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Predictability and semiclassical approximation at the onset of black hole formation

Sukanta Bose,* Leonard Parker, and Yoav Peleg†

Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
~Received 21 June 1996!

We combine analytical and numerical techniques to study the collapse of conformally coupled massless
scalar fields in semiclassical 2D dilaton gravity, with emphasis on solutions just below criticality when a black
hole almost forms. We study classical information and quantum correlations. We show explicitly how recovery
of information encoded in the classical initial data from the outgoing classical radiation becomes more difficult
as criticality is approached. The outgoing quantum radiation consists of a positive-energy flux, which is
essentially the standard Hawking radiation, followed by a negative-energy flux which ensures energy conser-
vation and guarantees unitary evolution through strong correlations with the positive-energy Hawking radia-
tion. As one reaches the critical solution there is a breakdown of unitarity. We show that this breakdown of
predictability is intimately related to a breakdown of the semiclassical approximation.
@S0556-2821~96!06022-5#

PACS number~s!: 04.70.Dy, 04.60.Kz
.

I. INTRODUCTION

Quantum radiation from black holes@1# is necessary in
order to maintain the consistency of the second law of th
modynamics with the existence of black holes@2#. On the
other hand, evaporation of the black hole reveals one of
most fundamental problems in theoretical physics; the qu
tion of unitary evolution of the Universe. Does evolutio
from an initial pure state take place nonunitarily to a fin
mixed state@3#, or unitarily to a final pure state@4#? One of
the major obstacles to a better understanding of the Hawk
effect is the complexity of four-dimensional~4D! semiclas-
sical gravity@5#. Simplified models which may give insigh
into the possible answers are two-dimensional~2D! dilaton
quantum gravity theories@6#. The dilaton field, viewed as a
part of the geometrical structure, restores dynamics in
analogous to that of spherically symmetric 4D Einstein gra
ity. We consider the formation and evaporation of a 2D bla
hole by the collapse of massless matter scalar fields.
evaporation of the black hole via production of quanta of t
matter fields can be fully traced in the 2D semiclassic
theory, including the back reaction of the evaporation on
geometry@7–11#.

If the energy and energy density of the infalling matter a
sufficiently large, then the incoming matter forms a bla
hole. Otherwise, the original incoming matter escapes to
finity and no black hole is formed. In this latter case th
evolution is unitary and no information is lost. These unita
solutions of the semiclassical theory are called subcriti
solutions@12–15#. The study of subcritical solutions just be
low the critical threshold in which a black hole is forme
may help us to understand the process of semiclassical b
hole formation and its influence on information. Moreove
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the interesting results obtained in classical gravity concern-
ing critical behavior at the onset of classical black hole for-
mation@16# make it important to examine this critical behav-
ior in the context of semiclassical physics. In the critical
regime of the 4D Schwarzschild black hole, the black hole
mass approaches zero and the curvature near the horizon
becomes large, so semiclassical effects must be considered
Since the 4D semiclassical theory is quite complicated, in-
sight may be gained by considering a 2D theory that shares
many of its dynamical features, namely, 2D dilaton gravity
@6#. The 2D dilaton models can be derived from 4D almost
extremal dilatonic black holes@17# using the Kaluza-Klein
reduction@18#.

Although the general properties of the 2D subcritical so-
lutions, namely that they are stable and unitary, have been
known for sometime@12–14#, investigation of the explicit
evolution reveals some new features of physical importance
@15#. In Ref. @15# we studied the evolution of the subcritical
solutions with infalling matter in the form of shock waves. In
this work we extend our study to include the behavior of
subcritical solutions for general smooth initial data, with em-
phasis on the near-critical solutions.

In Sec. II we present our model of 2D semiclassical dila-
ton gravity as an initial value problem. We also derive the
general equations to be integrated numerically for arbitrary
initial data. In Sec. III we give examples involving smooth
infalling matter. The previous shock-wave results@15# ap-
pear as a limiting case of these examples.

In Sec. IV we address the question of information. The
information that may be lost in the process of black hole
evaporation is related to the correlations between the outside
world and the interior of the black hole. Two types of infor-
mation are involved:~i! ‘‘Classical information,’’ carried by
the classical matter that forms the black hole, and~ii !
‘‘Quantum information,’’ encoded in quantum correlations
between outgoing and incoming pairs of particles created by
the collapse geometry. A quantity that plays an important
role in understanding the structure of the subcritical solutions
is the outgoing radiation reaching future asymptotic null in-
finity IR

1 . In previous work@15# an explicit form of that
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radiation was found for the first time in semiclassical gravi
This outgoing radiation is intimately related to the questi
of information. In principle, for the subcritical solutions on
should be able to recover the complete information given
the initial data from that outgoing radiation. We show how
the subcritical solutions, classical and quantum informat
is encoded in the outgoing radiation reaching asymptotic
ture null infinity.

In Sec. V we consider the subcritical solutions just belo
criticality. We show that as in the classical case, in the se
classical case also solution space can be divided cont
ously into two regions, i.e., there exist continuously varyi
parameterspi in solution space, such that forpi,pi* the
evolved scalar field will not form a black hole~the subcriti-
cal solutions!, while for pi.pi* a black hole will be formed
~the supercritical solutions!. We show that as the critical so
lution is approached (pi→pi* ) the outgoing energy flux di-
verges and the fluctuations in the outgoing energy den
become very large, implying a breakdown of the semiclas
cal approximation at criticality.

In Sec. VI we show that near criticality the density
information encoded in the outgoing radiation reachingIR

1

becomes very large and diverges at criticality. This div
gence results in an apparent breakdown of predictability t
coincides with the breakdown of the semiclassical appro
mation. We present our conclusions in Sec. VII.

II. THE MODEL

A. One-loop effective action

Recently, we have proposed a modified theory of 2
semiclassical dilaton gravity@10#. The effective action of the
modified theory is

Seff5SCGHS1NSPL1Scorr, ~1!

where SCGHS is the Callan-Giddings-Harvey-Strominge
~CGHS! classical action@19#,

SCGHS5
1

2pE d2xA2gFe22f@R~2!14~¹f!214l2#

2
1

2(i51

N

~¹ f i !
2G , ~2!

SPL is the Polyakov-Liouville action@20# that incorporates
the one-loop corrections corresponding to the trace anom
of the stress energy-momentum tensor of each of theN quan-
tum matter fields,

SPL52
\

96pE d2xA2g~x!E d2x8A2g~x8!

3R~2!~x!G~x,x8!R~2!~x8!, ~3!

and

Scorr5
N\

24pE d2xA2g@~¹f!22fR~2!# ~4!
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is a local counterterm that we add in order to get an exactly
solvable theory. In the abovef is the dilaton field,R(2) is the
2D Ricci scalar,l is a positive constant,¹ is the covariant
derivative, andG(x,x8) is an appropriate Green’s function
for ¹2. The N real value functionsf i(x) are the classical
values of the massless scalar fields. One can regard each o
the f i(x) as the expectation value of the quantum field op-
erator f̂ i(x) in an appropriate quasiclassical coherent state,
ua& @21#. The effective action~1! describes the full quantum
theory in the largeN limit, in which case the fluctuations of
f and gmn can be neglected@12,10#. Recently Miković
showed that one can derive the effective action of Eq.~1!
from SCGHSby fixing the diffeomorphism gauge, solving the
constraints, and then quantizing the reduced system. After
choosing an appropriate initial quantum state, one recovers
the action~1! as a one-loop effective action@22#.

In null coordinates z6 and conformal gauge,
g115g2250, g1252(1/2)exp(2r), the action~1! takes
the form

Seff5
1

pE dz1dz2F ~]2Y!]1S X2
k

2
YD

1~]1Y!]2S X2
k

2
YD 1l2exp~22Y!

1
1

2(i51

N

]1 f i]2 f i G , ~5!

whereX[exp(22f), Y[f2r, andk5N\/12. In the large
N limit we take\ to approach zero while keepingk finite.
The kinetic action density of the system described in Eq.~5!
is a bilinear symmetric form (]1Q)M (f)(]2Q), whereQ
is a vector comprised of the (N12) fieldsx, r, and theN
matter fieldsf i , andM (f) is an (N12)3(N12) symmet-
ric matrix. One can verify that the determinant ofM is pro-
portional toX25exp(24f), and unlike in other models of
modified dilaton gravity@7#, here this determinant is nonva-
nishing for all real values off. The vanishing of the deter-
minant atX(x1,x2)50 signals a singularity.

The equations of motion derived from varying the action
~4! with respect toX, Y, and f i are

]1]2X52l2exp~22Y!, ~6!

]1]2Y50, ~7!

