to solve the unbroken supersymmetry conditions
y 4 g, giuino condensation could aiso be refy, any given coordinate system. This phenomenon might
evant to the cosmological constant problem and the stabili- . L .
zation of moduli in string theory. At a very early stage of the come as a su.rpnse.anq is intimately related to the existence
studies of gluino condensates in weakly coupled heteroti((,)]c the extra _d|menS|on iM theory. .
string theory, it has been noticé24,25 that certain terms in 1€ solution of unbroken supersymmetry conditions ex-
the Lagrangian of the ten-dimensional heterotic supergravityStS locally, but not globally in the extra dimension. When
conspire in a very particular way, leading to a potential of aVe try to extend the local solution globally _OVSHszxl
very special, “no-scale” type, first considered j82,33.  We encounter a topological obstructi¢essentially, the total
Potentials of the no-scale type have been argued to breglehomology class of the gluino condengafEherefore, su-
supersymmetry while keeping the cosmological constanpersymmetry is broken by the global topology of the extra,
naturally zero without fine-tuning. The main problem with orbifold dimension, in a process similar to the Casimir effect.
this mechanism seems to be the apparent absence of a satis-The fact that the unbroken supersymmetry conditions can
factory symmetry principle that could explain and protectbe satisfied in any coordinate systemRtxSYZ,xX leads
this particular form of the potential and lead to supersymmeto an intriguing refinement of the phenomenology of super-
try breaking with zero cosmological constant in the presencgymmetry breaking in these models. We have argued that in
of quantum effects. the M-theory scenario, observers at intermediate energies
In this paper, we will study gluino condensation in the will see the world as five dimensional. At length scales larger
strongly coupled,M-theory regime of the heterotic string than the Calabi-Yau compactification radius, but still much
theory, to the lowest nontrivial order in a long-wavelengthsmaller than the radius of the fifth dimension, these observ-
expa}nsion. We will assume that a gluino condensate develsrs should see unbroken supersymmetry, even if they are
ops in the f5 sector hidden at the other end of the world andgrectly at the other end of the world where the gluino con-
willstudy its consequences for supersymmetry breaking.jensate has formed. As the resolution is diminished, the su-

Our analysis W”! reyeal some unexpgcted properties o ersymmetry breaking effects, caused by the compactness of
glumo_ condensatlon in the heterotic string theory at stron he fifth dimension, become visible, and at even larger length
cpuplmg. Since thg rest of the paper \_N'” be somewhat tGCh'scales, the world will be effectively four dimensional and
nical, we summarize our results here: . .
supersymmetry will be broken. However, this breakdown

should be rather mild, since it is only caused by effects sen-
sitive to the global topology of the fifth dimension.

°The simplest version of gluino condensation in weakly coupled This mechanism of supersymmetry breaking generates a
heterotic string theory does not successfully explain the hierarchylaturm hierarchy of scales. In the phenomenologically inter-
of scales and the stabilization of moduli. Several suggestions hovésting regime, the radius of the fifth dimension can be ex-
to alleviate these problems without abandoning the regime of weal d[20] t b t least d f itude | th
string coupling have been madg&], among them the racetrack pected| . 0 .e at least an order of magnitude arger .an
models with multiple gluino condensatd28,29 or modified the 11—_d|menS|or.1r_;1I Rlanck !ength. The mass of the.f've'
gauge-kinetic functionf30,31. dimensional gravitino is only induced quantum mechanically
3 . . . by loop effects sensitive to the size of the fifth dimension and
The formation of a gluino condensate is exactly what one expects theref db fthe i di f
on the basis of a simple physical argument. For the (:ompactifical-S erefore suppressed by a power of the Inverse radius o

tions studied if18] and in the present paper, strong coupling in thethe f'f_th d_|men3|on. . .

