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Thermal partition function of photons and gravitons in a Rindler wedge
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The thermal partition function of photons in any covariant gauge and gravitons in the harmonic gauge
propagating in a Rindler wedge, are computed using a localz-function regularization approach. The correct
Planckian leading order temperature dependenceT4 is obtained in both cases. For the photons, the existence of
a surface term giving a negative contribution to the entropy is confirmed, as earlier obtained by Kabat, but thi
term is shown to be gauge dependent in the four-dimensional case and, therefore, is discarded. It is argued t
similar terms could appear dealing with any integer spins>1 in the massless case and in more general
manifolds. Our conjecture is checked in the case of a graviton in the harmonic gauge, where different surfac
terms also appear, and physically consistent results arise dropping these terms. The results are discussed
relation to the quantum corrections to the black hole entropy.@S0556-2821~96!06222-4#

PACS number~s!: 04.621v, 04.70.Dy
I. INTRODUCTION

In recent years, many papers have been concerned
the first quantum correction to the Bekenstein-Hawki
black hole entropy. According to ’t Hooft@1#, the main con-
tribution to these corrections comes from quantum fie
propagating in the region outside the horizon. An importa
tool used to compute these corrections is the approxima
of the metric of a large mass Schwarzschild black hole giv
by the simpler Rindler metric. In this approximation th
quantum corrections are identified with the entropy of th
mal states of quantum fields in the Rindler space-time. Ma
different methods have been employed to compute this
tropy and, among them, the method of the conical singula
is one of the most used: one follows the usual prescription
compute the thermal partition function of a quantum fie
that is, to evaluate the Euclidean path integral over all
field configurations that are periodic in the imaginary tim
and identify the periodb with the inverse of the temperature
In doing this, the Rindler manifold acquires a conical sing
larity with angular deficit 2p2b, and so one sees that, i
order to avoid the singularity, there is only one possible te
perature for the system, i.e., the Unruh-Hawking temperat
b52p. However, if one wants to compute thermodynamic
quantities such as the entropy and the internal energy u
standard thermodynamical relations such asSb5b2]bFb ,
then one needs to go ‘‘off shell,’’ i.e., considerbÞ2p and
so manifolds with a conical singularity. Therefore, ma
techniques have been developed to compute the one-
quantum corrections on manifolds with conical singularitie
In this respect, it is important to note that the standard us
heat kernel plus proper time regularization yields the wro
temperature dependence of the free energy and the o
thermodynamical quantities, at least when the dimension
the space-time is not two@2#. In four dimensions, in particu-
lar, the leading term in the high temperature limit of the fr
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energy should be Planckian, namely, proportional tob24

@3–5#, while the heat kernel givesb22 independently of the
dimension.

In this context, Zerbini, Cognola, and Vanzo@6#, starting
from a previous work of Cheeger@7#, have recently intro-
duced a new method to compute the effective action of a
scalar field on manifolds with conical singularities using the
z-function regularization. This method, in addition to giving
the correct temperature dependence and allowing one to
work directly with massless fields, has the advantage that it
does not require the regularization of the conical singularity
or transforming the cone in a compact manifold, procedures
which do not have a clear physical meaning if one is inter-
ested in the~Euclidean! Rindler space. The drawbacks are
that this method is technically difficult to apply in the case of
massive fields and especially that it yields for the part of the
free energy proportional tob22 a numerical coefficient dif-
ferent from that obtained with the point splitting and the
optical metric methods@3,8–10#. This latter problem is
shared with the heat-kernel approach and the reason for this
discrepancy is not yet understood.

Most of the work on the quantum corrections to the black
hole entropy is carried on using the scalar field. Results for
higher spins have been obtained translating earlier results
obtained for the closely related cosmic string background
@4#. Last year, in an interesting paper@11# Kabat investigated
the corrections to the black hole entropy coming from scalar,
spinor, and vector fields by explicitly writing the field modes
in the Euclidean Rindler space and then using the heat-kernel
and the proper-time regularization. In the vector field case he
has obtained an unexpected ‘‘surface’’ term, which corre-
sponds to particle paths beginning and ending at the horizon.
This term gives a negative contribution to the entropy of the
system and, in fact, is large enough to make the total entropy
negative at the equilibrium temperature. Kabat argues that
this term corresponds to the low-energy limit of string pro-
cesses which couple open strings with both ends attached to
the horizon and closed strings propagating outside the hori-
zon diagrams and discussed by Susskind and Uglum@5# as
responsible for black hole entropy within string theory.
7459 © 1996 The American Physical Society
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In this paper, we apply the method of@6# to the case of the
Maxwell field and the graviton field. As a result, in the ca
of the photon field we confirm that there is a ‘‘surface term
which would give a negative contribution to the entropy,
obtained by Kabat in@11#. However, besides getting a dif
ferent temperature dependence, we show that it depend
the gauge-fixing parameter and so we discuss how it is p
sible to discard it. In this way we also avoid embarrassi
negative entropies. In the case of the graviton we get sim
surface terms and show that one can get consistent phys
results by discarding them. We also discuss the appeara
of similar terms in more general manifolds. After discardin
the surface terms we get the reasonable result that the e
tive action and all the thermodynamical quantities are ju
twice those of the minimally coupled scalar field: this is
agreement with the results of the point-splitting meth
@9,10#, the heat kernel method@12–14#, and, apart from the
surface terms, also with Kabat@11#.

We remind that the Rindler wedge is a globally hype
bolic manifold defined by the inequalityx.utu, in the usual
set of rectangular coordinates (t,x,y,z) of Minkowski space-
time. In this wedge we can define a new set of static coor
nates by settingt5rsinht andx5rcosht, with 0,r,` and
2`,t,`. Then the Minkowski metric takes the form o
the Rindler metric:

ds252r 2dt21dr21dy21d2z. ~1!

One can see that lines of constantsr ,y, andz are trajectories
of uniformly accelerated particles, with proper accelerati
a5r21.

