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Predictability and semiclassical approximation at the onset of black hole formation
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We combine analytical and numerical techniques to study the collapse of conformally coupled massless
scalar fields in semiclassical 2D dilaton gravity, with emphasis on solutions just below criticality when a black
hole almost forms. We study classical information and quantum correlations. We show explicitly how recovery
of information encoded in the classical initial data from the outgoing classical radiation becomes more difficult
as criticality is approached. The outgoing quantum radiation consists of a positive-energy flux, which is
essentially the standard Hawking radiation, followed by a negative-energy flux which ensures energy conser-
vation and guarantees unitary evolution through strong correlations with the positive-energy Hawking radia-
tion. As one reaches the critical solution there is a breakdown of unitarity. We show that this breakdown of
predictability is intimately related to a breakdown of the semiclassical approximation.
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[. INTRODUCTION the interesting results obtained in classical gravity concern-
ing critical behavior at the onset of classical black hole for-
Quantum radiation from black hold4] is necessary in mation[16] make it important to examine this critical behav-
order to maintain the consistency of the second law of therior in the context of semiclassical physics. In the critical
modynamics with the existence of black hol[@d. On the regime of the 4D Schwarzschild black hole, the black hole
other hand, evaporation of the black hole reveals one of thenass approaches zero and the curvature near the horizon
most fundamental problems in theoretical physics; the quedecomes large, so semiclassical effects must be considered.
tion of unitary evolution of the Universe. Does evolution Since the 4D semiclassical theory is quite complicated, in-
from an initial pure state take place nonunitarily to a finalsight may be gained by considering a 2D theory that shares
mixed statd 3], or unitarily to a final pure statet]? One of many of its dynamical features, namely, 2D dilaton gravity
the major obstacles to a better understanding of the Hawking]. The 2D dilaton models can be derived from 4D almost
effect is the complexity of four-dimensionédD) semiclas- extremal dilatonic black holegl7] using the Kaluza-Klein
sical gravity[5]. Simplified models which may give insight reduction[18].
into the possible answers are two-dimensiofzdd) dilaton Although the general properties of the 2D subcritical so-
guantum gravity theoriegs]. The dilaton field, viewed as a lutions, namely that they are stable and unitary, have been
part of the geometrical structure, restores dynamics in 20xnown for sometimg12—-14, investigation of the explicit
analogous to that of spherically symmetric 4D Einstein grav-evolution reveals some new features of physical importance
ity. We consider the formation and evaporation of a 2D blac15]. In Ref.[15] we studied the evolution of the subcritical
hole by the collapse of massless matter scalar fields. Thgolutions with infalling matter in the form of shock waves. In
evaporation of the black hole via production of quanta of thethis work we extend our study to include the behavior of
matter fields can be fully traced in the 2D semiclassicalsubcritical solutions for general smooth initial data, with em-
theory, including the back reaction of the evaporation on thephasis on the near-critical solutions.
geometry[7—11]. In Sec. Il we present our model of 2D semiclassical dila-
If the energy and energy density of the infalling matter areton gravity as an initial value problem. We also derive the
sufficiently large, then the incoming matter forms a blackgeneral equations to be integrated numerically for arbitrary
hole. Otherwise, the original incoming matter escapes to ininitial data. In Sec. Ill we give examples involving smooth
finity and no black hole is formed. In this latter case theinfalling matter. The previous shock-wave resylif] ap-
evolution is unitary and no information is lost. These unitarypear as a limiting case of these examples.
solutions of the semiclassical theory are called subcritical In Sec. IV we address the question of information. The
solutions[12—15. The study of subcritical solutions just be- information that may be lost in the process of black hole
low the critical threshold in which a black hole is formed evaporation is related to the correlations between the outside
may help us to understand the process of semiclassical blaskorld and the interior of the black hole. Two types of infor-
hole formation and its influence on information. Moreover, mation are involved(i) “Classical information,” carried by
the classical matter that forms the black hole, dfid
“Quantum information,” encoded in quantum correlations
*Current address: IUCAA, Post Bag 4, Ganeshkhind, Punddetween outgoing and incoming pairs of particles created by
411007, India. Electronic address: shose@iucaa.ernet.in the collapse geometry. A quantity that plays an important
TCurrent address: Motorola Semiconductor Israel, P.O. Box 22080le in understanding the structure of the subcritical solutions
1 Shenkar St., Herzelia 46120, Israel. Electronic addressts the outgoing radiation reaching future asymptotic null in-
yoavp@msil.sps.vnot.il finity 35 . In previous work[15] an explicit form of that

0556-2821/96/54.2)/7490(16)/$10.00 54 7490 © 1996 The American Physical Society



54 PREDICTABILITY AND SEMICLASSICAL ... 7491

radiation was found for the first time in semiclassical gravity.is a local counterterm that we add in order to get an exactly
This outgoing radiation is intimately related to the questionsolvable theory. In the abowg is the dilaton fieldR(? is the
of information. In principle, for the subcritical solutions one 2D Ricci scalar\ is a positive constan¥ is the covariant
should be able to recover the complete information given byderivative, andG(x,x’) is an appropriate Green’s function
the initial data from that outgoing radiation. We show how infor V2. The N real value functions;(x) are the classical
the subcritical solutions, classical and quantum informatiorvalues of the massless scalar fields. One can regard each of
is encoded in the outgoing radiation reaching asymptotic futhe f;(x) as the expectation value of the quantum field op-
ture null infinity. _ N o erator f;(x) in an appropriate quasiclassical coherent state,
In Sec. V we consider the subcritical solutions just below| ) [21]. The effective actioril) describes the full quantum
criticality. We show that as in the classical case, in the Semitheory in the largeN limit, in which case the fluctuations of
classical case also solution space can be divided continqﬁ and g,, can be neglected12,10. Recently Mikovic
ously into two regions, i.e., there exist continuously varyinggnowed tﬂhat one can derive the effective action of @g.
parametersp; in solution space, such that f@;<p{ the  from S.g,sby fixing the diffeomorphism gauge, solving the
evolved scalar field will not form a black holghe subcriti-  constraints, and then quantizing the reduced system. After
cal solutions, while for p;>p{ a black hole will be formed choosing an appropriate initial quantum state, one recovers
(the supercritical solutionsWe show that as the critical so- the action(1) as a one-loop effective actid?2].
lution is approachedp;— p;) the outgoing energy flux di- In null coordinates z* and conformal gauge,
verges and the fluctuations in the outgoing energy densitg, ,=g__=0, g,_=—(1/2)exp(®), the action(1) takes
become very large, implying a breakdown of the semiclassithe form
cal approximation at criticality.

In Sec. VI we show that near criticality the density of o K
information encoded in the outgoing radiation reachiig Seﬁ:;f dz"dz"| (9-Y)d.| X=5Y
becomes very large and diverges at criticality. This diver-
gence results in an apparent breakdown of predictability that K
coincides with the breakdown of the semiclassical approxi- +(8+Y)5—( X=35Y +N2exp(—2Y)
mation. We present our conclusions in Sec. VII.
1 N
Il. THE MODEL +_i§1 ‘9+fi‘?—fi}' ®)

A. One-l ffecti ti
ne-loop efieciive action whereX=exp(—2¢), Y=¢—p, andk«=N#A/12. In the large

Recently, we have proposed a modified theory of 2DN |imit we take to approach zero while keeping finite.
semiclassical dilaton gravifyi0]. The effective action of the The kinetic action density of the system described in &

modified theory is is a bilinear symmetric formd, ®)M (¢)(d_0), where®
_ is a vector comprised of theN(+2) fields yx, p, and theN
Seit=Scenst NSt Scor, @D matter fieldsf;, andM(¢) is an N+2)X (N+2) symmet-

ric matrix. One can verify that the determinantfis pro-
portional to X?=exp(—4¢), and unlike in other models of
modified dilaton gravity{ 7], here this determinant is nonva-
nishing for all real values of. The vanishing of the deter-
minant atX(x*,x~)=0 signals a singularity.