hidden E develops exactly when the other couplings attain phe- 1 his hidden 11-dimensional supersymmetry, broken only
nomenologically interesting values. With strong gauge coupling inbY the global topology of the orbifold dimension, explains

the hidden sector, we can expect that a gluino condensate is djbe “conspiracy” that leads in the weakly coupled heterotic
namically generated. This aspect of the strong gauge dynamicstring theory to the no-scale potential with supersymmetry
should be stable under the effects caused by the coupling to gravityareaking and zero cosmological constant at the tree level.
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Il. GLUINO CONDENSATION IN HETEROTIC grangian contains a gluino self-interaction term which is

STRING THEORY AND M THEORY quartic in x% it also contains an interaction between the
gluino bilinear T’ xgcx® and the three-form field strength
Hagc. Together with the kinetic terri?, these terms con-
spire in such a way that they can be assembled into a perfect
square,

In this paper we will study the heteroticgEEg string
theory compactified t&R* on a Calabi-Yau threefol. In
the strong coupling limit, the low-energy description of this
theory is in terms of 11-dimension® theory compactified
on R*xSYz,x X, with the two E gauge groups supported at
the two space-time boundaries in the orbifold dimension 3«%, 1 1 5 34— a2
S'Z,. We will deal with various supergravities that describe ~ 754 fMlOd g Pk [Hasc—N1gV2 ™ (X' apcx ™) 1*.
the low-energy physics of such compactifications. 10 2.2

Our 10-dimensional and 11-dimensional conventions are '
as in[16]. The space-time signature is+---+. Eleven- o )
dimensional vector indices will be written &sJ,K, . ... The (We have used the normalizations [#4]; ¢ is the ten-
11-dimensional’ matrices are 3232 real matrices satisfy- dimensional dilaton, whilex;, and Ao denote the ten-
ing {T', . ;}=2g,,, with g,,= 7, "e" the 11-dimensional d|mer_1$|onal grawtapona_tl arjd gauge couphng, respectiyely.
metric. Each of the two boundary components of the 11 Consider now the situation in whlqh a gluino condensate has
dimensional manifold supports ong Bang-Mills supermul- formed, proportlonal to the covariantly constant three-_form
tiplet. One of the E's will be broken by the spin connection ©n X as in Eq.(2.1). If we assume that the three-form field
embedding to a grand-unifieds §roup, while the other strengthH 5,5 develops a compensating vacuum expectation
will be strongly coupled and hidden at the other end of thevalue,
world. The adjoint index of this hiddengRvill be denoted by
ab,.... Hiw=CcAZ \2v2 ¥\, 2.3

On R*xSYZ,xX, we will use four-dimensional vector K 10V 26l =3
indices w,v, ..., which parametrize the flat Minkowski
spaceR? and vector indices,j,k, ... andtheir complex such that the perfect square tetéh2) in the potential van-
conjugated,j kK, . .., which correspond to a complex coor- ishes, the cosmological constant will be zero at the tree level.
dinate system on the Calabi-Yau threefald The ten- At the same time, one can show that supersymmetry is bro-
dimensional vector indices that parametrR&xX will be  ken by the condensat¢g.1) and (2.3).
written asA,B,C, . ... Ourother conventions o0iXxSYZ, The easiest way to see supersymmetry breaking in the
are as in18]. presence of the condensates is to look at the relevant part of

the supersymmetry variation of the fermions. There are two
A. Gluino condensation and the potential at weak coupling relevant fermions in the theory: the ten-dimensional grav-
itino ¥, and the dilatino\. Schematically, the relevant parts

First, we recall some aspects of the gluino condensation igf their supersymmetry variations are given by
the hidden sector of the weakly coupled heterotic string

theory that will be relevant for our purposes.

