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Thermal partition function of photons and gravitons in a Rindler wedge
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The thermal partition function of photons in any covariant gauge and gravitons in the harmonic gauge,
propagating in a Rindler wedge, are computed using a Iddahction regularization approach. The correct
Planckian leading order temperature dependdide obtained in both cases. For the photons, the existence of
a surface term giving a negative contribution to the entropy is confirmed, as earlier obtained by Kabat, but this
term is shown to be gauge dependent in the four-dimensional case and, therefore, is discarded. It is argued that
similar terms could appear dealing with any integer spinl in the massless case and in more general
manifolds. Our conjecture is checked in the case of a graviton in the harmonic gauge, where different surface
terms also appear, and physically consistent results arise dropping these terms. The results are discussed in
relation to the quantum corrections to the black hole entrpp§556-282(196)06222-4

PACS numbeps): 04.62+v, 04.70.Dy

I. INTRODUCTION energy should be Planckian, namely, proportionalgto*
[3-5], while the heat kernel give8~ 2 independently of the
In recent years, many papers have been concerned witfimension.
the first quantum correction to the Bekenstein-Hawking In this context, Zerbini, Cognola, and Vani®), starting
black hole entropy. According to 't Hooftl], the main con-  from a previous work of Cheegéi], have recently intro-
tribution to these corrections comes from quantum fieldsluced a new method to compute the effective action of a
propagating in the region outside the horizon. An importantscalar field on manifolds with conical singularities using the
tool used to compute these corrections is the approximatiog-function regularization. This method, in addition to giving
of the metric of a large mass Schwarzschild black hole givenhe correct temperature dependence and allowing one to
by the simpler Rindler metric. In this approximation the work directly with massless fields, has the advantage that it
guantum corrections are identified with the entropy of therdoes not require the regularization of the conical singularity
mal states of quantum fields in the Rindler space-time. Manyr transforming the cone in a compact manifold, procedures
different methods have been employed to compute this erwhich do not have a clear physical meaning if one is inter-
tropy and, among them, the method of the conical singularityested in the(Euclidean Rindler space. The drawbacks are
is one of the most used: one follows the usual prescription tehat this method is technically difficult to apply in the case of
compute the thermal partition function of a quantum field,massive fields and especially that it yields for the part of the
that is, to evaluate the Euclidean path integral over all théree energy proportional t8~ 2 a numerical coefficient dif-
field configurations that are periodic in the imaginary timeferent from that obtained with the point splitting and the
and identify the periogB with the inverse of the temperature. optical metric methodg3,8—10. This latter problem is
In doing this, the Rindler manifold acquires a conical singu-shared with the heat-kernel approach and the reason for this
larity with angular deficit 2Zr— 3, and so one sees that, in discrepancy is not yet understood.
order to avoid the singularity, there is only one possible tem- Most of the work on the quantum corrections to the black
perature for the system, i.e., the Unruh-Hawking temperaturtole entropy is carried on using the scalar field. Results for
B=2m. However, if one wants to compute thermodynamicalhigher spins have been obtained translating earlier results
quantities such as the entropy and the internal energy usingbtained for the closely related cosmic string background
standard thermodynamical relations suchSs ,BZ&BF B [4]. Last year, in an interesting padérl] Kabat investigated
then one needs to go “off shell,” i.e., considge=27 and  the corrections to the black hole entropy coming from scalar,
so manifolds with a conical singularity. Therefore, manyspinor, and vector fields by explicitly writing the field modes
techniques have been developed to compute the one-lodp the Euclidean Rindler space and then using the heat-kernel
quantum corrections on manifolds with conical singularities.and the proper-time regularization. In the vector field case he
In this respect, it is important to note that the standard use dfias obtained an unexpected “surface” term, which corre-
heat kernel plus proper time regularization yields the wrongsponds to particle paths beginning and ending at the horizon.
temperature dependence of the free energy and the oth@his term gives a negative contribution to the entropy of the
thermodynamical quantities, at least when the dimension adystem and, in fact, is large enough to make the total entropy
the space-time is not twf®]. In four dimensions, in particu- negative at the equilibrium temperature. Kabat argues that
lar, the leading term in the high temperature limit of the freethis term corresponds to the low-energy limit of string pro-
cesses which couple open strings with both ends attached to
the horizon and closed strings propagating outside the hori-
“Electronic address: iellici@science.unitn.it zon diagrams and discussed by Susskind and UdRkinas
"Electronic address: moretti@science.unitn.it responsible for black hole entropy within string theory.
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In this paper, we apply the method[@| to the case of the If we take the large mass limit, the last term becomes the
Maxwell field and the graviton field. As a result, in the casemetric of a spherical surface with very large radius that can
of the photon field we confirm that there is a “surface term” be approximated by a flat metridy?+dz%. Then, in this
which would give a negative contribution to the entropy, aslimit, the metric becomes the Rindler one, Eij). Actually,
obtained by Kabat if11]. However, besides getting a dif- even if we do not consider the large mass limit, the approxi-
ferent temperature dependence, we show that it depends omation should become better and better as we approach the
the gauge-fixing parameter and so we discuss how it is posvent horizony =0.
sible to discard it. In this way we also avoid embarrassing The Rindler metric is also related with the study of the
negative entropies. In the case of the graviton we get similacosmic string background: the metric around an infinitely
surface terms and show that one can get consistent physidaing, static, straight and with zero thickness cosmic string
results by discarding them. We also discuss the appearancan be written as
of similar terms in more general manifolds. After discarding
the surface terms we get the reasonable result that the effec- ds?= —dt?+dZ2+dr’+r2dep, O<e=a,
tive action and all the thermodynamical quantities are just
twice those of the minimally coupled scalar field: this is in
agreement with the results of the point-splitting method
[9,10], the heat kernel methdd.2—14], and, apart from the
surface terms, also with Kabgt1].

