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Quasinormal modes of nearly extreme Reissner-Nordstro¨m black holes
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We present detailed calculations of the quasinormal modes of Reissner-Nordstro¨m black holes. While the
first few, slowly damped, modes depend on the charge of the black hole in a relatively simple way, we find that
the rapidly damped modes show several peculiar features. The higher modes generally spiral into the value for
the extreme black hole as the charge increases. We also discuss the possible existence of a purely imaginary
mode for the Schwarzschild black hole: Our data suggest that there is a quadrupole quasinormal mode that
limits to vM522i asQ→0. @S0556-2821~96!03324-3#

PACS number~s!: 04.70.Bw, 04.25.Nx, 97.60.Lf
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I. PERTURBING THE REISSNER-NORDSTRÖM
BLACK HOLE

Quasinormal modes of black holes have been studied
since the seminal work of Vishveshwara@1# and Press@2# in
the early 1970s. It soon became evident that exponent
damped mode oscillations will dominate most processes
volving perturbed black holes~see@3# for references!. This
means that the quasinormal modes provide a unique op
tunity to identify a black hole, a possibility that hopeful
will become reality when large-scale laser-interferome
detectors for gravitational waves come into operation in
near future@4#. In order to extract as much information
possible from a gravitational-wave signal it is important t
we understand exactly how the quasinormal modes dep
on the parameters of the black hole.

The parameters of main astrophysical importance are
black holes mass and angular momentum. That is, the
solution is the most relevant one from an astrophysical p
of view. The solution that describes an electrically charg
nonrotating black hole — due to Reissner and Nordstro¨m —
is of less direct importance because it seems unlikely
black holes with a considerable charge will exist in the U
verse. Nevertheless, the Reissner-Nordstro¨m solution has
several interesting features that warrant a closer inspec
The most intriguing one concerns the possible conversio
electromagnetic energy into gravitational energy and v
versa: In a charged environment an electromagnetic w
will inevitably give rise to gravitational waves. Th
Reissner-Nordstro¨m metric provides the simplest framewo
for studies of this effect.

For this and several other reasons there has been a nu
of studies of perturbed Reissner-Nordstro¨m black holes. The
equations governing a weak~massless! field in the geometry
of an electrically charged black hole were first derived
Zerilli @5# and Moncrief@6#. Basically, these equations ca
be ~i! split into axial and polar perturbations~also known as
odd and even parity, respectively! and then~ii ! reduced to
two decoupled wave equations in each case. The final w
equations describe two variablesC1 andC2, from which all
components of the electromagnetic field and the pertur
540556-2821/96/54~12!/7470~6!/$10.00
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metric can be reconstructed. In general, bothC1 and C2

correspond to a combination of electromagnetic waves an
gravitational ones, but in the limiting case of an uncharged
black hole the two functions reduce to pure electromagneti
and gravitational waves, respectively.

Originally, the perturbation equations were used to study
the stability of the metric@5,6#. Later the equations were
used to investigate the already mentioned conversion of elec
tromagnetic energy into gravitational energy@7–9#. There
have also been several studies of quasinormal modes fo
Reissner-Nordstro¨m black holes@10–12#. But although the
methods used in those studies provide accurate numeric
results, there is still the need for more information. Specifi-
cally, one would like to know what happens to the quasinor-
mal modes as the black hole becomes extremely charge
There are two parts to this problem, which seemingly mus
be studied separately. In the typical case each of the tw
horizons, atr65M6AM22Q2 ~whereM is the mass and
Q<M the charge of the hole!, corresponds to a second order
singularity in the linearized equations. But in the extreme
case these two singularities merge~at r5M ) into a single
one of fourth order. This means that the methods that hav
been devised to determine the entire spectrum of quasino
mal modes break down in the extreme limit@11,12#.

Even though the extremely charged case is only of theo
retical interest, it is worth considering. One reason~apart
from natural curiosity! is the fact that the existence of two
coalescing horizons is a prominent feature also of rapidly
rotating black holes. Thus one may hope that a study of th
mode behavior asQ→M can lead to some insight also for
the rotating case or, at least, that methods that prove reliab
for high charge can be adapted to the Kerr case. Recent
Leaver’s continued fraction method was amended in such
way that it could be applied to the case of extreme charg
@13#. Although it seems plausible that other methods, such a
the numerical integration of Andersson@12#, can be extended
in a similar way, there have been no attempts to do this.

