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Quasinormal modes of nearly extreme Reissner-Nordstm black holes
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We present detailed calculations of the quasinormal modes of Reissner-Nordsack holes. While the
first few, slowly damped, modes depend on the charge of the black hole in a relatively simple way, we find that
the rapidly damped modes show several peculiar features. The higher modes generally spiral into the value for
the extreme black hole as the charge increases. We also discuss the possible existence of a purely imaginary
mode for the Schwarzschild black hole: Our data suggest that there is a quadrupole quasinormal mode that
limits to oM = —2i asQ—0. [S0556-282(96)03324-3

PACS numbd(s): 04.70.Bw, 04.25.Nx, 97.60.Lf

I. PERTURBING THE REISSNER-NORDSTROM metric can be reconstructed. In general, bdth and V',
BLACK HOLE correspond to a combination of electromagnetic waves and
gravitational ones, but in the limiting case of an uncharged
Quasinormal modes of black holes have been studied evddack hole the two functions reduce to pure electromagnetic
since the seminal work of Vishveshwdrd and Pres$2] in ~ and gravitational waves, respectively.
the early 1970s. It soon became evident that exponentially Originally, the perturbation equations were used to study
damped mode oscillations will dominate most processes inthe stability of the metrid5,6]. Later the equations were
volving perturbed black hole&ee[3] for references This  used to investigate the already mentioned conversion of elec-
means that the quasinormal modes provide a unique oppoiromagnetic energy into gravitational enerpg-9]. There
tunity to identify a black hole, a possibility that hopefully have also been several studies of quasinormal modes for
will become reality when large-scale laser-interferometricReissner-Nordstra black holes/10-12. But although the
detectors for gravitational waves come into operation in thenethods used in those studies provide accurate numerical
near future[4]. In order to extract as much information as results, there is still the need for more information. Specifi-
possible from a gravitational-wave signal it is important thatcally, one would like to know what happens to the quasinor-
we understand exactly how the quasinormal modes deperiial modes as the black hole becomes extremely charged.
on the parameters of the black hole. There are two parts to this problem, which seemingly must
The parameters of main astrophysical importance are thee studied separately. In the typical case each of the two
black holes mass and angular momentum. That is, the Keirorizons, atr . =M * JMZ=Q? (whereM is the mass and
solution is the most relevant one from an astrophysical poinQ=M the charge of the holecorresponds to a second order
of view. The solution that describes an electrically chargedsingularity in the linearized equations. But in the extreme
nonrotating black hole — due to Reissner and Noraistre-  case these two singularities mer@g r=M) into a single
is of less direct importance because it seems unlikely thabne of fourth order. This means that the methods that have
black holes with a considerable charge will exist in the Uni-been devised to determine the entire spectrum of quasinor-
verse. Nevertheless, the Reissner-Nordstrsolution has mal modes break down in the extreme lirfitl,12].
several interesting features that warrant a closer inspection. Even though the extremely charged case is only of theo-
The most intriguing one concerns the possible conversion afetical interest, it is worth considering. One read@apart
electromagnetic energy into gravitational energy and vicdrom natural curiosity is the fact that the existence of two
versa: In a charged environment an electromagnetic waveoalescing horizons is a prominent feature also of rapidly
will inevitably give rise to gravitational waves. The rotating black holes. Thus one may hope that a study of the
Reissner-Nordsfra metric provides the simplest framework mode behavior aQ —M can lead to some insight also for
for studies of this effect. the rotating case or, at least, that methods that prove reliable
For this and several other reasons there has been a number high charge can be adapted to the Kerr case. Recently
of studies of perturbed Reissner-Nordstrblack holes. The Leaver's continued fraction method was amended in such a
equations governing a wedkasslessfield in the geometry way that it could be applied to the case of extreme charge
of an electrically charged black hole were first derived by[13]. Although it seems plausible that other methods, such as
Zerilli [5] and Moncrief[6]. Basically, these equations can the numerical integration of Anderssft?], can be extended
be (i) split into axial and polar perturbatiorfalso known as in a similar way, there have been no attempts to do this.
odd and even parity, respectivelgnd then(ii) reduced to Anyway, at present the main question concerns the reli-
two decoupled wave equations in each case. The final wavability of the various approaches for nearly extreme black
equations describe two variablds and¥,, from which all  holes. It is clear that the methods][iil,12 will break down
components of the electromagnetic field and the perturbetbr Q=M, and also that the method of Onozaetaal. [13]
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can be used only for the extreme case. Thus, we do not yétlack hole and at the same time correspond to purely outgo-
know to what extent the available results for high chargeing waves at spatial infinity. This means that a typical mode-
(and perhaps also rapid rotation in the case of K&Bf) can  solution will behave like

