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We address the problem of the physical relevance of the “trans-Planckian” frequencies which occur in
Hawking radiation. We first show that these frequencies characterize the fluctuations of the energy-momentum
tensor around its regular mean value. These fluctuations are isolated, and their properties obtained, by consid-
ering the energy density correlated to a specific final state of the Hawking radiation. This conditional energy
density is expressed in terms of an off-diagonal matrix element and is complex. The dynamical relevance of
these conditional fluxes is then proven in the context of perturbation theorySmmatrix formulation. In
particular, we show how this analysis can be used to study back reaction effects to the production of a single
quantum. Furthermore these conditional fluxes offer a historical description of the emergence of Hawking
quanta from vacuum fluctuations. It is shown that initially these fluctuations are located around the lightlike
geodesic that shall generate the horizon and have exponentially large energy densities. Upon exiting from the
star they break up into two pieces. The external one is red shifted and becomes an on mass shell quantum, the
other, its “partner,” ends up in the singularityS0556-282(196)04524-9

PACS numbds): 04.62:+v, 04.70.Dy

I. INTRODUCTION physical quantities induced by these fluctuations. Both steps
have been carried out in the context of the Unruh’s detector,
Pair creation in a strong external and classical field is an [11,12. In that case, the classical accelerated trajectory is
well-known aspect of quantum matter field theory. For in-replaced by a dynamical wave function and the conse-
stance, in a constant electric fiell! e~ pairs are spontane- quences of the recoils have been evaluated.
ously created1]. In addition, the subsequent emission of In the black hole situation, at present, there is no consen-
photons by accelerated electrdi2g is closely related to the sus on either aspect. The main point which has been stressed
thermalization of the Unruh’s detect8—5] as well as to the by 't Hooft [13] and Jacobsofil4] is that Hawking’s deri-
Hawking'’s flux engendered by the time-dependent geometryation of black hole radiation should no longer be valid as
of an incipient black hol¢6]. soon as gravitational interactions are taken into account be-
At present the back reaction of these quanta on the extetause it makes appeal to the structure of the vacuum configu-
nal field which produces them is far from being understoodrations on exponentially small scales. Furthermore, 't Hooft
The semiclassical treatment alone does not give rise to diffif15] and otherd16—18 claim that these gravitational inter-
culty since the external field remains purely classical andictions will invalidate the semiclassical scenario to the ex-
only the mean value of the matter current operator acts on ient that the solution will be completely different, even at
as a sourcg7—1d0. All the quantum properties of the matter, macroscopical scales. On the other side, following the early
including its fluctuations and correlations, are completelywork of Hawking[19], there is the opinion that the quantum
discarded. It is probable that the semiclassical theory corfluctuations will not prevent the formation of the event hori-
rectly predicts certain properties of the full theory such as theon nor the loss of information for asymptotic observers
rate of particle production or the large scale structure of th¢20]. This argument principally relies on the weakness of the
geometry. But it will necessarily fail when considering more curvature invariants at the horizon until the residual mass
detailed questions related to correlations between producegbproaches the Planck mass.
particles. In order to clarify the debate, one first needs a precise
The difficult task is then to determine in which circum- description of the quantum fluctuations relevant for black
stances the importance of the fluctuations will invalidate thenole evaporation. To obtain their properties is the principal
semiclassical treatment. This task involves two steps. Firstim of this paper. The second aspect of the problem, which is
one needs to identify and describe the relevant fluctuationgoncerned by the consequences of these fluctuations, will
and secondly, one should compute the modifications of thenly be schematically discussed. Thus we consider the first
aspect of the problem: namelgg) how to isolate the fluc-
tuations within black hole radiancéb) how to describe
*Electronic address: massar@ccsg.tau.ac.il them, and(c) what are their properties?
TElectronic address: parenta@celfi.phys.univ-tours.fr We isolate the fluctuationigpoint (a)] by considering the
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field configurations correlated to the presefmeabsenceof  photong 16,30. The present article places itself in this latter
a specific asymptotic Hawking quantum. We then reveal thevein and, as a preliminary exercise, we evaluate the modifi-
properties of these field configuratiofisoint (b)] through  cation of the probability to find a specific Hawking quantum
the study of appropriate off diagonal matrix elements of theinduced by a fluctuation of the mass of the infalling star. To
energy momentum operatdr,,. This approach to isolate first order, this modification is entirely determined by the
and study certain field configurations has already been usg@naginary part of theconditional value ofT ,,,. However,
in [21] to describe the emergence of a specifice” pair  despite its trans-Planckian character, the modification of the
