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Planetoid string solutions in 311 axisymmetric spacetimes
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The string propagation equations in axisymmetric spacetimes are exactly solved by quadratures for a plan-
etoid ansatz. This is a straight nonoscillating string, radially disposed which rotates uniformly around the
symmetry axis of the spacetime. In Schwarzschild black holes, the string stays outside the horizon pointing
towards the origin. In de Sitter spacetime the planetoid rotates around its center. We quantize semiclassically
these solutions and analyze the spin/~mass2) ~Regge! relation for the planetoids, which turns out to be non-
linear. @S0556-2821~96!05824-9#

PACS number~s!: 11.25.Mj, 04.70.Bw, 11.27.1d
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I. INTRODUCTION AND MOTIVATIONS

The systematic investigation of strings in curved spac
times started in@1# has uncovered a variety of new physic
phenomena~see@2,3# for a general review!. These results are
relevant both for fundamental~quantum! strings and for cos-
mic strings, which behave in an essentially classical way

The study of classical and semiclassical strings in curv
backgrounds will provide and is indeed providing us with
better comprehension of what a consistent string theory
gravity theory entail. In this context we place the prese
paper, which continues the line of research set by@1#.

Among the heretofore existing analysis of the motion
classical strings in gravitational backgrounds a special pl
is to be granted to exact solutions, usually obtained by me
of separableAnsätze~nonseparable exact solutions were sy
tematically constructed for de Sitter spacetime@4#!. Such are
the circular stringAnsatz@5,6#, which for stationary axially
symmetric spacetimes reduces the nonlinear equations
string motion to an equivalent one-dimensional dynamic
system@7#, or the stationary stringAnsatz@8#.

In this paper we examine a differentAnsatz, which we
have called the planetoidAnsatz, in stationary axisymmetric
311 spacetime backgrounds. The planetoid solutions
straight non-oscillating string solutions that rotate uniform
around the symmetry axis of the spacetime. In Schwarzsc
black holes, they are permanently pointing towardsr50
while they rotate outside the horizon. In de Sitter spaceti
the planetoid rotates around its center.

We call ourAnsatzplanetoid since it generalizes to string
the bounded circular orbits of point particles in such spa
times. In the case of the Schwarzschild geometry the pl
etoid string solutions presented here are generalization of
circular orbits of planets.

We will show how our planetoidAnsatzproduces either
orbiting strings with bounded world-sheet and length
strings of unbounded length. The main competing physi
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forces in the context of thisAnsatzare the attraction of grav-
ity, the centrifugal force, and the string tension. The combi
nation of these three causes in different proportions produc
different effects, as we will now see.

It should be noted that the effects mentioned take plac
even when the gravitational field acting on the string is no
strong. They are due to the nonlocal character of the string

We quantize semiclassically the planetoid string solution
using the WKB method adapted to periodic string solution
@9#. We obtain in this way their masses as a function of th
angular momentum. Such relations are nonlinear and can
considered as a~generalized! Regge trajectory@See Figs. 1
and 2#.

II. EQUATORIAL PLANETOID ANSATZ

A. The Ansatzand the string equations of motion

We consider our classical strings propagating in
(311)-dimensional stationary axisymmetric spacetime. Fo
simplicity, we restrict in this paper to strings propagating in
the equatorial planez50. We can thus restrict ourselves to
the 211 metric with line element of the form

ds25gtt~r !dt21grr ~r !dr212gtf~r !dt df1gff~r !df2.
~2.1!

Let t and s be the timelike and spacelike world-sheet
coordinate respectively in the conformal gauge. Under th
Ansatz

t5t01at, f5f01bt, r5r ~s!, ~2.2!

the equations of motion for a string in this background ar
given by the following one-dimensional equivalent system:

S drds D 21grr @a2gtt12abgtf1b2gff#5S drds D 21V~r !50 .

