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Planetoid string solutions in 3+1 axisymmetric spacetimes
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The string propagation equations in axisymmetric spacetimes are exactly solved by quadratures for a plan-
etoid ansatz. This is a straight nonoscillating string, radially disposed which rotates uniformly around the
symmetry axis of the spacetime. In Schwarzschild black holes, the string stays outside the horizon pointing
towards the origin. In de Sitter spacetime the planetoid rotates around its center. We quantize semiclassically
these solutions and analyze the s@itdsg) (Regge relation for the planetoids, which turns out to be non-
linear.[S0556-282(196)05824-9

PACS numbgs): 11.25.Mj, 04.70.Bw, 11.27%d

I. INTRODUCTION AND MOTIVATIONS forces in the context of thiBnsatzare the attraction of grav-
ity, the centrifugal force, and the string tension. The combi-

The systematic investigation of strings in curved spacenation of these three causes in different proportions produce
times started ii1] has uncovered a variety of new physical different effects, as we will now see.
phenomendsee[2,3] for a general revieyv These results are It should be noted that the effects mentioned take place
relevant both for fundamentéjuantum strings and for cos- €ven when the gravitational field acting on the string is not
mic strings, which behave in an essentially classical way. Strong. They are due to the nonlocal character of the string.

The study of classical and semiclassical strings in curved We quantize semiclassically the planetoid string solutions
backgrounds will provide and is indeed providing us with ausing the WKB method adapted to periodic string solutions
better comprehension of what a consistent string theory ank®]. We obtain in this way their masses as a function of the
gravity theory entail. In this context we place the presen@ngular momentum. Such relations are nonlinear and can be
paper, which continues the line of research sefHy considered as égeneralizetl Regge trajectorySee Figs. 1

Among the heretofore existing analysis of the motion ofand 2.
classical strings in gravitational backgrounds a special place
is to be granted to exact solutions, usually obtained by means
of separablé\nsadze (nonseparable exact solutions were sys-
tematically constructed for de Sitter spacetiM®. Such are A. The Ansatzand the string equations of motion
the circular stringAnsatz[5,6], which for stationary axially
symmetric spacetimes reduces the nonlinear equations
string motion to an equivalent one-dimensional dynamic
system[7], or the stationary string\nsatz 8].

In this paper we examine a differeAinsatz which we
have called the planetoifinsatz in stationary axisymmetric
3+1 spacetime backgrounds. The planetoid solutions areqg2— g, (r)dt2+g,,(r)dr2+ 2014(r)dt dp+gyu(r)de?.
straight non-oscillating string solutions that rotate uniformly 2.
around the symmetry axis of the spacetime. In Schwarzschild
black holes, they are permanently pointing towards0O L .
while they rotateyoutsidg the horizgn.pln de gSitter spacetime Let_ 7 and o be _the t|_me||ke and spacelike world-sheet
the planetoid rotates around its center. coordinate respectively in the conformal gauge. Under the

We call ourAnsatzplanetoid since it generalizes to strings Ansatz
the bounded circular orbits of point particles in such space-
times. In the case of the Schwarzschild geometry the plan- t=togtar, d=¢o+B7, r=r(o), (2.2
etoid string solutions presented here are generalization of the
circular orbits of planets.

We will show how our planetoidhnsatzproduces either
orbiting strings with bounded world-sheet and length or
strings of unbounded length. The main competing physical g

r dr\2
Py +g”[azgu+2aB9t¢+B29¢¢]=(d—a) +V(r)=0.
*Electronic address: wtpegegi@Ilg.ehu.es (2.3

II. EQUATORIAL PLANETOID ANSATZ

We consider our classical strings propagating in
a?§+ 1)-dimensional stationary axisymmetric spacetime. For
simplicity, we restrict in this paper to strings propagating in
the equatorial plane=0. We can thus restrict ourselves to
the 2+1 metric with line element of the form

the equations of motion for a string in this background are
given by the following one-dimensional equivalent system:
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The functionr(o) will then be given by the zero energy where we used Ed2.3) andr ., andr ., denote the mini-
motion in o “time” of r under the potential mum and maximum radius reached by the string, respec-

V(r)=a?g" [gu+ 2N 0is+ N0y, With A=l a. tively.
Quite obviously, the movement of the string will be peri-
odic. The physical period in coordinate timet relates to C. General expressions and quantization condition
A through We will collect here the expressions for the physical
20 string magnitudes: angular momentumclassical action for
T=—. solutionsS,;, massm, and reduced actiow/(m). The mass
A will be defined asm:=—-dS;,/dT, with T the period. The

reduced action [9] is thus obtained as W(m)

=mT(m)+ Sy[ T(m)]. The quantization condition will read

_ A A2 W(m)=27n (in units withz=1).