]1]2 f i50. ~8!

The constraints@from varying the action~1! with respect to
g66# are

2]6
2 X22]6X]6Y2T66

cl 1k@~]6Y!21]6
2 Y1t6~z6!#

50, ~9!

where after varying with respect togmn (m56, n56) we
set g115g2250 to get Eq. ~9!. Here,
T66
cl 5(1/2)( i(]6 f i)

2 is the classical contribution to the
energy-momentum tensor of theN matter fields, and
t6(z

6) are integration functions determined by the specific
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quantum state of the matter scalar fields. A conformal coo
dinate transformation of the formz1→y1 andz2→y2, pre-
serves the form of the metric, g6650 and
g1252(1/2)exp(2r̄ ), where the new conformal mode func
tion is related to the old one by
r̄(y1,y2)5r(z1,z2)1 lnAdz1/dy11 lnAdz2/dy2. The
dilaton field is a scalar, and therefore, the fieldY transforms
such as2r. The general solution of Eq.~7! for Y is
Y(z1,z2)5Y1(z

1)1Y2(z
2), and we can choose the coor

dinates x65*z
6
exp@22Y6(z̃

6)#dz̃6, for which Y(x1,x2)
[0. In the following we use these ‘‘Kruskal’’ coordinates
denoted by (x1,x2), for which f(x1,x2)
5r(x1,x2). Henceforth, the indices6 on tensors will refer
to components in the Kruskal coordinates.

In the Kruskal gauge the general solutions to Eqs.~6! and
~8!, subject to the constraints~9!, are

X~x1,x2!52l2x1x22Ex1

dx2
1Ex2

1

dx1
1@T11

cl ~x1
1!

2kt1~x1
1!#2Ex2

dx2
2Ex2

2

dx1
2@T22

cl ~x1
2!

2kt2~x1
2!# ~10!

and

f i~x
1,x2!5 f i

1~x2!1 f i
2~x2!. ~11!

B. The initial value problem

Consider first the linear dilaton~LD! solution which cor-
responds to f i(x

1,x2)50 and t6(x
6)50 in Eq. ~10!,

namely, the solutionXLD(x
1,x2)52l2x1x2. It is defined

for 0,x1,` and2`,x2,0. In the manifestly flat coor-
dinates,s6[t6s56l21ln(6lx6), the LD solution corre-
sponds to the flat metric,ds252ds1ds2, and the dilaton
field has the linear form,f52ls. As shown in Fig. 1, the

FIG. 1. Penrose diagram of the linear dilaton solution. Th
heavy curve is the boundary curve separating the regions of w
and strong couplings.
r-

-

-

,

null curve x150 defines left asymptotic past null infinity
IL

2 , the null curvex252` defines right asymptotic past
infinity IR

2 The null curvex250 is left asymptotic future
infinity IL

1 , andx151` is right asymptotic future infinity
IR

1 . In general, the initial data onIL
2 and IR

2 determine
completely the solution in the region 0,x1,`,
2`,x2,0. Specifying these initial data is equivalent to
giving f i

2(x2) and t2(x
2) on IL

2 and f i
1(x1) and t1(x

1)
on IR

2 . Giving these functions, we integrate Eq.~10! to find
the solution everywhere; however, such a solution may not
be physically acceptable in the whole space-time, since sin-
gularities may appear. One can say that our one-loop effec-
tive theory is exactly solvable; however, there is one major
difficulty with such an approach. Consider first the LD solu-
tion: while on IR

2 we haves→` and exp(2f)50, on IL
2

(s→2`) we have exp(2f)→`. From the action~2! we see
that exp(2f) plays the role of the ‘‘coupling constant,’’ and
so the couplingdivergesonIL

6 . One can split the space-time
into a region of weak coupling and a region of strong cou-
pling, see Fig. 1. Those two regions are divided by a curve,
the ‘‘boundary curve’’~specified below in more detail!. In
the strong coupling region we cannot trust the one-loop ef-
fective theory, especially onIL

6 . Therefore, giving the initial
data onIL

2 is, in general, unphysical. One way to avoid this
problem is to consider the solutions only in the weak cou-
pling region and impose on a timelike curve boundary con-
ditions that preserve unitarity and conserve energy. These
criteria are satisfied by imposing reflecting boundary condi-
tions on the boundary curve. Thus, the initial value problem
that we define is the following: onIR

2 we give the initial
data,f i

1(x1) andt1(x
1), and on the boundary curve defined

by x15xB
1(x2)[p(x2), we impose the reflecting boundary

condition.
Before specifying the boundary condition we elaborate on

the energy-momentum tensor. Thec numberTmn
f , which one

gets after varying the effective action in Eq.~1! with respect
to the metricgmn, can be regarded as the expectation value of
the quantum operatorT̂mn

f in the quasiclassical coherent state
ua&, @21#. Namely,

Tmn
f [^auT̂mn

f ua&5Tmn
cl 1^Tmn&,

where in the expansion of^auT̂mn
f ua& the first termTmn

cl is of
order\0 and is the classical part of the stress tensor, while
the second term̂Tmn& is of order\ ~or N\ for N fields! and
is the one-loop contribution. The one-loop contribution to the
energy-momentum tensor is given by

^Tz6z6&5k@]z6
2 r2~]z6r!22tz6~z6!#,

^Tz1z2&5k]z1]z2r ~12!

in some general null coordinates (z1,z2). Equation~12! fol-
lows by integrating¹m^Tmn&50 and using the trace anomaly
@23# ^Tm

m&52kR(2)/2 for the N massless matter fieldsf̂ i
@24#, or equivalently, by varying the Polyakov-Liouville ac-
tion ~3! with respect to the metric@20#.

One can argue that operationally the split between the
classical and quantum radiation is not well defined when we
consider a single~scalar! field. However, forN fields one

e
eak
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could classically excite only some of the fields. Then th
total radiation in the remaining fields is just the quantu
part. To operationally distinguish among theN fields, one
can, for example, add another quantum number to these s
lar fields.

The reflecting boundary condition is@25,13,5,15#

T22
f ~x2!5@p8~x2!#2T11

f @xB
1~x2!#

1k@p8~x2!#1/2]2
2 @p8~x2!#21/2, ~13!

where 85]/]x2. The last expression on the right-hand sid
~RHS! of Eq. ~13! is due to quantum particle creation from
the boundary, which is effectively a moving mirror@5,25#.
One can split the reflecting boundary condition~13! into its
classical and one-loop parts,

T22
cl ~x2!5@p8~x2!#2T11

cl @xB
1~x2!#, ~14!

t2~x2!5@p8~x2!#2t1@xB
1~x2!#

2
@p8~x2!#1/2]2

2 @p8~x2!#21/2

11k/~2XB!
. ~15!

If we take the fieldsf i to satisfy Neumann or Dirichlet
boundary conditions, then the classical reflecting bounda
condition ~14! is satisfied.

Next, we consider the boundary curve. We would like
to separate the regions of weak coupling, exp(2f),gc

2, and
strong coupling, exp(2f).gc

2, wheregc
2 is some parameter

that specifies the value of the coupling below which the on
loop effective theory is trustworthy. Since
X(x1,x2)5exp(22f), we can define the boundary curve t
be the curve on whichX(x1,x2)5XB[gc

225 const. The
solutionX(x1,x2) should be determined by the initial data
on IR

2 and by the boundary condition~13!. The boundary
curve,X(x1,x2)5XB , depends on the solutionX(x1,x2).
Thus, we get a highly nonlinear problem, unlike the straigh
forward problem, with initial data given onI2, having solu-
tions~10! and~11!. We next reduce this nonlinear problem t
solving a single ordinary differential equation.

C. The boundary equation as a second-order ODE

The functionT11
cl (x1) can be viewed as the part of the

initial data onIR
2 that describes the classical profile of th

infalling matter. We takeT11
cl (x1) to be a general function

of x1 with compact support. On the other hand,t1(x
1) de-

scribes the quantum state onIR
2 . Since in this work we

would like to study the Hawking effect, we take the quantu
state to be such that onIR

2 we have no quantum radiation
@i.e., ^Tvv&(v)50, wherev is the asymptotically flat null
coordinate onIR

2 , v5l21ln(lx1)]. Since in the asymptoti-
cally flat null coordinates the conformal moder approaches
zero onIR

2 , we get from Eq.~12! that in these coordinates
tv(v)50. To find the correspondingt1(x

1) in Kruskal co-
ordinates, we use the tensor transformation of^Tz6z6& in Eq.
~12! ~under a conformal coordinate transformation! and get

t1~x1!5S ]v
]x1D 2$tv~v !2 1

2Dv
S@x1#%5

1

~2x1!2
, ~16!
e

ca-

e

ry

it

e-

t-

whereDy
S@z# is the Schwarz operator defined as

Dy
S@z#5~]y

3z!/~]yz!2 3
2 ~]y

2z/]yz!2 ~17!

and we usetv(v)50. Equation~15! then becomes

t2~x2!5
1

4 S p8~x2!

p~x2! D 21 @p8~x2!#1/2]2
2 @p8~x2!#21/2

11k/~2XB!
.