produced in an electric field. We have also applied it in com-probability is finite and related to the additional small fluc-
panion articlg 22] to study the field configurations which are tuating mass only. This indicates that there is, at least in
correlated to the transitions of an accelerated detector. Sing®me cases, a washing out mechanism which prevents the
the matrix elements are off diagonal, they are complextrans-Planckian fluctuations from showing up in physical
Therefore, it requires some care to properly interpret themamplitudes. This mechanism is reminiscent of the recent
We refer to[ 21,23 for a discussion of these aspects. We alsowork of Unruh[31,32 wherein it was found that the prop-
refer to the work of Aharonov and collaborat¢gest] where erties of emitted particles were unaffected bpteenomeno-
these off diagonal matrix elements were first introduced andbgical modification of the high frequency spectrum. Hence
where their dynamical relevance was first discussed. further analysis is required to establislynamically when
In this paper we emphasize that these matrix elementand how the trans-Planckian densities invalidate the semi-
arise in anyS-matrix calculation of gravitational back reac- classical theory.
tion effects. Furthermore, being off diagonal, they control There is another important issue which must be addressed
back reaction effects which cannot be described by the meampon evaluating the fluctuations. It is concerned with the
theory wherein only the expectation value Bf, is used. final specification of the field configurations since the condi-
Indeed, to first order in the perturbation, the modification oftional value ofT,, it defines issingular in certain cases,
the amplitude of finding the specific final state is propor-such as when the final state contains a definite number of
tional to such a matrix element @f,, and both its real and quanta. This could have deep implications for black hole
imaginary part intervene. Others authors have also advocatgihysics since it suggests that one should impose a boundary
the study of these matrix elements, $&6,25,28. to space time at the horizon as in 't Hooft's brick wall model
The result of our calculatiofipoint (c)] is to obtain the [13,33 or generalizations thereof. However, when the final
pattern of the energy density correlated to the emission of atate is specified by the transitions of a particle detector,
specific Hawking guantum. When a Hawking quantum isthere is no singularity on the horizon. In view of this, it is at
emitted at retarded time, with asymptotic frequency, the  present unclear whether this singularity is an artifact of cer-
energy density correlated to this emission forms a dipolatain specifications of the final state, or whether it has deep
structure located around the lightlike geodesieu,. In the  physical meaning.
remote past, the energy density of this vacuum fluctuation is This article is organized as follows: We first review the
O(w?) and located on a distance scale of order' where quantization of a massless scalar field in the collapsing ge-
w=\e"*M (where M is the mass of the starTherefore, ometry. We then show how the energy density correlated to
after a timeuo,=0(4MInM) for a typical\=0(M 1), w is  the emission of a specific Hawking quanta is given by a
greater than the Planck frequency. Outside the star, one piecertain off diagonal matrix elements @f,,. The following
of the vacuum fluctuation is gradually redshifted until whenthree sections are devoted to evaluating these matrix ele-
it reaches large radius its frequency has becamighe other ~ments. They are first renormalized, then they are evaluated
piece, the “partner,” is located beyond the horizon and enddor several specifications of the final state of the radiation
up in the singularity. We recall that the presence of thisand finally they are considered in detail when the final state
partner ensures that Hawking radiation appears to be in & specified by a transition of a two level detector. The article
thermal density matrix for external observers. concludes with a discussion of how these matrix elements of
All these properties result from the following two as- T, enter into some specific transition amplitudes.
sumptionsifree field in agivengeometry. In particular, free
propagation implies that the energy density experiences the
classical redshift along the geodesics. Therefore the fluctua-
tions inevitably reach the trans-Planckian regime. However
these matrix elements df,,(x) also control the first correc- In this section, we review the main properties of the col-
tions to both of the assumptions. Thus the exponentiallfapsing geometry and the scattering of a massless field in this
growing energy densities may give rise to unbounded correcggeometry. In particular, we insist on the divergent character
tions and completely invalidate Hawking's assumptions.of the outgoing modes on the future horizon and on the cor-
This is the trans-Planckian hiat{i$5] made explicit. relations of the field configurations existing on both sides of
There have been two attitudes in the literature to confronthis horizon. Both of these properties play a determinant role
this hiatus. The first is to try to guess what could be theupon computing the fluctuations within Hawking radiance.
physics at the Planck scale near the horizon and how the Following Hawking[6] and Unruh[3], we work in the
Hawking radiation emerges therefrom see, .18,27-29. background metric of a spherically symmetric collapsing star
The second has been to use Einstein equations to investigaté massM. Outside the star the geometry is described by the
how back reaction effects modify the production of Hawking Schwarzschild metric