be trusted. The work presented in this paper was motivated _

by a desire to obtain a better understanding of this issue. We e asr,—+ox,

also wanted to unveil the detailed behavior of the quasinor- v~ e i asr, - —o. 3

mal modes as the charge of the black hole was increased.

Specifically, previous evidendsee Fig. 1irf11] and Figs. 2  Since one would expect the black hole to be stable against a
and 3 in[12]) indicate that this behavior is somewhat pecu-small perturbation, the mode frequencies should be complex.
liar for the higher overtones of the black hole. As we will This implies that an identification of quasinormal modes is
show in the following section, the behavior of the highly nontrivial. In order for a mode solution to be damped with
damped Reissner-Nordsimoquasinormal modes is, indeed, time at a fixedr, the frequencyw must have a negative
very strange. imaginary part. But then the corresponding solution will di-
verge both at the event horizon and spatial infiiitf Eq.

(3)] at a fixed time. Several methods have been devised to
deal with this difficulty. Most notable are Leaver’s continued
A. Numerical work fraction approactil5] and Andersson’s complex-coordinate

Since the equations that describe a perturbed Reissngfitegration meth_ocﬂl?]. These wo methc_st provide highly
Nordstran black hole are available in the literatufemost accurate numerical results also for rapidly damped modes.
notably in Chandrasekhar's exhaustive bdak]), we will Furthermore, both methods have been u§ed to study the first
not list them here. For the present discussion it is sufficien[ew quasinormal modes for Reissner-Nordstrblack holes.

to know that the equations take the general form As aIready mentioned in the_ previous section, it is clear
that all existent methods will fail for a nearly extreme black

d2y hole. The reason is that the two horizons of the black hole
ar? +w?=V(r)]¥=0, (1)  merge aQ—M, and this changes the singularity structure
* of the problenthis is easy to see if Eql) is expanded in
such a way that all derivatives are taken with respeat to
where we have assumed that the time dependence of thather tharr, ]. Thus, the extreme case must be considered
perturbation ise~'“t. The tortoise coordinate that is defined separately. This was recently done by Onozawal. [13].

Il. RESULTS

by As a test of the reliability of that study and also to provide a
better understanding of the behavior of the quasinormal
d oM Q?\d modes for highly charged black holes, we decided to make
ar =(1— T+ TZ_)W (2)  an exhaustive study of the problem. We made detailed cal-
*

culations(using both the continued fraction methiddL] and

numerical integratiof12] to make sure that the results were

has the effect that the event horizon of the black hole igeliable for the first nine dipole {'=1) modes of¥; and

“pushed away” tor, = — . the first nine quadrupole/{=2) modes ofl",. These are the
The function® can be either an axialodd parity or  lowest radiating multipoles for each case. The results of this

polar (even parity perturbation of the black hole. Also, for investigation are shown in Figs. 1 and 2. We now proceed to

each case there are two different functioly and ¥,,  discuss them in more detail.

which correspond to pure electromagnetic and gravitational

waves in the Schwarzschild limit. In total there are thus four B. Slowly damped modes

equations, all with sl_|ght!y dlfferen_t effective pot_ent|als. For For the first few modes the behavior of the mode frequen-
obvious reasons this difference in the potentials leads tq.

somewhat different quasinormal modes fit, and W ,. Cies is readily described. The damping rate typically reaches