Consider, as ifi24], the weakly coupled heterotic;EEg PRI +Q ko) 1
string theory compactified on a Calabi-Yau threefldOn A ko AT 32|27, ¥4 BCD
any givenX, we have a covariantly constant holomorphic
three-forme;; (and its antiholomorphic complex conjugate
emx)- In ten dimensionsy®I" ygcx® is the only gluino bilin-
ear that is not identically zero by Fermi statistics and chiral- BCD BCD
ity. If this bilinear develops a nonzero vacuum expectation X(LAT2 =583 ) o
value proportional to the covariantly constant holomorphic
three-form onX,

1 _
X ([ 2P~ 952FCD) AT k1 X*T'gcox®)

1 K10> 1
I N=+F+—|— H FABC
<Xariija>:CAgseijk 2.0 8 ()\io ¢ TTABC 7

(2.9
(and similarly for the complex conjugate the four- V3
dimensional observer will interpret this expectation value as + — k16X pagcXHTABCy+ -+ .
a nonzero gluino condensatg®x®) [and(x*ysx*)]. In Eq. 384
(2.1), Ag, is the characteristic scale of the hidden gauge

sector, at which the gauge coupling becomes strongcdad (Here the ellipsis corresponds to terms that are either propor-
a (complex number of order 1. tional to the gravitino and dilatino or contain the space-time
In the process of analyzing the physics of the gluino con-derivative of the dilaton.We can see from Ed2.4) that in
densate in weakly coupled heterotic string theory, it has beethe presence of the condensat2d) and(2.3), the unbroken
noticed[24] (see alsd2], Vol. 2, p. 326 that the Lagrangian supersymmetry condition8¥,=0 andS\=0 cannot be sat-
of ten-dimensional heterotic supergravity exhibits a speciaisfied. A particular linear combination oF, and\ behaves
feature that could lead, at least at the tree level, to supersynas a Goldstone fermion and gives a nonzero tree-level mass
metry breaking with zero cosmological constant withoutto the gravitino, and supersymmetry is broken in this ap-
fine-tuning. The argument is roughly as follows. The La-proximation.
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In four dimensions, the perfect square struct@e?) of B. Strong coupling andM theory
the heterotic supergravity Lagrangian leads to the superpo-
tential and Khler potential of the very special, no-scale type At strong string coupling and large radius of the Calabi-
[32,33. Superpotentials and éer potentials of the no-scale Yau manifold, the compactification is effectively described
type were proposefB2] in earlier attempts to link supersym- by low-energyM theory onR*xSYZ,xX. The effective La-
metry breaking with the solution of the cosmological con-grangian for this theory has been constructefilifi. It con-
stant problem(see also the discussion fal]). One of the tains the 11-dimensional supergravity multiptet, «,, and
main drawbacks of this approach so far has been the appare@t,x in the bulk, coupled to onegEyang-Mills supermulti-
lack of a symmetry principle that could explain and protectplet A3, x¥* at each of the two ten-dimensional boundaries.
this particular form of the potentiél. To order«?®, the Lagrangian is given by

1 V2 —

Q+0Q 2 v
U= 75 Gk G 2o (TN -+ 12T M) (G

2

1 11—
= — 1 L R— — 1JK
L=— and lx\/g{ 5> R=5 »I'™ D,

N V2 1 1 1__ ~
*Gowm) ~ 3786 lCGG% Tr (A J Mmd”ng( — 7 FAF - S X T DA )X

1— ~ V2 o “
8 YAl BT AR+ FRox®+ 78 (XarABCXa)GABCM> . (2.9

(Explicit expressions for the supercovariant obje@tsF 4g, Va
and G ;. can be found in[17].) The fields of the bulk 51//11:D1177+2_88GlJKL(FlluKL_85I11FJKL)77
supergravity multiplet satisfy natural orbifold boundary con-
ditions, discussed in detail fil.7]. It was also shown ifil7] < \P A ABC
that the four-form field strengti®,;«, satisfies a modified 576w E) XL apcX Tt
Bianchi identity

Sx°=— LFae Byt - .