As we said above, the importance of the Rindler metric
mainly due to the fact that it can be seen as an approxima
of the metric of a large mass Schwarzschild black hole o
side the event horizon. Indeed, consider the Schwarzsc
metric, which describes an uncharged, nonrotating black h
of massM :

ds252S 12
2GM

R DdT21S 12
2GM

R D 21

dR21R2dV2 ,

dV25du21sinudw2,

whereM is the mass of the black hole. In the region outsi
the event horizon, namely, 2GM,R,`, we can define new
coordinatest and r by

t5
T

4GM
, ~2!

r5A8GM~R22GM!, ~3!

and so the metric takes the form

ds252r 2S 11
r 2

16G2M2D 21

dt21S 11
r 2

16G2M2Ddr2
~4!

14G2M2S 11
r 2

16G2M2D 2dV2 . ~5!
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If we take the large mass limit, the last term becomes the
metric of a spherical surface with very large radius that can
be approximated by a flat metricdy21dz2. Then, in this
limit, the metric becomes the Rindler one, Eq.~1!. Actually,
even if we do not consider the large mass limit, the approxi-
mation should become better and better as we approach th
event horizon,r50.

The Rindler metric is also related with the study of the
cosmic string background: the metric around an infinitely
long, static, straight and with zero thickness cosmic string
can be written as

ds252dt21dz21dr21r 2dw, 0<w<a,

where the polar angle deficit 2p2a is related to the mass
per unit length of stringm by 2p2a58pGm. Since the
metric is ultrastatic, we can perform a Wick rotation,t→ i t ,
and the metric becomes equal to the Euclidean Rindler met
ric. Therefore, we can identify the thermal partition function
of a field at temperaturea21 in the Rindler wedge with the
zero-temperature, Euclidean-generating functional of the
same field in a cosmic string background.

The rest of this paper is organized as follows. In Sec. II
we compute the one-loop effective action for the electromag-
netic field on the manifoldCb3R2 using the z-function
regularization. We use this result to compute the quantum
correction to the black hole entropy in the framework of
conical singularity method. In Sec. III we formulate a gen-
eral conjecture on the appearance of Kabat-like surface term
in the case of integer spin and general manifolds. In Sec. IV
the conjecture is checked in the case of the graviton. Sectio
V is devoted to the discussion of the results.

II. EFFECTIVE ACTION FOR THE PHOTON FIELD

In a curved space-time with Lorentz signature the action
of the electromagnetic field isS5*L(x)A2gd4x,
where the Lagrangian scalar density1 is @15#

Lem~x!52
1

4
FabF

ab,

Fab5¹aAb2¹bAa5]aAb2]aAb . ~6!

We need also the gauge-fixing term and the contribution of
the ghosts:

LG52
1

2a
~¹aAa!

2, ~7!

Lghost5
1

Aa
gab]ac]bc* , ~8!

1We adopt the convention that the indicesa,b, . . .5t,r ,y,z are
for the whole manifold, the greek indices are for the pure cone,
a,b, . . .5t,r , and the indicesi , j , . . .5y,z are for the transverse
flat directions.
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wherec andc* are anticommuting scalar fields. The depen
dence on the gauge-fixing parametera of the ghost action is
relevant only in presence of a scale anomaly. It is not th
case here, and, therefore, we shall ignore it.

We are interested in the finite temperature theory and
we changet→ i t and identifyt andt1b. The metric of the
Rindler space-time turns to Euclidean signature
ds25r 2dt21dr21dy21dz2, and the vector D’Alembertian
operatorh becomes the vector Laplace-Beltrami operato
D. In the following this operator will be simply called La-
placian. The one-loop effective action for this theory wil
then be given by the determinants

lnZb52
1

2
lndetm22Fgab~2D!2Rab1S 12

1

a D¹a¹bG
1 lnZb,ghosts, ~9!

wherem2 is the renormalization scale and the effective ac
tion of the ghosts is minus twice the effective action of
scalar massless field, which is well known@7,6#. It is impor-
tant to note that the determinant has to be evaluated on
whole set of eigenfunctions, not only on the physical one
@16#.

We work on the manifoldCb3R2, whereCb is the cone
with angular deficit equal to 2p2b. This manifold is flat
everywhere but on the tip of the cone, where the curvatu
has ad-function singularity. Nevertheless, the modes we us
vanish on the tip, and so we can considerRab50. Note also
that, due to the flatness, the covariant derivatives commu
Hence, we are left with the problem of computing the dete
minant of the operator$gab(2D)1@12(1/a)#¹a¹b% acting
on vectors. In order to define this determinant we use t
z-function regularization: first, suppose we have a comple
set of eigenfunctions of the operator, indicated asAa

( i ,nlk)

3(x), with eigenvalue n i
2(nlk). Here, k5(ky ,kz),

a5t,r ,y,z, and i51, . . . ,4 is thepolarization index. In this
notation we have taken into account the triviality of the
transverse dimension and the fact that we have a discr
index n since thet coordinate is compact and we impose
periodic boundary conditions. Then we can define the loca
diagonal heat kernel as

K ~ i !~ t;x!5(
n
E dm~l!d2ke2tn i

2
gabAa

~ i !~x!Ab
~ i !* ~x!,

~10!

wheredm(l) is an appropriate integration measure. The co
responding local spin-tracedz function can be obtained
through a Mellin transform:

z~s;x!5
1

G~s!
E
0

`

dtts21(
i
K ~ i !~ t;x!. ~11!

Alternatively, we can define the localz function as the in-
verse power of the kernel of the above differential operato
the spectral representation gives directly

z~s;x!5(
i

(
n
E dm~l!d2k@n i

2~nlk!#2sgabAa
~ i !~x!

3Ab
~ i !* ~x!. ~12!
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In general, both the Mellin transform and the inverse power
of the operator require analytic continuation arguments to be
defined at the physical values ofs.

We can also define a globalz function by tracing over the
space indices:

z~s!5E d4xAgz~s;x!. ~13!