We remind that the Rindler wedge is a globally hyper-

where the polar angle deficit/2— « is related to the mass
per unit length of stringu by 27— a=8n7Gu. Since the
metric is ultrastatic, we can perform a Wick rotatidn;it,

and the metric becomes equal to the Euclidean Rindler met-

: : ! : : . ric. Therefore, we can identify the thermal partition function
bolic manifold defined by the inequality> |t], in the usual of a field at temperature ! in the Rindler wedge with the

set of rectangular coordinatesX,y,z) of Minkowski space- . ; .
time. In this \?vedge we can de)f(irile 21 new set of statﬁ: Coordi_zero—temperature, Euclidean-generating functional of the

nates by setting=rsinhr andx=rcoshr, with 0<r<co and ~ >&1° field in a cosmic string background.

— < 7<%. Then the Minkowski metric takes the form of The rest of this paper is orgf'inlzed_ as follows. In Sec. Il
the Rindler metric: we compute the one-loop effective action for the electromag-

netic field on the manifoldC;xR? using the ¢-function
_ .2 2 2, 42 regularization. We use this result to compute the quantum
=-—r +dre+ +d“z. 1 . :
ds’ dr*+d dy"+d @ correction to the black hole entropy in the framework of
One can see that nes of constas, andz are wsjectories <O SnQulrty o n Sec I we founulte o ger
of uniformly accelerated particles, with proper acceleration J . PP :
1 in the case of integer spin and general manifolds. In Sec. IV

a=r--. ; . . . ,
As we said above, the importance of the Rindler metric i%?Eizsch\J/?)(t:;l:jr?()lstr?eh?j(iﬂs(sgsIsr};Eeo??sg ;)gstsletzsgravnon. Section

mainly due to the fact that it can be seen as an approximatio
of the metric of a large mass Schwarzschild black hole out-
side the event horizon. Indeed, consider the Schwarzschild 1. EFFECTIVE ACTION FOR THE PHOTON FIELD
metric, which describes an uncharged, nonrotating black hole

of massM - In a curved space-time with Lorentz signature the action

of the electromagnetic field isS=[L(x)V—gd*x,
2GM 2GM| 1 where the Lagrangian scalar denSity [15]
dszz—(l—T)deJr(l—T) dR?+R2dQ),,

1
Len(X)=— —Fa,F 2,
dQ,=d@?+sindd ¢?, entX)= = 7P

whereM is th_e mass of the black hole. In the region outside Fab=VaAp— VpAs= daAp— daAyp . (6)
the event horizon, namely @M <R< e, we can define new

coordinatesr andr by We need also the gauge-fixing term and the contribution of

T the ghosts:

TeIvE @ L
Lo=— 5 (VA% @

r=y8GM(R—-2GM), 3 «

and so the metric takes the form 1

Eghost:_gab‘9ac’9bC*v 8

r2 -1 r2 \/;

=—r2 - 2 - 2
(4) we adopt the convention that the indicgd, ...=r7,r,y,z are
) 5 for the whole manifold, the greek indices are for the pure cone,
2012 a,b,...=7r, and the indices,j, ...=y,z are for the transverse
+AGTMA 1+ 16G2M7) Q. ® flat directions.
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wherec andc* are anticommuting scalar fields. The depen-In general, both the Mellin transform and the inverse power

dence on the gauge-fixing parameteof the ghost action is of the operator require analytic continuation arguments to be

relevant only in presence of a scale anomaly. It is not thalefined at the physical values sf

case here, and, therefore, we shall ignore it. We can also define a globalfunction by tracing over the
We are interested in the finite temperature theory and sepace indices:

we changer—i 7 and identifyr and 7+ 8. The metric of the

Rindler space-time turns to Euclidean signature,

ds?=r2dr?+dr?+dy?+dz?, and the vector D’Alembertian {(s)= f d*x\gZ(s:x). (13)

operatord becomes the vector Laplace-Beltrami operator

A. In the following this operator will be simply called La-

placian. The one-loop effective action for this theory will This |ast step is delicate: in general, the operation of tracing

then be given by the determinants over the space indices requires the introduction of a smearing
function, since the manifold is noncompact and there can be
1 1 : . P .
InZ,=— ~Indetw 2 g2P(—A)— R¥®+ | 1— —|VayP nonintegrable singularities in the localfunction, and a par-
2 a ticular choice of the smearing function could sweep away

+InZ 9) important information. This is one of the reasons Why_ we

£.ghosts prefer to work with a local formalism as long as possible.
where 2 is the renormalization scale and the effective ac-Once we have computed and analytically continued ghe
tion of the ghosts is minus twice the effective action of afunction, we can write the effective Lagrangian density and
scalar massless field, which is well knoWh6]. It is impor-  the effective action as
tant to note that the determinant has to be evaluated on the
whole set of eigenfunctions, not only on the physical ones 1 1
[16]. Lp(x)= 5 (5=0;%)+ 5 (5= 0;x)Inu?,