The equations of motion derived from varying the action
(4) with respect taX, Y, andf; are

where Scgps is the Callan-Giddings-Harvey-Strominger
(CGHS classical actiori19],

1
SCGHSZEJ d*x\—g

e 2[R+ 4(V )%+ 477

N
1
-5 (Vi)?, ?) 3,9_X=—\2exp(—2Y), (6)
=1
. o : . d+9-Y=0, 7
Sp. is the Polyakov-Liouville actiorf20] that incorporates
the one-loop corrections corresponding to the trace anomaly 9,9_f,=0. (8)
of the stress energy-momentum tensor of each oNtlogian-
tum matter fields, The constraint$from varying the actior(1) with respect to
g-+]are
h
SpL=— @f dzx«—g(X)f d*'V=g(x’) —PBAX=20. XY =T+ k[(9Y)2+ 32 Y +1.(27)]
X RO(X)G(x,X)RA(x), 3 =0 ©)

where after varying with respect ®,, (u==*, v==) we
set g¢g,,=9g__=0 to get Eqg. (9. Here,
Ti'i=(1/2)2i((9ifi)2 is the classical contribution to the

N7 i
_ o T 2 o2 energy-momentum tensor of th& matter fields, and
Scor 2477f dXV=gl(Ve) ™= ¢R™] “ t.(z*) are integration functions determined by the specific

and
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null curve x*=0 defines left asymptotic past null infinity
J_ , the null curvex™ =— defines right asymptotic past
infinity 3z The null curvex™ =0 is left asymptotic future
infinity 3., andx™ =+ is right asymptotic future infinity
J&. In general, the initial data od_ and J; determine
completely the solution in the region <x* <o,
—oo<X" <0. Specifying these initial data is equivalent to
giving f7(x7) andt_(x") onJ_ andf; " (x*) andt,(x")

on Ji . Giving these functions, we integrate E40) to find

the solution everywhere; however, such a solution may not
be physically acceptable in the whole space-time, since sin-
gularities may appear. One can say that our one-loop effec-
tive theory is exactly solvable; however, there is one major
difficulty with such an approach. Consider first the LD solu-
tion: while onJ; we haveo—«~ and exp(2)=0, onJ,_
(00— —») we have exp(@)—. From the action(2) we see
that exp(2b) plays the role of the “coupling constant,” and
so the couplinglivergesonJ;”. One can split the space-time
into a region of weak coupling and a region of strong cou-

FIG. 1. Penrose diagram of the linear dilaton solution. Thepling, see Fig. 1. Those two regions are divided by a curve,
heavy curve is the boundary curve separating the regions of weagfe “boundary curve”(specified below in more detailln

and strong couplings.

guantum state of the matter scalar fields. A conformal coor

dinate transformation of the forait —y* andz~—vy~, pre-
serves the form of the metric,g..=0 and
g, - =—(1/2)exp(d), where the new conformal mode func-
tion is related to the old one by
p(y",y )=p(z",z7)+InYydz /dy" +Inydz /dy". The
dilaton field is a scalar, and therefore, the fi#dransforms
such as—p. The general solution of Eq(7) for Y is
Y(z",27)=Y,(z")+Y_(z"), and we can choose the coor-
dinates x* = % exd —2Y.(Z%)]dz*, for which Y(x*,x")
=0. In the following we use these “Kruskal” coordinates,
denoted by x*,x7), for which ¢(xt,x")
=p(x*,x7). Henceforth, the indices on tensors will refer
to components in the Kruskal coordinates.

In the Kruskal gauge the general solutions to Esand
(8), subject to the constraint®), are

+

X X+
X(x+,x‘)=—)\2x+x‘—f dxérJ 2dx1+[Ti'+(xI’)

—m(xf)]—fx dx;fxzdx;[Ti'_(x;)

—kt_(x1)] (10

and

fi(x* x7)=f"(x")+f (x7). (11)

B. The initial value problem

Consider first the linear dilatofLD) solution which cor-
responds tof;(x*,x")=0 and t.(x*)=0 in Eq. (10),
namely, the solutiorX p(x*,x")=—A%"x". It is defined
for 0<x* <o and —o<x~<0. In the manifestly flat coor-
dinateso ™ =7+ o= =\ " lIn(=Ax®), the LD solution corre-
sponds to the flat metrigjs’= —do*do ™, and the dilaton
field has the linear form¢=—\o. As shown in Fig. 1, the

the strong coupling region we cannot trust the one-loop ef-
fective theory, especially ofy . Therefore, giving the initial
data onJ, is, in general, unphysical. One way to avoid this
problem is to consider the solutions only in the weak cou-
pling region and impose on a timelike curve boundary con-
ditions that preserve unitarity and conserve energy. These
criteria are satisfied by imposing reflecting boundary condi-
tions on the boundary curve. Thus, the initial value problem
that we define is the following: ol we give the initial
data,f;"(x™) andt, (x™), and on the boundary curve defined
by x"=x5(x")=p(x~), we impose the reflecting boundary
condition.

Before specifying the boundary condition we elaborate on
the energy-momentum tensor. TtmumberTLV, which one
gets after varying the effective action in EG) with respect
to the metriag“”, can be regarded as the expectation value of
the quantum operatd'rLV in the quasiclassical coherent state
|a), [21]. Namely,

fo_ T f _7cl
T,uv=<a|T,u,V a>_T,uV+<T/.LV>’

where in the expansion @¢k|T},,|a) the first termT¢,, is of
order#® and is the classical part of the stress tensor, while
the second tern(T ,,) is of order (or N7 for N fields) and

is the one-loop contribution. The one-loop contribution to the
energy-momentum tensor is given by

(Tyege)= K[ Foep—(8,2p)2—t,=(25)],

(Ty+,-)= K+ dy-p (12
in some general null coordinatez’(,z™). Equation(12) fol-
lows by integratingv ,(T#”) =0 and using the trace anomaly
[23] (Tk)=—«R®)/2 for the N massless matter field§
[24], or equivalently, by varying the Polyakov-Liouville ac-
tion (3) with respect to the metrig20].

One can argue that operationally the split between the
classical and quantum radiation is not well defined when we
consider a singldscalaj field. However, forN fields one
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could classically excite only some of the fields. Then thevvhereDf[z] is the Schwarz operator defined as
total radiation in the remaining fields is just the quantum

part. To operationally distinguish among thefields, one D z]=(d52)/(3y2) — $(972l 3,2)? 17)
can, for example, add another quantum number to these sca- .
lar fields. and we usd,(v)=0. Equation(15) then becomes

The reflecting boundary condition [85,13,5,1%
TL_(x)=[p' OO PT L Ixg (x )]
+ep’ (xR [p (x )17 (13

_ _1(p'<x‘))2 [p’(x7)]M2%[p'(x )]~ 12
0=l o)t 1+ xl(2Xg) :

18)

The second term on the RHS of E(.8) is the result of

where ' =/dx~. The last expression on the right-hand sideparticle creation from the dynamical boundary. Recall that in
(RHS) of Eq. (13 is due to quantum particle creation from the 4D Hawking effec{1], the “boundary curve” isr=0
the boundary, which is effectively a moving mirrf,25.  (the fixed point of spherical symmelryThe curver =0 does
One can split the reflecting boundary conditid®) into its ~ not act as a moving mirror and there is no particle creation at

classical and one-loop parts, r=0. The creation of particle€.e., the Hawking radiation
is due to the curvature of space-time near the horizon. Can
T (x7)=[p" (x ) PTY [ (x )], (14)  we also eliminate the moving mirror effect in our 2D theory?
We see from Eq(18) that if Xg< k, then the moving mirror
t_(x’)=[p’(x’)]2t+[xg(x’)] term is negligible. This is consistent with the fact that
X=exp(—2¢) is indeed the 4D radial coordingt&8,26], and
[p'(x")]¥2%[p'(x )] 12 Xg—0 corresponds to—0 in 4D. However, one should be
N 1+ «/(2Xg) (19 careful when taking the limiXgz—0. It corresponds to the

limit ggﬂoo, which defines the strong coupling region. The

If we take the fieldsf; to satisfy Neumann or Dirichlet one-loop effective theory(1) is trustworthy as long as
boundary conditions, then the classical reflecting boundarg§ﬁ<x<1. In this case[in the region of interest, i.e.,
condition(14) is satisfied. X(x*,x7)=Xg], the quantum corrections for the dilaton-