Il. THE SCATTERED MODES
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2M oM\ 1 Theu part is determined by the condition thé&j, vanish at
ds’= ( 1- T)dtz— ( 1- T) dr?—r2dQ? r=v—-U=0, see[34,23 for more details. Hence, by virtue
of Eq. (3), for u>4M, or even on both sides of the horizon
5 2 for —M<U<M, the state of the field tends exponentially
=|\1-— dudy —r<dQ*, quickly (in u) to the Unruh vacuun3], i.e., a vacuum with
respect to the modes

v,u=txr*, r*=r+2MInr;|\2/|M. (1) 1 1
\/4_exp(—iwv) and \/4_exp(iw4Me*”’4M).
Tw Tw

For simplicity, we consider the collapse of a spherically
symmetric thin shell of pressureless massless matter. Inside
the shell space is then flat and the metric reads

®

To the modesy,, are associated the Kruskal creation and

ds?=dr2—dr2—r2dQ2=dUdv — r2d0?2, destruction operatora, a, and the Heisenberg vacuum
|0) is the state annihilated by &, .
v,U=7*r, 2 The  “Schwarzschild” u modes x, r(u)=6(r

—2M)e M/ /4N are needed to analyze the particle con-
wherev is the same coordinate in Egd) and(2) since on  tent of the scattered modes, onZ* since they correspond
I~ (u=—=) space-time is flat on both sides. The collapsingto Minkowskian spherical wave &". In terms ofU given
shell follows the geodesic=vs. The connection between in Eq. (4) they take the form
the two metrics is obtained by imposing the continuityr of
along the shell’s trajector}3,34: U\ inam

) efi)\U' (9)

1
AM ) X\ r(U)=06(—U) *(4,\/'

)

I ( 2M )
U uj 1 r(U,Us) US_U )
To these modes are associated the destruction operators
Then by choosing s=4M one obtains a, r. Itis useful to define an additional set of Schwarzschild
modes which live only inside the horizon
B ) 4) xr,L(U)=xx r(—U) and the corresponding destruction op-
4M erator a, | . These operators define the Schwarzschild
vacuum outside and inside the horizom; 5|0Oz)=0 and
With this choice ofvs, the incoming light ray which shall 3  |0,)=0. The state containing no Schwarzschild particle
generate the future horizon &=0, isv=0 sincer=0 s the Boulware vacuumB)= |0g)® |0, ).
readsv =U The exact Bogolyubov coefficient betweer, and x, is
In the statlc space-time outside the star, the masslesjiven by the overlap
Klein-Gordon equation for a mode of the form

@1,.m=Yim(0,0) ¢ (t,r)/4mr< reads L
2M\[1(1+1) 2M 2 <§DwuX)\,R>:4_\[F(1+i4M)\)
[af—af;(l— T) )