Anyway, at present the main question concerns the reli
ability of the various approaches for nearly extreme black
holes. It is clear that the methods in@11,12# will break down
for Q5M , and also that the method of Onozawaet al. @13#
7470 © 1996 The American Physical Society



54 7471QUASINORMAL MODES OF NEARLY EXTREME . . .
can be used only for the extreme case. Thus, we do not
know to what extent the available results for high char
~and perhaps also rapid rotation in the case of Kerr@15#! can
be trusted. The work presented in this paper was motiva
by a desire to obtain a better understanding of this issue.
also wanted to unveil the detailed behavior of the quasin
mal modes as the charge of the black hole was increa
Specifically, previous evidence~see Fig. 1 in@11# and Figs. 2
and 3 in@12#! indicate that this behavior is somewhat pec
liar for the higher overtones of the black hole. As we w
show in the following section, the behavior of the high
damped Reissner-Nordstro¨m quasinormal modes is, indeed
very strange.

II. RESULTS

A. Numerical work

Since the equations that describe a perturbed Reiss
Nordström black hole are available in the literature~most
notably in Chandrasekhar’s exhaustive book@16#!, we will
not list them here. For the present discussion it is suffici
to know that the equations take the general form

d2C

dr
*
2 1@v22V~r !#C50, ~1!

where we have assumed that the time dependence of
perturbation ise2 ivt. The tortoise coordinate that is define
by

d

dr*
5S 12

2M

r
1
Q2

r 2 D ddr ~2!

has the effect that the event horizon of the black hole
‘‘pushed away’’ tor *52`.

The functionC can be either an axial~odd parity! or
polar ~even parity! perturbation of the black hole. Also, fo
each case there are two different functionsC1 and C2,
which correspond to pure electromagnetic and gravitatio
waves in the Schwarzschild limit. In total there are thus fo
equations, all with slightly different effective potentials. F
obvious reasons this difference in the potentials leads
somewhat different quasinormal modes forC1 and C2.
Analogously, one might expect the quasinormal modes
axial and polar perturbations to be different. But as poin
out by Chandrasekhar@16#, the mathematical theory of blac
holes is an intricately entangled web where many quanti
are related~often in a surprising way!. Thus it turns out that
the quasinormal modes for axial and polar perturbations
identical. The underlying reason is that two effective pote
tials can, although different, contain much the same phys
information. This means that it is sufficient to restrict a stu
of the Reissner-Nordstro¨m problem to either the axial or the
polar case. OnceC1 andC2 are found for one kind of per-
turbation, the corresponding solutions for the other case
easily generated@16#.

The quasinormal modes of a black hole correspond
solutions to Eq.~1! that satisfy the causal condition that n
information should leak out through the event horizon of t
yet
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black hole and at the same time correspond to purely outgo-
ing waves at spatial infinity. This means that a typical mode-
solution will behave like

C;H eivr* as r *→1`,

e2 ivr
* as r *→2`.

~3!

Since one would expect the black hole to be stable against a
small perturbation, the mode frequencies should be complex.
This implies that an identification of quasinormal modes is
nontrivial. In order for a mode solution to be damped with
time at a fixedr * the frequencyv must have a negative
imaginary part. But then the corresponding solution will di-
verge both at the event horizon and spatial infinity@cf. Eq.
~3!# at a fixed time. Several methods have been devised to
deal with this difficulty. Most notable are Leaver’s continued
fraction approach@15# and Andersson’s complex-coordinate
integration method@17#. These two methods provide highly
accurate numerical results also for rapidly damped modes.
Furthermore, both methods have been used to study the first
few quasinormal modes for Reissner-Nordstro¨m black holes.

As already mentioned in the previous section, it is clear
that all existent methods will fail for a nearly extreme black
hole. The reason is that the two horizons of the black hole
merge asQ→M , and this changes the singularity structure
of the problem@this is easy to see if Eq.~1! is expanded in
such a way that all derivatives are taken with respect tor
rather thanr * #. Thus, the extreme case must be considered
separately. This was recently done by Onozawaet al. @13#.
As a test of the reliability of that study and also to provide a
better understanding of the behavior of the quasinormal
modes for highly charged black holes, we decided to make
an exhaustive study of the problem. We made detailed cal-
culations~using both the continued fraction method@11# and
numerical integration@12# to make sure that the results were
reliable! for the first nine dipole (l 51) modes ofC1 and
the first nine quadrupole (l 52) modes ofC2. These are the
lowest radiating multipoles for each case. The results of this
investigation are shown in Figs. 1 and 2. We now proceed to
discuss them in more detail.