3y o3 The ellipsis denotes terms of ordef’®, as well as known
dG __>~ (i SOXUY) (trF  agF terms of order®? bilinear in the gravitinos that we will not
11ABC 2 A [ABT CD] need.
. As we recalled in the previous subsection, the effective
—3RasReo)), (2.6) supergravity Lagrangian of the weakly coupled ten-
dimensional heterotic string theory describes the interaction
between the gluino bilinearg®l" sgcx® and the three-form
which will be important later in the paper. field strengthH o5, by the perfect square ter(8.2), leading
The effective Lagrangiari2.5) is invariant under local to the no-scale potential and the corresponding mechanism
supersymmetry, whose parameter satisfies the orbifold Of supersymmetry breaking. At first, one would not expect
condition 7(— x) =T, 7(x'Y). For the purposes of this pa- Such a perfect square structure to also appear in the effective
per, we will only need the rules for the supersymmetry trans-@grangian ofM theory. Indeed, the gluinos dl theory

formations of the fermions: the relevant supersymmetr)Jt'r\]': Ijiat trhae;] Sigancteh'rt(')rﬂehbsoljjr?;ég}f{e?&(l cgr;] g}rgyoﬁ]%':tﬂgﬁze ttr?e
transformations are grang 9 : ,

three-formC,;« , whose field strength four-fori@,,, is the
M-theory counterpart of the heterotic field strengthsc,
V3 belongs to the supergravity multiplet, and its kinetic term is
Sp=Dan+ mo= Gy (TAPKE— 85, TKL) 5 supported by the bulk of the 11-dimensional manifold. We
288 have indeed seen that the effective Lagrang®b) contains
the corresponding terms,

1 K 2/3
I 5X11 _al'* a
576’77 (477) ( )(X BCDX ) B 1 d]_]_X\/_GZ
122 [yt 9GaBc11

Vi [—
* 24(477)5B3 3 fM 10dlox\/§GA8011(XaFABCXa) . (2.9

X ([ pBCP—653I Pyt 2.7

Nevertheless, it is intriguing to notice that, in fact, the
“4Recently, some attempts have been mi@f8 to substantiate the ~perfect square structure of the interaction between the glui-
no-scale potentials using duality. nos and the bosonic field strength persists alsMitheory.
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In the construction of the Lagrangiafl7], an unusual In[17], the presence of this term in the effective Lagrangian
boundary interaction term was encountered. This term aphas been inferred from the requirement of local supersym-
pears at relative ordex*? is quartic in the gluinos, and, metry. That argument was rather formal and involved can-
most importantly, is proportional to the boundary delta func-cellations of infinities. Still, it is interesting that this term
tion 8(x') evaluated at zero: turned out{17] with precisely the right coefficient so that it

8(0) _ can be combined with the two terms in H8.8) into a per-
 96(4m)T0R32R fMlodlox‘/a(XaFABCXa)z' 2.9 fect square:

1 V2 — 6(0) —
T 1242 andllX\/gGiBCll+ W leoleX\/gGABcn(XaFABCXa)_ Wsk_z/é medlox\/g(XaFABch)z
1 o) K 2/3 L 2
=T 123 leldllx\/g( Gagen™ 75 (E) 5(X11)XaFABCXa) : (2.10

Of course, we can turn this argument around and claim - 3V2 [ Kk \23

that the perfect square structure of the Lagrangian provides a  dGisco=—~ 75— (E) (X" (trF aeF ey
rationale for the existence of the rather singular t€2m) in

the effective Lagrangian ¢fL7]. This statement can be given — %R[ asRcoy)

the following more precise meaning. Inspired by the perfect o3

square structure of the Lagrangian as found in([2dL0, we + 22 ) s(xtYy g a (7T )

can reassemble terms in the Lagrangian and redefine the am \am) )X Teeox®):
fields, so that the Lagrangian and the supersymmetry trans- (213
formations no longer contain any explicit terms proportional :

to infinite coefficients such a&0). In what follows, we will
shift the field strength four-forns,;«, by a term supported
at the boundary and_bilinear in the gluinos, and define
modified field strengtlG,;, by

a{:or a covariantly constant gluino condensate, such as the
one in Eq.(2.1), proportional to the covariantly constant
holomorphic three-forme;, on X, the last term in Eq.

o3 (2.13 vanishes identically. The Bianchi identity then
o _ 202 1y 7a a formally coincides with the Bianchi identity for the unmodi-
Gascnn=Gaser™ g (477) SXIX T asex”™s fied field strengttG, ., in the absence of the gluino conden-
(2.11 sate.