—z to3
Near the horizorr —2M<2M, it becomes the wave equa- . . :
tion for a massless field in#41 dimensions. By considering where thex is to be understood a$ If o>\ and — i
only the s-wave sector of a massless field and dropping the? <+ The expression foB,, \= (¢, X} r) is obtained by
residual “quantum potential” ®1(r —2M)/r?, the confor- t@KingX into —A. _ _
mal invariance holds everywhere, inside as well as outside !N the limit @— +o (which corresponds to the late time

the star. From now on we shall work in this simplified con- Imit, u— +, because of the classical Doppler shift relating
text in which the wave equation becomes w to \, see[35]), these Bogolyubov coefficients tend to the

ones obtained by Hawking:

uU)=U- 4Mln<

P (t,r)=0. (5

X[4M(w_)\)]fi4M)\flei2ﬂ-M)\ (10)

Ay h=0= 9ud, Y1=0=0. (6)
: : s : 1 Jo ; —i4MA—1.27MA
The only difference with a massless field ifl+1)- a, =-—\/T(1+idMN)(4Mw) ™" e
. . . . N N Aar VN
dimensional flat space is the{_, must vanish at the origin:
th=o(r=0)=0. =Bk et (11

In second quantization, the Heisenberg stdteis chosen
to be the initial vacuum, i.e., vacuum with respect to the
modes which have positive frequency orZ . These modes
are

In this late time limit, the black hole emits a steady thermal
flux at the Hawking temperature 84 since
|Bonlau = 8™ for all w.

In order to display the nature of the singularity of the
(e iov—g oV, 7) modes at fixed outgoing frequengy we introduce the “Un-

1
LU, U)= .
Yulv,U) NV ruh” wave functiong[3]
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! ! {[(e+iv)/4M] 14MA T —2 5 (16)
~ €+liv = 5 -
Ik e e g mm =g 89"
—[(e+iU)/4M]14MM (12 Let us use Eq(15) to calculate how a classicat (num-

ben fluctuation of the background geometry modifies the
wheree>0 specifies how the functions have to be continuedamplitude to find a specific final state. To this end, we con-
in the complexU plane. e also regulates the modes at the sider a set of states which completely specify the field con-
horizon. It is important to take the limé— 0 only at the end figurations onZ ™, i.e., particle content in terms of asymp-
of the calculation in order that the, \ constitute an alter- totic Hawking quanta:
native basis of in-modg$86]. The essential advantage of the

basis ¢, ¢ is that, at late times, when the facter Y in (a] Q™ (aI,,L)””’
¥»» EQ.(9), can be neglected, the Bogolyubov transforma- |¢{nx}>:1;[ ot |0R>H o o). (17
tion between the modeg, and ¢,  is diagonal in\ (this is M » M
due to the stationary character of Hawking radiafion In the background geometry, when the Heisenberg state is
. . the in-vacuum, Eq(14), the amplitude of probability for the
I k= a X\ rTBrXy L le,K:axXx,L‘*'ﬂ)\X)\,Rv(lS) radiation to be in they state is
Sty = (#1n/0). (18)

where B, /ay=e"*™M and a2 —B2=1. It is then easy to
express the Heisenberg vacuum as an entangled state |of the perturbed geometry, to first orderhirt”, this ampli-
Schwarzschild quanta living on both sides of the future hotyde becomes

rizon

-1
1 _ o 4 [ v
_ 1 Bylay a’r aT S{n)\}_ <‘/’{n)\}|l If d®x 2 ghM T/.LV |0>
0)=]] —eA/™ai%r|0g)® [0y). (14)
A
: , () Tpr [0)

, -1
= s?nh}( 1-i f d*x—-V—gh*

Since an external observer has no access to the field configu- <'/’{”A}|0>
rations beyond the horizon, he must trace over them and this
leads to a thermal density matrix for the outgoing radiation (19
[37). The normalized matrix element df,, ,

lIl. THE FLUCTUATIONS WITHIN BLACK HOLE (W10 3| Tun() [0)

RADIANCE (Tu(X)) 0y = (20)

(¥1n,310)
We shall show that the energy density correlated to a

specific final state of the Hawking radiation can be expresse@ppears therefore to be tiemergy density correlated to the

as a normalized off diagonal matrix element Bf,. To final state |y, ;). Notice that both its real part and its

illustrate the various aspects of its physical significance, wémaginary part modify the complex amplitu, ;. In Sec.