~2.3!
7513 © 1996 The American Physical Society
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The function r (s) will then be given by the zero energ
motion in s ‘‘time’’ of r under the potentia
V(r )5a2grr @gtt12lgtf1l2gff#, with l5b/a.

Quite obviously, the movement of the string will be pe
odic. The physical periodT in coordinate timet relates to
l through

T5
2p

l
.

It will prove useful to introduce the ‘‘physical’’ potential

Ṽ~r !5V~r !/a25grr Fgtt1 4p

T
gtf1

4p2

T2
gffG ,

since it only depends on the physical parameterT.
The boundary conditions for open strings, name

]Xm /]s50 at the ends of the string, are naturally fulfille
by thisAnsatz.

Following @10#, we see that this is the onlyAnsatzthat
separates variables, lets strings be dynamical, and res
the open string boundary conditions, whenr5r (s) is cho-
sen.

Note also that thisAnsatzdiffers from the circular string
Ansatz@i.e., t5t(t), f5f01ns, r5r (t)# in the depen-
dence ofr in the spacelike world-sheet~conformal! coordi-
nate and in the form of the equivalent one-dimensional
ergy equation, which for this later case rea
ṙ 21grr @m2gtt1n2gff#, where the dot stands for the deriv
tive with respect tot.

The invariant size of the planetoid string is given by t
substitution of theAnsatzin the line element:

ds25grr S drds D 2~2dt21ds2!. ~2.4!

B. Energy and angular momentum

It is well known that the definition of a stress-energy te
sor for an extended object in general relativity is no me
task@11#. In the case at hand, however, there exists a favo
time coordinate, for which a Killing vector exists (]/]t).
This allows us to define clearly what is meant as energy@11#:
E5a/a8.

Similarly, the existence of the Killing vector]/]f, asso-
ciated with the rotational symmetry, allows for the definiti
of an angular momentum about the axis. In particular, thi
performed as follows: the functionf(s,t) appears in the
string Lagrangian only through its derivatives, whence
conserved world-sheet current is obtained by Noether’s th
rem

Jm5
2

pa8
@gtf]mt1gff]mf#.

The integration of this current provides us with the str
angular momentumJ,

J[E Jtds5
2

pa8
E
rmin

rmax
dr
gtf1~2p/T!gff

A2Ṽ~r !
y
l

ri-

ly,
d

pects

en-
ds
a-

he

n-
an
red

on
s is

the
eo-

ing

where we used Eq.~2.3! and rmin and rmax denote the mini-
mum and maximum radius reached by the string, resp
tively.

C. General expressions and quantization condition

We will collect here the expressions for the physic
string magnitudes: angular momentumJ, classical action for
solutionsScl , massm, and reduced actionW(m). The mass
will be defined asm:52dScl /dT, with T the period. The
reduced action @9# is thus obtained as W(m)
5mT(m)1Scl@T(m)#. The quantization condition will read
W(m)52pn ~in units with\51).

For the case at hand, closed expressions in terms
quadratures can be obtained for all these quantities, as

Scl~T!52
2T

pa8
E
rmin

rmax
drgrrA2Ṽ~r !,

W5
4

Ta8
E
rmin

rmax
dr

Tgtf12pgff

A2Ṽ~r !
,

m5
W2Scl
T

, J5
W

2p
. ~2.5!

As is immediately obvious from these expressions, it
not necessary to have the solutionr (s) in a closed form for
the quantities indicated to be evaluated, and in what follo
we will not use the explicit expressions forr5r (s), which,
after all, is dependent on the parametrization of the wo
sheet. It should be noted that the previously mentioned qu
tization condition@W(m)52pn# is equivalent for this class
of solutions toJ5n. This should be interpreted as a consi
tency check of the semiclassical quantization being p
formed.

The invariant string length at a fixed timet follows from
Eq. ~2.4!:

s5E
rmin

rmax
drAgrr . ~2.6!