This last step is delicate: in general, the operation of tracing
over the space indices requires the introduction of a smearin
function, since the manifold is noncompact and there can be
nonintegrable singularities in the localz function, and a par-
ticular choice of the smearing function could sweep away
important information. This is one of the reasons why we
prefer to work with a local formalism as long as possible.
Once we have computed and analytically continued thez
function, we can write the effective Lagrangian density and
the effective action as

Lb~x!5
1

2
z8~s50;x!1

1

2
z~s50;x!lnm2,

lnZb5E d4xAgLb~x!. ~14!

Of course, to the above expression we have to add the con
tribution of the ghosts, which is minus two times the effec-
tive Lagrangian density of a scalar field.

A suitable set of normalized eigenfunctions of the opera-
tor $gab(2D)1@12(1/a)#¹a¹b% ~equivalent to Kabat’s set
@11# if a51) is the following: settingk5uku,

Aa
~ I,nlk!5

1

k
e i j ]

jf5
1

k
~0,0,ikzf,2 ikyf!,

Aa
~ II,nlk!5

Ag
l

emn¹nf5
1

l S r ] rf,2 1

r
]tf,0,0D ,

Aa
~ III, nlk!5

1

Al21k2
S kl ¹m2

l

k
] i Df

5
1

Al21k2
S kl ]tf,

k

l
] rf,2

l

k
]yf,2

l

k
]zf D ,

Aa
~ IV,nlk!5

1

Al21k2
¹af5

1

Al21k2
~]tf,] rf,]yf,]zf!,

~15!

whereAgemn is the Levi-Civita pseudotensor on the cone,
e i j is the Levi-Civita pseudotensor onR2 in Cartesian coor-
dinates, andf5fnlk(x) is the complete set of normalized



h

i

7462 54DEVIS IELLICI AND VALTER MORETTI
eigenfunctions of the Friedrichs self-adjoint extension of t
scalar Laplacian onCb3R2 @17#:

fnlk~x!5
1

2pAb
eikyy1 ikzzexpS i 2pn

b
t D Jnn

~lr !,

n50,61, . . . , lP R1, ky ,kzPR,

Dfnlk~x!52~l21k2!fnlk~x!. ~16!

Here, Jnn
is the Bessel function of first kind and

nn5(2punu/b). Using the relation

E
0

`

drrJn~l8r !Jn~lr !5
1

l
d~l2l8!,

one can check that the modes~15! are normalized according
to

~A~ i 8,n8l8k8!,A~ i ,nlk!![E d4xAggabAa
~ i 8,n8l8k8!*Ab

~ i ,nlk!

5d i 8 idn8nd
~2!~k2k8!

1

l
d~l2l8!.

The first three eigenfunctions~15! satisfy¹aAa50 and have
eigenvaluel21k2, while Aa

(IV) is a pure gauge and has e
genvalue (1/a)(l21k2).

Using these eigenfunctions, we can compute the diago
z function using the spectral representation Equation~12!:
after the integration overdk, the contributions of the modes
to the diagonalz function are

z~ I!~s;x!5zscalar~s;x!,

z~ II !~s;x!5
G~s21!

4pbG~s!(n E
0

`

dll122s

3Fnn
2

r 2
Jnn

2 ~lr !1@] rJnn
~lr !#2G ,

z~ III !~s;x!5
s21

s
zscalar~s;x!1

G~s21!

4pbG~s11!

3(
n
E
0

`

dll122sFnn
2

r 2
Jnn

2 ~lr !1@] rJnn
~lr !#2G ,

z~ IV !~s;x!5
as

s
zscalar~s;x!1

asG~s!

4pbG~s11!

3(
n
E
0

`

dll122sFnn
2

r 2
Jnn

2 ~lr !1@] rJnn
~lr !#2G ,

where the spectral representation of the localz function of a
minimally coupled scalar field onCb3R2 is

zscalar~s;x!5
G~s21!

4pbG~s! (
n52`

` E
0

`

dll322sJnn

2 ~lr !.
e

-

nal

Now, looking for a way close to that followed by Kabat@11#,
we use the following identity, which can be proved using
some recursion formulas for the Bessel functions@18#:

2Fnn
2

r 2
Jnn

2 ~lr !1@] rJnn
~lr !#2G52l2Jnn

2 ~lr !

1
1

r
] r r ] rJnn

2 ~lr !,

~17!

and so the spin-traced localz function becomes

z~s;x!5S 11
s21

s
1

as

s D zscalar~s;x!

1
s111as~s21!

2s

G~s21!

4pbG~s!(n E
0

`

l122s

3F2l2Jnn

2 ~lr !1
1

r
] r r ] rJnn

2 ~lr !G ,
namely,

z~s;x!5~31as!zscalar~s;x!1
s111as~s21!

2s
zV~s;x!,

~18!

where we have set

zV~s;x!5
1

r
] r r ] r

G~s21!

4pbG~s! (
n52`

` E
0

`

dll122sJnn
~lr !2.

~19!

Notice that the termzV(s;x) arises from the ‘‘conical’’ com-
ponents of the field, i.e.,At andAr . In particular, its source
is the second term in the right-hand side of Eq.~17! only.
This term will produce the Kabat ‘‘surface term’’ as we will
see shortly.

We have taken (1/r )] r r ] r , which is in fact the Laplacian
D, outside the integral and the series, but this is a safe short-
cut: indeed, one could first letD act on the Bessel function
using ] rJn(lr )5lJn21(lr )2(n/r )Jn(lr ), go through
some tedious calculations and get the same result as Eq.~21!.

So far, the expressions forzscalar and zV are just formal,
since one can easily see that there is no value ofs for which
they converge. The correct way to computezscalar in this
background has been recently given by Zerbini, Cognola,
and Vanzo@6#, following an earlier work of Cheeger@7#, and
the result is

zscalar~s;x!5
r 2s24

4pbG~s!
I b~s21!,

where

I b~s!5

GS s2
1

2D
Ap

@Gb~s!2G2p~s!#, ~20!
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Gb~s!5 (
n51

`
G~nn2s11!