We work on the manifoldC 53X R?, whereCy is the cone 2 2

with angular deficit equal to 2— . This manifold is flat
everywhere but on the tip of the cone, where the curvature
has ad-function singularity. Nevertheless, the modes we use Inzﬁzf d4x\/§£B(x). (149
vanish on the tip, and so we can consiégr=0. Note also
that, due to the flatness, the covariant derivatives commute.
Hence, we are left with the problem of computing the deter-Of course, to the above expression we have to add the con-
minant of the operatofg®°(—A) +[1—(1/a)]V3VP®} acting  tribution of the ghosts, which is minus two times the effec-
on vectors. In order to define this determinant we use theve Lagrangian density of a scalar field.
¢-function regularization: first, suppose we have a complete A suitable set of normalized eigenfunctions of the opera-
set of eigenfunctions of the operator, indicatedAds™  tor {g2°(—A)+[1—(1/a)]V2V®} (equivalent to Kabat's set
X(x), with eigenvalue v?(n\k). Here, k=(k, k), [11]if a=1) is the following: settingk=|k|,
a=rr,y,z, andi=1,... 4 is thepolarization index. In this
notation we have taken into account the triviality of the 1 1
transverse dimension and the fact that we have a discrete Ag"““()=—eijai¢=—(0,0,ikz¢,—iky¢),
index n since ther coordinate is compact and we impose k k
periodic boundary conditions. Then we can define the local,
diagonal heat kernel as \/5

1 1
Aglym\k):_fuvvv(ﬁ:_(rar(,bi__a7¢1010),
KOt x)=>, fdM(x)dzke—tv?gabAg>(x)A§j>*(x), A A '

n

(10
) . . . . A(Ill,n)\k): 1 EV _la_ d’

wheredu(\) is an appropriate integration measure. The cor a _\/m Nor K
responding local spin-traced function can be obtained
through a Mellin transform: 1 k(9 . K » A o A ; ¢>

- BN CTA IS AR S A S

g(s;x)zif dtts 1>, KO (t;x). (11) Nk
I'(s)Jo i

Alternatively, we can define the locdl function as the in- ok L 1
verse power of the kernel of the above differential operator: ~a = mvad’_ m(ﬁr‘f"&rqs!ay‘ﬁvﬁz‘f’)’
the spectral representation gives directly (15)

(50-3 3 f du (VA 2(MNK)]~5g?°AL (%)

where \/§ew is the Levi-Civita pseudotensor on the cone,
() € is the Levi-Civita pseudotensor d®’ in Cartesian coor-
XA (X). (120 dinates, andp= ¢,,,(X) is the complete set of normalized
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eigenfunctions of the Friedrichs self-adjoint extension of theNow, looking for a way close to that followed by KaHatl],

scalar Laplacian o€ ;X R? [17]:

Gork(X) = —eikyy+ikz2exp(' 2mn T>J (A1)
: 277\/,5 n '
n=0,+1,..., e RT, ky,k,.€R,
Adani(¥) == (N+K?) dpyi(X). (16)
Here, J,_ is the Bessel function of first kind and

vp=(27|n|/B). Using the relation
e 1
fdrrJv()\’r)JV()\r)zX&()\—)\’),
0

one can check that the modg<) are normalized according
to

(A(i NNk ),A(i,nAk))Ef d4x\/§gabA(ai NNk )*Ag,m\k)
1
=5i,iﬁn,nﬁ(z)(k—k’)xé()\—)\').

The first three eigenfunction45) satisfyV2A,=0 and have

eigenvaluex?+k?, while A{" is a pure gauge and has ei-

genvalue (1d)(\?+k?).

Using these eigenfunctions, we can compute the diagon

¢ function using the spectral representation Equatit®:

after the integration ovedk, the contributions of the modes

to the diagonak function are

{V(s;%) = 5 5;x),

(M(s:x)= ypm BF s) fdMl 2s

2
14
x r—SJin<xr>+[arJVn<xr>]2}

I'(s—1)
4mBl(s+1)

% 14
x>, f dMHS[—”
n 0 r

gscalats X)

g(lll)(s X)_
2
ZJ,%H(MH[arJVn(M)]z},

asT'(s)
4Bl (s+1)

X f dANLT2s
n 0

(Mi(sx)= %és‘:"""”‘(s;XH

2
%Jin<xr>+[ar%<xr>]2},

where the spectral representation of the lac&linction of a
minimally coupled scalar field o€ ;X R? is

I'(s—1)

scalaf -
S0 =4 Br(s)n_fm

f dAN3725)2 (\T).

we use the following identity, which can be proved using

some recursion formulas for the Bessel functipbg]:

2

14
2| 337 (ND)+[4,3, (\)TP| =208 (Nr)

1 2
+F&rrarJvn()\r),

17
and so the spin-traced localfunction becomes
s—1 a° |
{(s;x)=| 1+ —+ — | 5% s;X)
S S
. s+1+a(s—1) I'(s—1) 5 foo)\l_ZS
2s 47T,3F(5) n 0
2192 1 2
X| 2\ Jvn(M)Jfrﬁrr&rJvn(M) ,
namely,

s+1+a%(s—1)

os V(six),

(18

£(s:X)=(3+ ) 5% s:x) +

é(yhere we have set

I'(s— 1)§

§V(S'X)=1
2 O BT (5)n

3,10 dml—ZSJVn(xr)z.
0

(19

Notice that the terngV(s;x) arises from the “conical” com-
ponents of the field, i.eA, andA, . In particular, its source
is the second term in the right-hand side of Ej7) only.
This term will produce the Kabat “surface term” as we will
see shortly.

We have taken (1)d,rd,, which is in fact the Laplacian
A, outside the integral and the series, but this is a safe short-
cut: indeed, one could first IeX act on the Bessel function
using d,J,(Ar)=\J,_1(Ar)—(w/r)J,(N\r), go through
some tedious calculations and get the same result aREq.