V(N =V(r)/a?=g"| gy+ = gig+ =5 For the case at hand, closed expressions in terms of
97| 9u™ 7 Gt 72 Ygs s , "

quadratures can be obtained for all these quantities, as

It will prove useful to introduce the “physical” potential

since it only depends on the physical paraméter

The boundary conditions for open strings, namely, Sy(T)=— Z_T’ rmaxdrg”‘/_v(r),
dX,ldoc=0 at the ends of the string, are naturally fulfilled T Jr i
by this Ansatz
Following [10], we see that this is the onlfnsatzthat 4 (roe TGt 2704
separates variables, lets strings be dynamical, and respects W= — dr —————,
the open string boundary conditions, wherr (o) is cho- Ta' Jr V=V(r)
sen.
Note also that thif\nsatzdiffers from the circular string W-S, W
Ansatz[i.e., t=t(7), ¢=¢do+vo, r=r(7)] in the depen- m= (2.5

dence ofr in the spacelike world-sheétonforma) coordi- T 2m

nate and in the form of the equivalent one-dimensional en- - . . : L
As is immediately obvious from these expressions, it is

?ngy " eqzuaglon,z which for —this later case r(?adsnot necessary to have the solutiofr) in a closed form for
re+9"[n°g"+v7gyy], where the dot stands for the deriva- the quantities indicated to be evaluated, and in what follows

tive with respect tor. _ S we will not use the explicit expressions foer (o), which,
The invariant size of the planetoid string is given by theagter all, is dependent on the parametrization of the world
substitution of theAnsatzin the line element: sheet. It should be noted that the previously mentioned quan-
dr\2 tization condition W(m)=27n] is equivalent for this class
r . _ . . . _
ds?=g,, _) (—dr?+do?). (2.4) of solutions toJ=n. This s'hould' be mterpr'eteq as a consis
do tency check of the semiclassical quantization being per-
formed.
B. Energy and angular momentum - T(hze4i)nvariant string length at a fixed tintefollows from
g. (2.4:

It is well known that the definition of a stress-energy ten-
sor for an extended object in general relativity is no mean ;
task[11]. In the case at hand, however, there exists a favored 5= J "dr\g,,. (2.6
time coordinate, for which a Killing vector exists/@t). r
This allows us to define clearly what is meant as engtdy:

min

E=ala’. _ - lll. EXPLICIT SOLUTIONS AND THEIR ANALYSIS
Similarly, the existence of the Killing vectai/ d¢, asso- ) ) )
ciated with the rotational symmetry, allows for the definition A. Minkowski spacetime

of an angular momentum about the axis. In particular, this is  |n order to improve our understanding of the physical
performed as follows: the functiog(o,7) appears in the meaning of the solutions being examined, let us take the easy
string Lagrangian only through its derivatives, whence theminkowski case, for whichgy=—1, g,,=1, =0, and
conserved world-sheet current is obtained by Noether’s thecg(w: r2. Equation(2.3) then becomes

rem
2

+N\%r?—-1=0.