III. EXPLICIT SOLUTIONS AND THEIR ANALYSIS

A. Minkowski spacetime

In order to improve our understanding of the physic
meaning of the solutions being examined, let us take the e
Minkowski case, for whichgtt521, grr51, gtf50, and
gff5r 2. Equation~2.3! then becomes

S drds D 21l2r 22150 .

The solution is immediate:

r5
T

2p UcosS 2p

T
s D U,

where 0<s<T/2. In Cartesian coordinates,
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x5
T

2p
cosS 2pt

T D cosS 2ps

T D ,
y5

T

2p
sinS 2pt

T D cosS 2ps

T D .
It is easy to see that this is a string of lengthT/p rotating
around its middle point which coincides with the origin o
coordinates.

The action, reduced action, mass, and angular momen
are, therefore,

Scl~T!52W52
T2

2pa8
, m5

T

pa8
, J5

T2

4p2a8
, ~3.1!

from which the relation

a8m254J ~3.2!

follows. It should be noted that this relation differs from th
standard one by a factor 4. This is due to the different n
malization of the string tension parametera8.

B. Static Robertson-Walker spacetimes

As a first curved spacetime, we examine the sta
Robertson-Walker universe, with the line element

ds252dt21
dr2

12kr 2
1r 2df2. ~3.3!

If k,0, the potential

Ṽ5 @~2pr /T!221#~12kr 2!

is smaller than zero if 0,r,T/2p, as in Minkowski space-
time. On the other hand, were we to takek.0, the number
of possible types of solutions increases. Consider fi
k,0. Let n5TA2k/2p, andm5n/An211.

Our computations result in

Scl~T!52
4T

pa8A2k

1

m
@K~m!2E~m!#,

W5
4T

pa8A2k
F 1
m
E~m!1

m221

m
K~m!G ,

m5
4

pa8A2k
mK~m!, ~3.4!

whereK andE are complete elliptic integrals of the first an
second kind respectively, with the elliptic modulus as th
argument.

Let us now pass to thek.0 situation. There are two
classes of solutions: those that extend from 0
min(r T ,r k), and those from max(r T ,r k) to infinity, where
f

um

e
r-

tic

rst

ir

to

r T5T/2p and r k51/Ak. The second class of solutions lead
to infinite reduced action. As to the first class, computations
yield

Scl~T!52
8r k

2

a8 FES r Tr k
D 1S r T2r k

2 21DKS r Tr k
D G ,

W5
8r k

2

a8 FKS r Tr k
D2ES r Tr k

D G ,
m5

4r T
pa8

KS r Tr k
D , ~3.5!

for the caser T,r k , and

Scl~T!52
8r kr T

a8
ES r k

r T
D ,

W5
8r kr T

a8 FKS r k

r T
D2ES r k

r T
D G ,

m5
4r k

pa8
KS r k

r T
D , ~3.6!

for the caser T.r k .
We see that the string angular momentumJ5W/(2p) is

not proportional tom2 yielding a nonlinear Regge trajectory.
In thek→01, we have

W 5
k→0 T2

2pa8 S 11
3T2

32p2k1••• D ,
m 5

k→0 T

pa8 S 11
T2

16p2k1••• D , ~3.7!

and, consequently,

a8m2 5
k→0

4nS 11
na8

8
k1••• D .

In thek→01 limit we find a linear Regge trajectory, recov-
ering the previous results for Minkowski spacetime.

C. Cosmological and black hole spacetimes

Let us consider spacetimes with the generic form
grr51/a(r )521/gtt , gtf50. The potentialṼ is then given
by Ṽ(r )5a(r )@l2gff2a(r )#. Since the ‘‘motion’’ of r in
s can only take place whenṼ(r ),0, we have to determine
the zeroes ofa(r ) and of l2gff2a(r ), together with the
asymptotics in the different physical regions.