~18!

The second term on the RHS of Eq.~18! is the result of
particle creation from the dynamical boundary. Recall that in
the 4D Hawking effect@1#, the ‘‘boundary curve’’ isr50
~the fixed point of spherical symmetry!. The curver50 does
not act as a moving mirror and there is no particle creation at
r50. The creation of particles~i.e., the Hawking radiation!
is due to the curvature of space-time near the horizon. Can
we also eliminate the moving mirror effect in our 2D theory?
We see from Eq.~18! that if XB!k, then the moving mirror
term is negligible. This is consistent with the fact that
X5exp(22f) is indeed the 4D radial coordinate@18,26#, and
XB→0 corresponds tor→0 in 4D. However, one should be
careful when taking the limitXB→0. It corresponds to the
limit gc

2→`, which defines the strong coupling region. The
one-loop effective theory~1! is trustworthy as long as
gc
2\!k!1. In this case@in the region of interest, i.e.,
X(x1,x2)>XB#, the quantum corrections for the dilaton-
gravity part are negligible compared to the one-loop correc-
tions for theN scalar fields, which in turn, are small com-
pared to the classical contribution. Therefore, we need to
satisfy bothgc

2\!k!1 and XB!k. With XB
215gc

2 . we
combine the conditions and get

1

N
!XB!N\!1. ~19!

One can always take the largeN limit in such a way that Eq.
~19! is satisfied andXB is arbitrarily close to zero. In the
following we take this largeN limit. Equation~18! then re-
duces to

t2~x2!5
1

4 S p8~x2!

p~x2! D 2. ~20!

One can write the general solution~10! in the form

X~x1,x2!52lx1@lx21l21P1~x1!#2
k

4
ln~lx1!

1
M ~x1!

l
1F~x2!, ~21!

whereM (x1) andP1(x
1) are the mass and momentum of

the infalling classical matter,

M ~x1![lE
0

x1

x1
1T11

cl ~x1
1!dx1

1,

P1~x1![E
0

x1

T11
cl ~x1

1!dx1
1, ~22!

and
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F~x2![2Ex2

dx2
2Ex2

2

dx1
2@T22

cl ~x1
2!2kt2~x1

2!#.

~23!

Here, F(x2) is a function ofx2 to be determined by the
boundary conditions. Before we obtain the equation for t
boundary curve, let us define the following dimensionle
quantities:

z[lx2 and q~z![lxB
1@x2~z!#5lp@x2~z!#, ~24!

whereq(z) is a dimensionless function that specifies the l
cation of the boundary curve. Using Eqs.~9!, ~20!, and~21!
and acting with ]2/]z2 on the boundary equation
X(xB

1 ,x2)5XB , we get a second-order ordinary differenti
equation~ODE! for q(z)

Fz1Pq~q!1
k

4q~z!Gd
2q

dz2
12

dq

dz
12FTqqcl ~q!2

k

4q2~z!G S dqdzD
2

50, ~25!

where

Tqq
cl ~q![l2T11@xB

1~x2!# and Pq~q!5Eq

Tqq
cl ~ q̄!dq̄

~26!

are given functions ofq, which are determined by the initia
data onIR

1 . Equation~25! is a second-order, nonlinear, or
dinary differential equation for the boundary curveq(z). We
solve it numerically for different profiles of the infalling mat
ter using an embedded fifth-order Runge-Kutta ODE integ
tion routine@27#. After obtainingq(z) we use Eqs.~14! and
~20! to find T22

cl (x2) and t2(x
2) and integrate Eq.~10! to

obtain the solutionX(x1,x2).

III. SOLUTIONS

A. Vacuum solutions

In this subsection we consider solutions of Eq.~25! with
different profiles of infalling null matter. First consider th
vacuum solutions, for whichTqq

cl (q)5Pq(q)50. The gen-
eral solution of Eq.~25! with Tqq

cl (q)5Pq(q)50 and the
initial conditions q(z→2`)→0 and (dq/dz)(z→2`)
→0, is

qvac~z!52
a

z
, ~27!

wherea is some positive constant. One finds from Eqs.~22!
and ~27! the one-parameter family of vacuum solutions

Xvac~x
1,x2!52l2x1x22

k

4
ln~2lx1x2!1

k

4
ln~a!2a.

~28!

These are static solutions@10#. For a.k/4 the solution~28!
has a timelike singularity in the strong coupling regio
e2f→`, while for a,k/4 the solution has null singularities
in the weak coupling regione2f→0. The solution with
a5k/4 is everywhere regular, has the geometry of a se
he
ss

o-

al

l
-

-
ra-

e

n,

mi-

infinite throat, and can be regarded as the ground state of the
theory@10#. One can show that@28# compared to this ground
state, the ADM mass of the static solution in Eq.~28! is

M5lFk4 lnS 4ak D2S a2
k

4D G . ~29!

B. Smooth infalling matter

In the following we consider more general infalling mat-
ter with compact support,x1

1,x1,x2
1 . For x1,x1

1 , i.e.,
region I in Fig. 2, we haveTqq

cl 5Pq50, and the solution is
one of the vacuum solutions~28!. If the total mass of the
infalling matter,M[M (x1→`) in Eq. ~22!, is above a criti-
cal valueM cr , then a black hole is formed. The critical mass
M cr is of the order ofla @10# and is determined numerically
from the profile of the infalling matter stress tensor and the
Arnowitt-Deser-Misner~ADM ! mass of the initial space-
time. We takeM /l@k for the validity of the semiclassical
approximation@29#. Since we consider subcritical solutions
in which a black hole does not quite form,a is at least of the
order of M /l and hencea@k. We take a51 and
k51026. Our results would be similar for any values ofa
and k as long asa@k. We also fix the scale of thex1

coordinate such thatlx1
151. Definez1 to be the value of

z5lx2 in Eq. ~25! corresponding toq(z1)5lx1
1 ~see Fig.

2!. Usinglx1
151, a51, andXB'01 we find from Eq.~28!

thatz1521. Forz,z1, i.e., in regions I, II, and III in Fig. 2,
the solution of Eq.~25! for q(z) is given by Eq.~27!, and the
solution forX(x1,x2) is

X~lx2,z1!52lx1@lx21l21P1~x1!#

2
k

4
ln~2l2x1x2!1

M ~x1!

l
.

FIG. 2. Penrose diagram of a typical subcritical solution. The
infalling matter with support on the intervalx1

1,x1,x2
1 on IR

1 is
reflected from the boundary to become outgoing toward future null
infinity IR

1 . Here,z5lx2.
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FIG. 3. The incoming stress tensorTvv(v) for
three different families of initial data, with~a!
corresponding to Eq.~32!, ~b! corresponding to
Eq. ~38!, and~c! corresponding to Eq.~40!.
For z>z1521 ~see Fig. 2! we have to integrate Eq.~25!
numerically to find the boundary curveq(z). So the range of
z to be integrated numerically is@21,0). The initial values
for the numerical integration of the ODE~25! are@using Eq.
~27! with a51#: q(z5z1)51 anddq/dz(z5z1)51.

Before we give the results of our numerical integration,
is convenient to define coordinates in which the dynamic
metric of our space-time corresponding to the solution~21! is
manifestly asymptotically flat onIR

6 . In the Kruskal coordi-
nates, the metric is

ds252exp@2r~x1,x2!#dx1dx252X21dx1dx2,
~30!

whereX5exp@22r(x1,x2)# in these coordinates and is given
by Eq. ~21!. The required asymptotically flat coordinates ar
(u,v), defined in terms of the Kruskal coordinates by th
following conformal coordinate transformation:

v5l21ln~lx1! and u52l21ln~2lx22P1 /l!,
~31!

whereP15P1(x
1→`) is the total momentum of the in-

falling matter. Rewriting the metric~30! in terms of the
(u,v) coordinates shows that exp@2r(v,u)#→1 asv→` on
IR

1 andu→2` on IR
2 .

Consider now the stress tensor describing a smooth pro
of infalling matter:

Tvv
cl ~v !5H 0, v,0,

~2M /e!sin2~pv/e!, 0,v,e,

0, v.e,

~32!

wherev5l21ln(lx1) . In Fig. 3~a! we show the profile~32!.
it
al

e
e

file

Here, M is the total mass of the infalling matter,
M5*0

`Tvv
cl (v)dv, ande is its width.