: |

T

. . . . ) . The solution is immediate:
The integration of this current provides us with the string
2
2 +(2mIT)g o T Y
"max 9 T
JEJ:Lda=——— T

angular momentund,
ma' S -V(r) where 0<o=<T/2. In Cartesian coordinates,
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T 27T 27o r+=T/27 andr,= 1/J/x. The second class of solutions lead
X=57 08 7 /¢ ) to infinite reduced action. As to the first class, computations
yield
T 27T 270 2 2
- i - 8re. re r rr
Y 2775'”( T COS( T ) Su(M=-— E(—)+<—2—1)K<— ,
a g re M
It is easy to see that this is a string of lengthr rotating 5
around its middle point which coincides with the origin of W_SFK 't E 't
coordinates. o r. \r ]
The action, reduced action, mass, and angular momentum
are, therefore, Ar r
T T
e 211y, as
TZ T 2 T M
Sy(T)=—W=-— , m=—, J= -, (3.1
o(T) 27a’ Ta a2 BV forthe case<r,, and
from which the relation 8r rr [r,
Su(T)=——5"E| ~|,
o r-|-
a'm?=4J (3.2
follows. It should be noted that this relation differs from the = 8r",rT K(r_") — E(L") '
standard one by a factor 4. This is due to the different nor- @ rr rr
malization of the string tension parametet.
ar,. (1,
= K| — .
B. Static Robertson-Walker spacetimes M= e’ (rT)’ 3.6

As a first curved spacetime, we examine the stati

Sor the case>r, .
Robertson-Walker universe, with the line element T

We see that the string angular momentdmW/(2) is

dr? not proportional tom? yielding a nonlinear Regge trajectory.
— _dt2+ T r2d 2. _ In the k—0%, we have
ds?=—dt T2 tr do (3.3
: <0 T2 372
If k<0, the potential = gt
w 2m7a’ ( 1 322" '

V=[(27r/T)2=1](1— «r?)

k=0 T T2
is smaller than zero if &r<T/2m, as in Minkowski space- m = W( I+t | 3.7
time. On the other hand, were we to take 0, the number
of possible types of solutions increases. Consider firshnd, consequently,
k<0. Let V=T\/—_K/27T, andu= vINVA+ 1.
Our computations result in Xm0 ,
_ nNa
a’'m® = 4n 1+TK+"-).
4T 1
Sa(T) ma' N — K,LL[K(M) E(w)], In the k— 07 limit we find a linear Regge trajectory, recov-
ering the previous results for Minkowski spacetime.
4T [1 ui-1 , ,
W= ———— —E(u)+ K(w)|, C. Cosmological and black hole spacetimes
ma' N — kLM

Let us consider spacetimes with the generic form
grr =1/a(r)=—1/gy, 9i4=0. The potentiaV is then given
M= 4 K(u) (3.4) by V(r)=a(r)[k2g¢¢—a(ru. Since the “motion” ofr in

B o _K'“ K ' o can only take place whevi(r)<0, we have to determine
the zeroes ofa(r) and of)\ng,—a(r), together with the

whereK andE are complete elliptic integrals of the first and @Symptotics in the different physical regions.
second kind respectively, with the elliptic modulus as their
argument.

Let us now pass to th&>0 situation. There are two Included within this set of metrics we find the de Sitter
classes of solutions: those that extend from 0 tometric, for whicha(r)=1—H?%? andg,,=r?. The radius
min(r;,r,), and those from max¢,r,) to infinity, where  of the horizonry, is given byr=1/H. Thus,

1. de Sitter spacetime
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V(r)=(1-H%?)

H2 27\ ?
?

r2—1].

The zeroes of the potentidl in this case areay and

ry/ 1+ (27 HT)Z.
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4 1
SM<=Mpya— 1.343 .. H—a,

ma'H

[Notice that 44=1.2738 .. .].
We find from Eq.(2.6) for the invariant string length

There are two types of planetoid strings: those of infinite
length that are to be found outside the horizon, and those 2 1

completely within the horizon, that are of finite length. Let
The maximum radius is

Fmax= T/ V1+(MH)? andr,,=0. This is a string rotating

us concentrate on the latter.

around its middle point located preciselyrat 0.