1. de Sitter spacetime

Included within this set of metrics we find the de Sitter
metric, for whicha(r )512H2r 2 andgff5r 2. The radius
of the horizon,r H , is given byr H51/H. Thus,
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Ṽ~r !5~12H2r 2!H FH21S 2p

T D 2G r 221J .
The zeroes of the potentialV in this case arer H and

r H /A11(2p/HT)2.
There are two types of planetoid strings: those of infini

length that are to be found outside the horizon, and tho
completely within the horizon, that are of finite length. Le
us concentrate on the latter. The maximum radius
rmax5r H /A11(l/H)2 and rmin50. This is a string rotating
around its middle point located precisely atr50.

The integrals to be performed are complete elliptic int
grals, with elliptical modulus

k5HT/AH2T214p2.

Let k85A12k2. Our computations result in the following:

Scl~T!52
8

k8a8H2 @E~k!2k82K~k!#,

W52pJ5
8

a8H2 k8@K~k!2E~k!#,

m5
4

pHa8
kE~k!. ~3.8!

It is obvious here thatJ is not proportional tom2.
For small HT, the quantization condition reads

T2;4p2na8, as in flat spacetime, and the mass of the stri
is, in this case~compare with@9#!,

a8m2.4n27H2a8n21•••. ~3.9!

It follows from Eqs.~3.8! that k is a two-valued function
of W and hence ofn. Therefore, there aretwo values ofm
for eachn. This is easy to see from the behavior ofW for
k→0 and fork→1.W vanishes in both cases:

W 5
k→1 8

a8H2 k8S ln 4k8 21D1O~k83lnk8!,

W 5
k→0 2p

a8H2k
21O~k4!.

There is a maximum on the valuesn can take, given by

n<nmax[0.616
1

a8H2 . ~3.10!

This nmax correspond to the maximal planetoid mass.
The first branch yields masses in the range

0<m<mmax51.343 . . .
1

Ha8
,

and the second branch in the range
te
se
t
is

e-

ng

4

pa8H
<m<mmax51.343 . . .

1

Ha8
.

@Notice that 4/p51.2733 . . . #.
We find from Eq.~2.6! for the invariant string length

s5
2

H
arcsin

1

A11S 2p

HT
D 2
.

s takes its maximum valuep/H for the lightest states in the
second branchk→1,m→4/(pa8H). The shorter planetoids
s.T/p,k→0 correspond to the lightest states in the first
branch.

With respect to the infinite length planetoid solutions~that
is to say, those restricted to be outside the horizon!, the cor-
responding action, reduced action, and mass are all infinite.

2. Anti–de Sitter spacetime

In this case,a(r )511H2r 2 andgff5r 2. Only for a re-
stricted set of values ofl will there be a change of sign in
V, since only ifl2.H2 will there be a zero ofV(r ), namely
at 1/Al22H2. Therefore, lower values ofl correspond to
strings of infinite length, whereas those strings for which
l2.H2 will be of finite length. They will rotate around its
middle point located precisely atr50 with period
T,0,T,2p/H.

The results for this spacetime are as follows:

Scl~T!52
8

H2a8
@K~k!2E~k!#,

W5
8

~Hk8!2a8
@E~k!2~k8!2K~k!#,

m5
4

pHa8

k

~k8!2
E~k!, ~3.11!

wherek5HT/(2p)5H/l.
In this caseW is a monotonous function ofT, and so is

m, so the doubling of mass eigenvalues found in de Sitter
spacetime is not present here.

For the low-lying mass states we find

a8m2.4n2H2a8n21•••.

There is no upper bound in the mass spectrum for anti–de
Sitter spacetime. For large masses we find

m.2nH, n@1.

The heavy states spacing is given byH whereas the small
mass spacing is determined by (a8)21/2.

3. Schwarzschild black hole

For the Schwarzschild black holea(r )5122M /r and
gff5r 2, where 2M stands for the Schwarzschild radius.