Next, we consider the boundary curve. We would like it gravity part are negligible compared to the one-loop correc-
to separate the regions of weak coupling, exly:)é?gg, and tions for theN scalar fields, which in turn, are small com-
strong coupling, exp(a)>g§, whereg§ is some parameter pared to the classical contribution. Therefore, we need to
that specifies the value of the coupling below which the onesatisfy both g§h<x<1 and Xg<<k. With Xgl=g§. we
loop  effective  theory is  trustworthy. Since combine the conditions and get
X(x",x7)=exp(—2¢), we can define the boundary curve to
be the curve on which((x+,x‘)=XBEg;2= const. The £<X <NA<1 (19
solution X(x*,x~) should be determined by the initial data N "B '
on J; and by the boundary conditiofl3). The boundary
curve, X(x*,x7)=Xg, depends on the solutio(x™,x").
Thus, we get a highly nonlinear problem, unlike the straight
forward problem, with initial data given o, having solu-

One can always take the largklimit in such a way that Eq.
(19 is satisfied andXg is arbitrarily close to zero. In the
following we take this largeN limit. Equation(18) then re-

tions (10) and(11). We next reduce this nonlinear problem to 9Uces t©
solving a single ordinary differential equation. N
. p'(x7)
- ):Z( p(x)) 20
C. The boundary equation as a second-order ODE
The function-ril+(x+) can be viewed as the part of the One can write the general soluti¢hO) in the form

initial data onJy that describes the classical profile of the K
infalling matter. We takél® . (x*) to be a general function X(xT,x7)==AxX"[AX"+N"PL(xT)]— Zln(hx*)
of x* with compact support. On the other hamg(x*) de-
scribes the quantum state @iy . Since in this work we M(xT)
would like to study the Hawking effect, we take the quantum + +F(x7), (21

state to be such that df; we have no quantum radiation
[i.e., (T,,)(v)=0, wherev is the asymptotically flat null whereM(x") andP, (x*) are the mass and momentum of
coordinate orfs , v=\"tIn(\x™)]. Since in the asymptoti- the infalling classical matter,

cally flat null coordinates the conformal mogdeapproaches o+

zero onJjg, we get from Eq(12) Fhat |n+th§se coordinates M(x+)E)\J x1+T°+'+(xl+)dxf,

t,(v)=0. To find the corresponding, (x™) in Kruskal co- 0

ordinates, we use the tensor transformatiofTgt-,-) in Eq.

(12) (under a conformal coordinate transformajiamd get "

P+(x+)sf0 T, (x7)dx;, (22)

[ 2 InS i L
t (X )_<ﬁx_*) {t,(v)—3DJIx ]}_W’ (16) and
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—fx dx;szdx;[TS',(x;)—Kt,(x;)].
(23

F(x7)

Here, F(x7) is a function ofx™ to be determined by the

boundary conditions. Before we obtain the equation for the
boundary curve, let us define the following dimensionless

guantities:

z=\x" and q(z)=Axg[X (2)]=\p[x " (2)], (24)

whereq(z) is a dimensionless function that specifies the lo-

cation of the boundary curve. Using E{9), (20), and(21)
and acting with 9%/9z2 on the boundary equation
X(xg ,Xx")=Xg, we get a second-order ordinary differential
equation(ODE) for q(2z)

p g, 599, 5[ 1o «_|(da)®
2Pl 29 a7 2az Y T VT 27 || o

=0, (25
where

To(D=N?T,,[xg(x )] and Py(q)= f ng'q@dq_
(26)

are given functions ofj, which are determined by the initial
data onjg. Equation(25) is a second-order, nonlinear, or-
dinary differential equation for the boundary cunygz). We

solve it numerically for different profiles of the infalling mat-

ter using an embedded fifth-order Runge-Kutta ODE integra-

tion routine[27]. After obtainingq(z) we use Eqgs(14) and
(20) to find T _(x~) andt_(x~) and integrate Ec(10) to
obtain the solutioX(x*,x 7).

I1l. SOLUTIONS
A. Vacuum solutions

In this subsection we consider solutions of E25) with
different profiles of infalling null matter. First consider the
vacuum solutions, for Whicﬁ'g'q(q)qu(q)zo. The gen-
eral solution of Eq.(25 with Tg'q(q)qu(q)zo and the
initial conditions q(z— —»)—0 and @dg/dz)(z— —)
—0, is

a
Quad 2) = — 2 (27

wherea is some positive constant. One finds from E@®)
and (27) the one-parameter family of vacuum solutions

Xyad XT X7 )=—=A%x"— gln( —AxFX7)+ %In(a) —a.
(28)

These are static solutiofi&0]. For a> /4 the solution(28)
has a timelike singularity in the strong coupling region,
e?®— o, while for a< /4 the solution has null singularities
in the weak coupling regiore’’—0. The solution with

a=«/4 is everywhere regular, has the geometry of a semi-
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FIG. 2. Penrose diagram of a typical subcritical solution. The
infalling matter with support on the interval’ <x*<x; onJ} is
reflected from the boundary to become outgoing toward future null
infinity 3% . Here,z=\x".

infinite throat, and can be regarded as the ground state of the
theory[10]. One can show thdR8] compared to this ground
state, the ADM mass of the static solution in EBS) is

M=X\ a—— (29)

4

KI 4a
4nK

B. Smooth infalling matter

In the following we consider more general infalling mat-
ter with compact support; <x*<x; . Forx™<x; , i.e.,
region | in Fig. 2, we havé'g'q= P4=0, and the solution is
one of the vacuum solution@8). If the total mass of the
infalling matter, M=M (x"—) in Eq.(22), is above a criti-
cal valueM¢,, then a black hole is formed. The critical mass
My, is of the order of\a [10] and is determined numerically
from the profile of the infalling matter stress tensor and the
Arnowitt-Deser-Misner(ADM) mass of the initial space-
time. We takeM/\> k for the validity of the semiclassical
approximation[29]. Since we consider subcritical solutions
in which a black hole does not quite form,s at least of the
order of M/N and hencea>«. We take a=1 and
k=105, Our results would be similar for any values af
and k as long asa>«. We also fix the scale of th&"
coordinate such thatx; =1. Definez, to be the value of
z=\x" in Eq. (25) corresponding ta(z;,)=\x; (see Fig.
2). UsingAx; =1,a=1, andXg~0" we find from Eq.(28)
thatz,=—1. Forz<zg, i.e., inregions I, Il, and lll in Fig. 2,
the solution of Eq(25) for q(z) is given by Eq(27), and the
solution forX(x*,x7) is

X(AX™<z7)=—AXT[AX"+N"IPL(xT)]
N

(a2t o) 4 M)
4In( ANXTXT)+ N
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(a) (b)

(T5)(v)

0.5

(c)

For z=z,=—1 (see Fig. 2 we have to integrate Eq25)
numerically to find the boundary curegz). So the range of
z to be integrated numerically {s—1,0). The initial values
for the numerical integration of the ODR5) are[using Eq.
(27) with a=1]: q(z=2z;)=1 anddg/dz(z=z;)=1.

Before we give the results of our numerical integration, it

Vot+€
FIG. 3. The incoming stress tensby,(v) for
three different families of initial data, witlfa)
corresponding to Eq(32), (b) corresponding to
Eq. (38), and(c) corresponding to Eq40).
v
Here, M is the total mass of the infaling matter,
M= [T (v)dv, ande is its width.

To integrate Eq(25) we need to writeT® in terms of
g. Using Egs.(24) and(26) in Eq. (32), we get

is convenient to define coordinates in which the dynamical

metric of our space-time corresponding to the solut@i) is
manifestly asymptotically flat ofi; . In the Kruskal coordi-
nates, the metric is

ds?=—exgd 2p(x*,x7)]dx"dx =—X"tdx"dx",
(30)

whereX=exgd —2p(x* x7)]in these coordinates and is given
by Eqg.(21). The required asymptotically flat coordinates are
(u,v), defined in terms of the Kruskal coordinates by the
following conformal coordinate transformation:

and u=—\"ln(—AXx" =P, /\),
(3D

v=\"tn(\x")

where P, =P, (x"—x) is the total momentum of the in-
falling matter. Rewriting the metri¢30) in terms of the
(u,v) coordinates shows that €@p(v,u)]—1 asv—> on
Jg andu——« onJg.