To integrate Eq.~25! we need to writeTqq
cl in terms of

q. Using Eqs.~24! and ~26! in Eq. ~32!, we get

Tqq
cl @q#5H 0, ln~q!,0,

2M

l2eq2
sin2@p ln~q!/~le!#, 0, ln~q!,le,

0, ln~q!.le.
~33!

We numerically solve Eq.~25! with Eq. ~33! for different
values ofM /l andle, and find the corresponding boundary
curvesq(z) and solutionsX(x1,x2).

It is difficult to extract physical information from the
coordinate-dependent definition of the boundary curve. For
example, as long as the boundary curve is everywhere time-
like, one can define null coordinatesy15x1 and
y25xB

1(x2) in which the boundary curve is ‘‘static,’’ being
given by the equationy50, wherey is the spatial coordinate
y[(y12y2)/2. On the other hand, a quantity giving physi-
cal insight into the nature of the solutions is the outgoing
radiation reaching future asymptotic null infinityIR

1 . The
outgoing radiation consists of a classical part~14! that is
reflected from the boundary, and a quantum part~12!. We
calculate both in the manifestly asymptotically flat null co-
ordinates onIR

1 . In terms of theu coordinate defined in Eq.
~31! we have, onIR

1 ,

Tuu
cl ~u!5~lx21P1 /l!2T22

cl
†x2~u!‡. ~34!

On the other hand, Eq.~12! gives
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^Tuu&~u!52ktu~u!, ~35!

where we used the fact thatr and its derivatives vanish on
IR

1 in the manifestly asymptotically flat coordinates. Furthe
more, using the coordinate transformation~31! and Eq.~16!
with x1→x2 andv→u, one can expresstu(u) in terms of
t2„x

2(u)… to get

^Tuu&~u!5~kl2/4!@12l22~lx21P1 /l!2t2„x
2~u!…#.

~36!

Putting the numerically integrated functionq(z) @defined in
Eq. ~24!# and the initial dataT11

cl (x1) in Eqs.~14! and~20!,
we find the profiles of the outgoing matter fluxesTuu

cl and
^Tuu&. The results are shown in Figs. 4~a! and 4~b! in which
the infalling matter is described by the profile given in Eq
~32! with le55. In Fig. 4~a!, the mass isM /l50.1 ~which
is 10% of a), while in Fig. 4~b! it is M /l51. The solid
curves depict the total stress tensor of the outgoing radiati
Tuu
f 5Tuu

cl 1^Tuu&, in units ofl2, while the gray curves cor-
respond to the quantum radiation stress tensor^Tuu&. Since
k51026 is much smaller thanM /l, the quantum radiation is
scaled up in the figures by a factor of 2/k523106 and hence
does not show up in the solid curve.

As we will see later in Sec. V, when the total mass an
the local density of the infalling matter are large enoug
then a black hole is formed; otherwise, the infalling matt
escapes to infinity without forming a black hole. For a fixe
width e in Eq. ~32!, the mass of the infalling matterM fully
determines its profile. LetM cr be the mass above which a
black hole is formed. As discussed in Sec. V, forle55, we
find thatM cr /l.1.5. In Fig. 4~a!, we take the mass of the
infalling matter to be about 6% of the critical massM cr . We
see that the total outgoing radiation is very similar to th

FIG. 4. The stress tensorTuu in units ofl2 describing the out-
going radiation onIR

1 . The solid curves describe the total outgoin
radiationTuu

f while the gray curves describe only the quantum pa
^Tuu&, scaled by 2/k. In ~a! the mass is about 6% and in~b! it is
about 65% of the critical mass for the infalling matter shown in Fi
3~a!. In ~c! the mass is about 3% and in~d! it is about 65% of the
critical mass for the case shown in Fig. 3~b!.
r-

.

on,

d
h,
er
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e

incoming radiation, Fig. 3~a!. The profile of the matter field
is almost unaffected by the evolution. The curvature and
coupling are everywhere small and the infalling matter is just
reflected from the boundary with almost no distortion. In the
4D case, this corresponds to ‘‘weak’’ initial data@30# for
which the null ~scalar! field goes through the origin of the
radial coordinate,r50, without developing large densities,
and escapes to infinity with very little distortion.

The quantum part of the outgoing radiation stress tensor
^Tuu& in Fig. 4~a! is almost symmetric.~This is true only for
a symmetric incoming classical profile far from the critical
point.! The quantum radiation includes a region of negative-
energy density puzzle that ensures energy conservation. In
Sec. IV we will calculate the quantum correlation function
and show that the negative-energy radiation is strongly cor-
related with the positive-energy radiation. This strong corre-
lation is necessary for the quantum state onIR

1 to be pure.
In Fig. 4~b! the mass of the infalling matter is about 65%

of the critical massM cr . We see that the outgoing classical
radiation is more distorted compared to that in Fig. 4~a!. In
this case the infalling matter strongly distorts the space-time
before getting reflected from the boundary and escaping to
infinity without forming a black hole. Likewise, the quantum
radiation in Fig. 4~b! is no longer symmetric. The reason for
this is the following: AsM increases, the total amount of
positive-energy quantum radiation increases. Because of en
ergy conservation also the total amount of negative-energy
radiation increases withM . While the width of the positive-
energy radiation increases withM , the width of the negative-
energy radiationDu satisfies the quantum inequality@15,31#

uEneguDu,k, ~37!

whereEneg is the total amount of negative-energy quantum
radiation andDu is its width ~as measured by an asymptotic
observer!. SinceuEnegu increases withM , the widthDu must
decrease and we get a nonsymmetric profile of^Tuu&. As we
will see in Sec. V, asM approachesM cr the widthDu ap-
proaches zero, and we get a brief burst of negative energy.

As a consequence of general covariance of the effective
action, Eq.~1!, we have¹mTmn

f 50. We find numerically that
the energy defined in terms ofTmn

f is conserved, i.e.,
*I

R
2Tvv

f dv5*I
R
1Tuu

f du. This is what one would expect if the

reflecting boundary atX[exp(22f)501 corresponds to a
static boundary such asr50 in 4D, as discussed in the para-
graph after Eq.~18!. The \ expansion also implies that
¹mTmn

cl 50 and¹m^Tmn&50 ~the latter was used in arriving
at ^Tmn& from the trace anomaly!. Nevertheless, we find nu-
merically that the energies associated with the classical and
quantum parts alone are not separately conserved. For ex
ample,*I

R
2Tvv

cl dvÞ*I
R
1Tuu

cl du. Evidently, because the total

energy-momentum tensorTmn
f determinesf, and hence the

boundary, it behaves such as a static boundary only for
Tmn
f but not for Tmn

cl or for ^Tmn& individually. Far below
criticality, the classical and quantum parts of the energy are
nearly conserved separately. However, as one approaches th
critical solution the classical and quantum parts of the energy
each are strongly nonconserved.

Next, we consider the profile described by

g
rt

g.
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Tvv
cl ~v !5

{
0, v,0,

M

~v01e/2!
sin2~pv/e!, 0,v,e/2,

M

v01e/2
,

e

2
,v,v01

e

2
,

M

~v01e/2!
sin2@p~v2lv0!/e#, v01

e

2
,v,v01e,

0, v.v01e.

~38!

In Fig. 3~b! we show the profile~38! with v0 /e5100, which is nearly a square wave form. Forv0@e, as shown in Fig. 3~b!,
the energy-momentum tensor~38! describes infalling matter of nearly homogeneous density. The total width of the profile is
(v01e). In terms of theq coordinate defined in Eq.~24!, the profile~38! is

Tqq
cl @q#5

{
0, ln~q!,0,

M

l2~v01e/2!q2
sin2@p ln~q!/~le!#, 0, ln~q!,le/2,

M

l2~v01e/2!q2
, le/2, ln~q!,lS v01 e

2D ,
M

l2~v01e/2!q2
sin2$p@ ln~q!2lv0#/~le!%, lS v01 e

2D, ln~q!,l~v01e!,

0, ln~q!.l~v01e!.