shall present three different ways to obtain it. The first twoy| we shall explicitly compute the change in the probabil-

derivations are dynamical and show how this conditional enity 1o fing |13 and relate this change to the properties of
ergy density naturally arises in a perturbative expansion o A

S matrix elements. The last derivation relates it to usual conITW){”A}' . o )
ditional values in probability theory. We now consider another situation in Whl({ﬁ'ﬂy>{n}\}
Then we shall generalize these procedures in order téomes up in order to confirm that its correct interpretation is
cope with the facts that an external observer has no accessittdleed the one of a conditional energy density. Suppose that
the internal field configurations and that the outgoing modeghe gravitational field has been quantized and that its Heisen-
are singular on the horizon. berg state is|0g). Then, the first order modification of the
To display the dynamical relevance of this matrix ele-state of the gravitational field due to the presence of the
ment, we introduce the interaction between the quantizequanta{n,} introduces some entanglement between the mat-
scalar field¢ with the gravitational field. To first order in ter part and the gravitational part of the wave function. To
h#”, it is given by the Hamiltonian first order, the final entangled state is

. -1 —-
f dtHint:_%f dxV—gh*" ()T ,(x) (15 (1—|fd4x7\/__ghw-|-w |0) 10g) 21

v . : C hereﬁ“”(x) is now a quantized field operator.

where h#*(x) is the fluctuating part of the metric, i.e., . L

ds?=(g m(sz )dx#dx” with g %(f) the background met- When the final state of the radiation iﬂ/{n)\}>, the state of
ric. Equation(15) follows from the definition of the energy the gravitational field correlated to this outcome is obtained
momentum tensor as the derivative of the matter action witiY Projecting the bra(y, ;| onto the coupled state equation
respect tag*”: (21) and one finds
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. , 1 left-hand side of Eq(24) is real, this implies the imaginary
[P )= 40,1 <¢{n)\}|( 1—'j d™x—- parts of the terms on the right-hand side sum to zero.
In the remainder of this section we shall generalize Eq.
R (20) for (T ,,)(n,; in two different ways and for two different
XN-gh* T/”) 0) |09> reasons. Namely, we want to take into account the inacces-
sible character of the field configurations on the other side of

=2 ) 1_if d“x_—l the horizon and the divergent properties of the outgoing
(WUVRRELY, 2 modes on that horizon.
The set of Stateél/i{n)\}> specify the state of the radiation
% ‘/_QHM"<TW>{n }) |0g>_ (22 on bothsides of the future horizon. But since only the region
: outside the horizon is accessible to the asymptotic observer,

we must considepartial specifications of the final state.
These can be introduced by using a complete set of projec-
tors which act as the identity operator when applied to the
field configurations located beyond the horizon:

Then, the value of the gravitational field fluctuation which is
conditional to the fact that the final state |i${”)\}> reads

() @hap(y) [ @ 1)
(1@ P 1)

- Im{ f dXV= (T () )n,

(Nap(Y))in,) = (ajp™ (ayp)™

M=l ® ——|0R) (Og| —F/—. 25
i\t L {ln_g} \/n_}\' | R>< R| \/ﬁ ( )

A A We can now decompose the mean energy momentum density
X(0g|h,g(y)h#?(x) [0g)|. (23)  using these projectors as

It is given in terms of the conditional value df,,(x) and (O[T gn 3T, |0)
the graviton propagator evaluated in the unperturbed gravi-(T.,)= > (O[T T, [0)= > P{nx}w
tational state, see Sec. Il A if22] for a more traditional Y Y {ny}
example of this kind of response function. (26)
In summary, from Egs(22) and (23), we see that the
Hamiltonian which acts on the gravitational state is given bywhere P, y= (0|II;, , |0) is the probability to obtain the

final configurations specified by the projectHr{nx}. This

f d"'x%l /_QF‘M<TW>{W}- decomposition is once more of the type used in usual condi-
tional probabilities and