0, In(g)<0,

Tolal= )\Z—qusinz[wln(q)/()\e)], o<In(g)<\e,
0, In(g)>\e.

(33

We numerically solve Eq(25) with Eq. (33) for different
values ofM/\ and\ e, and find the corresponding boundary
curvesq(z) and solutionsX(x*,x7).

It is difficult to extract physical information from the
coordinate-dependent definition of the boundary curve. For
example, as long as the boundary curve is everywhere time-
like, one can define null coordinatey®=x* and
y~ =xg (x~) in which the boundary curve is “static,” being
given by the equatiog= 0, wherey is the spatial coordinate
y=(y"—y7)/2. On the other hand, a quantity giving physi-
cal insight into the nature of the solutions is the outgoing
radiation reaching future asymptotic null infinigj . The
outgoing radiation consists of a classical péit) that is

Consider now the stress tensor describing a smooth profileeflected from the boundary, and a quantum gag. We

of infalling matter:

0, v<0,
Tﬁ'v(v): (2M/é€)sirt(mvle), 0<v<e, (32
0, v>e,

wherev =\"1n(\x") . In Fig. 3@ we show the profilé¢32).

calculate both in the manifestly asymptotically flat null co-
ordinates orfi; . In terms of theu coordinate defined in Eq.
(31) we have, orfy,

T (W =(AX"+P_/\)2TY_[x~(u)]. (34)

On the other hand, Eq12) gives
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incoming radiation, Fig. @&. The profile of the matter field
is almost unaffected by the evolution. The curvature and
0.04 05 coupling are everywhere small and the infalling matter is just
= reflected from the boundary with almost no distortion. In the
1 2 W /& ------ M 4D case, this corresponds to “weak” initial dafaQ] for
which the null(scalaj field goes through the origin of the
YV radial coordinater =0, without developing large densities,
and escapes to infinity with very little distortion.
The quantum part of the outgoing radiation stress tensor
(Tyy) in Fig. 4@ is almost symmetric(This is true only for
Touf) Toufw) a symmetric incoming classical profile far from the critical
001 04 point) The quantum radiation includes a region of negative-
J’/_% energy density puzzle that ensures energy conservation. In
e o Sec. IV we will calculate the quantum correlation function
’ N"/ and show that the negative-energy radiation is strongly cor-
\/ related with the positive-energy radiation. This strong corre-
lation is necessary for the quantum stateJgnto be pure.

In Fig. 4b) the mass of the infalling matter is about 65%
of the critical masdM,. We see that the outgoing classical
going radiation o . The solid curves describe the total outgoing raFilatlon IS more Q|storted compared tp that in Figg)4in .
radiatioanJu while the gray curves describe only the quantum partthIS case th,e infalling matter strongly distorts the spacg-tlme
(T,.), scaled by 2¢. In (3 the mass is about 6% and {b) it is _be_fo_re getting refle_cted from the bou_ndar_y and escaping to
about 65% of the critical mass for the infalling matter shown in Fig. Infinity without forming a black hole. Likewise, the quantum
3(a). In (c) the mass is about 3% and {d) it is about 65% of the ~ radiation in Fig. 4b) is no longer symmetric. The reason for

-0.01 ¥ -0.4

FIG. 4. The stress tensdr,, in units of A? describing the out-

critical mass for the case shown in qubB this is the fO”OWing: AsM inCI’easeS, the total amount of
positive-energy quantum radiation increases. Because of en-
(Tu)(U)=— kty(u), (35)  ergy conservation also the total amount of negative-energy

radiation increases witW. While the width of the positive-
where we used the fact thatand its derivatives vanish on energy radiation increases wilh, the width of the negative-
Jg in the manifestly asymptotically flat coordinates. Further-energy radiatiom\u satisfies the quantum inequality5,31]
more, using the coordinate transformati@i) and Eq.(16)
with x*—x~ andv—u, one can express,(u) in terms of |[EnedAu<x, (37)

t_(x"(u)) to get . .
x(W)tog where E,¢4 is the total amount of negative-energy quantum

(Tu) (W) =(kNZA)[1—N"2(AX" + P IN)2t_(x " (u)]. radiation andAu is its width (as measured by an asymptotic
(36)  observey. Since|E,J increases wittM, the widthAu must
. ) . ) ] ) decrease and we get a nonsymmetric profil€éTqf,). As we
Putting the numerically integrated functigi{z) [defined in | see in Sec. V, asv approached/ ., the width Au ap-
Eq. (24)] and the initial data™®' , (x*) in Egs.(14) and(20),  proaches zero, and we get a brief burst of negative energy.
we find the profiles of the outgoing matter flux@§, and As a consequence of general covariance of the effective
(Tyw- The results are shown in Figsia#and 4b) in which  action, Eq.(1), we haveV~T},,=0. We find numerically that
the Infalllng matter is described by the prOf”e given in eqhe energy defined in terms OTILV is conserved, i.e.,
(32) with Ae=5. In Fig. 4a), the mass iM/A=0.1(which  p 7f g, = . Tf du. This is what one would expect if the
is 10% ofa), while in Fig. 4b) it is M/x=1. The solid R R
curves depict the total stress tensor of the outgoing radiatio
T! =T+ (T, in units of A2, while the gray curves cor-
respond to the quantum radiation stress teq3gQr,). Since
«x=10"% is much smaller tham/\, the quantum radiation is
scaled up in the figures by a factor ok2# 2 x 10° and hence
does not show up in the solid curve.

I{eflecting boundary aK=exp(—2¢)=0" corresponds to a
static boundary such as=0 in 4D, as discussed in the para-
graph after Eq.(18). The # expansion also implies that
VATS,=0 andV#(T,,)=0 (the latter was used in arriving
at(T,,) from the trace anomaly Nevertheless, we find nu-
merically that the energies associated with the classical and
As we will see later in Sec. V, when the total mass andduantum pacrlts alone acrle not ;eparately conserved. For ex-
the local density of the infalling matter are large enough,ample’fjﬁ-rvvdvifngU”du' Evidently, because the total
then a black hole is formed; otherwise, the infalling matterenergy-momentum tensdr,, determiness, and hence the
escapes to infinity without forming a black hole. For a fixedboundary, it behaves such as a static boundary only for
width € in Eq. (32), the mass of the infalling mattév fully T, but not for T, or for (T,,) individually. Far below
determines its profile. LeM, be the mass above which a criticality, the classical and quantum parts of the energy are
black hole is formed. As discussed in Sec. V, X&=5, we  nearly conserved separately. However, as one approaches the
find thatM . /A=1.5. In Fig. 4a), we take the mass of the critical solution the classical and quantum parts of the energy
infalling matter to be about 6% of the critical maddls,. We  each are strongly nonconserved.
see that the total outgoing radiation is very similar to the Next, we consider the profile described by
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[0, v<O,

M :
msmz(m)/e), O0<v<el2,
0

M €

Uo +€l2 2 (38)

€
<v<vg+

Tglu(v):4 E’

: €
(ot ei2) sif[m(v—\vo)l€], vo+ §<U<Uo+ €,

\0, v>vgte

In Fig. 3(b) we show the profilé38) with v,/e= 100, which is nearly a square wave form. kge> €, as shown in Fig. @),
the energy-momentum tens(@8) describes infalling matter of nearly homogeneous density. The total width of the profile is
(vo+e€). In terms of theg coordinate defined in Eq24), the profile(38) is

(0, In(q)<0,

M
oot g SN/ (e, 0<In(a)<nel2

M
JﬂZ(W,

€
Tg' Nel2<In(g)<\ vot 5/, (39

M
m sirt{ @[ In(q) —\vol/(N€)}, 7\( vot g) <In(g)<\(vg+e),

\0, In(q)>N(vo+e).

We take EQ.39) with Avy=10 and\e=0.1, and integrate results of Ref[15]. One should remember however that as
Eg. (25) for different values oM/\. Using the numerically A e—0, the derivativep’ in Eq. (15) diverges, and the large
integrated functiorg(z), we calculate the outgoing classical N limit should be taken in such a way that the second term
and quantum radiation ofy; , shown in Figs. &) and 4d).  on the RHS of Eq(15) can be neglectefll5].