~39!
We take Eq.~39! with lv0510 andle50.1, and integrate
Eq. ~25! for different values ofM /l. Using the numerically
integrated functionq(z), we calculate the outgoing classica
and quantum radiation onIR

1 , shown in Figs. 4~c! and 4~d!.
In Fig. 4~c! we takeM /l50.1 and in 4~d! M /l52. Because
the mass distribution of Eq.~38! is more spread out than tha
of Eq. ~32!, M cr is larger, having the valueM cr /l.3.0. In
these figures, the solid curves describe the total radiat
while the gray curves describe the quantum radiation sca
up by 23106. In Fig. 4~c! the mass is about 3% of the
critical mass, which is the case of weak initial data, and
similar to Fig. 4~a!. The total outgoing radiation is very simi-
lar to the incoming classical radiation, Fig. 3~b!, and the
quantum radiation is spread across the outgoing classical
diation symmetrically. In Fig. 4~d! the mass is about 65% of
the critical mass, as was the case in Fig. 4~b!. The outgoing
radiation is more distorted and the quantum radiation is no
symmetric.

Finally, recall that in Ref.@15# the case in which the clas-
sical matter had the form of an incoming shock wave w
studied. To recover the results of Ref.@15#, consider profile
~32! with M /l50.1 but with different values of the width
le. In Fig. 5, the curvesa anda are, respectively, the total
and quantum outgoing radiation in the casele55. The
curvesb andb are the total and quantum outgoing radiatio
for le51, andc andg correspond tole50.1. One can see
that asle becomes smaller, the~incoming and outgoing!
classical radiation becomes very localized, while the tran
tion of the quantum radiation from positive- to negative
energy values becomes more sudden. In the limitle→0, the
classical energy-momentum tensor can be described byd
function T11

cl 5(M /lx0
1)d(x12x0

1) and one recovers the
l

t

ion
led

is

ra-

n-

as

n

si-
-

a

results of Ref.@15#. One should remember however that as
le→0, the derivativep8 in Eq. ~15! diverges, and the large
N limit should be taken in such a way that the second term
on the RHS of Eq.~15! can be neglected@15#.

IV. INFORMATION

A. Classical structure

In Sec. III we considered infalling matter with very little
structure. In order to encode nontrivial information in the
classical infalling matter one should consider more compli-
cated profiles. For example, one can encode information in
bits. In this case the infalling null matter can be a sequence
of pulses each corresponding to one bit of information. Let
us send a message in binary numbers. The number ‘‘1’’ is
described by a pulse of relative height 1 and ‘‘0’’ by a pulse

FIG. 5. The stress tensorTuu describing the outgoing radiation
for different values ofle in the case of the infalling matter shown
in Fig. 3~a! with M /l50.1. See the text for more details.
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of relative height 0.5. As an example, consider the followi
incoming energy-momentum tensor:

Tvv
cl ~v !5(

i51

16

l iQ i~v !, ~40!

where

Q i~v !5H 20M11 sin2@10p~v2 i !#, i,v, i10.1,

0, elsewhere,

~41!

and

l iP$0.5,1,0.5,0.5,1,0.5,0.5,0.5,0.5,1,1,0.5,1,0.5,0.5,1%.
~42!

In Fig. 3~c! we show the profile~40!. It corresponds to the
binary number 0100100001101001, which is the word ‘‘H
in ASCI. In theq coordinate the profile~40! is

Tqq
cl @q#5(

i51

16

l iQ i~q!, ~43!

where

Q i~q!5H 20M

11lq2
sin2$10p@ ln~q!2 i #%, i, ln~q!, i10.1,

0, elsewhere.
~44!

FIG. 6. The stress tensorTuu describing the outgoing radiation
for the infalling matter shown in Fig. 3~c!. The solid curves de-
scribe the total outgoing radiation, while the gray curves descr
only the quantum part. In~a! the mass is about 4% of the critica
mass, while in~b! it is about 80% of the critical mass.
ng

i’’

Using Eq.~43!, we integrate Eq.~25! for different values of
M /l and find q(z). Then, we calculate the classical and
quantum radiation onIR

1 , shown in Fig. 6. In Fig 6~a! we
takeM /l50.1, and in Fig. 6~b! we takeM /l52. The solid
curves describe the total outgoing radiation, while the gray
curves describe the quantum radiation, scaled by
2/k523106.

For the profile~40!, we find numerically that the critical
mass isM cr /l.2.5. In Fig. 6~a! the mass is about 4% of the
critical mass, and indeed we see that the outgoing radiation is
very similar to the incoming one, Fig. 3~c!. This case is
similar to the ones in Figs. 4~a! and 4~c!. One can easily
recover the ‘‘classical information,’’~the word ‘‘Hi’’ !, from
the outgoing radiation in Fig. 6~a!. Also, the quantum radia-
tion is quite symmetric. We can see from Fig. 6~a! that the
classical and quantum radiations are correlated. Actually,
one can recover the ‘‘classical information’’ from the quan-
tum radiation alone. Each classical pulse results in a sharp
decrease~‘‘jump’’ ! of the quantum radiation. We see that for
a pulse of a relative height 1 the jump is twice as large as the
jump for a pulse of a relative height 0.5. Therefore, by look-
ing at the different jumps in the quantum radiation one can
recover the ‘‘classical information.’’

In Fig. 6~b! the mass is about 80% of the critical mass,
and the outgoing radiation is much more distorted than that
in Fig. 6~a!. As in the cases shown in Figs. 4~b! and 4~d!, it
is difficult to recover the ‘‘classical information’’ of Fig. 3~c!
from the profile shown in Fig. 6~b!.

B. Quantum correlation function

As discussed earlier in Sec. II, we choose the quantum
state to be the vacuum onIR

2 , so that the quantum contribu-
tion to the energy-momentum tensor onIR

2 is always zero,
^Tvv&(v)50. By construction~with the reflecting boundary
conditions and no black hole formation!, the evolution of the
quantum state must be unitary. How can we see that the
quantum radiation onIR

1 is described by a pure state? The
created quantum radiation reachingIR

1 before the escaping
classical matter is the beginning of the Hawking radiation
which is almost thermal and which, by itself, does not cor-
respond to a pure state. A pure state can be recovered from
the radiation onIR

1 only if there are strong correlations be-
tween the early-time Hawking radiation and late-time
negative-energy radiation reachingIR

1 after the escaping out-
going classical matter. We demonstrate these correlations by
calculating the correlation function

Cmn,m8n8~x,x8![^T̂mn
f ~x!T̂m8n8

f
~x8!&

2^T̂mn
f ~x!&^T̂m8n8

f
~x8!&. ~45!

The correlations between different pointsu andu8 onIR
1 are

given byCuu,u8u8(u,u8), whereu is the asymptotically flat
null coordinate onIR

1 . For the reflecting boundary condi-
tions, we have a closed form expression1 @32#

1The factorN\2 did not appear explicitly in Eq.~6! of Ref. @15#
and the values ofC22,22(u,u8) quoted there are in units of
N\2.
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Cuu,u8u8~u,u8!5
N\2

8p

@]uvB~u!#2@]u8vB~u8!#2

@vB~u!2vB~u8!#4
, ~46!

wherevB(u) is the boundary curve in the (u,v) coordinates
defined in Eq.~31!. Using the numerical solution forq(z),
we numerically find the functionsvB(u)5l21ln$q@z(u)#%
and]uvB(u), and from there can obtainCuu,u8u8(u,u8).

The denominator in Eq.~46! is a rapidly varying function
of u andu8. By defining the relative correlation

C~1 !

C~2 !
[

Cuu,u8u8~u,u8!

Cu9u9,u8u8~u9,u8!
, where vB~u!2vB~u8!

5vB~u8!2vB~u9!, ~47!

we get a measure for the correlations that varies more slow
as a function ofu andu8 and also is not proportional to\,
which we take to be very small in the largeN limit. This
relative correlation is plotted as a function ofu, with u8 held
fixed. The numerical results for the relative correlations~47!
and the outgoing quantum radiation shown in Fig. 4~a!, when
we fix lu850, are shown in Fig. 7~a!. Since foru,0 the
quantum radiation in Fig. 4~a! is exponentially small, the
correlation functionC(2), which describes the correlations
between the radiation atu50 and that the radiation at
u,0, is approximately the vacuum correlation functio
~there are almost no created particles in this region!. On the
other hand, the correlation functionC(1) describes the cor-
relations between the radiation atu50 and that atu.0.
Since most of the radiation is in the regionu.0, we can
regard C(2) as a reference function relative to which

FIG. 7. The relative correlation function of the outgoing quan
tum radiation onIR

1 . In ~a! the mass is about 6% of the critica
mass, while in~b! it is 99.999% of the critical mass.
ly

n

C(1) is being measured. IfC(1)/C(2),1, then the cor-
relations described byC(1) are weaker than the vacuum
correlations, while ifC(1)/C(2).1, then the correlations
are stronger.