So far, the expressions f@®®® and /¥ are just formal,
since one can easily see that there is no valugfof which
they converge. The correct way to computé®? in this
background has been recently given by Zerbini, Cognola,
and Vanzd 6], following an earlier work of Cheeg¢?], and
the result is

2s—4

scalaf o v\ —
EENSX= 08T (9)

| 4(s— 1),

where

=———=[Gp(8) =Gor(9)], (20
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©

_ I'(vp—s+1) _ I'(1-s9) eny a- v — s\ sscalay - stlta¥(s—1) V(e
G'B(S)_nzlw' Gzﬂ.(S)——T(S), (s x)=(1+a®)¢ {(s;x)+ 23 £'(s%x)
2s—4
1/27 B =(:|_-|-as)—r I 5(s—1)
'B(O):E(F_E)’ 4mpr(s) #
s+1+as(s—1) (s—1)r=*

|( ]_)—i 2_’77_£)[(2_7T)2 11 + 2s WﬁF(S) Iﬁ(s)- (22)
B 9\ 8 27|\ B

From this expression we can easily see that
The functionl 4(s) is analytic in the whole complex plane ¢*"(s;x)|s-o=0 and
kljut in s=1, where it has a simple pole with residue 1 1
5[ (B/27)—1]. Following the same procedure used @ to en (o _ V(11 -
obtain the above result, we can compute the contribution to ¢ (S’X)|S:°_2wﬁr4lﬁ( D= (1=zIna) w,8r4|3(0)'
the ¢ function coming from¢V(s;x). The essential step to (23
give a sense to Eq19) is the separation of the small eigen-

value v, from the otherg7]: define Therefore, the one-loop effective Lagrangian density for the

electromagnetic field o€ ;X R? is

g\i(s;x)zAﬁfmdM\lZSJS(M), (1-3Ine)
47TIBF(S) 0 EZm(X) = ZﬁzcalaEX) - Tﬂr“ | ﬁ(O)
Vieoroox D(s=1) o f 12672 1 (1-3Ina)
Y (s;x)=2A 477',81_'(5),121 o AT (). = amgrd oD g 140 (28
The integrals over\ can be computed[18]: for ;  Sincel,.(s)=0, we can notice that both terms of the effec-
<Res<l+v tive Lagrangian density vanish when the conical singularity
disappearsp=2r.
o asezie o gs ol (ST HT(v—s+1) A few remarks on this result. First, no surprise that in the
JO dAN Jy(Ar)=r 2\/;F(s)l“(v+s) : effective Lagrangian density we get a contribution which is
twice that of a scalar field. More surprising is the second
Therefore, in the strig<Res<1 we get term: after the integration over the spatial variables, it gives
rise to what Kabaf11] calls “surface” term and interprets
r25-21(s—1) ['(s— %) as a low-energy relic of stringy effects foreseen by Susskind
(six)=—A > Gy.(S), and Uglum[5]. This term would give a negative contribution
4ml'(s) \r to the entropy of the system, at least fox<e?, and actually
. also the total correction to the entropy at the black hole tem-
while perature =27 would be negative fora<e®® which is
clearly nonsense if we want to give a state-counting interpre-
v, r22r(s—1) I'(s—3) tation to the entropy. However, in the four-dimensional case
{2(sx)=A 47T (s)? \/; Gp(s), we get that it is not gauge invariant, in contrast with Kabat's

result.

which is valid in the strip X Res<1+ vy, since the series  With this regard, it is interesting to note that in two di-
defining G4(s) converges fors>1. Both expressions can Mensions, i.e., 0f, the resultis indeed independent on the
now be analytically continued the whole complex plane andJa@uge-fixing parameter: using the modes of the em field on
then summed, so we can write C; given by Kabaf11] and following the same procedure as
above, before adding the contribution of ghosts we get

r2s 21 (s—1) (s—1)r2s—4

(S0 =M p(9)= a1 4(S). L52a(s10 = (1+ @) L3258 + Ly—o(:)],
(2)  where
i i i i 2s-2
;Lr;ts result could be obtained directly from E3.9), noting §§°f'2afs;x)= ﬁlﬁ(s):
V(s;x)=A ig“SCa'a(er 1;x) . Vo aiy)— ;
s—1 Lg=2(S:X)=A 2T (s+ 1) lg(s+1),
Note also that¥(s;x)|s-2,=0 and{¥(s=0;x)=0. and so, adding the contribution of the ghosts we have

Now we can write the final result for the locéalfunction
of the electromagnetic field: after adding the contribution of £8(x) = (27— B)
the ghosts, which is just Zgzca'a(s;x), we get 2mPr? ’
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which is gauge independent and, after the integration over A,
the manifold, gives exactly the result of Kabat. InZ (€)= mlﬁ(_l)- (25
Coming back to the four-dimensional case, we argue that

a natural(albeit not the only possible, see the final discus-For ¢ .0 we have a divergence that can be seen as a “ho-
sion) procedure to restore the gauge invariance is simply tQjzon” divergence[1], since ag —0 we approach the hori-
drop the Kabat term, namely, the last term in E24), ob-  zon of the Rindler wedge.
taining the reasonable resulf"(x) =2,£54%(x). From Eg. (25 we can compute the free energy,
First of all, notice that the gauge invariance must hold forFﬁ: —(1/B)InZ,, which at high temperatureg—0, has a
the integrated quantities as the effective action, namely, thgading behavior- 2 (72A, /180623%), in perfect agreement
logarithm of the integrated effective Lagrangian. In fact, theyith the statistical mechanics result of Susskind and Uglum
ghost procedure, which takes into account the gauge invarfs]. |nstead, Kabat[11] obtains a leading behavior
ance, works on integrated quantities. However, in our case, 2(A /8¢232), where the behavigs 2, independent of the

2

+5]. (26)