In Fig. 4(c) we takeM/\=0.1 and in 4d) M/\ =2. Because
the mass distribution of E¢38) is more spread out than that
of Eq. (32), M, is larger, having the valu®,/A=3.0. In
these figures, the solid curves describe the total radiation A. Classical structure

while the gray curves describe the quantum radiation scaled In Sec. Il we considered infalling matter with very little

up by 2x 1¢°. In Fig. 4(c) the mass is about 3% of the_ structure. In order to encode nontrivial information in the

critical mass, which is the case of weak initial data, and is;| ggjcq| infalling matter one should consider more compli-
similar to Fig. 4a). The total outgoing radiation is very simi-

. ; X 9 . cated profiles. For example, one can encode information in
lar to the incoming classical radiation, Fig(b and the P b

" diation i q th {0l lassical bits. In this case the infalling null matter can be a sequence
quantum radiation IS spread across the outgoing classical rag pulses each corresponding to one bit of information. Let
diation symmetrically. In Fig. @) the mass is about 65% of

. 2 ; us send a message in binary numbers. The number “1” is
the critical mass, as was the case in Fi)4The outgoing described by a pulse of relative height 1 and “0” by a pulse

radiation is more distorted and the quantum radiation is non-

IV. INFORMATION

symmetric.
Finally, recall that in Ref{15] the case in which the clas- T
sical matter had the form of an incoming shock wave was
studied. To recover the results of REE5], consider profile ¢
(32) with M/x=0.1 but with different values of the width 0.4
\e. In Fig. 5, the curves and a are, respectively, the total
and quantum outgoing radiation in the case=5. The 0.2 A,
curvesh and g are the total and quantum outgoing radiation 4‘“/\
for Ne=1, andc andvy correspond to.e=0.1. One can see R cm—— Iy
that ashe becomes smaller, théncoming and outgoing -2 2 6
classical radiation becomes very localized, while the transi- 0.2 !
tion of the quantum radiation from positive- to negative-
energy values becomes more sudden. In the ligit- 0, the FIG. 5. The stress tensdr,, describing the outgoing radiation

classical energy-momentum tensor can be described ®y afor different values of € in the case of the infalling matter shown
function T%, = (M/AxJ)8(x" —xg) and one recovers the in Fig. 3@ with M/\=0.1. See the text for more details.
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of relative height 0.5. As an example, consider the followingUsing Eq.(43), we integrate Eq(25) for different values of

incoming energy-momentum tensor:

16
Tﬁ'v<v>=i§1 1,0;(v), (40)

where

M 10 —-i)], i<v<i+0.1
0,(v)=1{ 11 Sif[10m(v—1i)], i<v<i+O0.1, 1)

0, elsewhere,

and

l,{0.5,1,0.5,0.5,1,0.5,0.5,0.5,0.5,1,1,0.5,1,0.5,.5,1
(42

In Fig. 3(c) we show the profilg40). It corresponds to the

binary number 0100100001101001, which is the word “Hi”
in ASCI. In theq coordinate the profil¢40) is

16
Tﬁ'qﬂﬂigl li0i(a), (43)

where

20M . . .
0.(q) = WSII’IZ{].OWUH(Q)—I]}, i<In(gq)<i+0.1,
i(q (44)

0, elsewhere.

Tuu(u)

0.1

0.05

,M’"/ A A1
e ar

(a)

Au

Tuu(u)

N A DN o

AJ,JItu;lJ;l!f!j/ﬁ »
-2

(b)

FIG. 6. The stress tensdr,, describing the outgoing radiation
for the infalling matter shown in Fig.(8). The solid curves de-

M/ and find q(z). Then, we calculate the classical and
quantum radiation o¥; , shown in Fig. 6. In Fig &) we
takeM/N=0.1, and in Fig. ) we takeM/\ =2. The solid
curves describe the total outgoing radiation, while the gray
curves describe the quantum radiation, scaled by
2/k=2X10P.

For the profile(40), we find numerically that the critical
mass isM /A =2.5. In Fig. Ga) the mass is about 4% of the
critical mass, and indeed we see that the outgoing radiation is
very similar to the incoming one, Fig.(&. This case is
similar to the ones in Figs.(d and 4c). One can easily
recover the “classical information,(the word “Hi” ), from
the outgoing radiation in Fig.(6). Also, the quantum radia-
tion is quite symmetric. We can see from Fida6that the
classical and quantum radiations are correlated. Actually,
one can recover the “classical information” from the quan-
tum radiation alone. Each classical pulse results in a sharp
decreasé€“jump” ) of the quantum radiation. We see that for
a pulse of a relative height 1 the jump is twice as large as the
jump for a pulse of a relative height 0.5. Therefore, by look-
ing at the different jumps in the quantum radiation one can
recover the “classical information.”

In Fig. 6(b) the mass is about 80% of the critical mass,
and the outgoing radiation is much more distorted than that
in Fig. 6(@). As in the cases shown in Figs(b# and 4d), it
is difficult to recover the “classical information” of Fig.(8)
from the profile shown in Fig. ®).

B. Quantum correlation function

As discussed earlier in Sec. Il, we choose the quantum
state to be the vacuum dry, , so that the quantum contribu-
tion to the energy-momentum tensor OR is always zero,
(T,,)(v)=0. By construction(with the reflecting boundary
conditions and no black hole formatigrthe evolution of the
guantum state must be unitary. How can we see that the
quantum radiation o is described by a pure state? The
created quantum radiation reachifi§ before the escaping
classical matter is the beginning of the Hawking radiation
which is almost thermal and which, by itself, does not cor-
respond to a pure state. A pure state can be recovered from
the radiation ori; only if there are strong correlations be-
tween the early-time Hawking radiation and late-time
negative-energy radiation reachidg after the escaping out-
going classical matter. We demonstrate these correlations by
calculating the correlation function

Con v (XX =(TL, 00T, (X))
—~(TLOONT, (D). (45

The correlations between different pointeandu’ on J; are
given by C,, yy/(u,u’), whereu is the asymptotically flat
null coordinate ordy . For the reflecting boundary condi-
tions, we have a closed form expressi¢82]

scribe the total outgoing radiation, while the gray curves describe “The factorNz?2 did not appear explicitly in Eq(6) of Ref.[15]

only the quantum part. lifa) the mass is about 4% of the critical
mass, while in(b) it is about 80% of the critical mass.

and the values ofC__ __(u,u’) quoted there are in units of
N#2.
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C(+)/C(-) C(+_) is being measured. IE(+)/C(—)<1, then the cor-

relations described b (+) are weaker than the vacuum

correlations, while ifC(+)/C(—)>1, then the correlations

are stronger.

1.02 We see from Fig. (& that whenu is in the region of

- positive-energy radiatiorfsee also Fig. @)], we have

2[ 4 6 8 C(+)/C(—)<1. This is expected since the positive-energy

0.98 radiation is the precursor of the uncorrelated thermal Hawk-
ing radiation. On the other hand, far in the region of

(a) negative-energy radiation we haveC(+)/C(—)>1.
Namely, the correlations between a point in the region of
positive-energy radiation, i.e., at=0, and a point in the
region of negative-energy radiation astronger than the
vacuum correlations. It is just when the energy of the quan-

C(+/C(-) tum radiation becomes negative tf@¢+)/C(—) becomes

greater than one. Hence, the negative-energy radiation is not

1.04

only necessary for energy conservation, but is also instru-
5 mental in recovering the correlations present in the final pure
4 state. Before we can discuss what happens to information
3 whenM is very near the critical madel .,, we must study
2 the properties of the near-critical space-times.
Au
4 8 12

0 V. NEARLY CRITICAL SPACE-TIMES

(b) A. Approaching the critical solutions

The reflecting boundary conditions can only be imposed
FIG. 7. The relative correlation function of the outgoing quan- gn those sections of the boundary curve that are timelike.
tum radiation onJ . In (a) the mass is about 6% of the critical Along these sections, the boundary curve can be written in
mass, while in(b) it is 99.999% of the critical mass. the formx™ :Xg(x—)’ wherex;; (x ) is a well-defined func-
5 ) - tion, and one can impose the conditigh3). Since the
N7 < [dyv(u) ][ dyrve(u’)] (46) boundary curve is dynamical, the initial data determines its
87 [vg(u)—vg(u’)]* nature through the evolution equations. If the boundary is
everywhere timelike, then the general solution we found ear-
wherevg(u) is the boundary curve in thei(v) coordinates lier is regular, energy conserving, and unitary. Such a solu-
defined in Eq.(31). Using the numerical solution fay(z),  tion is called a subcritica(i.e., a nonblack holesolution. If,
we numerically find the functionsg(u)=\"tIn{q[z(u)]}  on the other hand, the boundary becomes spacelike in some