We see from Fig. 7~a! that whenu is in the region of
positive-energy radiation@see also Fig. 4~a!#, we have
C(1)/C(2),1. This is expected since the positive-energy
radiation is the precursor of the uncorrelated thermal Hawk-
ing radiation. On the other hand, foru in the region of
negative-energy radiation we haveC(1)/C(2).1.
Namely, the correlations between a point in the region of
positive-energy radiation, i.e., atu50, and a point in the
region of negative-energy radiation arestronger than the
vacuum correlations. It is just when the energy of the quan-
tum radiation becomes negative thatC(1)/C(2) becomes
greater than one. Hence, the negative-energy radiation is no
only necessary for energy conservation, but is also instru-
mental in recovering the correlations present in the final pure
state. Before we can discuss what happens to information
whenM is very near the critical massM cr , we must study
the properties of the near-critical space-times.

V. NEARLY CRITICAL SPACE-TIMES

A. Approaching the critical solutions

The reflecting boundary conditions can only be imposed
on those sections of the boundary curve that are timelike.
Along these sections, the boundary curve can be written in
the formx15xB

1(x2), wherexB
1(x2) is a well-defined func-

tion, and one can impose the condition~13!. Since the
boundary curve is dynamical, the initial data determines its
nature through the evolution equations. If the boundary is
everywhere timelike, then the general solution we found ear-
lier is regular, energy conserving, and unitary. Such a solu-
tion is called a subcritical~i.e., a nonblack hole! solution. If,
on the other hand, the boundary becomes spacelike in some
regions of space-time, then the space-time develops a space
like singularity @10#, which is initially hidden behind an ap-
parent horizon. Such a solution is called a supercritical solu-
tion and describes an evaporating black hole@10#. One can,
therefore, distinguish between two regions in the space of
solutions or the space of initial data: black hole and nonblack
hole solutions. Furthermore, one can find continuously vary-
ing parameterspi , specifying the initial data, such that all
solutions withpi,pi* are subcritical, while all solutions with
pi.pi* are supercritical. The solutions on the boundary
separating the two regions~i.e., the ones withpi5pi* ) are
called the critical solutions. As a result of the nonlinearity of
the system, the physical properties of the solutions need not
be continuous functions of the parameters at the critical val-
uespi* .

We would like to study the transition between the sub-
critical and supercritical regions in our semiclassical theory.
Using our numerical integration we can easily determine
whether the solution is subcritical or supercritical: As long as
the boundary curve is timelike we can write the boundary
equation,x15xB

1(x2), in the inverse formx25xB
2(x1),

wherexB
2 is the inverse function ofxB

1 . Since the boundary
is smooth, the quantity]xB

2/]x1 is continuous. For a time-
like boundary]xB

2/]x1 is positive, for a spacelike boundary

-
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]xB
2/]x1 is negative, and for a null boundary]xB

2/]x150.
So at the point where the initially timelike boundary be
comes null, just before becoming spacelike, the derivat
dq/dz in Eq. ~25! ~which is the inverse of]xB

2/]x1) di-
vergesand the numerical integration terminates. Therefo
all solutions for which the integration terminates at a fini
value ofxB

1 are supercritical, while the others are subcritica
For the profiles in Fig. 3 the continuous dimensionle

parameters in solution space are:M /l and le in case~a!,
M /l, le andlv0 in case~b!, andM /l ~the l i are not con-
tinuous parameters! in case~c!. We approach the critical so
lutions by varying one of the parameters, while keeping t
others fixed. First we takem[M /l to be the free parameter
In case~a! we fix le55, and in case~b! we fix le50.1,
lv0510. We find that in all the above cases there exist
critical valuem* such that ifm,m* the solutions are sub-
critical while if m.m* the solutions are supercritical. Th
value ofm* depends on the values of the fixed paramete
To study the behavior of the solutions just below criticalit
we numerically integrate the boundary equation for the ca
0,Dm/m*!1, whereDm[m*2m. We takek51022 in
this section, in order to be able to easily probe the regim
Dm<k. ~The values ofm nearm* are of order 1 and thus
are still large with respect tok.! Then we calculate the out-
going radiation onIR

1 . In Fig. 8 we show the radiation on
IR

1 for the three cases~a!, ~b!, and ~c! of Fig. 3, where
Dm/m*;1025. We shift theu coordinate tou2u* , where
u* corresponds to the last classical reflected null ray@i.e.,
u*5l21ln@2lxB

2(x2
1)2P1 /l#. In Fig. 8~a! we show the to-

tal stress tensorTuu
f in units of l2, describing the outgoing

radiation onIR
1 , and in Fig. 8~b! we show only the quantum

part. The quantum radiation is scaled by 4/(kl2), such that

FIG. 8. The stress tensorTuu describing the outgoing radiation
for nearly critical solutions withM being 99.999% of the critical
mass. In~a! we plot the total outgoing radiation and in~b! only the
quantum part. The dashed, dotted, and gray curves correspon
the infalling matter shown in Figs. 3~a!, 3~b!, and 3~c!, respectively.
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^Tuu&51 corresponds to the constant Hawking radiation
from a 2D black hole@19#.

We see from Fig. 8 that while the early-time radiation
strongly depends on the details of the classical infalling mat-
ter, the late-time radiation in the regionu.u*2l21 is al-
most the same for all the cases~a!, ~b!, and~c!. In the region
u.u*2l21 the classical partTuu

cl increases rapidly to large
values of the order of 108l2, and then sharply decreases to
zero. The quantum part̂Tuu& approaches the constant
Hawking radiation,̂ Tuu&5kl2/4, just beforeu5u* . It then
decreases rapidly to negative values of the order of
2108l2, and finally increases rapidly to zero. This late-time
behavior appears to be independent of the profile of the in-
falling matter, as long as 0,Dm/m*!1. Similarly, if we
approach a critical solution by varying any one of the other
parametersp, while holding the rest fixed, we find the same
late-time behavior as long as 0,(p*2p)/p*!1. Let Tmax
andTmin be the maximum and minimum values of the total
radiated energy fluxTuu

f on IR
1 . For all the cases that we

studied we find numerically that as (p*2p)/p*→01, the
value ofTmin approaches2Tmax andTmax tends to infinity.
In the next subsection we analyze this critical behavior.

B. Breakdown of the semiclassical approximation?

To understand the above late-time behavior analytically,
we writeTuu

cl (u) and^Tuu(u)& explicitly, using Eqs.~14! and
~36!,

Tuu
cl ~u!5S ]x2

]u D 2S ]xB
1~x2!

]x2 D 2T11
cl ~xB

1! ~48!

and

^Tuu~u!&5
kl2

4 F12
1

~lxB
1!2

S ]x2

]u D 2S ]xB
1~x2!

]x2 D 2G .
~49!

We take the classical stress tensor describing the incoming
matterT11

cl to be everywhere regular, i.e., finite and smooth.
Therefore, the nontrivial contributions to Eqs.~48! and ~49!
come from the ‘‘redshift factor’’ (]x2/]u)2, or from the
‘‘blueshift factor’’ (]xB

1/]x2)2. Consider first the redshift
factor. From the coordinate transformation~31! we get
(]x2/]u)25exp(22lu). If we ignore the back reaction, i.e.,
take k50 as explained in@29#, the boundary curve of the
critical solution first becomes null asu→`, and the redshift
factor approaches zero. However, when we include the back
reaction, the redshift factor at the point where the boundary
becomes null is finite, as can be seen as follows. Let
(xc

1 ,xc
2) be the point at which the boundary curve becomes

null. At that point an apparent horizon is formed, since when
the boundary curve becomes spacelike~and describes a black
hole singularity!, it is surrounded by an apparent horizon
@10#. The equation for the apparent horizon is
]e22f/]x150 @26#, and using Eq.~21! we get

2lxah
2~x1!5P1~x1!/l1

k

4lx1, ~50!

d to
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where the apparent horizon curve isx25xah
2(x1). Defining

DP15P1(x
1→`)2P1(xc

1) and using Eqs.~31! and~50!,
we find at (xc

1 ,xc
2)

S ]x2

]u D
x
c
2

2

5S k

4lxc
1 2

DP1

l D 2. ~51!

Note that the apparent horizon is null at (xc
1 ,xc

2). This can
be seen by showing that the derivative of Eq.~50! with re-
spect tox1 vanishes at the point (xc

1 ,xc
2) on the boundary

X50, whereX is given by Eq.~21!. From the definition
P1(x

1)5*dx1T11
cl (x1) and the fact that]xah

2/]x150 at
(xc

1 ,xc
2), we get

T11
cl ~xc

1!5
k

~2xc
1!2

. ~52!