. . a maximum for Q/M=~0.7-0.8, and the oscillation fre-
Analogously, one might expect the quasinormal modes for . : o
uency generally increases wit. This is clear from the

axial and polar perturbations to be different. But as pointecﬂ = S . .
out by Chandrasekhat6], the mathematical theory of black results forn=0-3 in Fig. 1. Moreover, this behavior agrees

holes is an intricately entangled web where many quantitieg\”th th? understandmg from the W.KB approximatidio]. It
are relatedoften in a surprising way Thus it turns out that is relatively straightforward to verify that, when the lowest

the quasinormal modes for axial and polar perturbations ar rgear 02:}52{2@”@%‘;&5&?‘1’ Stlfgv\é\élflzgr%rrglélé:ioitgggest
identical. The underlying reason is that two effective poten- PP P

tials can, although different, contain much the same physical 1\[M Q2|12

information. This means that it is sufficient to restrict a study Rew~| /+ 3|73 7| (4)
of the Reissner-Nordstno problem to either the axial or the o To

polar case. Onc& ; and¥, are found for one kind of per- 211/ 211/2
turbation, the corresponding solutions for the other case are Mo~ — E M _ Q_ ﬂ_ 4Q (5)
easily generatefil6]. 2|13 g ro r3] "’

The quasinormal modes of a black hole correspond to
solutions to Eq(1) that satisfy the causal condition that no in the limit />1. Here we have definex}, as the position
information should leak out through the event horizon of thewhere the black-hole potential attains its maximum value.
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FIG. 1. The behavior of the first six quasinormal mode frequen- FIG. 2. The behavior of the rapidly damped mode® show
cies (we show ImwM as a function of ReM) for a Reissner- ImwM as a function of ReM) of a Reissner-Nordstr black hole
Nordstran black hole as the charge is increased. The solid curvess the charge is increased. The right fraffaiseled(g)] correspond
correspond to'=2 and ¥, (which reduces to pure gravitational to /=2 and¥, (which reduces to pure gravitational waves in the
waves in the Schwarzschild limiand the dashed curves to=1  Schwarzschild limit and the left frameglabeled (¢)] are for
and¥; (which limits us to pure electromagnetic waye¥o show /=1 and¥; (which limits us to pure electromagnetic waye%o
that the mode frequencies change dramatically @or0.9M we show that the mode frequencies change dramaticallyQfor0.9M
have indicated the charge of the black hole by diamdag@isncre-  we have indicated the charge of the black hole by diamdatls
ments inQ of 0.1M). The frequencies generally move counter- increments inQ of 0.1IM). The frequencies generally move coun-
clockwise in the figures as the charge is increased. terclockwise in the figures as the charge is increased.

This means that %,~3M + VIM"—8Q". That is,ro COITe- 1 5 gimilar way, one can infer the damping rate of the qua-

sponds to the position of the unstable, circular photon orbi;sinormal mode from the decay rate of the congruence if the

in the Reissner-Nordstno spacetime. L - T
To understand better the physics that lead to this behavionrUII orbit is slightly perturbed19]. From this information it

we can use an argument that is due to Gogb&l: Consider !; casy dto C(;]nwrdc_e oneself that the osclll_lstlon friqllienfg of
a congruence of null rays circling the black hole in the un- e modes should increase@dncreases. The results for the

stable photon orbit. To circle the black hole would require aflrSt few modes in Fig. 1 agree nicely with this description.
coordinate time A remarkable fact, which is notable in Fig. 1, is that the
dipole frequencies foW; approach the quadrupole frequen-
cies for¥, as the black hole becomes extreme. This effect
6) was first noted by Onozawaet al. [13] (for a study of the
spin-3/2 case, s€d4]). They also showed that this surpris-
) ing phenomenon arises because the corresponding two effec-
The fundamental mode frequency then follolifsthe beam e notentials are related. That is, the effective potential for
contains/” cycles from / and ¥ is related to that for’+1 and¥,. Specifically,
¥,(£) corresponds toV,(—/—1). As is easily verified
27/ this is true also for the polar potential, but in that case the
O AT (7)  relation does not take the simple form of EG3) in [13].