Cuu,u'u’(uuu,):

andd,vg(u), and from there can obtai@,, ,,/(u,u’). regions of space-time, then the space-time develops a space-
The denominator in Eq46) is a rapidly varying function [ike singularity[10], which is initially hidden behind an ap-
of u andu’. By defining the relative correlation parent horizon. Such a solution is called a supercritical solu-
tion and describes an evaporating black Hdlé]. One can,
C(+)  Cuyuw(uu’) therefore, distinguish between two regions in the space of

j— — ’
C(—) Cyyryrw(u’u’)’ where vg(u) —vg(U’) solutions or the space of initial data: black hole and nonblack
hole solutions. Furthermore, one can find continuously vary-

=vg(u’)—vg(u"), (47)  ing parameters;, specifying the initial data, such that all

we get a measure for the correlations that varies more slowl?)oft'gns withp; <p; .?re lsu$ﬁr't'ca||’ \;\.'h'le al S?LUUOQS W'(;h
as a function ofu andu’ and also is not proportional tb, i~P; aré supercritical.  The solutions on the boundary

which we take to be very small in the large limit. This ~ Separating the two regiorge., the ones wittp;=pf") are
relative correlation is plotted as a functionwfwith u’ held called the critical solutions. As a result of the nonlinearity of
fixed. The numerical results for the relative correlatiogg ~ the system, the physical properties of the solutions need not
and the outgoing quantum radiation shown in Fig)4when be continuous functions of the parameters at the critical val-
we fix \u’'=0, are shown in Fig. 3. Since foru<0 the ~ Uesp;". _ .

quantum radiation in Fig. (d) is exponentially small, the ~ We would like to study the transition between the sub-
correlation functionC(—), which describes the correlations Critical and supercritical regions in our semiclassical theory.
between the radiation at=0 and that the radiation at USing our numerical integration we can easily determine
u<0, is approximately the vacuum correlation function Whether the solution is subcritical or supercritical: As long as
(there are almost no created particles in this regi@m the ~ the boundary CUIVe 1S timelike we can write the boundary
other hand, the correlation functi@(+) describes the cor- €duation,x” =xg(x"), in the inverse formx™ =xg(x"),
relations between the radiation a=0 and that aw>0.  Wherexg is the inverse function ofg . Since the boundary
Since most of the radiation is in the region~0, we can is smooth, the quantityxg/dx™ is continuous. For a time-
regard C(—) as a reference function relative to which like boundarydxg/dx™ is positive, for a spacelike boundary
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Tou(u) 1108 (Tu=1 corresponds to the constant Hawking radiation
from a 2D black holg 19].

We see from Fig. 8 that while the early-time radiation
strongly depends on the details of the classical infalling mat-
&M-i-a..hj ter, the late-time radiation in the regia>u, —\! is al-

9 6 -3 most the same for all the cas@s, (b), and(c). In the region

0.5 u>u, — X! the classical paff®, increases rapidly to large

-1 values of the order of f?, and then sharply decreases to

(a) zero. The quantum par{T,, approaches the constant

2 Hawking radiation{ T,,) = k\?/4, just beforeu=u, . It then

decreases rapidly to negative values of the order of
—10%\2, and finally increases rapidly to zero. This late-time

(Tualu)) behavior appears to be independent of the profile of the in-

“ falling matter, as long as ©@Am/m* <1. Similarly, if we
I AT approach a critical solution by varying any one of the other
%WQS 3 Mu-u) parameter, while holding the rest fixed, we find the same

late-time behavior as long as<Qp* —p)/p* <1. Let T pax
and T, be the maximum and minimum values of the total
4 radiated energy flud!, on J% . For all the cases that we
studied we find numerically that ap{—p)/p*—0", the
(b) value of T, approaches- T ,ax and T,ax tends to infinity.
In the next subsection we analyze this critical behavior.

iy

FIG. 8. The stress tensdr,, describing the outgoing radiation ) ) o
for nearly critical solutions withM being 99.999% of the critical B. Breakdown of the semiclassical approximation?
mass. In(a) we plot the total outgoing radiation and (b) only the To understand the above late-time behavior analytically,

guantum part. The dashed, dotted, and gray curves correspond g WriteTﬁ'u(u) and(T,,(u)) explicitly, using Eqs(14) and
the infalling matter shown in Figs(8&), 3(b), and 3c), respectively. (36)

dxglax ™ is negative, and for a null boundasxg/dx*=0. ax~\ 2 axd (x7)\ 2

So at the point where the initially timelike boundary be- Tﬁ'u(u)=(m) (ax—‘) T, (xg5) (48
comes null, just before becoming spacelike, the derivative

dg/dz in Eq. (25 (which is the inverse ofixg/dx ") di-

vergesand the numerical integration terminates. Therefore,and

all solutions for which the integration terminates at a finite

value ofxg are supercritical, while the others are subcritical. K\ 1 ax~\? IXg (X7) 2
For the profiles in Fig. 3 the continuous dimensionless ~ (Tuu(U))=—— 1_—()\x+)2 0\ Tax
parameters in solution space aM/\ and\e in case(a), B (49)

M/N, Ne and\vg in case(b), andM/\ (thel; are not con-

tinuous parametersn case(c). We approach the critical so- . . . .
lutions by varying one of the parameters, while keeping thaVe take the classical stress tensor describing the incoming

others fixed. First we takex=M/\ to be the free parameter. matterT¢', to be everywhere regular, i.e., finite and smooth.
In case(a) we fix \e=5, and in caséb) we fix \e=0.1, Therefore, the nontnwgl contributions to EZC(QB) and (49
\vo=10. We find that in all the above cases there exists £0Me from the “redshift factor” ¢x/ou)®, or from the
critical valuem* such that ifm<m* the solutions are sub- blueshift factor” (oxg/dx~)?. Consider first the redshift
critical while if m>m* the solutions are supercritical. The factor. From the coordinate transformatid8l) we get
value of m* depends on the values of the fixed parameters(¢X /du)?=exp(~2\u). If we ignore the back reaction, i.e.,
To study the behavior of the solutions just below criticality, take k=0 as explained ii29], the boundary curve of the
we numerically integrate the boundary equation for the case@fitical solution first becomes null as—, and the redshift
0<Am/m* <1, whereAm=m* —m. We takex=10"2 in  factor approaches zero. However, when we include the back
this Section, in order to be able to eas”y probe the regimel;eaction, the redshift factor at the pOint where the boundary
Am< k. (The values ofn nearm* are of order 1 and thus Pecomes null is finite, as can be seen as follows. Let
are still large with respect ta.) Then we calculate the out- (X ;) be the point at which the boundary curve becomes
going radiation ord} . In Fig. 8 we show the radiation on null. At that point an apparent honzo_n is forme_d, since when
3; for the three case€d), (b), and (c) of Fig. 3, where the bogndary_cur\_/e_becomes spacelied descrlbesablgck
Am/m* ~10"5. We shift theu coordinate tau—u, , where hole singularity, it is surrounded by an apparent horlzo_n
u, corresponds to the last classical reflected null [iag., [10_]'2¢ Thf equation for the apparent horizon s
u, =\~ Un[—Ax3(x;)—P. /\]. In Fig. 8@ we show the to- 7€ /9x” =0 [26], and using Eq(21) we get

tal stress tensonJu in units of A2, describing the outgoing
radiation onJ , and in Fig. 8b) we show only the quantum

K
vy (xt) = + e
part. The quantum radiation is scaled by¥€), such that M X ) =P (xT)IN+ (50)