It follows thatTvv
cl
„v(xc

1)… is of orderkl2, which is the same
as the quantum contribution. Therefore,xc

1 must be close to
the cutoff pointx2

1 of the classical matter distribution@the
location ofx2

1 is shown in Fig. 2, assuming that the profile
Tvv
cl (v) has no anomalously long tail#. Expanding

DP1.(]P1 /]x1)Dx15T11
cl (x1)Dx1, where Dx1[x2

1

2xc
1!xc

1 and using Eqs.~50!–~52!, we finally get

S ]x2

]u D
x
c
2

2

.S k

4lxc
1D 2S 12

2Dx1

xc
1 D .S k

4lxc
1D 2. ~53!

Thus, the redshift factor~53! is finite at (xc
1 ,xc

2), and is zero
only if we neglect the back reaction (k50).

Next, consider the blueshift factor, (]xB
1/]x2)2. Obvi-

ously, when the boundary curve becomes null the bluesh
factor diverges. This divergence, together with the finitene
of the redshift factor andT11

cl , is the reason for the diver-
gences in Eqs.~48! and ~49! at uc[u(xc

2). But what about
the total stress tensor,Tuu

f 5Tuu
cl 1^Tuu&? From Eqs.~48!,

~49!, and~52! we see that at (xc
1 ,xc

2) the diverging terms in
Tuu
cl and ^Tuu& cancel each other, leaving a finiteTuu

f :

Tuu
f ~uc!5

kl2

4
. ~54!

So why do we get divergences in the total stress tens
shown in Fig. 8~a!? To understand this behavior, consider
point @x0

1 ,x0
25xB

2(x0
1)# near (xc

1 ,xc
2) on the boundary of a

critical solution. Definingd[xc
12x0

1 and expanding Eqs.
~48! and~49! about (xc

1 ,xc
2) to leading orders ind, dropping

the finite term~54!, we find

Tuu
f ~u0!.2S k

4lxc
1D 2F k

2~xc
1!3

1S ]T11
cl

]x1 D
x
c
1

G d

~ad1bd2!2
,

~55!

where a[@]2xB
2/](x1)2#c , b[@]3xB

2/](x1)3#c , and
u05u(x0

2). The point (xc
1 ,xc

2) cannot be a local maximum
of the boundary curve, since the boundary curve of the cr
cal solution never becomes spacelike. It also cannot be
local minimum since by construction it is the first~and only!
ift
ss

or,
a

ti-
a

point at which the boundary is null. Therefore, the point
(xc

1 ,xc
2) must be an inflection point, i.e.,a50. Also,

for a general critical solution we have
(]T11

cl /]x1)x
c
1,2k/@2(xc

1)3#, which is necessary for the

apparent horizon in Eq.~50! to become timelike beyond the
point (xc

1 ,xc
2). We, therefore, get from Eq.~55! that

Tuu
f (u0).Ad23 with A.0. For points on the boundary to

the past ofxc
1 , Tuu

f .1Audu23 and for points to the future of
xc

1 , Tuu
f .2Audu23 as udu→0. Thus, for critical solutions

the radiation flux diverges in opposite ways on both sides as
x1→xc

1 . For almost critical solutions one gets the nearly
divergent results shown in Fig. 8.

The fact thatTuu
f diverges does not necessarily signal a

breakdown of the semiclassical approximation in which the
metric and dilaton fields are treated as classical dynamical
fields. From conservation of energy we know that the total
amount of outgoing radiation~the sum of positive and nega-
tive parts!, is finite and equals the total amount of incoming
radiation. Moreover, the total amount of positive-energy ra-
diation aloneE1 in the region betweenxc

2 andx0
2 on IR

1 is
proportional to TmaxDx

2, where Dx2[xc
22x0

2 . From
xc

12x0
15d, we find thatDx25bd3. It then follows from

Eq. ~55! that E1 is finite. The same holds for the total
amount of negative-energy radiation. Thus the divergence in
the densityTuu

f can be viewed as describing a ‘‘shock wave’’
or ‘‘thunderpop’’ @9#. Although a shock wave does not nec-
essarily imply a breakdown of the semiclassical approxima-
tion, an examination of the fluctuations inT̂mn

f provides
strong evidence for such a breakdown. Let us calculate the
fluctuations inT̂mn

f . As an estimate for the fluctuations one
can use the quantity@33,34#

D8mnm8n8~x,x8!

[U ^T̂mn
f ~x!T̂m8n8

f
~x8!&2^T̂mn

f ~x!&^T̂m8n8
f

~x8!&

^T̂mn
f ~x!&^T̂m8n8

f
~x8!&

U
5U Cmn,m8n8~x,x8!

^T̂mn
f ~x!&^T̂m8n8

f
~x8!&

U . ~56!

Far below criticality, withx and x8 sufficiently apart, the
numerator in Eq.~56! will be less than or of the order of
N\2 @see Eq.~46!#. On the other hand, the denominator is of
the order ofk25N2\2. Hence, in this case the fluctuations
~56! will be of the order of 1/N even in the region of negative
energy. In the largeN limit these fluctuations are small and
the semiclassical approximation is valid. However, for criti-
cal or nearly critical solutions this is no longer the case. Let
us estimateD8uuu8u8(u,u8) for a critical or nearly critical
solution, with u and u8 sufficiently far apart that
vB(u)2vB(u8);l21, which sets a natural length scale. Let
u8 approachuc , and takeu to be in the region of negative
energy such thatvB(u)2vB(u8);l21, which is consistent
with the quantum inequality~37!. Then using Eqs.~46!, ~49!,
~54!, and~56!, we get foru8→uc

D8uuu8u8~u,u8!;
1

N S ]vB~u8!

]u8 D
u8→uc

2

. ~57!
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For any givenN, no matter how large, while keepingu fixed,
we can findu8 sufficiently close touc such that the blueshift
factor (]vB /]u)

2 in Eq. ~57! is dominant overN, and the
fluctuations~57! are large. We regard this anomalous beha
ior as implying a breakdown of the semiclassical approxim
tion at criticality. Unlike in the 4D case, where the temper
ture of the black hole formed just above criticality
approaches infinity, in the 2D case the black hole tempe
ture is always a finite constant,TBH5l/2p, but neverthe-
less, the semiclassical approximation~even in the largeN
limit ! breaks down at criticality. Also, for the critical solu-
tion the quantityp85]xB

1/]x2 diverges atxc
2 , and dropping

the last term on the RHS of Eq.~15!, i.e., the moving mirror
term, becomes problematic even in the largeN limit.

VI. HIGH DENSITIES OF INFORMATION

A. Quantum limitations on the negative-energy radiation

Let us calculate the relative-correlation function~47! for
nearly critical solutions. As in Fig. 7~a!, we take the infalling
matter to be the one shown in Fig. 3~a!, with le55, but
while in Fig. 7~a! we takeDm/m;0.9, in this section we
takeDm/m;1025. The results for the relative correlations
are shown in Fig. 7~b!. We see that in the region of the
Hawking radiation (0,lu,10.5) the relative correlations
are very small. Then in the region of the brief burst of neg
tive energy, the relative correlations increase sharply to e
tremely high values of the order of 1011, and then sharply
decrease to one. It is this sharp increase in the relative c
relations that ensures a unitary evolution. If it were not fo
the negative-energy burst the correlations would be lost a
the final state would be a mixed state.

The information encoded in these correlations is ve
dense as the burst of negative energy is very localized@see
Fig. 8~a!#. To find an upper bound on the duration of th
negative-energy burstDu, we use the quantum inequality
~37!. To estimate the value ofuTuu

f u, we use the analytic
expressions~48! and ~49! for a nearly critical solution. The
quantity uEnegu is approximately of the order of

uEnegu;u~Tuu
f !minuDu.~Tuu

f !maxDu. ~58!

From Eqs.~48! and ~49! one can see that (Tuu
f )max corre-

sponds to the maximum of]xB
1/]x2. Let (xm

1 ,xm
2) be the

point on the boundary curve for whichTuu
f is maximum.

Using the boundary equationX(x1,xB
2)5XB and the solu-

tion ~21! we find that, at the maximum of]xB
1/]x2,

T11
cl ~xm

1!5
k

2~xm
1!2

. ~59!

From Eqs.~48!, ~49!, ~53!, and~59! we find that, for a nearly
critical solution@for which (]xB

2/]x1)min is very small#,

~Tuu
f !max.

k3

64l2~xm
1!4

S ]xB
2

]x1D
min

22

. ~60!

From Eqs.~58! and~60! and the quantum inequality~37!, we
get
v-
a-
a-

ra-

a-
x-

or-
r
nd

ry

e

Du<
8l~xm

1!2

k S ]xB
2

]x1D
min

. ~61!