This confirms tha(TM,){nx}, Eq. (20), is indeed the condi-

tional energy momentum. _ <O|H{nA}T/w |0)
We now present the third derivation f¢T ), ; which <T'U“V>H{n)\}_ <O|H{nx} |0) (27)
makes manifest the relation between this formalism and the
usual notion of the conditional value in probability theory. ) ) )
This derivation proceeds through the decomposition of théS the energy correlated to these final configurations. Note
mean value of the energy-momentum tensor in terms of &hat one recovers Eq20) if I = |¢n ) (dynyl. i€, if
complete set of final states, E@.7): H{nx} is the projector onto the pure state/{nx}y
We now address the second problem, namely the difficul-
ties engendered by the singular behavior of the Schwarzs-
child modes. Indeed, as displayed in EtR), the Schwarzs-
child modes specified ofi* are singular on the horizoffor
) (Wl Tu(X) [0) the same reasons that the Rindler modes are singular in flat
=> |<0|‘//{nh}>| (|0 space-time, sef86]). In the next section, we shall prove that
Y i this leads to singular conditional energy densities in most
cases except when the final specification is carried out by
=> |S?n}\}|2<T,uv>{n)\} - (24)  particle detectors. Thus, we turn to these specifications when
{n the particle detector sits still at a large radiys>2M. The
, 0 |2 - . : , model of the two level particle detector we shall use is the
Since [Sy,, )| is the probability to obtain the final state e idied in detail ifi22]. Here, we shall only repeat the
|#n,)), this expression confirms thgT ,,)(n ; has the in-  salient aspects which will intervene upon computing the
terpretation of a conditional valuexactly as in probability quantum response to the fluctuations among Hawking radia-
theory. Indeed, we have rewritten the mean energy density aton.
a sum over all possible outcomes of the product of the prob- The two level detector with ground state-) and excited
ability of each outcome times the conditional value of thestate |+ ) is coupled to the fields by the interaction Hamil-
energy density if that outcome is realized. Note that since théonian:

(0[T,.(%) |0>={n2} (Ol 1) (¥n 4| T,uu(X) [0)
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-1 "
exp(—if dtHE;t)(l—if d4x7\/—gh‘”Tw)

X(+[+ (0™ [+) (= [1g(t,rp) X[0) [0g) | =) (=] (04| (O|[H.c] (32
(28

f dtd3xHE;t(t,x)=gmf di{f(t)e™"™|-) p=

where the interaction with the detector acts after the interac-

whereg is a dimensionless coupling constant that shall betion with the gravitational field since the detector is located
at arbitrarily large distance from the black hole. We now

taken for simplicity small enough that second order pertur-"" © )
bation theory be validn is the difference of energy between project onto the excited state of the detector and trace over
the ground and the e;<cited state of the atom, &} is the the field ¢ to obtain the reduced density matrix of the gravi-

dimensionless function that governs when and how the intert_ational field correlated to the excitation of the detector. To
action is turned on and off second order ig and to first order irh*”, the reduced den-

If the detector is initially in its ground state and the radia- Sty matrix is

tion described by the in-vacuum, the state of the coupled _
system, at late times, is Tr(,,,detem[Hm]:Tr(,,[—gzmzf dt’f(t")e ™ ¢(t’,x)
)= [0) |-)~igm| dtr* (et [0) ] +) <[ atte wemorean
+0(g?). (29) -1 .
X 1—if d"’x—\/—_gh’”TW)
To second order iy, the probability to find the detector in 2
its excited state is % |0) |Og> (Ogl (0|(H.c)]
Pe= (V[+) (+|¥ : -1 —
e < | >< | > :Pe[(l_|j d4x7 _ghMV<T;w>+)
:gzm2f dt’f(t’)e’imt'Jdtf*(t)eimt<0|¢(t’,rp) % |0g){(04|(H.c)] (33
X p(t,rp) |0). (300 where