Gasco=Gascop-

This set of redefined fields is probably better suited for the
description of the physics at the relevant scales, since it
makes the effective Lagrangian free of formal infinities, to
the order to which the low-energy field theory was claimed  Now we would like to solve the equations of motion in
to make sense ifil7]. _ _ _ _ ~ the presence of the gluino condensate. Our strategy will be as
In the next section we will be interested in configurationso||ows, First, we find a solution of the eguations of motion
onR™XSZ,xX that preserve four-dimensional Poincare 5.4 the Bianchi identity for the four-form,,., . Then we
variance. In those cases, all componeBis, ., With uthe iy try 16 solve the conditions for unbroken supersymmetry,
vector index orR’, will vanish. The equ'a.tlonsf of motion for a priori expecting an obstruction that should prevent us from
thf nonz?ro components of the modified field strength OI]‘inding unbroken supersymmetry in the presence of a gluino
R*XXXSY/Z, are then . :
condensate. It will come as a surprise that, because of the
_ presence of the extra orbifold dimension Mdf theory, the
D,G"Kt=0; (2.12  unbroken supersymmetry conditiomsn actually be satis-
fied, locally in the extra dimension. The expected obstruction
i.e., they formally coincide with the equations of motion for will only be topological in nature and will prevent us from
the unmodified field strengtls, ;. in the absence of the extending the local solution globally over the extra dimen-
gluino condensate. Of course, this fact depends crucially osion.
the perfect square structure of the Lagrangian. As a first step, we have to solve the equations of motion
The field strengtlG, ;x, of the three-fornC has to satisfy and the Bianchi identity for the four-form field strength,
the Bianchi identity(2.6). In the transformed variables, the which in the presence of a covariantly constant gluino con-
Bianchi identity becomes densate orX are

lll. GLUINO CONDENSATE AND SUPERSYMMETRY
IN M THEORY
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D'G,)k. =0, contribution of the gluino condensate to the supersymmetry
variations (2.7) is of order «¥*3. On the other handG, .,
_ 3v3 [ k|28 contributes already at ordet’, but since it only acquires
dGagcpi1= — T (4—) 5(x11)(trF[ABFCD] nonzero values of ordex?, both effects are of the same
AT order in the long-wavelength expansion in powersc?.

32 [ k|23 In terms of the redefined fields, the supersymmetry varia-
—3RasRep)) — >- (E) S(x1—Ryy) tions (2.7) take the interesting forfn
X (rF (a8F coy ~ 3 RiasRcoy)- (3.0 L

Opp=Dan+ 288 Gk (TAKE—88, KL -

(Here we have explicitly included, unlike in our previous

discussion, the contribution from the other boundary, located V2 ~ KL | IKL

atx'=R,;.) 6¢11=Dnn+ 288 Guke(I'11"" =861, ) 7 (3.9
The Bianchi identity in Eqs(3.1) cannot be satisfied un-

less the total cohomology class of its right-hand side van-

ishes,

23
S(X™) (X AT B+ -+

* 1oom (477

> [FOF]—[ROR]=0. (3.2 Here the ellipsis again denotes terms of org¥.
Two aspects of these formulas are worth pointing out.
In the compactifications most directly relevant to phenom—me(t? Igﬁa?ilg;]ngfcongﬁgsﬁg t?\fr%?o?gttﬁgr:otrrrfalsggﬁ:sgw-
enology, this condition is satisfied by embedding the spin y Ua b

connection into one of the gauge groups, which is then bro[]ent Y, Of the 11-dimensional gravitino that plays the role

. . - of the would-be Goldstino in the theory. This indicates that
ken from B to Eg. This embedding makes f{JF —RUR the variables oM theory are perhaps better suited for the

vanish pointwise in the Calabi-yau manifold, but does rlotdescri tion of the super-Higgs effect in the heterotic strin
make the right-hand side of the Bianchi identity in Es1) P P 99 9
than those of the weakly coupled theory.