2

A
+5 S

the integration of the Kabat term produces a divergenyimension of the space-time, is typical of the integrated heat-
gauge-dependemesult, and thus it seems reasonable to diskemel approach. Of particular interest for the black hole
card such a local term. With this regard, it is important tophysics is the entropy of the system:
note that Kabat obtains a gauge-independent result because,
within his regularization procedure, he has the freedom to A, 20
choose an independent cutoff parameter for each mode. In- SB:BZ&BFB:W (7
stead, in our procedure we have only one cutoff parameter
€ 1o Wh'ch We gIve a precise phy3|cal meaning, namely, theI'his equation gives, in Rindler space approximation, the
minimal distance from the horizon. .
. ) . . ._one-loop quantum correction to the black hole entropy com-
A more general discussion might be the following. It is . o o X
\ i ) X . ing form the electromagnetic field propagating in the region
worth one’s while stressing that, dealing wigmooth com- . ; . .
) L outside the horizon. It shows the well-known horizon diver-
pactmanifold, local quantities as local heat kernel and local i ) .
i A ; ) .. gence[l] (see alsd19] for a recent review on this topic
{ functions are intrinsically ill defined due to the possibility | h . f | effecti ff
of adding to them a total covariant derivative with vanishingun ess we suppose the existence of a natural effective cuto
integral. In such a case, the previous global quantities arat the Planck scale due to donknowr) quantum gravity
wellgde{‘ined and one ca,m sat?sfactoril gem qu these Iatte{j1eory or back-reaction horizon fluctuations €twe get a
. ' " ) y employ . divergent entropy which is physically unsatisfactory and
instead of local quantities in order to avoid the ill- . . . .
. ) c?ntrasts with the finite thermodynamical Bekenstein-
definiteness problem. Notice also that the gauge—dependep| : . : ;
Kabat surface term formally looks such as a Laplacian an awking entropy. However, this problem is not peculiar to
: ; Y . ap . The photon field, as it occurs for scalar and spinorial fields as
thus it should disappear after a global integration, provide L el
rea%ulgr:;y dgogi'gngigg tk;gtren danggftiﬁrees Sl?ltcl)?/cee\?e’rprt?w?suicsl r:}g i We can note that, if we took into account the surface term
gaug b grated q : ' "Qvhich we have previously dropped, we would obtain the
the case for the present situation, where the background is a . . :
. . . ; . .~ Unhphysical, because being gauge dependent, expression
noncompact manifold with a conical singularity, and the in-
tegrated quantities diverge requiring a regularization proce-
AP | 2
dure. We stress that the use of local quantities is preferred ors (o) = 29 ,F ;.= ——— | | —-
[ B BB~ 9082
the physical ground, because they lead us to the correct tem- Be B
perature dependency as we will see shortly. o . ) ]
Therefore, in our case the local quantities remain ill de-AS anticipated above, this expression for the entropy is nega-
fined and require a further regularization procedure in ordefive when the S|ng4u|ar|ty is abseng=2m, and Ine<<s.
to fix the possible added total derivative term before we in-Moreover, for Inv<3, Sg(a) shows a further zero of the
tegrate. Furthermore, the integrated quantities are divergerNtropy corresponding to an inconsistegauge-depending
so we expect we to have to take into account also total definite temperaturgoure quantum state of the field.
rivative terms with a divergent integral. In our case this fur- Another thermodynamical quantity that we can compute
ther regularization procedure consists just in discarding th&om the effective actiori25) is the internal energy. Since it
Kabat term. Notice that this procedure produces gauges Well known[15] that the usual Minkowski vacuum state,
independent local quantities. restricted to the Rindler wedge, may be viewed as a Rindler
Once we have dropped the Kabat's term, we can computihermal state at temperatufe= 1/27, it is natural to require
thermodynamical quantities such as internal energy and erbat the internal energy vanishes whgh=2m, namely,
tropy: we need the effective action and so we have to introwhen the conical singularity is abbsent. Hence, we define a
duce a smearing functiop(x) in order to define the trace: renormalized free energy aBp"=F;—U,, which, by
INZy=[d**\/gLs(x) ¢(x). Actually, sinceL, does not de- means of the relationdz=(1/8)Sz+F, automatically
pend on the transverse coordinageandz, the integration on ~ givesU S = Uz—U,,, that trivially vanish aig= 2, while
these coordinates simply yields the infinite area of the Rin-S%“b: S Explicitly,
dler horizon, that we indicate a&, . This divergence has
clear physical meaning. The integration owehas no prob-
lem, while a convenient smearing function for the integration ?However, such a cutoff should depend on the field spin value to
overr is ¢(r)=6(r—e€), and so the effective action be- produce the correct entropy factor in front of the horizon area. See
comes [20].
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b mA, Al 13A, bution to this latter part ony This is the general mechanism
Uz T + 36522 1440522 (270 which produces Kabat's term. Let us illustrate this in more
detail. Dealing with the modes IV, we find
From this expression we can also compute the thermal
energy-momentum tensor: using the relatiod ;=
— [(TSrdrdydz supposing thatT3) depends om only®
and that it vanishes g8=2, we get

1
w? 1 13 =22l Va(8*Vi¢) = ¥ VaVid]
15874 188% % T 72004 %

1
gAY AN = V8V

0
(1o

1
= 2 [Va( @ V2 )+ 02 kD) ¢ 6

(30

1 Kok
<Tab>3“b=§<T8>S“{4 o~ Gan

: (28)

where in the last equation we have supposed a perfect fluithus, using the particular form of our modes we get
form, K,=(dy)4 is the timelike Killing vector associated

with the time coordinate of the Rindler space, and b A (V)% A(IV) 1 s
K?=K,K2. This result fo Tg)**Pis in agreement with twice 9A T A ZWAJVnJFJVn-
the local heat-kernel resul21].