Sincer ,>M, thes wave solution of the Klein-Gordon equa- (0jOT,, 10)

tion separates into a left and a right moving part (Tun+= 000y (34
¢="f(u)+g(v). Itis therefore consistent to take the detector

to be coupled to tha part only. From now on we shall make WhereO:fdt'f(t/)e*imt/d)(t/,rp)fdtf(t)*eimt¢(t'rp)_

this assumption which isolates the effects of the Hawking (T,.)+ is thus the energy density correlated to the exci-
radiation.(Thev modes would in any case give rise only to tation of the detector. When compared with Eg7), one
exponentially small effects since they are in the vacuum statgees that the role of the projeclﬂr{nx} is now played by the

relative toe™'“!, see[22].) :

If the function f(t) is equal to 1 for a long tim& and field operator©.
tends to 0 outside this interval, the concept of a rate of tran-
sition emerges. More precisely, in the “golden rule” limit,
T>M with g°T finite, one finds The off diagonal matrix elements @f,, which describe

the energy density correlated to a specific final state obtained
P.=-g?mT 1 _ 31) in the previous section are formally infinite and have to be
€2 ed™Mm_1 renormalized. We now address this point since in the text-
books only the renormalization of the diagonal payt, in
The factor €™M — 1)712,8)2\=m is the Planckian distribu- curved space-time is described.
tion of outgoing Hawking quanta, see H4.3). Wald has proposed a set of eminently reasonable condi-

If the detector makes a transition there necessarily was #ions that a renormalized energy momentum operator should
particle emitted by the black hole. Thus we can use the finagatisfy[38]. By Wald's argumentation one deduces that the
state of the detector to isolate the field configurations conrenormalized energy momentum operaﬁf‘i“)(x) can be
taining specific outgoing quanta. Then, the energy densityritten in the following way
correlated to the transitions of the detector is obtained in
strict analogy with Eq(22) by considering how the state of Tﬁ[ﬁ”)(x)=TW(X)—IM(S)(X)I (35
the gravitational field is correlated to the final state of the
detector. The specification that the detector is in its excitedvhereT ,,(x) is the bare energy momentum operator &nd
or ground state is carried out by the projectorsthe identity operator. The subtraction tetn,s)(x) is an
IT,=|+)(+| andI1_= |—) (—|. Because we are only (infinite) conserved:-number function only of the geometry
specifying partially the final state it is necessary to work in aatx [34]. It can be understod®9,4Q as the(infinite) ground
density matrix formulation. The density matrix of the corre- state energy of the “local inertial vacuum:” that state which
lated field ¢, gravitational field, and detector is most resembles Minkowski vacuum at Numerous tech-

IV. MATRIX ELEMENTS IN CURVED SPACE-TIME
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niques have been developed to calculgtgs) and we refer - ) 1 ,
the reader to Ref:34] for a review. Tu(Xee’]= Zdlre(x)1dulr ¢’ (X)]
In the Heisenberg vacuun0), the renormalized expec-

tation value ofT ,, takes the form 1 ,
= Tr20uth(X)dup’ (X)

(OIS (%) [0)=(O|T,,(x) [0)—t,,5(x)  (36)

nv

1
= WTUU(X)[‘MI/L

where both terms on the right-hand side are infinite but their T (O[ee']1=0 (39)
difference is finite. We remind the reader that the mean value w '

of the energy density in the Heisenberg states is regular on

the future horizorlJ =0 and that Hawking radiation can be Thus (4712 (T, )., (47r?(T,) ) v, and (Ty ) are
conceived as the matter response that gives regular meamdependent ofI or, expressed differently, do not fluctuate.
energy densities sinceT ,,(x) computed in Boulware This implies that the specification of an outgoing particle on
vacuum diverges on the horizon. We refer to R¢®L,23  Z* affects the ingoing flux(T,,);; only because of the re-

for further discussion of the mean flux. flection condition atr=0. Thus on the future horizon
Inserting Eq.(35) into the expression for the conditional (T,,(r=2M))y; is unaffected by such a specification on
value of T, , Eq.(27) yields TI*. This last effect disappears partially when considering the

potential barrier in the wave equati@s).

From Eqg.(39) we see that #rZTMV[z,bz//] takes an ex-
(37) tremely simple form. Therefore, when dealing witlwaves
only, it is convenient to multiplyT ,,, by 4712, We shall do
so in Secs. V and VI which are purely kinematical in char-
acter. However in Sec. VII, upon considering dynamical
backreaction effects, the four-dimensional character of the
problem can no longer be neglected.