zero pointwise. As argued i8], this generates a gradient (2) In the supersymmetry variation ., the term bilin-

for the four-form field strength, which is therefore generi- ) : ; '
cally nonzero in this particular class oM-theory ear in the glum'os is accompan!ed by a term that depends on
compactifications.Since the source afG is of orderx?in the normal derivative of the spino;; . B o
the long-wavelength expansio6,;x, will also be of order _These two facts represent yet another conspiracy - in the
23 microscopic Lagranglan df/l theory on the manifold W|th
boundary and will be crucial in our subsequent analysis of
upersymmetry breaking in the presence of the gluino con-
ensate. In particular, this “conspiracy” will allow us to
r§olve the unbroken supersymmetry conditions in the vicinity
osf the boundary where the gluino condensate forms. Indeed,
with the gluino condensate appearing only in the condition
for the vanishing oSy, where theD ;,7 term appears, one
can now hope to solve these conditions by allowingo
depend onx*! appropriately. This is to be contrasted with the

analogous situation in the theory dimensionally reduced to

Notice that in accordance with the argument presented at tlfn dimensions, which corresponds to the weakly coupled

end of the previous subsection, it is indeed the modified fiel Deter(t)grcmt\r/]veil(lj[)yé ;gst:rft Sgﬂ;nsmgggysseglrjscergr;g?rorg\}i"the
strengthG,,«, , rather than the originab,,y, , that is better -7 Vs, persy y

behaved near the boundary in the presence of the glluinnecessarlly be broken by the gluino condensate in this ap-

. . roximation.

condensate. In particular, when_ a gluino condensat
(X°T agcx®) forms at the boundaryG,;x, stays finite and _ N
continuous in the vicinity of the boundary, while the original A- Local solution of the unbroken supersymmetry conditions
field strengthG,i, develops a rather singular, compensating In the previous section we have noticed that both the
vacuum expectation value supported at the boundaryequations of motion and the Bianchi identity of the modified
Gagci~ SO (T aex®). field strengthG, ., coincide with the equations for the un-

The next step is to look at the unbroken supersymmetrynodified G,;«, in the absence of the condensate and can
conditions dya= d1,= 6x*=0, with the supersymmetry therefore be solved using the results[d8]. Since i, was

variations i, dyq;, and Sx* given by Egs.(2.7). The also shown to be independent of the gluino condensate, we
gluino condensate is of order 1 at the scale where the strong

coupling develops in the Yang-Mills sector; therefore, the

_ We have seen in the previous section that B31) for
G,k In the presence of a covariantly constant condensat
coincide with the equations for the unmodified four-form
G;k. In the absence of the condensate. These equatio
have been solved, to the same ordexff that we are inter-
ested in, by Witten in18]. To solve Egs(3.1), we can take
any solutiong,;«, from [18] and set

Gk =91k - (3.3

8Since there are no corrections at this ordexdfi to 8y? [17], the
corresponding equatiofy®=0 is solved at ordek® just as in the
5This fact could be relevant to the stabilization of moduliNh  Calabi-Yau compactifications at weak coupling, and we will drop it
theory. from now on.
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can extend this argument and start with any solution of theional to ' g7 which is antichiral in ten dimensioris,
system of equations studied [A8] and use it directly to TI';;I'agc7=—Tagc?. In 7/, this antichiral spinor is, how-
solve our equations the presencef the condensate. ever, multiplied by the step functioe(x'!) which is odd

A solution of the unbroken supersymmetry conditions inunder the change of orientation of the 11th dimension
the absence of the gluino condensate to onefétis repre-  x*— —x*. Thus 7' is even under the combined action of
sented 18] by a four-form field strengtlg, ;, of erderKZ’3 ten-dimensional chirality and orientation reversal of the 11th
(which we set equal to our modified field stren@hyc, ), @ dimension, and satisfies the orbifold conditih8). Hence,
metric on X xSYZ, (which differs by effects of ordek?®  surprisingly enough, the presence of the 11th dimension of
from the product of the Ricci-flat metric o and the ca- M theory has allowed us to solve the unbroken supersymme-
nonical metric orSY/Z,), and a spinom (which differs from  try conditions in the vicinity of the space-time boundary that
the covariantly constant spinaf, on X by terms of order supports the gluino condensate.
«*"3). The existence of such a solution in the absence of the So far, we have not taken into account the global topology
gluino condensate has been showrjif]. of the orbifold dimension. Strictly speaking, our analysis