As we have already said in the introduction, our resultsrpe modes 111 contribute to the local heat kernel and to the

for the thermodynamical quantities differ from those ob-gtective Lagrangian in the same way. The modes 11 require
tained with the point-splitting and the optical metric methods, |ittie different care: we have

[22,8,4,9,1Q In fact, for (T9)S" they give

1
2
w 1 11 abp (D% A () _ nv T kTP
— _ g Aa Ab 29 G;La'evpv ¢ \Y ¢
1587% 6% " 240771 9 A
1
for spin 1 and one-half of this quantity for spin 0. Our result = F[V‘T(g“”eweppwV”(ﬁ)
for the coefficient of the term proportional 2 is one-
third of that in Eq.(29), while the difference in the numerical —g""€,,€,,0* VIV P]

coefficient of the term independent @ is unimportant,

since it is determined by the other two by requiring the van- I -
ishing of the energy-momentum tensor fé&=2x. The rea- - F[V (90p®* VP ) = 4% 9,, V'V ¢]
son of this discrepancy, which appears also in the heat-kernel 1

approach21,11-14 is not clear to us and requires further
inr\J/r;stigar::ions. i ? = F[VMW*V”“@H\Z(Z"* ¢]

1
Ill. A GENERAL CONJECTURE = F[Va( ¢*Vep)+ )\2¢* b]. (31

Let us focus our attention back on Kabat's surface term in
the effective Lagrangian, Eq24): is it an accident which  And thus, reminding the particular form of our modes
appears in our manifold and in the vector case only, or con-
versely, is it a more general phenomenon? 1
We can grasp some insight by studying either the local g?PAN* A = WAJinwLJﬁn.
¢ function, as it appears in E@L2), or the local heat kernel

of Eq. (10) and passing to the locd] functions through Eq. The contribution to the effective Lagrangian is similar to the

(11). In fact, the Kabat term already comes out in the heaf revious ones. In both the examined cases, using the specific
kernel and then it remains substantially unchanged passing s : » using P
orm of scalar eigenfunctions, we have obtained the right-

the local{ function through Eq(11). The components of the hand side of Eq(17) except for some factors which will be

modes I, 1ll, and IV contain(covarianj derivatives in both : . )
. 5 ) o : . arranged summing over all the modes in the final result. The
the conical andR“ indices. Using trivial(covarianj deriva-

tive rules and reminding thatVMV”qﬁ:—)\Zd) and termVa(¢*Ya¢) (:%A\.le)n) contributes only FO the §econd
9,0 ¢=—k2¢ we may transform scalar products @bvari-  term of the right-hand side of EL8), namely, it contributes
an derivatives appearing in the integrand of Q) into a  ©nly to the Kabat surface term in the effective Lagrangian in
covariant divergence of a vector plus a simple scalar termEd: (24). Moreover, the term\?¢* ¢ (=\2J7 ) contributes
Summing over the modes, these parts produce, respectivelynly to the remaining term in the right-hand side of Etg)
the Kabat surface term and the “twice scalar” part of theand thus to the “twice scalar” part of the same effective
effective Lagrangian in Eq24) (the mode | gives a contri- Lagrangian only.
We further remark that the previously employed covariant
derivative identities are exactly the same which one has to
3The remaining coordinates define Killing vectors. use in order to check the correct normalization of the
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modes® However, in that case the surface terms are droppetion as the logarithm of the photon partition function. Em-
after the formal integration in the spatial variables, becauseloying coordinatesr,r on M, we can decompose
they do not contribute, in a distributional sense, to the overall,, \(r,7) asJ, ,(r,7)=8"Y% 2™ 77 \(r), Jo\(r) be-
normalization. Conversely, following the locdlfunction  ing real. The surface term reads, in this case,
method they produce Kabat-like terms.

More generally speaking, following the previous outline, v I'(s—1)
one can avoid specifying the form of the scalar eigenfunction {vxra(SX) = 47 BT (s) AO; f CIOWAN(OL
and the use of Eq(17), remaining on a more general
ground? This means that we can consider a more generagquation(32) holds in very general manifolds, also dropping

manifold which is topologicallyMxR? with the natural the requirement of a metric which is Cartesian product of the
product metric, whereM is any, maybe curved, two- flat R? metric and any other metric.

dimensional manifold. The phOtOﬂ effective action can be One can S|mp|y prove that, % is an eigenfunction of
written as A, with eigenvalue +v? on such a general manifold,
A=dy¢ will be an eigenfunction of the vector operator
+A1—(1—£>d050 +INZghost Alt[l—(lla)]qloéo with .gauge-depe.ndegt- eigenvalue
a + v/ a. Employing the rule in Eq(30) with v~ in place of
(32) A2+k2, we expect that this latter eigenfunction should pro-
duce a(gauge dependensurface term into the locdl func-

1
InZ=—§Inde'r;u‘2

where A;=dy8,+ 6,d; is the Hodge Laplacian for one-

forms (3,=dj, with respect to the Hodge scalar product Dealing with spins=1 and massless fields, because of the
The eigenfunctions of the operator appearing in the abovgjmpe equation of motion forrin Feynman-like gauges at
equation can still be written as in EQ15. Now, eaq) we expect to find out some normal modes obtained as
¢=(1/2m)e™ "4, \ (x*) where J,\(x¥) is an eigen-  coyariant derivatives of the scalar field modes opportunely
function of (t/r\‘/le Friedrichs extension bfhezo-forms Hodge  rearranged. Hence, barring miraculous cancellations, the cor-
L_aplamaﬁ Ay on M, with eigenvalue+\". Employing @  responding local heat kernel, localfunction, and effective

bit of n-forms algebra, one can obtain in our manifold the | agrangian, should contain Kabat-like surface terms, due to

same eigenvalues found in the manifalgx R?. Further-  the previous mechanism. We will check this for the graviton
more, once agaif,AY) =0, namely, V2AY’=0, in case in the next section.

y=1, I, lll. Then, using Eqs(30) and(31) and the definition
in Eq_. (1_2), we get, before we take into account the ghosts IV. THE GRAVITON ¢ FUNCTION
contribution, IN THE HARMONIC GAUGE
L uxre(3:X)=(3+ @) g’f\jax'a;z(s;x) In this section we shall compute the logafunction in the
< case of a linearized graviton propagating in the Rindler
4 s+1l+a’(s—1) (5:%) wedge. We will see that Kabat-like surface terms indeed ap-
2s MXRE> 2 pear, as we suggested in the previous section. Moreover, we
will find out that consistent results arise by discarding all
where the surface term reads those terms.