54 7517PLANETOID STRING SOLUTIONS IN 311 . . .
There will be positive zeroes ofV other than that at 2M if
and only if 16p2M2/T2<4/27. Of the two additional zeroes
in this case, one will be placed between 1 and 1.5, and
other will be larger than 1.5 in units of 2M . In the extreme
case 16p2M2/T254/27 the two will coalesce ontor 051.5,
which is the minimal~unstable! radius for a circular null
geodesic@12#. As we turnT to larger values, one of the
zeroes runs to 1, and the other out to infinity, these extre
values being reached for 2p/T50, thus corresponding to an
infinite static string from the horizon to infinity@13#.

Let us choose the following parametrization forT, and
consequently for the rootsr i of V, with r i52Mxi :

T5
6pMA3
cos~3s!

, x152
3coss

cos~3s!
,

x25
3

2 cos~3s!
~coss2A3sins!,

x35
3

2cos~3s!
~coss1A3sins!, ~3.12!

whence (r52Mx)

Ṽ~r !5
1

x2
~x21!S 4 cos2~3s!x3

27
2x11D

5
4 cos2~3s!

27x2
~x21!~x2x3!~x2x2!~x2x1!.

~3.13!

The parameters is a function ofT/M as defined by Eq.
~3.12!. s runs from 0 top/6, and the roots are ordered a
x1,1,x2,x3. The planetoid string extends from
r52mx2 to r52mx3. Its invariant length follows from Eq.
~2.4!:

s52M @ f ~x3!2 f ~x2!#,

where

f ~x!5Ax~x21!2ArgThA121/x.

The classical, reduced action, and mass are then integ
expressible in terms of elliptic integrals of modulus:

k25
~x32x2!~12x1!

~x321!~x22x1!
.

The explicit expressions are not by themselves very illum
nating, since they involve combinations of elliptic integra
of different kinds; as a simple exponent, we have

m5
T

p2a8

2~x221!

A~x321!~x22x1!

3PS x32x2

x321
,A~x32x2!~12x1!

~x321!~x22x1!
D . ~3.14!
the

me

s

rals

i-
ls

We use, as before, the notation of Ref.@14#.
An important point is that there is a minimum value for

the reduced action and for the mass, corresponding to
Tmin56pA3M , as follows:

Wmin5
36pM2

a8
, mmin5

2A3M
a8

. ~3.15!

The classical action for this configuration vanishes.
The periodT has no upper bound. For largeT we find

very long strings with

W ;
T→`

1

6p3a8M
T3, m ;

T→`

1

4p3a8M
T2,

s 5
T→` T

2p
2M log

T

pM
1const

and the mass spectrum

~a8M !1/3m 5
n→`S 9

4p D 1/3n2/3.
The Regge trajectoryW(m) is well behaved, and we portray
it in Fig. 1.

4. Schwarzschild black hole in de Sitter spacetime

We shall now find competing effects due to the presence
of one cosmological horizon and one black hole horizon. The
functiona(r ) equals 122M /r2H2r 2, andgff5r 2. We are
presented with three cases.

1/(27M2).(4p2/T21H2) ~and, a fortiori,
1/(27M2).H2); the positive roots of the potential are the
cosmological horizon, the black hole horizon, and two oth-
ers, which we examine later.

(4p2/T21H2).1/(27M2).H2, when only strings inside
the black hole horizon and outside the cosmological horizon
are present within ourAnsatz.

H2.1/(27M2), which entails that there is no horizon and
no strings of the form of ourAnsatz.

FIG. 1. The reduced actionW52pJ ~whereJ is the angular
momentum! in units of pM2/a8 as a function of the string mass
m in Schwarzschild spacetime.
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We shall now study the first of these cases, when there
four positive roots of the potentialV, using a parametrizatio
analogous to the one before. Let

x5r /~2M !, H5
cos~3s1!