G~nn1s!
, G2p~s!52

G~12s!

2G~s!
,

I b~0!5
1

6 S 2p

b
2

b

2p D ,
I b~21!5

1

90S 2p

b
2

b

2p D F S 2p

b D 2111G .
The functionI b(s) is analytic in the whole complex plane
but in s51, where it has a simple pole with residu
1
2 @(b/2p)21#. Following the same procedure used in@6# to
obtain the above result, we can compute the contribution
the z function coming fromzV(s;x). The essential step to
give a sense to Eq.~19! is the separation of the small eigen
valuen0 from the others@7#: define

z,
V ~s;x!5D

G~s21!

4pbG~s!
E
0

`

dll122sJ0
2~lr !,

z.
V ~s;x!52D

G~s21!

4pbG~s! (n51

` E
0

`

dll122sJnn

2 ~lr !.

The integrals overl can be computed@18#: for 1
2

,Res,11n

E
0

`

dll122sJn
2~lr !5r 2s22

G~s2 1
2 !G~n2s11!

2ApG~s!G~n1s!
.

Therefore, in the strip12,Res,1 we get

z,
V ~s;x!52D

r 2s22G~s21!

4pG~s!2
G~s2 1

2 !

Ap
G2p~s!,

while

z.
V ~s;x!5D

r 2s22G~s21!

4pG~s!2
G~s2 1

2 !

Ap
Gb~s!,

which is valid in the strip 1,Res,11n1, since the series
defining Gb(s) converges fors.1. Both expressions can
now be analytically continued the whole complex plane a
then summed, so we can write

zV~s;x!5D
r 2s22G~s21!

4pG~s!2
I b~s!5

~s21!r 2s24

pbG~s!
I b~s!.

~21!

This result could be obtained directly from Eq.~19!, noting
that

zV~s;x!5DF s

s21
zscalar~s11;x!G .

Note also thatzV(s;x)ub52p50 andzV(s50;x)50.
Now we can write the final result for the localz function

of the electromagnetic field: after adding the contribution
the ghosts, which is just22zb

scalar(s;x), we get
e

to

-

nd

of

zem~s;x!5~11as!zscalar~s;x!1
s111as~s21!

2s
zV~s;x!

5~11as!
r 2s24

4pbG~s!
I b~s21!

1
s111as~s21!

2s

~s21!r 2s24

pbG~s!
I b~s!. ~22!

From this expression we can easily see that
zem(s;x)us5050 and

zem8~s;x!us505
1

2pbr 4
I b~21!2~12 1

2 lna!
1

pbr 4
I b~0!.

~23!

Therefore, the one-loop effective Lagrangian density for the
electromagnetic field onCb3R2 is

Lb
em~x!52Lb

scalar~x!2
~12 1

2 lna!

2pbr 4
I b~0!

5
1

4pbr 4
I b~21!2

~12 1
2 lna!

2pbr 4
I b~0!. ~24!

SinceI 2p(s)50, we can notice that both terms of the effec-
tive Lagrangian density vanish when the conical singularity
disappears,b52p.

A few remarks on this result. First, no surprise that in the
effective Lagrangian density we get a contribution which is
twice that of a scalar field. More surprising is the second
term: after the integration over the spatial variables, it gives
rise to what Kabat@11# calls ‘‘surface’’ term and interprets
as a low-energy relic of stringy effects foreseen by Susskind
and Uglum@5#. This term would give a negative contribution
to the entropy of the system, at least fora,e2, and actually
also the total correction to the entropy at the black hole tem
peratureb52p would be negative fora,e6/5, which is
clearly nonsense if we want to give a state-counting interpre
tation to the entropy. However, in the four-dimensional case
we get that it is not gauge invariant, in contrast with Kabat’s
result.

With this regard, it is interesting to note that in two di-
mensions, i.e., onCb , the result is indeed independent on the
gauge-fixing parameter: using the modes of the em field o
Cb given by Kabat@11# and following the same procedure as
above, before adding the contribution of ghosts we get

zd52
em ~s;x!5~11as!@zd52

scalar~s;x!1zd52
V ~s;x!#,

where

zd52
scalar~s;x!5

r 2s22

bG~s!
I b~s!,

zd52
V ~s;x!5D

r 2s

2bG~s11!
I b~s11!,

and so, adding the contribution of the ghosts we have

Lem~x!5
1

2pbr 2
~2p2b!,
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which is gauge independent and, after the integration o
the manifold, gives exactly the result of Kabat.

Coming back to the four-dimensional case, we argue t
a natural~albeit not the only possible, see the final discu
sion! procedure to restore the gauge invariance is simply
drop the Kabat term, namely, the last term in Eq.~24!, ob-
taining the reasonable resultLem(x)52Lscalar(x).

First of all, notice that the gauge invariance must hold
the integrated quantities as the effective action, namely,
logarithm of the integrated effective Lagrangian. In fact, t
ghost procedure, which takes into account the gauge inv
ance, works on integrated quantities. However, in our ca
the integration of the Kabat term produces a diverg
gauge-dependentresult, and thus it seems reasonable to d
card such a local term. With this regard, it is important
note that Kabat obtains a gauge-independent result beca
within his regularization procedure, he has the freedom
choose an independent cutoff parameter for each mode
stead, in our procedure we have only one cutoff param
e, to which we give a precise physical meaning, namely,
minimal distance from the horizon.

A more general discussion might be the following. It
worth one’s while stressing that, dealing withsmooth com-
pactmanifold, local quantities as local heat kernel and lo
z functions are intrinsically ill defined due to the possibili
of adding to them a total covariant derivative with vanishi
integral. In such a case, the previous global quantities
well defined, and one can satisfactorily employ these la
instead of local quantities in order to avoid the il
definiteness problem. Notice also that the gauge-depen
Kabat surface term formally looks such as a Laplacian a
thus it should disappear after a global integration, provid
regularity conditions on the manifold are satisfied, produc
gauge-independent integrated quantities. However, this is
the case for the present situation, where the background
noncompact manifold with a conical singularity, and the
tegrated quantities diverge requiring a regularization pro
dure. We stress that the use of local quantities is preferred
the physical ground, because they lead us to the correct
perature dependency as we will see shortly.