2M QZ -1/2
At=27rr0(1——+—2
Mo o
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C. Highly damped modes

While the behavior for the first few modes has been stud-
ied in detail befor¢ 10—12 there have been no studies of the
highly damped modes for Reissner-Nordsirblack holes. 0.1

Thus, the results fon=5-8 in Figs. 1 and 2 are new. They E
are also truly remarkable. While the behavior is rather simple §
for the first modes rf=0-3), the rapidly damped modes R
show many strange features. Our calculations have discov- »
ered a small zoo of seemingly different species. Let us dis- £ 001
cuss them separately. %

The first surprising feature occurs for=4 (see Fig. 1 at
a chargeQ~0.938M: The ¥, mode goes through a tiny
loop that closes aQ=0.962M. For the following mode
(n=5) this loop has grown. Several similar loops are obvi- 0.001_26 T30
ous in the results fon=6 and¥,, and when one continues tortoise coordinate
up the spectrum one finds that these loops are a common
feature of many modes. One interesting aspect of this result FIG. 3. The effective potential for'=2 and¥, (which corre-
is that black holes with different charge may share a specifigponds to gravitational perturbations in the Schwarzschild Jlimmit
mode frequency. shown forQ/M=0.9-1.0. The potential falls off slower towards
For a few modes the mode frequencies approach the negéx-: —o asQ increases. T_he behavior is similar for other values of
tive Ima axis as the charge varies. Then our numerical meth? @nd also for the potential that govends.

ods [11,17] become unreliable. This is the reason for the .
gaps in the data fon=6 for ¥, andn=7 for bothW, and and perhaps the two modes that exist for the charged case
2 ! Itgen cancel each other in some way. It is also worth men-

W2. Whether or not these modes cross the axis is imposSibnonin here that there are algebraically special solutions also
to say given the available techniques. If they do, it would be 9 g y sP

very surprising, but given the data in our figures it does nofcor the Relssner-Nprdstm black hole. For¥', ; these corre-
seem impossible. One added peculiarity is that it seems as ﬁpond to frequenciei23]
some modes are “multivalued.” That is, for=6 and¥, i
we find a mode both in the upper branch close to the imagi- wjzz — E/(/_ H(/+1)(/+2)
nary axis and in the lower branch for a small range of the
black-hole charge (0.8985Q/M=<0.9105). A similar be- X [SM F\OMZ+4Q2(/—1)(/+2) ]71_ (8)
havior can be observed fom=7 and ¥; when
0.9336=Q/M =0.9425. At first this result seems nonsensicalln general we cannot see any correlation between these fre-
and obviously wrong, but it is confirmed by both the contin-quencies and the quasinormal modes of the charged black
ued fraction method and the numerical integration schemehole.
This could indicate that it should be taken seriously. For higher overtones than those displayed in Fig. 2 the
Our study also sheds some light on an issue that has beé®havior tends to be qualitatively similar to the presented
debated for Schwarzschild black holes for some time. I®nes. The mode frequency spirals into the value for the ex-
there a quasinormal moden the imaginary axis at treme black hole. The spirals get tighter for more rapidly
oM =—2i? Some methods indicate that there should belamped modes.
such a mode and that it correspondsite8. Other methods How are we to understand these results? Well, at present
say that no such mode exists. To resolve this issue is diffiit is very hard to make much sense out of the data presented
cult, basically because none of the proposed methods is relin Fig. 2. The obvious answer is that the change in the mode
able close to the axis. An added complication is that the caskequencies occurs because the effective potential changes as
oM = —2i is a very special one. That frequency correspondshe charge increases. For the slowly damped modes it is
to a so-called algebraically special perturbation and, as wastraightforward to show that the oscillation frequency de-
shown by Chandrasekh&23], one can find analytic solu- pends on the height of the peak of the potential, while the
tions to the corresponding perturbation equations. Althougllamping rate is related to the second derivative/ddt the
one can convince oneself that Chandrasekhar’s special solpeak[10]. But it is much harder to draw similar conclusions
tions do not satisfy the quasinormal-mode boundary condifor the rapidly damped modes. Present methods can reliably
tions, the issue is not resolved. To prove the existence of aalculate the mode frequenciénd also account for the ex-
quasinormal mode one must study the analytic propertiesitation of the modes in a dynamical procg20—22), but
close to the mode frequency, and this turns out to be difficulive have no clear understanding of the relation between the
in this specific case. Anyway, once the black hole acquiresighly damped modes and the details of the effective poten-
some small charge it is clear that a mode exists 8 for tial. On the other hand, we have seen that the mode frequen-
V¥, in Fig. 2. This mode approaches the suggested valugies change dramatically as the charge increases from
oM =—2i asQ—0. But still this does not prove the exist- Q~0.9M. If one studies the corresponding change in the
ence of a mode for the Schwarzschild black hole. It is plau<ffective potentialcf. Fig. 3, one can infer that as one ap-
sible that the mode in Fig. 2 and its symmetric counterpart irproaches the extreme black hdie the potential does not
the left half of the complexv plane will coalesce a@=0, change much for>r, (i) the peak of the potential stays
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almost constant, angii ) the main change in the potential is lations we find this not to be a useful approach. As should be
the falloff rate ag, — — . This suggests the possibility that expected from the Schwarzschild cd$g, we find that the
the high overtones of the black hole are in some way relatedhode behavior for the higher multipoles is qualitatively
to the effective potential close to the horizon. This issue willsimilar to that for the lowest radiating onédf. Figs. 1 and