S= —arcsin——.
H 27\ 2
1+ )

HT

The integrals to be performed are complete elliptic inte-s takes its maximum value/H for the lightest states in the

grals, with elliptical modulus

k=HT/VH?T?+ 472,

Let k' = \1—kZ. Our computations result in the following:

8
oz [E(K) =K' 2K (K)],

SC|(T): - kra!HZ

8
W=2xmJ= Wk’[K(k)_E(k)]v

4
It is obvious here thal is not proportional tan?.
For small HT, the quantization condition reads

T?2~4x?na’, as in flat spacetime, and the mass of the string

is, in this casgcompare with 9]),

a'm?=4n—7H?a'n’+- - -. (3.9

It follows from Egs.(3.8) thatk is a two-valued function
of W and hence oh. Therefore, there arvo values ofm
for eachn. This is easy to see from the behavior\f for
k—0 and fork— 1. W vanishes in both cases:

k—1

4
— ’ _ 13 ’
W —a,sz In—k, 1]+0(k"°Ink"),

<0 2m , 4
W = Wk +0(k").

There is a maximum on the valuascan take, given by

1
n=s nmaXEO.Glem. (31@

This n,5, correspond to the maximal planetoid mass.
The first branch yields masses in the range

1
0= M<=My o= 1.343 .. .H—a,,

and the second branch in the range

second branck—1,m—4/(wa'H). The shorter planetoids
s=T/m,k—0 correspond to the lightest states in the first
branch.

With respect to the infinite length planetoid solutidtisat
is to say, those restricted to be outside the honiztire cor-
responding action, reduced action, and mass are all infinite.

2. Anti—de Sitter spacetime

In this casea(r)=1+H?r? andg,s=r2. Only for a re-
stricted set of values af will there be a change of sign in
V, since only ifn2>H? will there be a zero o¥/(r), namely
at 1A/A?—H?Z. Therefore, lower values of correspond to
strings of infinite length, whereas those strings for which
A2>H?2 will be of finite length. They will rotate around its
middle point located precisely ar=0 with period
T,0<T<27w/H.

The results for this spacetime are as follows:

8
Su(T)= - gz [K (K ~E(K)],

8
W= W[E(k)—(k')zK(k)],

4 k

M= THa’ (k)2

E(k), (3.1

wherek=HT/(27)=H/N\.

In this caseW is a monotonous function of, and so is
m, so the doubling of mass eigenvalues found in de Sitter
spacetime is not present here.

For the low-lying mass states we find

a'm?=4n—H?a'n’+ . - -.

There is no upper bound in the mass spectrum for anti—de
Sitter spacetime. For large masses we find

m=2nH, n>1.

The heavy states spacing is given Hywhereas the small
mass spacing is determined by') "2
3. Schwarzschild black hole

For the Schwarzschild black hola(r)=1—-2M/r and
g¢¢=r2, where M stands for the Schwarzschild radius.
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There will be positive zeroes &f other than that atl@l if
and only if 16m°M?/T?2<4/27. Of the two additional zeroes
in this case, one will be placed between 1 and 1.5, and the
other will be larger than 1.5 in units of\2. In the extreme
case 16r’M?/T%=4/27 the two will coalesce ontp,=1.5, 500
which is the minimal(unstablé radius for a circular null
geodesic[12]. As we turnT to larger values, one of the
zeroes runs to 1, and the other out to infinity, these extreme
values being reached fori2 T=0, thus corresponding to an
infinite static string from the horizon to infinityl3]. 200

Let us choose the following parametrization for and
consequently for the roots of V, with r;=2Mx; :

3
400 F

2 4 6 8 10 12 14
m

_67-rM \/5 B 3cos
~ cog3s)’ X1= cog3s)’ FIG. 1. The reduced actiow=27J (whereJ is the angular
momentum in units of MM?/a’ as a function of the string mass
3 m in Schwarzschild spacetime.
Xy= oz (COS— \/3sirs),
cog3s) We use, as before, the notation of Reif4].
3 An important point is that there is a minimum value for
. the reduced action and for the mass, corresponding to
= + .
X387 2c043s) (coss+\3sirs), (312 Tomin=67/3M, as follows:
whence (=2Mx) 367 M2 2.3M
min— T Mpin= - (3.19
o
~ 1 4 cod(3s)x®
V(r)y= —(x—1)| ——%———x+1
X 27 The classical action for this configuration vanishes.
2 The periodT has no upper bound. For largewe find
4 cos(3s) . -
= oz (XTDXTXg) (X—X) (X—Xy). very long strings with
3.1 1 1
o W eam M aa
The parametes is a function of T/M as defined by Eq. Toe O Tooe T
(3.12. s runs from 0 tow/6, and the roots are ordered as
X1<1<x,<xz. The planetoid string extends from Too T T
r=2mx, to r =2mxg. Its invariant length follows from Eq. s = Z__M Iog—M+const
o a