Therefore, in our case the local quantities remain ill d
fined and require a further regularization procedure in or
to fix the possible added total derivative term before we
tegrate. Furthermore, the integrated quantities are diverg
so we expect we to have to take into account also total
rivative terms with a divergent integral. In our case this fu
ther regularization procedure consists just in discarding
Kabat term. Notice that this procedure produces gau
independent local quantities.

Once we have dropped the Kabat’s term, we can comp
thermodynamical quantities such as internal energy and
tropy: we need the effective action and so we have to int
duce a smearing functionw(x) in order to define the trace
lnZb5*d4xAgLb(x)w(x). Actually, sinceLb does not de-
pend on the transverse coordinatesy andz, the integration on
these coordinates simply yields the infinite area of the R
dler horizon, that we indicate asA' . This divergence has
clear physical meaning. The integration overt has no prob-
lem, while a convenient smearing function for the integrati
over r is w(r )5u(r2e), and so the effective action be
comes
ver
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lnZb~e!5
A'

8pe2
I b~21!. ~25!

For e→0 we have a divergence that can be seen as a ‘‘ho-
rizon’’ divergence@1#, since asr→0 we approach the hori-
zon of the Rindler wedge.

From Eq. ~25! we can compute the free energy,
Fb52(1/b)lnZb , which at high temperature,b→0, has a
leading behavior22(p2A'/180e

2b4), in perfect agreement
with the statistical mechanics result of Susskind and Uglum
@5#. Instead, Kabat @11# obtains a leading behavior
22(A'/8e2b2), where the behaviorb22, independent of the
dimension of the space-time, is typical of the integrated heat-
kernel approach. Of particular interest for the black hole
physics is the entropy of the system:

Sb5b2]bFb5
A'

90be2 F S 2p

b D 215G . ~26!

This equation gives, in Rindler space approximation, the
one-loop quantum correction to the black hole entropy com-
ing form the electromagnetic field propagating in the region
outside the horizon. It shows the well-known horizon diver-
gence@1# ~see also@19# for a recent review on this topic!:
unless we suppose the existence of a natural effective cutoff
at the Planck scale due to an~unknown! quantum gravity
theory or back-reaction horizon fluctuations etc.,2 we get a
divergent entropy which is physically unsatisfactory and
contrasts with the finite thermodynamical Bekenstein-
Hawking entropy. However, this problem is not peculiar to
the photon field, as it occurs for scalar and spinorial fields as
well.

We can note that, if we took into account the surface term
which we have previously dropped, we would obtain the
unphysical, because being gauge dependent, expression

Sb~a!5b2]bFb5
A'

90be2 F S 2p

b D 215G2~12 1
2 lna!

A'

6be2
.

As anticipated above, this expression for the entropy is nega-
tive when the singularity is absent,b52p, and lna,6

5.
Moreover, for lna,4

3, Sb(a) shows a further zero of the
entropy corresponding to an inconsistent~gauge-depending!
finite temperaturepurequantum state of the field.

Another thermodynamical quantity that we can compute
from the effective action~25! is the internal energy. Since it
is well known @15# that the usual Minkowski vacuum state,
restricted to the Rindler wedge, may be viewed as a Rindler
thermal state at temperatureT51/2p, it is natural to require
that the internal energy vanishes whenb52p, namely,
when the conical singularity is absent. Hence, we define a
renormalized free energy asFb

sub5Fb2U2p which, by
means of the relationUb5(1/b)Sb1Fb , automatically
givesUb

sub5Ub2U2p , that trivially vanish atb52p, while
Sb
sub5Sb . Explicitly,

2However, such a cutoff should depend on the field spin value to
produce the correct entropy factor in front of the horizon area. See
@20#.
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Ub
sub5

p2A'

30b4e2
1

A'

36b2e2
2

13A'

1440p2e2
. ~27!

From this expression we can also compute the therm
energy-momentum tensor: using the relationUb5
2*^T0

0&rdrdydz, supposing that̂T0
0& depends onr only3

and that it vanishes atb52p, we get

^T0
0&sub52

p2

15b4r 4
2

1

18b2r 4
1

13

720p2r 4
,

^Tab&
sub5

1

3
^T0

0&subF4KaKb

K2 2gabG , ~28!

where in the last equation we have supposed a perfect fl
form, Ka5(] t)a is the timelike Killing vector associated
with the time coordinate of the Rindler space, an
K25KaKa. This result for̂ T0

0&sub is in agreement with twice
the local heat-kernel result@21#.

As we have already said in the introduction, our resu
for the thermodynamical quantities differ from those ob
tained with the point-splitting and the optical metric method
@22,8,4,9,10#. In fact, for ^T0

0&sub they give

2
p2

15b4r 4
2

1

6b2r 4
1

11

240p2r 4
, ~29!

for spin 1 and one-half of this quantity for spin 0. Our resu
for the coefficient of the term proportional tob22 is one-
third of that in Eq.~29!, while the difference in the numerical
coefficient of the term independent ofb is unimportant,
since it is determined by the other two by requiring the va
ishing of the energy-momentum tensor forb52p. The rea-
son of this discrepancy, which appears also in the heat-ker
approach@21,11–14# is not clear to us and requires furthe
investigations.

III. A GENERAL CONJECTURE

Let us focus our attention back on Kabat’s surface term
the effective Lagrangian, Eq.~24!: is it an accident which
appears in our manifold and in the vector case only, or co
versely, is it a more general phenomenon?