The formation of a gluino condensate is also an effect otherefore shows that in the presence of the gluino conden-
order < and will further modify 7. On the other hand, sate, supersymmetry is unbroken in the formal limit of infi-
since the gluino condensate decouples in our modified varinitely strong heterotic string coupling, i.e., as we s&jgto
ables from all equations excepty;;=0, the four-form field infinity. In this limit, »" of Eq. (3.7) would be a globally
strength and the metric will not be modified by the presencavell-defined solution of the unbroken supersymmetry condi-

of the condensate. tions, to orderx?”.
To find a solution of the unbroken supersymmetry condi-
tions in the presence of the gluino condensate to oxdér B. Global obstructions and supersymmetry breaking

the last equation that remains to be satisfiedyg,=0 or,

more explicitly, So far, we have seen that even the observer located di-

rectly at the boundary where the gluino condensate forms
3 will see unbroken supersymmetry, as long as the other,
Dyn'=- Z—%GUKL(TM'JKL—85'11FJKL)77’ weakly coupled boundary is far away. Now we will try to
extend the local solutioB.7) of the unbroken supersymme-
213 _ try conditions to a global solution defined everywhere in
) SO (XL agcxI*B%9" +-++ . RAxSYz,xX, for a finite radius of the orbifold dimension.
When we try to do so, we encounter an obstruction. We
(3.9 have already solved the unbroken supersymmetry conditions
] o ] ] ] at the end with the strongly coupled; Bector, where the
with the ellipsis again denoting higher order termstr. _ gluino condensate forms. The unbroken supersymmetry con-
Given thatz solves Eq(3.5) in the absence of the gluino gitions are also satisfied everywhere in the bulk, and so they
condensate, the equation to be actually solved at otteis only remain to be satisfied at the weakly coupleg éBd.
Since there is no gluino condensate at this weakly coupled
end, the unbroken supersymmetry conditions simply require
7' to be continuous across this boundary:

1
1927 \ 4

213
K _
du(n' —n)=- 1997 (E) (X (T apcx®)T*BC .

(3.6
. _ . . 7' (=Ru)=7"(Ru). (3.9
This equation has a very simple solution: o ) _ _
However, the chirality properties of discussed in the pre-
2/3 vious subsection can be used to show that the condi#dh

- 1 K .
7' =77 34— (E X (XTascx®)T*®0. (3.7 s violated if the gluino condensate at the strongly coupled
end is nonzero. Indeed, whilg is even undex!— —x*?,

This spinors’, which differs from7 and therefore from the € térm proportional t&(x") in #' is odd under this trans-
covariantly constant spinog, on X by terms of order?’3 formation. Therefore, a topological obstruction must exist
thus satisfies the last of the unbroken supersymmetry condil@t Preaks supersymmetry globally, even though we can
tions, Eq.(3.5), in the vicinity of the gluino condensate to the SOIVe the unbroken supersymmetry conditions locally in any
required order inc2C. chosen coordinate system.

Of course, we have to check that still satisfies the rest Now we would like to understand more precisely the na-

of the unbroken supersymmetry conditiofig,=0. This is ture of this topological obstruction. To do so, it is natural to
indeed the case to orde®, as the gluino Acondensate is consider a slightly more general case, in which gluino con-
covariantly constant. Also, for this spinor to be well defineddensates are allowed to form at both boundaries of the space-

on the 11-dimensional orbifold, it has to be even under thdime manifold. _ . A
Z, action that defines the orbifold: Notice first that the gluino condensdte™l" sgcx?) is pro-
portional to the components of a three-form X¥nbut it is