4NxT’
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where the apparent horizon curvexs=x_{(x"). Defining  point at which the boundary is null. Therefore, the point
AP, =P, (x"—»)—P,(xJ) and using Eqs(31) and(50), (X< ,X;) must be an inflection point, i.ea=0. Also,

we find at & ,x;) for a general critical soluton we  have
. , (ﬁTi'+/ax+)Xc+<—;</[2(x§)3], which is necessary for the
‘?L) — (%_ Ai) _ (51) apparent horizon in Eq50) to become timelike beyond the

au ) - A A point (x; ,x.). We, therefore, get from Eq(55) that

TLU(UO):A5‘3 with A>0. For points on the boundary to
Note that the apparent horizon is null a&(,x; ). This can  the past ok , Tf,=+A| 8~ and for points to the future of
be seen by showing that the derivative of E80) with re-  x_, TLU:—A|6|‘3 as|6|—0. Thus, for critical solutions
spect tox™ vanishes at the poinix{ ,x;) on the boundary the radiation flux diverges in opposite ways on both sides as
X=0, whereX is given by Eq.(21). From the definiton x"—x_ . For almost critical solutions one gets the nearly
P (x")=/dx"TY, (x*) and the fact thatx,/ox" =0 at  divergent results shown in Fig. 8.
(Xd %), we get The fact thatT!, diverges does not necessarily signal a
breakdown of the semiclassical approximation in which the
metric and dilaton fields are treated as classical dynamical
fields. From conservation of energy we know that the total
amount of outgoing radiatiofthe sum of positive and nega-
It follows thatTﬁ' (v(xc*)) is of orderx\?, which is the same tive parts, is finite and equals the total amount of incoming

v

as the quantum contribution. Therefokg, must be close to radiation. Moreover, the total amount of positive-energy ra-

the cutoff pointx; of the classical matter distributiofthe  diation aloneE . in the region betweer, andx, onJg is
location ofx, is shown in Fig. 2, assuming that the profile proportional to T, AX™, where Ax™ =x; —X, . From
AP+z(aP+/ax+)Ax+=TEr'+(x+)Ax+, where AX+Ex; Eq. (55 that E, is finite. The same holds for the total
—xJ<x; and using Eqs(50—(52), we finally get amount of negative-energy radiation. Thus the divergence in
2 [ K 2 2Ax" [ K 2 or “thunderpop” [9]. Although a shock wave does not nec-
_ o lanxg T x| anx; (53 essarily imply a breakdown of the semiclassical approxima-
< A
Thus, the redshift facta53) is finite at (; ,x; ), and is zero strong 'evide.ngef for such a preakdown. Let us cailculate the
only if we neglect the back reactionk&0). fluctuations inT . As an estimate for the fluctuations one
ously, when the boundary curve becomes null the blueshift A
factor diverges. This divergence, together with the finiteness
gences in Eqs48) and (49) at u;=u(x; ). But what about =
the total stress tensof, =TS, +(T,)? From Egs.(48),
(49), and(52) we see that atx ,x_ ) the diverging terms in
T¢, and(T,,) cancel each other, leaving a finitd,,: -

T, (x))= (52)

(2x2)?

Mv,u’v’(xax,)

(TLL 00T, (X)) = (T 0K T, (X))
(ThLOONTL, L (x)
C/.LV,[.L'V’(X!X,) ‘
(10, 00NTE, ()|

T9 (v) has no anomalously long thil Expanding X.—Xg =0, we find thatAx™=bs%. It then follows from

the densityT|,, can be viewed as describing a “shock wave”
oxX~
(W :
tion, an examination of the fluctuations mjw provides
Next, consider the blueshift factorgX:/ax~)2. Obvi-  Can use the quantifs3,34
of the redshift factor and® , , is the reason for the diver-
Tuu

(56)

2

gy <N
TuulUe)= 4 (54) Far below criticality, withx and x’ sufficiently apart, the

numerator in Eq(56) will be less than or of the order of
So why do we get divergences in the total stress tensolyz;2 [see Eq(46)]. On the other hand, the denominator is of
shown in Fig. 82)? To understand this behavior, consider aine order ofx2=N2#2. Hence, in this case the fluctuations
point[Xy ,Xo =Xg (Xg)] near &; ,x;) on the boundary of a (56) will be of the order of IN even in the region of negative
critical solution. Definingé=x. —x, and expanding Egs. energy. In the larg&\ limit these fluctuations are small and
(48) and(49) about K. ,x_) to leading orders i, dropping  the semiclassical approximation is valid. However, for criti-

the finite term(54), we find cal or nearly critical solutions this is no longer the case. Let
5 o us e§timate4’uuu/u,(u,u’) for a _cr_itical or nearly critical
T (Ug)=— K K 4 aTL 3 solution, with u and .u’ sufficiently far apart that
uut=o aAxg | | 2(x0)3 ox*t . (ad+bs»)?’  wvg(u)—vg(u’)~\"1, which sets a natural length scale. Let

X u’ approachu., and takeu to be in the region of negative
(55 energy such thatg(u) —vg(u’)~\ "1, which is consistent
with the quantum inequalit§87). Then using Eq946), (49),
where a=[d’xg/d(x")?]., b=[d*%z/d(x")%]., and (54), andq(56), we getqforuyjzjc g Eqsl46), (49
Up=u(Xy). The point & ,x.) cannot be a local maximum

of the boundary curve, since the boundary curve of the criti- 1 dvg(u’)\?
cal solution never becomes spacelike. It also cannot be a A'uuufu'(U,U')NN( EnY )

local minimum since by construction it is the fistnd only

(57)

u’'—u.
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For any giverN, no matter how large, while keepingfixed, 8N(x)2 ( dxg

we can findu’ sufficiently close tau. such that the blueshift Aus T \ax* . (62)
factor (dvg/du)? in Eq. (57) is dominant ovemN, and the min

fluctuqtlons(57) are large. We regard th!s ano.malous behav'Sincex,;<x2+ is finite, as one approaches the critical solu-
ior as implying a breakdown of the semiclassical approxima-

; - +
tion at criticality. Unlike in the 4D case, where the tempera-tlon (‘?XB/'??( Jmin approache§ zero an_d so daka. If the_:
ture of the black hole formed just above criticality amount of informationAl carried by this burst of negative

approaches infinity, in the 2D case the black hole tempera@nergy is finite, then as we approach the critical solution the

ture is a|WayS a finite Constarﬂ:BH:)\/zﬂ-, but neverthe- information denSityl :A”AU, diverges. In the next subsec-
less, the semiclassical approximati¢even in the largeN  tion we show that this is indeed the case.

limit) breaks down at criticality. Also, for the critical solu-
tion the quantityp’ = dxg/dx~ diverges ak; , and dropping
the last term on the RHS of E(LY), i.e., the moving mirror
term, becomes problematic even in the lahgdéimit.

B. Entropy and information

The results regarding the quantum part of the energy-
momentum tensor discussed in the previous sections may
plausibly be interpreted as arising from the creation of
particle-antiparticle pair$35]. The particles reach infinity
J& and give rise to the positive-ener@ilawking radiation,
while the antiparticles carrying negative energy are reflected

VI. HIGH DENSITIES OF INFORMATION

A. Quantum limitations on the negative-energy radiation

Let us calculate the relative-correlation functi@tv) for
nearly critical solutions. As in Fig.(@), we take the infalling
matter to be the one shown in Fig(a@ with Ae=5, but
while in Fig. 7@ we takeAm/m~0.9, in this section we

from the boundary and give rise to the negative-energy ra-
diation onJp . If it were not for the negative-energy burst of
radiation, the correlations between the particles and antipar-
ticles, shown explicitly in Fig. 7, would be lost and the final

take Am/m~10~°. The results for the relative correlations state would be a mixed state with nonzero entropy. The en-
are shown in Fig. (b). We see that in the region of the tropy of this mixed state can be found using the fact that the
Hawking radiation (8<Au<10.5) the relative correlations spectrum of the outgoing positive-energy quantum radiation
are very small. Then in the region of the brief burst of negadis almost thermal, as can be seen by calculating the corre-
tive energy, the relative correlations increase sharply to exsponding Bogoliubov coefficien{s86]. The entropy of this
tremely high values of the order of 10 and then sharply thermal radiation is the dimensionless Boltzmann entropy
decrease to one. It is this sharp increase in the relative co[21]
relations that ensures a unitary evolution. If it were not for
the negative-energy burst the correlations would be lost and
the final state would be a mixed state.