3A3M
,

T5
6A3pM

Acos2~3s2!2cos2~3s1!
, xneg52

3cos~s1!

cos~3s1!
,

xS5
3

2cos~3s1!
@cos~s1!2A3sin~s1!#,

xH5
3

2 cos~3s1!
@cos~s1!1A3sin~s1!#,

xnn52
3cos~s2!

cos~3s2!
, x25

3

2 cos~3s2!
@cos~s2!2A3sin~s2!#,

x35
3

2 cos~3s2!
@cos~s2!1A3sin~s2!#, ~3.16!

with 0<s2<s1<p/6. It follows that

Ṽ~r !52
16cos2~3s1!cos

2~3s2!

729x2
~x2xneg!~x2xS!~x2xH!

3~x2xnn!~x2x2!~x2x3!. ~3.17!

Take r i52Mxi . The four positive roots are ordered as fo
lows: r S<r 2<r 3<r H . There are thus strings of the form
our Ansatzextending fromr 2 to r 3, and outside the cosmo
logical horizon and inside the black hole horizon. The strin
outside the cosmological horizon are of infinite length, ma
and action. The really relevant ones for our purposes
those extending fromr 2 to r 3, in complete analogy with the
results for Schwarzschild’s black hole. We portray a num
cal computation of the classical Regge trajectoryW(m) in
Fig. 2 for the cases15p/12, that is,H5 1

3A6M . The two

FIG. 2. The reduced actionW52pJ ~whereJ is the angular
momentum! as a function of the string massm in Schwarzschild–de
Sitter spacetime.
are
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of
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gs
ss,
are

eri-

branches that had previously appeared for the rotating string
in de Sitter spacetime are clearly seen. Surprisingly enough,
there is no minimum value forW andm greater than zero in
one of the branches, although it does appear in the second
one. This is due to the numerical integration, which is very
inexact in the limitT→Tmin(H)56pMA3/sin(3s1), and the
fact is that thereis a minimum value forW, independent of
H and given byWmin536pM2/a8, as can be found by com-
puting the adequate limits2→0; the massm also has a mini-
mum value, but this time H dependent: mmin

52A3Msin(3s1)/a8. Notice that we recover the results pre-
viously obtained for Schwarzschild spacetime.

IV. CONCLUSIONS

We have seen that the study of the planetoid solutions to
the classical equations of motion of a string provides us with
a variety of effects due to the structure of the target space-
time. In particular there are two main effects that we have
uncovered.

~1! The existence of amaximumvalue for the angular
momentum of~equatorially! moving strings in spacetimes
with particle horizons~de Sitter and Schwarzschild–de Sitter
in particular!, which reflects itself on the existence of two
branches in the Regge plot. This means that the number of
bound states is finite in the semiclassical quantization.~But
this finiteness must be exact, beyond the semiclassical ap-
proximation.!

~2! The presence of a minimum value for the angular
momentum in the case of a black hole event horizon, as in
Schwarzschild and Schwarzschild–de Sitter spacetimes.

It is not difficult to understand this phenomenon in the
light of elementary quantum mechanics. In spacetimes with
particle horizons it is necessary for the preservation of cau-
sality that if a string extends beyond the horizon that it be
infinite. The length is quantized in the same manner that the
angular momentum is, as can be read from Eq.~2.5!; it is
thus the case that there are a finite number of possible quan-
tum planetoid strings.

As to the minimum value, given that if a string does pen-
etrate into a~Schwarzschild! event horizon and is to maintain
its linearity it must extend to infinity, we see that the ‘‘cut-
ting out’’ of part of the spacetimes is what forces a minimum
value even for classical values~quantum mechanically that
was only to be expected!.

String solutions that generalize noncircular point particle
trajectories should also exist in the spacetimes considered
here. However, thes andt dependence probably cannot be
separated as we did in the planetoid strings presented in this
paper.

We want to stress that the Regge trajectories are no longer
linear~even for weak curvature! in the spacetimes considered
here. We thus infer from this classical test string calculations
that the fundamental string spectrum will get strongly modi-
fied in these nontrivial gravitational backgrounds.
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