(2.9):

and the mass spectrum
s=2M[f(x3)— f(x)], P

o 1/3
where (arM)lISmn: ( 9 ) n2/3
A ’
f(x)=vyx(x—1)—ArgThy1—1/.
The Regge trajectorW(m) is well behaved, and we portray

The classical, reduced action, and mass are then integrgfsi, Fig. 1.
expressible in terms of elliptic integrals of modulus:

4. Schwarzschild black hole in de Sitter spacetime

=w_ We shall now find competing effects due to the presence

(X3=1)(Xa=Xq) of one cosmological horizon and one black hole horizon. The
functiona(r) equals £ 2M/r —H?r2, andg,,=r?. We are
presented with three cases.

1/(2M?)> (472 T?+H?) (and, a fortiori,
1/(2M?)>H?); the positive roots of the potential are the
T Yo cosmological horizon, the black hole horizon, and two oth-
(Xo—1) ; .
ers, which we examine later.

o’ [(Xa—1)(xp—x7) (472 T?+H?)>1/(2M?)>H?2, when only strings inside
! the black hole horizon and outside the cosmological horizon

Xg3— X5 (Xg—X)(1—Xy) are present within ouAnsatz
: . (3149 H2>1/(27M2), which entails that there is no horizon and
X3—1 (Xz—1)(X2—Xq)

3 no strings of the form of ouAnsatz

k2

The explicit expressions are not by themselves very illumi
nating, since they involve combinations of elliptic integrals
of different kinds; as a simple exponent, we have

m:

XII
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- - - ~ branches that had previously appeared for the rotating string
30 ] in de Sitter spacetime are clearly seen. Surprisingly enough,

there is no minimum value folV andm greater than zero in
25 ] one of the branches, although it does appear in the second

one. This is due to the numerical integration, which is very
inexact in the limitT— T,,i,(H) =67M /3/sin(3,), and the

20

st fact is that therds a minimum value folW, independent of
H and given byW,,,=367M?/a’, as can be found by com-
op puting the adequate lim#,— 0; the massn also has a mini-

mum value, but this time H dependent: my;,
=23M sin(3s;)/a’. Notice that we recover the results pre-
of ) ) ) g viously obtained for Schwarzschild spacetime.

IV. CONCLUSIONS

FIG. 2. The reduced actioww=27J (whereJ is the angular
momentum as a function of the string massin Schwarzschild—de
Sitter spacetime.

We have seen that the study of the planetoid solutions to
the classical equations of motion of a string provides us with
a variety of effects due to the structure of the target space-

We shall now study the first of these cases, when there art('ame In particular there are two main effects that we have

four positive roots of the potenti&, using a parametrization uncovered. . .
' (1) The existence of anaximumvalue for the angular
analogous to the one before. Let

momentum of(equatorially moving strings in spacetimes

with particle horizongde Sitter and Schwarzschild—de Sitter
c0g3s;)

x=r/(2M), H= in particulay, which reflects itself on the existence of two
' \/_ ' branches in the Regge plot. This means that the number of
3V3M AN - . )
bound states is finite in the semiclassical quantizatiBut
this finiteness must be exact, beyond the semiclassical ap-
B 61/37M . 3cogs;) proximation)
\/cos’-(3sz)—cos’-(3sl)’ neg cog3s,)’ (2) The presence of a minimum value for the angular