We can grasp some insight by studying either the loc
z function, as it appears in Eq.~12!, or the local heat kernel
of Eq. ~10! and passing to the localz functions through Eq.
~11!. In fact, the Kabat term already comes out in the he
kernel and then it remains substantially unchanged passin
the localz function through Eq.~11!. The components of the
modes II, III, and IV contain~covariant! derivatives in both
the conical andR2 indices. Using trivial~covariant! deriva-
tive rules and reminding that¹m¹mf52l2f and
] i]

if52k2f we may transform scalar products of~covari-
ant! derivatives appearing in the integrand of Eq.~10! into a
covariant divergence of a vector plus a simple scalar ter
Summing over the modes, these parts produce, respectiv
the Kabat surface term and the ‘‘twice scalar’’ part of th
effective Lagrangian in Eq.~24! ~the mode I gives a contri-

3The remaining coordinates define Killing vectors.
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bution to this latter part only!. This is the general mechanism
which produces Kabat’s term. Let us illustrate this in more
detail. Dealing with the modes IV, we find

gabAa
~ IV !*Ab

~ IV !5
1

l21k2
¹af*¹af

5
1

l21k2
@¹a~f*¹af!2f*¹a¹

af#

5
1

l21k2
@¹a~f*¹af!1~l21k2!f*f#.

~30!

Thus, using the particular form of our modes we get

gabAa
~ IV !*Ab

~ IV !5
1

2~l21k2!
DJnn

2 1Jnn

2 .

The modes III contribute to the local heat kernel and to the
effective Lagrangian in the same way. The modes II require
a little different care: we have

gabAa
~ II !*Ab

~ II !5
1

l2g
mnemsenr¹sf*¹rf

5
1

l2 @¹s~gmnemsenrf*¹rf!

2gmnenremsf*¹s¹rf#

5
1

l2 @¹s~gsrf*¹rf!2f* grs¹r¹sf#

5
1

l2 @¹m~f*¹mf!1l2f*f#

5
1

l2 @¹a~f*¹af!1l2f*f#. ~31!

And thus, reminding the particular form of our modes

gabAa
~ II !*Ab

~ II !5
1

2l2DJnn

2 1Jnn

2 .

The contribution to the effective Lagrangian is similar to the
previous ones. In both the examined cases, using the speci
form of scalar eigenfunctions, we have obtained the right
hand side of Eq.~17! except for some factors which will be
arranged summing over all the modes in the final result. Th
term¹a(f*¹af) (5 1

2DJnn

2 ) contributes only to the second

term of the right-hand side of Eq.~18!, namely, it contributes
only to the Kabat surface term in the effective Lagrangian in
Eq. ~24!. Moreover, the terml2f*f (5l2Jnn

2 ) contributes

only to the remaining term in the right-hand side of Eq.~18!
and thus to the ‘‘twice scalar’’ part of the same effective
Lagrangian only.

We further remark that the previously employed covarian
derivative identities are exactly the same which one has t
use in order to check the correct normalization of the
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modes.4 However, in that case the surface terms are dropp
after the formal integration in the spatial variables, becau
they do not contribute, in a distributional sense, to the overa
normalization. Conversely, following the localz-function
method they produce Kabat-like terms.

More generally speaking, following the previous outline
one can avoid specifying the form of the scalar eigenfunctio
and the use of Eq.~17!, remaining on a more general
ground.5 This means that we can consider a more gener
manifold which is topologicallyM3R2 with the natural
product metric, whereM is any, maybe curved, two-
dimensional manifold. The photon effective action can b
written as

lnZ52
1

2
lndetm22F1D12S 12

1

a Dd0d0G1 lnZghost,

~32!

where D15d0d01d1d1 is the Hodge Laplacian for one-
forms (dn[dn

† with respect to the Hodge scalar product!.
The eigenfunctions of the operator appearing in the abo
equation can still be written as in Eq.~15!. Now,
f5(1/2p)eikyy1 ikzzJn,l(x

m) where Jn,l(x
m) is an eigen-

function of ~the Friedrichs extension of! the 0-forms Hodge
Laplacian6 D0

M onM, with eigenvalue1l2. Employing a
bit of n-forms algebra, one can obtain in our manifold th
same eigenvalues found in the manifoldCb3R2. Further-
more, once againd0A

(y)50, namely,¹aAa
(y)50, in case

y5I, II, III. Then, using Eqs.~30! and~31! and the definition
in Eq. ~12!, we get, before we take into account the ghos
contribution,

zM3R2~s;x!5~31as!zM3R2
scalar

~s;x!

1
s111as~s21!

2s
zM3R2
V

~s;x!,

where the surface term reads

zM3R2
V

~s;x!5
G~s21!

4pG~s!
¹a(

n
E dllJ*¹aJ.

Notice that, if the manifold is regular and compact, this su
face term automatically disappears after we integrate ov
the spatial variables. Instead, if the manifoldM has conical
singularities or boundaries, then this term could survive th
integration. We can further suppose thatM contains a Kill-
ing vector]t with compact orbits in such a manner that we
can define a temperature 1/b and interpret the effective ac-

4In this case the indices (nlk) which appear in the modesAa and
Aa* are generally different.
5It is clear from our discussion that the Kabat term gets contrib

tions from each mode II,III,IV, not depending on the correspondin
eigenvalue. This term does not coincide with the surface term r
cently suggested by Fursaev and Miele@14# dealing with compact
manifolds, because this latter involves zero modes only.
6Remind that the Hodge Laplacian coincides with minus th

Laplace-Beltrami operator for 0-forms. This generally does not ha
pen forn-forms whenn.0 in curved manifolds.
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tion as the logarithm of the photon partition function. Em-
ploying coordinates r ,t on M, we can decompose
Jn,l(r ,t) as Jn,l(r ,t)5b21/2e22pnit/bJn,l(r ), Jn,l(r ) be-
ing real. The surface term reads, in this case,

zM3R2
V

~s;x!5
G~s21!

4pbG~s!
D0(

n
E dllJn,l~r !2.

Equation~32! holds in very general manifolds, also dropping
the requirement of a metric which is Cartesian product of the
flat R2 metric and any other metric.