B. Slowly damped modes

For the first few modes the behavior of the mode frequen-
cies is readily described. The damping rate typically reaches
a maximum forQ/M'0.7–0.8, and the oscillation fre-
quency generally increases withQ. This is clear from the
results forn50–3 in Fig. 1. Moreover, this behavior agrees
with the understanding from the WKB approximation@10#. It
is relatively straightforward to verify that, when the lowest
order of approximation is used, the WKB formulas suggest
the approximate behavior~for the slowest damped mode!

Rev'S l 1
1

2D FMr 032
Q2

r 0
4 G1/2, ~4!

Imv'2
1

2 FMr 032
Q2

r 0
4 G1/2F3Mr 0 2

4Q2

r 0
2 G1/2, ~5!

in the limit l @1. Here we have definedr 0 as the position
where the black-hole potential attains its maximum value.
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This means that 2r 0'3M1A9M228Q2. That is,r 0 corre-
sponds to the position of the unstable, circular photon or
in the Reissner-Nordstro¨m spacetime.

To understand better the physics that lead to this behav
we can use an argument that is due to Goebel@18#: Consider
a congruence of null rays circling the black hole in the u
stable photon orbit. To circle the black hole would require
coordinate time

Dt52pr 0S 12
2M

r 0
1
Q2

r 0
2 D 21/2

. ~6!

The fundamental mode frequency then follows~if the beam
containsl cycles! from

v'
2pl

Dt
. ~7!

FIG. 1. The behavior of the first six quasinormal mode freque
cies ~we show ImvM as a function of RevM ) for a Reissner-
Nordström black hole as the charge is increased. The solid curv
correspond tol 52 andC2 ~which reduces to pure gravitationa
waves in the Schwarzschild limit! and the dashed curves tol 51
andC1 ~which limits us to pure electromagnetic waves!. To show
that the mode frequencies change dramatically forQ.0.9M we
have indicated the charge of the black hole by diamonds~at incre-
ments inQ of 0.1M ). The frequencies generally move counter
clockwise in the figures as the charge is increased.
it

ior

-
a

In a similar way, one can infer the damping rate of the qua
sinormal mode from the decay rate of the congruence if th
null orbit is slightly perturbed@19#. From this information it
is easy to convince oneself that the oscillation frequency o
the modes should increase asQ increases. The results for the
first few modes in Fig. 1 agree nicely with this description.

A remarkable fact, which is notable in Fig. 1, is that the
dipole frequencies forC1 approach the quadrupole frequen-
cies forC2 as the black hole becomes extreme. This effec
was first noted by Onozawaet al. @13# ~for a study of the
spin-3/2 case, see@14#!. They also showed that this surpris-
ing phenomenon arises because the corresponding two effe
tive potentials are related. That is, the effective potential fo
l andC1 is related to that forl 11 andC2. Specifically,
C1(l ) corresponds toC2(2l 21). As is easily verified
this is true also for the polar potential, but in that case th
relation does not take the simple form of Eq.~C3! in @13#.

-

es

-

FIG. 2. The behavior of the rapidly damped modes~we show
ImvM as a function of RevM ) of a Reissner-Nordstro¨m black hole
as the charge is increased. The right frames@labeled~g!# correspond
to l 52 andC2 ~which reduces to pure gravitational waves in the
Schwarzschild limit! and the left frames@labeled ~e!# are for
l 51 andC1 ~which limits us to pure electromagnetic waves!. To
show that the mode frequencies change dramatically forQ.0.9M
we have indicated the charge of the black hole by diamonds~at
increments inQ of 0.1M ). The frequencies generally move coun-
terclockwise in the figures as the charge is increased.
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C. Highly damped modes

While the behavior for the first few modes has been stu
ied in detail before@10–12# there have been no studies of th
highly damped modes for Reissner-Nordstro¨m black holes.
Thus, the results forn55–8 in Figs. 1 and 2 are new. The
are also truly remarkable. While the behavior is rather sim
for the first modes (n50–3!, the rapidly damped modes
show many strange features. Our calculations have disc
ered a small zoo of seemingly different species. Let us d
cuss them separately.