momentum in the case of a black hole event horizon, as in
Schwarzschild and Schwarzschild—de Sitter spacetimes.
. [cog(s;)— \3sin(s;)] ~ It is not difficult to understand this phenomenon in the
ST 2c0g3s,) 1 v light of elementary quantum mechanics. In spacetimes with
particle horizons it is necessary for the preservation of cau-
3 sality that if a string extends beyond the horizon that it be
xH:m[cos(sl)Jr 3sins;)], infinite. The length is quantized in the same manner that the
angular momentum is, as can be read from E&95); it is
thus the case that there are a finite number of possible quan-
_ 3cossy) 3 tum planetoid strings.
Xon= — cog3s,)’ X2= 2 cog3s,) [COE(SZ) 3sin(s;)] As to the minimum value, given that if a string does pen-
etrate into dSchwarzschilfievent horizon and is to maintain
its linearity it must extend to infinity, we see that the “cut-
[cogsy)+ \/§sir(sz)], (3.16 ting out” of part of the spacetimes is what forces a minimum
value even for classical valugguantum mechanically that
was only to be expected
String solutions that generalize noncircular point particle
trajectories should also exist in the spacetimes considered
here. However, the and = dependence probably cannot be
separated as we did in the planetoid strings presented in this
paper.
X (X=Xnn) (X=X2) (X = X3). (3.1 We want to stress that the Regge trajectories are no longer
linear (even for weak curvatuyen the spacetimes considered
here. We thus infer from this classical test string calculations
that the fundamental string spectrum will get strongly modi-
fied in these nontrivial gravitational backgrounds.

_ 3
X3~ 2 cog3s,)

with 0<s,=<s;<7/6. It follows that

V(r)=- 16C°§(37’Z&Z°§(352)\x Xneg) (X—Xg) (X—Xp)

Taker;=2Myx; . The four positive roots are ordered as fol-
lows: rs<r,=<rz=<ry. There are thus strings of the form of
our Ansatzextending fromr, to r5, and outside the cosmo-
logical horizon and inside the black hole horizon. The strings
outside the cosmological horizon are of infinite length, mass,
and action. The really relevant ones for our purposes are
those extending from; to r3, in complete analogy with the I.L.E. has to thank the LPTHE for their hospitality on
results for Schwarzschild’s black hole. We portray a numeri-several occasions. We thank the support from the European
cal computation of the classical Regge trajecté¥ym) in  Commission through the HCM program ERBCHRXT
Fig. 2 for the cases;= /12, that is,H=31/6M. The two  940488.

ACKNOWLEDGMENTS



54 PLANETOID STRING SOLUTIONS IN 3-1... 7519

[1] H. J. de Vega and N. ®ahez, Phys. Lett. B97, 320(1987%; tum Grav.7, 597 (1990.
H. J. de Vega and N. ®ahez, Nucl. Phys3309, 552(1988); [6] H. J. de Vega and I. L. Egusquiza, Phys. Rev.4Q 763
B309, 577(1988. (1994.

[2] H. J. de Vega and N. ®ahez, inProceedings of the Erice  [7] A. L. Larsen and N. Sachez, Phys. Rev. B0, 7493(1994.
Schools: “String Quantum Gravity and Physics at the Planck [8] A. L. Larsen and N. Sachez, Phys. Rev. 51, 6929(1995.
Energy Scalg’ 1992, edited by N. Sachez(World Scientific, [9] H. J. de Vega, A. L. Larsen, and N 1&hez, Phys. Rev. B1,
Singapore, 1993 in Third D. Chalonge Schopll994 edited 6917(1995.
by N. Saichez and Z. ZichichiKluwer, Dordrecht, 1995 [10] A. L. Larsen and N. Szchez, Phys. Rev. 54, 2801(1996.

[3] H. J. de Vega and N. ®ahez, in Proceedings of the D. Cha- [11] W. G. Dixon, Proc. R. Soc. London, Ser.314, 499(1970.
longe School, 1995, edited by N. /@&hez and A. Zichichi [12] S. Chandrasekhafihe Mathematical Theory of Black Holes

(Kluwer, Dordrecht, 1996 (Oxford University Press, New York, 1982

[4] F. Combes, H. J. de Vega, A. V. Mikhailov, and N.n8hez, [13] V. P. Frolov, V. D. Skarzhinsky, A. I. Zelnikov, and O. Hei-
Phys. Rev. 60, 2754(1994; I. Krichever, Funct. Anal. Appl. nrich, Phys. Lett. B224, 225(1989.
28, 21 (1994. [14] 1. S. Gradshteyn and I. M. RyzhiK,able of Integrals, Series,

[5] P. S. Letelier, P. R. Holvorcem, and G. Grebot, Class. Quan-  and ProductgAcademic, London, 1990