Following the same procedure used 28,24, which em-
ploys the harmonic gauge, we decompose the linearized field
of a graviton into its symmetric traceless péarf, and its
trace parth. Choosing an opportune normalization factor of
Notice that, if the manifold is regular and compact, this sur-the fields and dropping boundary terms, the Euclidean action
face term automatically disappears after we integrate ovefcontaining also the gauge-fixing patboks like
the spatial variables. Instead, if the manifold has conical

I(s—1
§X4XRz(s;x)=L1(:T(S;Va; fd)\)\J*VaJ.

singularities or boundaries, then this term could survive the 1 1 oy c
integration. We can further suppose thiet contains a Kill- Se[hap.h]= 327G dx4\/§ 29 9™ NapVVohary
ing vectord, with compact orbits in such a manner that we 1
can define a temperaturegland interpret the effective ac- n Zthth], 33)
“In this case the indicesik) which appear in the modes, and ~ whereg, g2®, and covariant derivatives are referred to the
A} are generally different. background metric, namely, the Euclidean Rindler metric.
51t is clear from our discussion that the Kabat term gets contribu-
tions from each mode I1,111,IV, not depending on the corresponding

eigenvalue. This term does not coincide with the surface term re- "We also tried to study the photon case employing a so-called
cently suggested by Fursaev and Migldl] dealing with compact “physical gauge” asA,=0. The use of the-function regulariza-
manifolds, because this latter involves zero modes only. tion in this case is problematic due to a remaining gauge ambiguity

5Remind that the Hodge Laplacian coincides with minus thearising whenever one tries to deal with a path integral, nonformal
Laplace-Beltrami operator for 0-forms. This generally does not hapapproach in axial gauges. Nevertheless, through the same mecha-
pen forn-forms whenn>0 in curved manifolds. nism, the Kabat term seems to survive in this case as well.
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That metric is also used to raise and lower indices. Notice \/5
that curvature tensor termisee[24]) do not appear in the h(%), : €.,0V p=h2=h'),
above action and this is due to the flatness of the manifold. It V2ka
is necessary to point out that we changed the sign of the trace
field Lagrangian as this appeared after we performed a 5) . ‘/6 €, € V' ¢=h®=h>
“simple” Wick rotation toward the imaginary time on the Ak - J2kn A e
Lorentzian Lagrangian. In fact, in order to obtain an Euclid-
ean Lagrangian producing a formally finite functional 1 .
integral® it is also necessary to rotate the scalar fielthto hiok: —=—€;dV,¢=h"=h'Y,
imaginary values during the Wick rotation. This adjusts the 2k
sign in front of the corresponding Lagrangif?3,24. We
can write, as far as the effective action is concerned: K - \/_E(?_a_quL ia--qS:h-(-”:hW)
nk: 2 %9 \/E ij ij i
1 - 1
INZ grayitons™ — 5Indetu [ —g?* gbb V.Ve]- —Indet,u‘2
2 2 he . L Ky bt e o h(8)— h(®)
X[—VdVd]HnZng_ ghosts (34) nik - \/§k2{6|k(9 ‘9]¢ ija al(l)} 1 I

The first determinant has to be evaluated in Itﬁespace of 1 1

traceless symmetric tensorial field. Unessential factors in hfng)ki EQW¢—§5ij¢:h29b)-

front of the operators can be dropped into an overall added

constant and thus omitted. Furthermore, the ghost contribusere, \/ge,, indicates the antisymmetric Levi-Civita
tion has been taken into account through the last term of ttheudotensﬂor on the cone aggl the antisymmetric Levi-
previous equation. A usual procedtiteads us t423,24 Civita pseudotensor oR? in Cartesian coordinates. The pre-

vious modes satisfy
InZgrv. ghosts™ — 2INZecor-

A-hY) = —(\2+k?)hY), | =12,...,9, 35
The partition function in &, is the partition function e e Y >

obtained quantizing the massless Klein-Gordon vector fieldgng
Hence, this also coincides with the photon partition function

evaluated in the Feynman gauge, namelys1 in Eq. (9), Ashpk=—(N2+k?)hnk- (36)
without taking into account the photon ghost contribution. o ]

Thus, from the effective graviton ghost action, two vectorFinally, the normalization relations arg,§'=1.2,...,9)
a=1 Kabat's surface termgvith the sign changedrise. In /

order to compute the above functional determinants, we have f d*x \/ggaa’gbb’hm;(x)abhgx),k,(x)a,b,

to look for normalized modes of a self-adjoint extension of t

the tensorial Laplace-Beltrami operatar=g2 gP?' v v° ) S(N—\")

in the space of symmetric traceless tensors and the scalar = 5nn’5(2)(k_k’)T

Laplace-Beltrami operataks=V4V9. Obviously, the eigen-

functions of Ag can be chosen ds,, = ¢, «(X), where, as and

before, ¢= dn\(X) indicates the generic eigenfunction of L

the scalar Laplacian, Eq16). * , ,
In the tensgrial case,(qwe find the following nine classes off dX VGO Ny i () = B 82 (K—k SR OTAD.