One can simply prove that, iff is an eigenfunction of
D0 with eigenvalue1n2 on such a general manifold,
A5d0f will be an eigenfunction of the vector operator
D11@12(1/a)#d0d0 with gauge-dependent eigenvalue
1n2/a. Employing the rule in Eq.~30! with n2 in place of
l21k2, we expect that this latter eigenfunction should pro-
duce a~gauge dependent! surface term into the localz func-
tion.

Dealing with spins>1 and massless fields, because of the
simple equation of motion form~in Feynman-like gauges at
least!, we expect to find out some normal modes obtained a
covariant derivatives of the scalar field modes opportunel
rearranged. Hence, barring miraculous cancellations, the co
responding local heat kernel, localz function, and effective
Lagrangian, should contain Kabat-like surface terms, due t
the previous mechanism. We will check this for the graviton
in the next section.7

IV. THE GRAVITON z FUNCTION
IN THE HARMONIC GAUGE

In this section we shall compute the localz function in the
case of a linearized graviton propagating in the Rindle
wedge. We will see that Kabat-like surface terms indeed ap
pear, as we suggested in the previous section. Moreover, w
will find out that consistent results arise by discarding all
those terms.

Following the same procedure used in@23,24#, which em-
ploys the harmonic gauge, we decompose the linearized fie
of a graviton into its symmetric traceless parthab and its
trace parth. Choosing an opportune normalization factor of
the fields and dropping boundary terms, the Euclidean actio
~containing also the gauge-fixing part! looks like

SE@hab ,h#5
1

32pGE dx4AgH 12 gaa8gbb8hab¹c¹
cha8b8

1
1

4
h¹d¹

dhJ , ~33!

whereg, gab, and covariant derivatives are referred to the
background metric, namely, the Euclidean Rindler metric
-
g
e-

e
-

7We also tried to study the photon case employing a so-calle
‘‘physical gauge’’ asAz50. The use of thez-function regulariza-
tion in this case is problematic due to a remaining gauge ambiguit
arising whenever one tries to deal with a path integral, nonforma
approach in axial gauges. Nevertheless, through the same mech
nism, the Kabat term seems to survive in this case as well.
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That metric is also used to raise and lower indices. Noti
that curvature tensor terms~see@24#! do not appear in the
above action and this is due to the flatness of the manifold
is necessary to point out that we changed the sign of the tr
field Lagrangian as this appeared after we performed
‘‘simple’’ Wick rotation toward the imaginary time on the
Lorentzian Lagrangian. In fact, in order to obtain an Euclid
ean Lagrangian producing a formally finite functiona
integral,8 it is also necessary to rotate the scalar fieldh into
imaginary values during the Wick rotation. This adjusts th
sign in front of the corresponding Lagrangian@23,24#. We
can write, as far as the effective action is concerned:

lnZgravitons52
1

2
lndetm22@2gaa8gbb8¹c¹

c#2
1

2
lndetm22

3@2¹d¹
d#1 lnZgrv. ghosts. ~34!

The first determinant has to be evaluated in theL2 space of
traceless symmetric tensorial field. Unessential factors
front of the operators can be dropped into an overall add
constant and thus omitted. Furthermore, the ghost contri
tion has been taken into account through the last term of
previous equation. A usual procedure9 leads us to@23,24#

lnZgrv. ghosts522lnZvector.

The partition function in lnZvector is the partition function
obtained quantizing the massless Klein-Gordon vector fie
Hence, this also coincides with the photon partition functio
evaluated in the Feynman gauge, namely,a51 in Eq. ~9!,
without taking into account the photon ghost contribution
Thus, from the effective graviton ghost action, two vecto
a51 Kabat’s surface terms~with the sign changed! arise. In
order to compute the above functional determinants, we ha
to look for normalized modes of a self-adjoint extension
the tensorial Laplace-Beltrami operatorDT5gaa8gbb8¹c¹

c

in the space of symmetric traceless tensors and the sc
Laplace-Beltrami operatorDS5¹d¹

d. Obviously, the eigen-
functions ofDS can be chosen ashnlk5fnlk(x), where, as
before,f5fnlk(x) indicates the generic eigenfunction o
the scalar Laplacian, Eq.~16!.

In the tensorial case, we find the following nine classes
symmetric traceless eigenfunctions10:

hnlk
~1! :

A2
l2 ¹m¹nf1

1

A2
gmnf5hmn

~1!5hnm
~1! ,

hnlk
~2! :

Ag
A2l2

$ems¹s¹nf1ens¹s¹mf%5hmn
~2!5hnm

~2! ,

hnlk
~3! :

1

A2kl
] i¹mf5him

~3!5hm i
~3! ,

8Remind that this functional integral contains the exponent
exp(2SE).
9This result holds also for local quantities.
10All the components of each eigenfunction class which do n

appear in the following list are understood to vanish.
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hnlk
~4! :

Ag
A2kl

emn] i¹
nf5him

~4!5hm i
~4! ,

hnlk
~5! :

Ag
A2kl

emne i j ]
j¹nf5him

~5!5hm i
~5! ,

hnlk
~6! :

1

A2kl
e i j ]

j¹mf5him
~6!5hm i

~6! ,

hnlk
~7! :

A2
k2

] i] jf1
1

A2
d i jf5hi j

~7!5hji
~7! ,

hnlk
~8! :

1

A2k2
$e ik]

k] jf1e jk]
k] if%5hi j

~8!5hji
~8! ,

hnlk
~9! :

1

2
gmnf2

1

2
d i jf5hab

~9!.

Here, Agemn indicates the antisymmetric Levi-Civita
pseudotensor on the cone ande i j the antisymmetric Levi-
Civita pseudotensor onR2 in Cartesian coordinates. The pre-
vious modes satisfy

DThnlk
~y! 52~l21k2!hnlk

~y! , y51,2, . . . ,9, ~35!

and

DShnlk52~l21k2!hnlk . ~36!