The information encoded in these correlations is very
dense as the burst of negative energy is very localized where is the energy density of the thermal quantum radia-

(62

sBo|=2h*1&ff° Ewdy,

Fig. 8@]. To find an upper bound on the duration of thetion, £=(T,,), anduy is the value olu at which the thermal

negative-energy bursAu, we use the quantum inequality
(37). To estimate the value dfT! |, we use the analytic
expressiong48) and (49) for a nearly critical solution. The
quantity|Eed is approximately of the order of

|Enedw|(TLu)min|Au2(TLu)maXAu- (58

From Egs.(48) and (49) one can see thafT{,,)max COrre-
sponds to the maximum afxg/dx . Let (x.,,X,) be the
point on the boundary curve for which!, is maximum.
Using the boundary equatiod(x™,xg)=Xg and the solu-
tion (21) we find that, at the maximum ofxg/dx ",

T, ()= (59

2(Xm)?’

From Eqs.(48), (49), (53), and(59) we find that, for a nearly
critical solution[for which (9xg/dx ™) min is very small,

oxg | 2
ox*| -
min

From Eqs.(58) and(60) and the quantum inequalitg7), we
get

3

(T! -

uw) ma= 6M2(x" ) (60)

radiation ends. From Fig.(B) we see that as we approach
the critical solution, the thermal quantum radiation is almost
independent of the specific profile of the infalling matter.
Therefore, to get an estimate of H§2) one can calculate it
for the case of very localized infalling matter. In that case
one finds analytically thaf is given by[15]

_ K\2

E= a (63

1
1_(1+)\Ae"“)2)’

where A=M/(\3xg), andx*=x¢ is the null trajectory of
the localized (shock-wave infalling matter. Then, the
Boltzmann entropy of the thermal radiation is

N [4M
Sgol= gm ﬁ )

where we assume that Iff¥\«x)>1. The entropy(64) is by
definition the amount of information that is lost by ignoring
correlations between the thermal radiation and the later burst
of negative energyl,st=Sgoi- This information cannot be
recovered from the thermal radiation before the arrival of the
negative-energy burst. After the burst of negative energy all
the correlations between the particles and antiparticles are
restored, and we get a pure state of zero entropy. This is
expected since we impose reflecting boundary conditions and

(64)
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our space-time has a trivial topology. Therefore, the infor-evaporates. If the energy and energy density of the initial
mation Al that is gained during the arrival of the burst of configuration of the scalar fields are below certain critical
negative energy equalg:: values, i.e., the subcritical or weak initial data case, then the
scalar fields do not form a black hole, but instead are re-
(65) flected from the boundary and escape to infinity. On the
other hand, if the energy and energy density are above the
critical values, i.e., the supercritical or strong initial data
case, then the scalar fields collapse to form a black hole. This
created black hole evaporates by emitting Hawking radia-
tion. In a previous work10] we found that such evaporation
) . (66) leads to an end-state geometry similar to that of a 4D semi-
max infinite throat. Here, we study subcritical solutions, espe-
N o . cially those near criticality, for general smooth initial data.
As the critical solution is approacheid; . By combining analytical and numerical techniques we in-
Even though our space is one dimensional, the ré6lt  \egtigate the detailed structure of the classical and quantum
suggests that the way information is transferred by th&ne-joop contributions to the outgoing radiation reaching
negative-energy burst is different from that by which infor- 5y mhtotic future null infinityd;; . For the subcritical solu-
mation is transferred ||hn§ar Chanpels. The theoreucal UP~ tions, we find that before the reflected massless classical mat-
per b_ound on the bulk of information flow N linear chan- ter fields reachy , positive-energy quantum radiation is ob-
nels is[37] + : .
served atiy and continues as the classical matter reaches
i E Jx - This positive-energy quantum radiation is followed by a
linears 5 —-IN(N), (67 flux of negative-energy quantum radiation.

For profiles of incoming classical matter that encode in-
where the “message” is transferred with positive energyformation in bits consisting of pulses of two different ampli-
E. Suppose that this bound could be extended to negativ'@des, we calculate how the encoded information appears in
energiesE<0, by replacingE in Eq. (67) by |E|. From Eq.  the outgoing classical profile d¥, . For the quantum radia-

N [4M
Al =1 jo5= Sgoi= €|n el
As we approach the critical solutiodl remains finite. Us-
ing Egs.(61) and(65), we get
Al NN [4M)  «k [dxg
|=-—=—In| — evaviieves
Au~ 48 |\ Ak ) (AXy)7\ dX

(63), we find tion, the situation is more invplved. The outgoing .positive—
energy quantum radiation by itself does not describe a pure
kN [4M state, but is strongly correlated with the negative-energy
|El= Tln A (68) quantum radiation reachirfg; at a later time. This negative-

energy quantum radiation not only ensures conservation of
Then the theoretical upper boux@l?) for our system would energy but also restores the correlations necessary for a pure
be final quantum state.
The study of solutions just below and at criticality gives
insight into the information puzzle in a unitary framework.
K) In(N). (69) As one approaches the critical solution the classical outgoing
radiation becomes very distorted at late times. Part of that
For any given sufficiently large value ®f one can find a classical radiation reaché with a time delay and has the
range of solutions just below criticality for which the semi- form of an extremely dense brief pulse. As the critical solu-
classical approximation remains valide., the fluctuations tion is approached the late-time classical energy density be-
(57) are smal] while the bound69) on | .., is exceeded by comes highly distorted and ultimately diverges, making it
| in Eq. (66). This is achieved by requiring that |mp0_55|ble to recover thg C(_)mplete classical information. Re-
\/N>(ﬁvs/f9u)max>|n(N)/87T- gardl_ng the quantur_n rad|at|_0n_, as one a_pp_roac_hes the critical
psolution the early-time radiation is indistinguishable from

the negative energy in terms of information storage raththermaI Hawking radiation from a black hole, while the en-

than information transfer. The brief burst of negative energyF'9Y density of the late-time negative-energy radiation di-

can be considered as a very localized configuration contain’€9es: making recovery of the quantum correlations impos-

ing a finite amount of information that is traveling in space. SIP!e: Although the late-time energy density of the outgoing

As one approaches criticality the density of stored informa-radiation is infinite in the critical case, the total amount of

tion becomes unbounded. This seems to be in agreemeﬁf‘ergy is finite and conserved. Nevertheless, the semiclassi-
with other considerations regarding the unboundedness &al approximation breaks down because the fluctuations in

information storage densities in quantum syst¢&&. T,, become very Iarge.
The above analysis shows that the black hole phase tran-

sition (subcritical — supercritical and the information
puzzle are intimately related. At the critical solution there is
In this work we present and study in detail a theory ofan apparent breakdown of predictability. However, this
semiclassical 2D dilaton gravity with reflectifigonforma) breakdown of predictability is related to the breakdown of
boundary conditions. This theory shares many of the featurethe semiclassical approximation. The same divergence in en-
of spherically symmetric semiclassical gravity. In particular,ergy density that makes recovery of information and quan-
massless scalar fields can collapse to form a black hole thawm correlations impossible evidently makes the semiclassi-

<

I linear= 967 In

It may be better to view the information associated wit

VII. CONCLUSIONS
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cal approximation invalid due to large fluctuationsTif,.  quantum theory appears crucial to understanding if the over-
We would like to stress that even though we take the largéll evolution can be unitary at and after the onset of black
N limit to enforce the validity of the semiclassical approxi- hole formation. Nevertheless, our results do show that as
mation for subcritical solutions, the semiclassical approximactiticality is approached via subcritical solutions, information
tion nevertheless breaks down at criticality. This may sugand correlations become essentially irrecoverable while uni-
gest that the breakdown of the semiclassical approximatiofry evolution is preserved.

at the onset of black hole formation is a fundamental result
independent of the specific model to be studied. This is sup-
ported by the fact that the crucial features discussed in Sec.
V B, i.e., the finite redshift factor and infinite blueshift fac-  We thank B. Allen, L. Ford, and J. Friedman for helpful
tor, seem to be independent of the explicit semiclassicatliscussions, and R. Landauer for bringing to our attention the
model. Thus, based on the semiclassical approximationnboundedness of information storage densities in quantum
alone, it may not be possible to trace the fate of informatiorsystems. This work was supported by the National Science
and correlations at the onset of black hole formation. The fulFoundation under Grant No. PHY 95-07740.
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