have to be studied further in the future. 2). But since we still do not have an intuitive understanding
of the origin of the rapidly damped black-hole modes, we
Ill. CONCLUDING REMARKS cannot associate this behavior with the change in a black-

] _ hole potential in a meaningful way. Much further work is

In this paper we have presented the results of a detaileghquired to test the assertion that the behavior of the potential
study of the quasinormal modes of a Reissner-Nordstro cjose to the event horizon is particularly relevant for the high
black hole. Our work complements previous studies in sevp|ack-hole overtones. The information needed to resolve this
eral ways. For the first time we have conside(®dhe rap-  problem is likely to be contained in the quasinormal-mode
idly damped modes an@i) how the mode frequencies ap- gjgenfunctions. A detailed study of the actual solutions that
proach the anticipated value for the extremely charged b|aC|50rrespond to the highly damped modes may thus provide
hole. We have given special attention to the mode behaviohe desired answer. But such a study goes far beyond the
near the extreme limit. The two independent algorithmsscope of the present paper and we will have to return to it in
(from[11] and[12]) that we used for the calculations provide the future.
consistent results even for a nearly extreme black hole. These A final question regards the relevance of the algebraically
values are also in nice agreement with the results obtaineghecijal modes. In general, our results do not indicate any
for the extreme black holgl3]. That is, the quasinormal rejation between the algebraically special moatbich has a
modes converge towards the values for the extreme case ggrely imaginary frequengyand the quasinormal modes for
Q—M. _ a charged black hole. But it is well known that the algebra-

We find that while the slowly damped modes can be unica|ly special mode coalesces with the ninth gravitational
derstoodfor example, by a WKB argumentthe behavior of  quasinormal mode in the Schwarzschild limit. Is there a pro-
the rapidly damped modes as the charge increases is hardg{ind reason for this or is it just a coincidence? To answer
to explain. In general, the modes tend to spiral into the exthjs question is difficult because all present methods for qua-
treme value. Moreover, there are cases where the quasina§inormal modes break down in the region close to the imagi-
mal modes seem to be double valugd cases when the nary frequency axis. On the other hand, it is known that the
mode frequency approaches the imaginanaxis). At one  gigebraically special modes of the Kerr black hole move
level, these are just peculiar results without much relevancqiway from the imaginary axis. Hence, it seems likely that a
but they lead to several questions. For example, will thestydy of the Kerr problem may prove illuminating also for
modes of a Kerr black hole show similar features? This doegis issue.
not seem unlikely, because the Kerr problem is in many several questions concerning quasinormal modes thus re-
ways similar to the Reissner-Nordstnoone. There will be  main to be resolved. The present work has contributed a few
two horizons that merge as the black hole becomes extremgeyy pieces to the puzzle, but many other pieces need to be
Although the slowest damped modes of the Kerr black holeydded before the picture becomes completely clear. Still, the
have been calculatdd5], the rapidly damped ones have not present results should help us get a better understanding not
yet been considered. Since rotating black holes should bgnly of the Reissner-Nordstmo black hole, but also of the

astrophysically relevant, a study of the rapidly dampedquasinormal-mode phenomenon in general.
modes for Kerr could yield physically interesting results.

The present study also leads to questions regarding the
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