Finally, the normalization relations are (y,y851,2, . . . ,9)

E d4xAggaa8gbb8hnlk
~y!* ~x!abhn8l8kt8

~y8!
~x!a8b8

5dyy8dnn8d
~2!~k2k8!

d~l2l8!

l

and

E d4xAghnlk* ~x!hn8l8k8~x!5dnn8d
~2!~k2k8!

1

l
d~l2l8!.

Using Eq.~12!, we can write the localz function as

zgravitons~s;x!5 (
y51

9

z~y!~s;x!1zscalar~s;x!

5 (
y51

9

(
n52`

` E
0

`

dllE
R2
d2knn

22sgaa8~x!

3gbb8~x!h* ~y!~x!abh
~y!~x!a8b8

1 (
n52`

` E
0

`

dllE
R2
d2knn

22sh* ~x!h~x!.

~37!

The latter term takes into account the graviton trace pa
contribution to localz function. Obviously, this is exactly
the scalar localz function. Let us rather consider the former

al
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term and, in particular, the contribution due toh(1). Follow-
ing the sketch of the previous section, we can rearrange t
term transforming the product of the covariant derivative
into a scalar term added to several covariant divergences
vector and tensor fields:

z~1!~ t;x!5
G~s21!

4pbG~s!(n E
0

`

dll322sf*f

14
G~s21!

4pbG~s!(n E
0

`

dll122s¹a~f*¹af!

12
G~s21!

4pbG~s!(n E
0

`

dll22s¹a¹b@¹af*¹bf#.

Using different notation, we finally find

z~1!~s;x!5zscalar~s;x!12zV~s;x!12zW~s;x!, ~38!

where we defined

zW~s;x!5
G~s21!

4pbG~s!(n E
0

`

dll22s¹a¹b~¹af*¹bf!

5
G~s21!

4pbG~s!(n E
0

`

dll22sF1
r

] r r ] r~] rJnn
!2

1
1

r
] r~] rJnn

!22
nn
2

r
] r
Jnn

~lr !2

r 2
G . ~39!

Thus, we see that in the localz function the (a51)-Kabat
surface termzV(s;x) reappears, together with a new surfac
term z8W(s;x). The contribution ofh(2) is similar to the
previous one and it reads

z2~s;x!5zscalar~s;x!1zV~s;x!1zW~s;x!1zU~s;x!,

where, provideduab5eab whena,b5m,n anduab50 oth-
erwise,

zU~s;x!5
G~s21!

4pbG~s!(n E
0

`

dll22s¹a¹b

3@guacubd¹cf*¹df#

5
G~s21!

4pbG~s!(n E
0

`

dll22s] rFJnn

2

r
2~] rJnn

!2G .
The contributions of the remaining terms are much mo
trivial. In fact, a little algebra leads us to

z~3!~s;x!5z~4!~s;x!5z~5!~s;x!5z~6!~s;x!

5zscalar~s;x!1
1

2
zV~s;x!,

and

z~7!~s;x!5z~8!~s;x!5z~9!~s;x!5zscalar~s;x!.

Finally, we have already noted above that the contribution
the trace termsh is exactly zscalar(s;x). Then, taking into
his
s
of

e

re

of

account the contribution of the ghost Lagrangian, which
amounts to28zscalar(s;x)22zV(s;x), we get the final ex-
pression of spin-traced gravitonz function:

zgravitons~s;x!52zscalar~s;x!13zV~s;x!13zW~s;x!

1zU~s;x!. ~40!

Dropping the last three surface terms we obtain the reaso
able result which agrees with the counting of the true gravi
ton degrees of freedom:Lgraviton(x)52Lscalar(x). Hence, all
the thermodynamical quantities coincides with those of the
previously computed photon fields.

V. DISCUSSION

In this paper we have computed the effective action of the
photon and graviton fields in the conical background
Cb3R2, and our main result is that it is just what one ex-
pects from counting the number of degrees of freedom, i.e
twice that of the massless scalar effective action. Moreove
we have got the correct Planckian temperature dependence
the thermodynamical quantities.

To get this apparently trivial result, we had to deal with
unwanted terms arising from the presence of the conical sin
gularity. We discussed how the appearance of those surfa
terms is quite a general phenomenon dealing with gener
manifolds in the case of fields with integer nonzero spin. The
presence of conical singularities needs some further regula
ization procedure. In particular, this is necessary while study
ing the photon field in order to restore the gauge invarianc
of the integrated quantities. It could be interesting to develop
an analogue research in the case of gravitons in any covaria
gauge.

In the general case our proposal is the simplest one
namely, to discard all the surface terms. However, we think
that, away from ourz-function local approach, this should
not be the only possible treatment of surface terms. In fac
comparing our results with Kabat’s, it arises that, except fo
the two-dimensional case, the necessary treatment of surfa
terms strongly depends on the general approach used to d
fine and calculate the effective Lagrangian. Moreover, it also
depends on the regularization procedure used to define th
integrated quantities.

In our localz-function approach, the meaning of the only
cutoff as the minimal distance from the horizon leads our
selves towards the simple procedure of discarding the surfac
terms in order to restore the gauge invariance. In Kabat’
treatment, the meaning of the employed cutoff is not so stric
and permits one to make safe the gauge invariance and ta
on the surface terms as well. This is due to fine-tuning o
mode-depending cutoffs which contain a further gauge
fixing parameter dependence.

In our approach, when integrating the surface term it is
not possible to use ana-dependent cutoff different from that
used for the rest and such that it cancels thea dependence in
the integrated quantity: in fact, no real functione(a) can
absorb the factor (12 1

2lna), appearing in the integrated sur-
face term, for all the values ofa.

In any case, we think that any procedure which does no
discard the surface terms must be able to explain why th
consequent result is not in agreement with what one expec
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from counting the number of degrees of freedom and to de
with the apparently unphysical corrections to the thermod
namical quantities arising from those terms. Maybe this
possible in an effective low-energy string theory which doe
not coincide with the ordinary quantum field theory.
al
-
s
s
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