Sincexm
1,x2

1 is finite, as one approaches the critical solu-
tion (]xB

2/]x1)min approaches zero and so doesDu. If the
amount of informationDI carried by this burst of negative
energy is finite, then as we approach the critical solution the
information density,İ5DI /Du, diverges. In the next subsec-
tion we show that this is indeed the case.

B. Entropy and information

The results regarding the quantum part of the energy-
momentum tensor discussed in the previous sections may
plausibly be interpreted as arising from the creation of
particle-antiparticle pairs@35#. The particles reach infinity
IR

1 and give rise to the positive-energy~Hawking! radiation,
while the antiparticles carrying negative energy are reflected
from the boundary and give rise to the negative-energy ra-
diation onIR

1 . If it were not for the negative-energy burst of
radiation, the correlations between the particles and antipar-
ticles, shown explicitly in Fig. 7, would be lost and the final
state would be a mixed state with nonzero entropy. The en-
tropy of this mixed state can be found using the fact that the
spectrum of the outgoing positive-energy quantum radiation
is almost thermal, as can be seen by calculating the corre-
sponding Bogoliubov coefficients@36#. The entropy of this
thermal radiation is the dimensionless Boltzmann entropy
@21#

SBol52\21AkE
2`

u0 AE~u!du, ~62!

whereE is the energy density of the thermal quantum radia-
tion, E5^Tuu&, andu0 is the value ofu at which the thermal
radiation ends. From Fig. 8~b! we see that as we approach
the critical solution, the thermal quantum radiation is almost
independent of the specific profile of the infalling matter.
Therefore, to get an estimate of Eq.~62! one can calculate it
for the case of very localized infalling matter. In that case
one finds analytically thatE is given by@15#

E5
kl2

4 S 12
1

~11lDelu!2D , ~63!

whereD[M /(l3x0
1), andx15x0

1 is the null trajectory of
the localized ~shock-wave! infalling matter. Then, the
Boltzmann entropy of the thermal radiation is

SBol.
N

6
lnS 4Mlk D , ~64!

where we assume that ln(4M/lk)@1. The entropy~64! is by
definition the amount of information that is lost by ignoring
correlations between the thermal radiation and the later burst
of negative energy,I lost5SBol . This information cannot be
recovered from the thermal radiation before the arrival of the
negative-energy burst. After the burst of negative energy all
the correlations between the particles and antiparticles are
restored, and we get a pure state of zero entropy. This is
expected since we impose reflecting boundary conditions and
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our space-time has a trivial topology. Therefore, the info
mationDI that is gained during the arrival of the burst o
negative energy equalsI lost:

DI5I lost5SBol.
N

6
lnS 4Mlk D . ~65!

As we approach the critical solution,DI remains finite. Us-
ing Eqs.~61! and ~65!, we get

İ5
DI

Du
>
Nl

48
lnS 4Mlk D k

~lxm
1!2

S ]xB
1

]x2D
max

. ~66!

As the critical solution is approached,İ→`.
Even though our space is one dimensional, the result~66!

suggests that the way information is transferred by t
negative-energy burst is different from that by which info
mation is transferred inlinear channels. The theoretical up
per bound on the bulk of information flow inN linear chan-
nels is@37#

İ linear<
E

2p\
ln~N!, ~67!

where the ‘‘message’’ is transferred with positive ener
E. Suppose that this bound could be extended to nega
energies,E,0, by replacingE in Eq. ~67! by uEu. From Eq.
~63!, we find

uEu.
kl

4
lnS 4Mkl D . ~68!

Then the theoretical upper bound~67! for our system would
be

İ linear<
Nl

96p
lnS 4Mkl D ln~N!. ~69!

For any given sufficiently large value ofN one can find a
range of solutions just below criticality for which the sem
classical approximation remains valid@i.e., the fluctuations
~57! are small# while the bound~69! on İ linear is exceeded by
İ in Eq. ~66!. This is achieved by requiring tha
AN@(]vB /]u)max. ln(N)/8p.

It may be better to view the information associated wi
the negative energy in terms of information storage rath
than information transfer. The brief burst of negative ener
can be considered as a very localized configuration conta
ing a finite amount of information that is traveling in spac
As one approaches criticality the density of stored inform
tion becomes unbounded. This seems to be in agreem
with other considerations regarding the unboundedness
information storage densities in quantum systems@38#.

VII. CONCLUSIONS

In this work we present and study in detail a theory
semiclassical 2D dilaton gravity with reflecting~conformal!
boundary conditions. This theory shares many of the featu
of spherically symmetric semiclassical gravity. In particula
massless scalar fields can collapse to form a black hole
r-
f

he
r-
-

gy
tive

i-

t

th
er
gy
in-
e.
a-
ent
of

of

res
r,
that

evaporates. If the energy and energy density of the initial
configuration of the scalar fields are below certain critical
values, i.e., the subcritical or weak initial data case, then the
scalar fields do not form a black hole, but instead are re-
flected from the boundary and escape to infinity. On the
other hand, if the energy and energy density are above the
critical values, i.e., the supercritical or strong initial data
case, then the scalar fields collapse to form a black hole. This
created black hole evaporates by emitting Hawking radia-
tion. In a previous work@10# we found that such evaporation
leads to an end-state geometry similar to that of a 4D semi-
infinite throat. Here, we study subcritical solutions, espe-
cially those near criticality, for general smooth initial data.

By combining analytical and numerical techniques we in-
vestigate the detailed structure of the classical and quantum
one-loop contributions to the outgoing radiation reaching
asymptotic future null infinityIR

1 . For the subcritical solu-
tions, we find that before the reflected massless classical mat
ter fields reachIR

1 , positive-energy quantum radiation is ob-
served atIR

1 and continues as the classical matter reaches
IR

1 . This positive-energy quantum radiation is followed by a
flux of negative-energy quantum radiation.

For profiles of incoming classical matter that encode in-
formation in bits consisting of pulses of two different ampli-
tudes, we calculate how the encoded information appears in
the outgoing classical profile onIR

1 . For the quantum radia-
tion, the situation is more involved. The outgoing positive-
energy quantum radiation by itself does not describe a pure
state, but is strongly correlated with the negative-energy
quantum radiation reachingIR

1 at a later time. This negative-
energy quantum radiation not only ensures conservation of
energy but also restores the correlations necessary for a pur
final quantum state.

The study of solutions just below and at criticality gives
insight into the information puzzle in a unitary framework.
As one approaches the critical solution the classical outgoing
radiation becomes very distorted at late times. Part of that
classical radiation reachesIR

1 with a time delay and has the
form of an extremely dense brief pulse. As the critical solu-
tion is approached the late-time classical energy density be
comes highly distorted and ultimately diverges, making it
impossible to recover the complete classical information. Re-
garding the quantum radiation, as one approaches the critica
solution the early-time radiation is indistinguishable from
thermal Hawking radiation from a black hole, while the en-
ergy density of the late-time negative-energy radiation di-
verges, making recovery of the quantum correlations impos-
sible. Although the late-time energy density of the outgoing
radiation is infinite in the critical case, the total amount of
energy is finite and conserved. Nevertheless, the semiclass
cal approximation breaks down because the fluctuations in
T̂mn
f become very large.
The above analysis shows that the black hole phase tran

sition ~subcritical → supercritical! and the information
puzzle are intimately related. At the critical solution there is
an apparent breakdown of predictability. However, this
breakdown of predictability is related to the breakdown of
the semiclassical approximation. The same divergence in en
ergy density that makes recovery of information and quan-
tum correlations impossible evidently makes the semiclassi-
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cal approximation invalid due to large fluctuations inT̂mn
f .

We would like to stress that even though we take the larg
N limit to enforce the validity of the semiclassical approxi
mation for subcritical solutions, the semiclassical approxim
tion nevertheless breaks down at criticality. This may su
gest that the breakdown of the semiclassical approximati
at the onset of black hole formation is a fundamental resu
independent of the specific model to be studied. This is su
ported by the fact that the crucial features discussed in S
V B, i.e., the finite redshift factor and infinite blueshift fac-
tor, seem to be independent of the explicit semiclassic
model. Thus, based on the semiclassical approximati
alone, it may not be possible to trace the fate of informatio
and correlations at the onset of black hole formation. The fu
e
-
a-
g-
on
lt
p-
ec.

al
on
n
ll

quantum theory appears crucial to understanding if the ove
all evolution can be unitary at and after the onset of blac
hole formation. Nevertheless, our results do show that a
criticality is approached via subcritical solutions, information
and correlations become essentially irrecoverable while un
tary evolution is preserved.
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