7' (=x)=T1p’ (x"). (3.8

The ' of Eq. (3.7) indeed satisfies this chirality condition, in  "Thus the spinor that represents the unbroken supersymmetry does
an interesting way. Whiley is chiral in ten dimensions and not have a definite ten-dimensional chirality; however, it still satis-
satisfiesI'117= 7, the second term in Eq3.7) is propor- fies the chirality condition in four dimensiongsz’ =7'.
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actually better to think of it as a four-form oXxSYZ,. coupling, described by ten-dimensional heterotic supergrav-
Indeed, thes function localized at the space-time boundaryity. Indeed, it is clear that in the presence of two equally
transforms as thdx*! component of a one-form whose other strong gluino condensates that differ only by a minus sign,
components are identically zero. We will write the gluino supersymmetry stays unbroken in ten dimensions. Next, we

condensate at theth component of the space-time boundaryenlarge the string coupling and go back to the 11-
as a four-formw(a)’ in the fo”owing coordinate-free way: dimensional descrlptlon. ASSUm|ng that the mechanism in

which supersymmetry is preserved is local in the 11th di-
w(a)E5(x11)dx“D(?FABC)(amxADdeDdxC. (3.10 mension, supersymmetry should be locally preserved in the

vicinity of each gluino condensate. Now if we change the
Here 8xY) is the delta function supported at théh bound-  value of one of the condensates, supersymmetry will be bro-
ary Component and’s are the Corresponding g|uinOS_ For a ken, but since it is preserVEd |Oca||y in the ne|ghb0rh00d Of
covariantly constant condensaie,, is closed and, invari- ~ €ach condensate, it can only be broken by effects that in-
ant, and therefore definesZa-equivariant conomology class Volve the global topology of the orbifold dimension. Indeed,
on XXS]-/ZZ More importantly for our purposeg‘)(a) is itis easy to find the globa”y def”.'led Splndf that represents
closed under the nilpotent operathr,=dx*3, ;, which rep- ~ the unbroken supersymmetry in the background of such
resents the exterior derivative along the 11th dimension, an@qually strong but opposite condensates:

we denote by w,] the corresponding ,-equivariant coho- 1 |23

mology class in the cohomology defined 8y, _ 7= 10— Ty (4—) (X AT agcx)TAEC 70,
For Eq.(3.5) to have a global solution, the right-hand side AT

of Eq. (3.6) has to be exact with respect ,;, as a (3.12

Zy-equivariant form orX XSYZ,. Thus the topological con-  with 7, the covariantly constant spinor 0t Clearly, 77 has
dition that allows us to extend the local solution of the un-g Jump at both ends of the world, with Opposite values cor-
broken supersymmetry conditions to a global one is that theesponding to the strengths of the two gluino condensates.

Z,-equivariantd,-cohomology class ol , summed over In the phenomenologically most interesting
all boundary components, vanish: compactifications—notably, those with the spin connection
embedding that breaks one of thg<$to E;—one end of the
E [w.,,]=0 (3.1 world supports the grand-unified degrees of freedom that are
@ (@) ' ' weakly coupled, while the hidden gEsector is strongly

coupled and should develop a nonzero gluino condensate.

In general, this condition is violated, and supersymmetry isVNith a gluino condensate at only one end of the world, the
broken by the global topology of the extra dimensionMbf cohomology conditior(3.11) cannot be satisfied, and super-
theory. symmetry is broken by the global topology of the extra di-

There is, however, one simple way to satisfy the cohomomension ofM theory, in a mechanism that is reminiscent of
logical condition(3.11), which leads to am posterioriplau-  the Casimir effect.
sibility argument indicating that we could have perhaps ex-
pected locally unbroken supersymmetry in the presence of a ACKNOWLEDGMENTS
gluino condensate iM theory, with supersymmetry broken
only by global topological effec.SetG,;., to zero, and Sa
consider the case when strong coupling of equal strengtha
develops in the two gauge groups at the two ends of th
world. Now if we put equally strong and opposite gluino
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