The first surprising feature occurs forn54 ~see Fig. 1! at
a chargeQ'0.938M : The C2 mode goes through a tiny
loop that closes atQ'0.962M . For the following mode
(n55) this loop has grown. Several similar loops are ob
ous in the results forn56 andC1, and when one continues
up the spectrum one finds that these loops are a comm
feature of many modes. One interesting aspect of this re
is that black holes with different charge may share a spec
mode frequency.

For a few modes the mode frequencies approach the ne
tive Imv axis as the charge varies. Then our numerical me
ods @11,12# become unreliable. This is the reason for th
gaps in the data forn56 for C2 andn57 for bothC1 and
C2. Whether or not these modes cross the axis is imposs
to say given the available techniques. If they do, it would
very surprising, but given the data in our figures it does n
seem impossible. One added peculiarity is that it seems a
some modes are ‘‘multivalued.’’ That is, forn56 andC2
we find a mode both in the upper branch close to the ima
nary axis and in the lower branch for a small range of t
black-hole charge (0.8985<Q/M<0.9105). A similar be-
havior can be observed forn57 and C1 when
0.9330<Q/M<0.9425. At first this result seems nonsensic
and obviously wrong, but it is confirmed by both the conti
ued fraction method and the numerical integration schem
This could indicate that it should be taken seriously.

Our study also sheds some light on an issue that has b
debated for Schwarzschild black holes for some time.
there a quasinormal modeon the imaginary axis at
vM522i? Some methods indicate that there should
such a mode and that it corresponds ton58. Other methods
say that no such mode exists. To resolve this issue is d
cult, basically because none of the proposed methods is
able close to the axis. An added complication is that the c
vM522i is a very special one. That frequency correspon
to a so-called algebraically special perturbation and, as w
shown by Chandrasekhar@23#, one can find analytic solu-
tions to the corresponding perturbation equations. Althou
one can convince oneself that Chandrasekhar’s special s
tions do not satisfy the quasinormal-mode boundary con
tions, the issue is not resolved. To prove the existence o
quasinormal mode one must study the analytic proper
close to the mode frequency, and this turns out to be diffic
in this specific case. Anyway, once the black hole acqui
some small charge it is clear that a mode exists (n58 for
C2 in Fig. 2!. This mode approaches the suggested va
vM522i asQ→0. But still this does not prove the exist
ence of a mode for the Schwarzschild black hole. It is pla
sible that the mode in Fig. 2 and its symmetric counterpar
the left half of the complexv plane will coalesce atQ50,
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and perhaps the two modes that exist for the charged ca
then cancel each other in some way. It is also worth men
tioning here that there are algebraically special solutions als
for the Reissner-Nordstro¨m black hole. ForC1,2 these corre-
spond to frequencies@23#

v1,2
s 52

i

2
l ~ l 21!~ l 11!~ l 12!

3@3M7A9M214Q2~ l 21!~ l 12! #21. ~8!

In general we cannot see any correlation between these fr
quencies and the quasinormal modes of the charged bla
hole.

For higher overtones than those displayed in Fig. 2 the
behavior tends to be qualitatively similar to the presented
ones. The mode frequency spirals into the value for the ex
treme black hole. The spirals get tighter for more rapidly
damped modes.

How are we to understand these results? Well, at prese
it is very hard to make much sense out of the data presente
in Fig. 2. The obvious answer is that the change in the mod
frequencies occurs because the effective potential changes
the charge increases. For the slowly damped modes it
straightforward to show that the oscillation frequency de-
pends on the height of the peak of the potential, while the
damping rate is related to the second derivative ofV at the
peak@10#. But it is much harder to draw similar conclusions
for the rapidly damped modes. Present methods can reliab
calculate the mode frequencies~and also account for the ex-
citation of the modes in a dynamical process@20–22#!, but
we have no clear understanding of the relation between th
highly damped modes and the details of the effective poten
tial. On the other hand, we have seen that the mode freque
cies change dramatically as the charge increases fro
Q'0.9M . If one studies the corresponding change in the
effective potential~cf. Fig. 3!, one can infer that as one ap-
proaches the extreme black hole~i! the potential does not
change much forr@r 0, ~ii ! the peak of the potential stays

FIG. 3. The effective potential forl 52 andC2 ~which corre-
sponds to gravitational perturbations in the Schwarzschild limit! is
shown forQ/M50.9–1.0. The potential falls off slower towards
r *52` asQ increases. The behavior is similar for other values of
l and also for the potential that governsC1.
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7474 54NILS ANDERSSON AND HISASHI ONOZAWA
almost constant, and~iii ! the main change in the potential i
the falloff rate asr *→2`. This suggests the possibility tha
the high overtones of the black hole are in some way rela
to the effective potential close to the horizon. This issue w
have to be studied further in the future.