symmetric traceless eigenfunctidfs

Using Eq.(12), we can write the locad function as

V2 1
hYe: 5V, V,0+-—=g,,¢=hT=h?, o
nik )\2 M vd’ \/Eg,uv‘ﬁ 124 v {graVitonitS;X)=2 g(y)(S;X)+§Scala(S;X)
y=1
iz O {€,0VV b+ €,V .} =hD=h2) S o= (7 :
n\k - \/E)\Z no v vo o nv vu ! — 2 Z f d)\)\f devn—ZSgaa (X)
y=1n=—o Jo R?
h3) - 1 9V . p=h®=p® X gPP (x)h* V(%) ™Y (X) a1
nak - \/Ek)\ ivYu iu pi -
+ > dm\f d?kv, h* (x)h(x).
n=—= Jo R?
8Remind that this functional integral contains the exponential (37)
exp(—). . _
%This result holds also for local quantities. The latter term takes into account the graviton trace part

10All the components of each eigenfunction class which do notcontribution to local/ function. Obviously, this is exactly
appear in the following list are understood to vanish. the scalar locak function. Let us rather consider the former



7468 DEVIS IELLICI AND VALTER MORETTI 54

term and, in particular, the contribution duett. Follow-  account the contribution of the ghost Lagrangian, which
ing the sketch of the previous section, we can rearrange thsmounts to—875°¥3(s;:x) —2¢V(s;x), we get the final ex-
term transforming the product of the covariant derivativespression of spin-traced gravitghfunction:

into a scalar term added to several covariant divergences of

vector and tensor fields: 9N s;x) = 275949 5;%) + 82V (5;%) + 38W(s;%)
T(s— + ¢Y(s;x). (40)
(D)= e f dNAZT25g*
4mBI( S) n Dropping the last three surface terms we obtain the reason-
I(s— 1) able result which agrees with the counting of the true gravi-
4— f dAN1T2V (h* Vag) ton degrees of freedon9"@1°(x) =2 5% x). Hence, all
4mBl'(s) the thermodynamical quantities coincides with those of the
I(s— 1) previously computed photon fields.
ZW f AN T2V, [V, 4* VPo].
BT(s)"w V. DISCUSSION
Using different notation, we finally find In this paper we have computed the effective action of the

(D) e _ rscalay . v, W photon and graviton fields in the conical background
P (sx) =S ) + 287 (s,x) +207(s:%), - (38) CzxR?, and our main result is that it is just what one ex-
' pects from counting the number of degrees of freedom, i.e.,
where we defined : : .
twice that of the massless scalar effective action. Moreover,
I'(s—1) w we have got the correct Planckian temperature dependence of
M(sX)= —— > j dAN "2V (V,4* VP o) the thermodynamical quantities.
4mpL(s)*w Jo To get this apparently trivial result, we had to deal with
unwanted terms arising from the presence of the conical sin-
Fs-1) & j 231 2 larity. We di d how th f th f
dAN" 1 9,(3,:d,,) gularity. We discussed how the appearance of those surface
477,3F S)“n terms is quite a general phenomenon dealing with general
manifolds in the case of fields with integer nonzero spin. The
presence of conical singularities needs some further regular-
ization procedure. In particular, this is necessary while study-
ing the photon field in order to restore the gauge invariance
Thus, we see that in the locglfunction the @=1)-Kabat of the integrated quantities. It could be interesting to develop
surface ternyV(s;x) reappears, together with a new surfacean analogue research in the case of gravitons in any covariant
term ¢"Y(s:x). The contribution ofh(® is similar to the gauge.

1 2 Vﬁ ‘Jvn()\r)z
+ Far(ﬂrjvn) _T‘?r—Z

; (39

previous one and it reads In the general case our proposal is the simplest one,
5 scala v w U namely, to discard all the surface terms. However, we think
LA(SX) =58, x) + £V (six) + M (six) + £ (83 %), that, away from ourZ-function local approach, this should

not be the only possible treatment of surface terms. In fact,
comparing our results with Kabat's, it arises that, except for
the two-dimensional case, the necessary treatment of surface
I(s— terms strongly depends on .the general_approach useq to de-
2Y(s:x) E J dAN "3V, V, fine and calculate the effective Lagrangian. Moreover, it also
4 7BT(S)"R depends on the regularization procedure used to define the
integrated quantities.

where, provided?®’= €2° whena,b=u,» and §*°=0 oth-
erwise,

ac pbd *
X[go0"V cd™ V] In our local{-function approach, the meaning of the only
I'(s—1) J? cutoff as the minimal distance from the horizon leads our-
=% f dAN 259, ——(a J, ) selves towards the simple procedure of discarding the surface
4w Bl (s) % terms in order to restore the gauge invariance. In Kabat's

treatment, the meaning of the employed cutoff is not so strict
The contributions of the remaining terms are much moreyng permits one to make safe the gauge invariance and take

trivial. In fact, a little algebra leads us to on the surface terms as well. This is due to fine-tuning of
(3)f crut — A A crus — #(5)f crus — #(6)( mode-depending cutoffs which contain a further gauge-
FHsX) =0 (sx)=E7(s:%) = £P(sX) fixing parameter dependence.
1 In our approach, when integrating the surface term it is
=[5 g: x) + Eg’v(s;x), not possible to use am-dependent cutoff different from that

used for the rest and such that it cancelsahdependence in
the integrated quantity: in fact, no real functiefa) can
absorb the factor (% 3Ina), appearing in the integrated sur-
{D(sx)= @) (s:%) = {9(s;x) = £5°33( 5 x). face term, for all the values af.
In any case, we think that any procedure which does not
Finally, we have already noted above that the contribution ofliscard the surface terms must be able to explain why the
the trace termdh is exactly £5°¥3(s:x). Then, taking into  consequent result is not in agreement with what one expects

and
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from counting the number of degrees of freedom and to deal
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