III. CONCLUDING REMARKS

In this paper we have presented the results of a deta
study of the quasinormal modes of a Reissner-Nordstr¨m
black hole. Our work complements previous studies in s
eral ways. For the first time we have considered~i! the rap-
idly damped modes and~ii ! how the mode frequencies ap
proach the anticipated value for the extremely charged bl
hole. We have given special attention to the mode beha
near the extreme limit. The two independent algorithm
~from @11# and@12#! that we used for the calculations provid
consistent results even for a nearly extreme black hole. Th
values are also in nice agreement with the results obtai
for the extreme black hole@13#. That is, the quasinorma
modes converge towards the values for the extreme cas
Q→M .

We find that while the slowly damped modes can be u
derstood~for example, by a WKB argument!, the behavior of
the rapidly damped modes as the charge increases is ha
to explain. In general, the modes tend to spiral into the
treme value. Moreover, there are cases where the quas
mal modes seem to be double valued~in cases when the
mode frequency approaches the imaginaryv axis!. At one
level, these are just peculiar results without much relevan
but they lead to several questions. For example, will
modes of a Kerr black hole show similar features? This d
not seem unlikely, because the Kerr problem is in ma
ways similar to the Reissner-Nordstro¨m one. There will be
two horizons that merge as the black hole becomes extre
Although the slowest damped modes of the Kerr black h
have been calculated@15#, the rapidly damped ones have n
yet been considered. Since rotating black holes should
astrophysically relevant, a study of the rapidly damp
modes for Kerr could yield physically interesting results.

The present study also leads to questions regarding
quasinormal modes themselves: Which features of the ef
tive potential govern the behavior of the rapidly damp
modes? The present evidence~cf. Fig. 3! seems to indicate
that the falloff rate towards the event horizon plays an i
portant role. At first sight it may seem that this idea can
tested by calculations for higher values ofl ~since the fall-
off of the potential towardsr *52` is different for different
values ofl ). However, after doing a sample of such calc
s
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lations we find this not to be a useful approach. As should b
expected from the Schwarzschild case@3#, we find that the
mode behavior for the higher multipoles is qualitatively
similar to that for the lowest radiating ones~cf. Figs. 1 and
2!. But since we still do not have an intuitive understanding
of the origin of the rapidly damped black-hole modes, we
cannot associate this behavior with the change in a blac
hole potential in a meaningful way. Much further work is
required to test the assertion that the behavior of the potent
close to the event horizon is particularly relevant for the high
black-hole overtones. The information needed to resolve th
problem is likely to be contained in the quasinormal-mode
eigenfunctions. A detailed study of the actual solutions tha
correspond to the highly damped modes may thus provid
the desired answer. But such a study goes far beyond t
scope of the present paper and we will have to return to it i
the future.

A final question regards the relevance of the algebraicall
special modes. In general, our results do not indicate an
relation between the algebraically special mode~which has a
purely imaginary frequency! and the quasinormal modes for
a charged black hole. But it is well known that the algebra
ically special mode coalesces with the ninth gravitationa
quasinormal mode in the Schwarzschild limit. Is there a pro
found reason for this or is it just a coincidence? To answe
this question is difficult because all present methods for qua
sinormal modes break down in the region close to the imag
nary frequency axis. On the other hand, it is known that th
algebraically special modes of the Kerr black hole move
away from the imaginary axis. Hence, it seems likely that
study of the Kerr problem may prove illuminating also for
this issue.

Several questions concerning quasinormal modes thus r
main to be resolved. The present work has contributed a fe
new pieces to the puzzle, but many other pieces need to
added before the picture becomes completely clear. Still, th
present results should help us get a better understanding n
only of the Reissner-Nordstro¨m black hole, but also of the
quasinormal-mode phenomenon in general.
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