. OIIT,,(x)]0
<T,W(X)>H:% — s (X).

Then by expressing the operafdy,(x) in terms of the op-
erators which annihilate the in-vacuum one obtains

1
<Tren(x)>nzfmdwfwdw, (ola,a,, |0>% x) V. THE CONDITIONAL VALUE OF T,
i ooy
0 0 (oltrjo) The purpose of this section is to obtain explicit expres-
X[ @* 0¥, 1+ (0|T”e“)(x)|0> (39) sions for the energy density correlated to specific final states
[OR Y nv

of the Hawking radiation. This will be done by using the

formal expressions of the renormalized energy momentum,

whereT ,,(x) is the classical differential operator which act- E@s.(20), (27), (34), and the properties of the modes of the

ing on the in-wavesp* gives their energy density. The field ¢. In ad_d|t|on, we will |den_t|_fy which class of final

renormalized energy density correlated to transitions of a deStates gives rise to regular conditional valuesTgf(x) on

tector takes a similar form, with the operafdrreplaced by ~the horizon. We shall see that the exponentially growing

the field operato® [see Eq(34)]. Doppler factor relating) to u, see Eq(4), imposes severe
The important point is that the renormalized conditionalfestrictions on the acceptable final states.

value contains two contributions which have different origins e consider three cases, namely when the final state con-

and play different roles in dynamical processes. The firsfains no particles, when the final state contains one particle,

term is the fluctuating part which depends on the particlend when the final state is specified by the transition of a

content of the state specified b, It is complex. The second detector at large distance from the black hole.

term is the(rea) mean energy density, E¢36), obtained The conditional value in Boulware vacuuithe projector

when no specification on the final state is added. which specifies that the final state contains sevave) par-
Equation(37) warrants a few additional comments. First, ficles is

notice that there are parts dfT,,); that are entirely con-

tained in the subtraction. Most notably there is the trace [g=1.® |Og) (Og. (40)

anomaly and those components of the energy momentum

tensor which are related to it by energy conservation. For

instance, under the neglect of the potential term in the wav&ue to the correlations between left and right quanta in Eg.

equation fors waves, the classical differential operafby, (14), one finds that

acting ons waves is

Mg [0)= [0 )® |Og)= [B), (41

To(¥)ee']= Ff‘yv[r@(x)]av[r“’/(x)] i.e., if no external particles are emitted, their necessarily are
no Schwarzschild quanta beyond the horizon. The energy
density (multiplied by 4#r?) correlated to this absence of

1 1
- 4wr7‘9”¢(x)&”¢ x)= 4wr2T”“(X)[¢¢ 1 radiation is
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(O|HBT’e”|0> Thus the specification of one asymptotic particle automati-

re _ <B|TW|0> cally implies that there is a partner beyond the horizon. The
(Tag= =

rv/lg™ (0[TIg |0) (B|0) energy density correlated to this final state is

= (O[T, [0)+ <0|Tre”|0>

(B|a |O> <0|H}\T;Le2|0> _ 2 TG g ] < |Tren|0>
f d“’f <B|0> (O, [0) @B, "M KT AT (Blo)
(48)

XT L w1+ O[T 10y (42

where, as in Eq(38), the second term is the renormalized which is easily obtained using the identity

energy density in the Heisenberg std@®). The component

TUU |S 1 B
T T T T A ’
a ga, ., |IBy=——a, a_,,  |IB)+ —38(A—\") |B).
(B|Tyul0) o7 10 MR 'Ll ) ayay M ’K| ) ay | :9
—@oy OTuwl0 (49)
— _zf d)\ﬁ au% K™y k Thus the conditional energy density decomposes into two

terms. The second is the energy density when no quanta are

1 (AM)2 emitted, see Eq(42). The first term describes the energy
__7 (43) density correlated to the quantum Its UU component is

12(87TM)2 (U+i€)2. given by
The first equality results from the Wick contractions between
the Kruskal operators iy and the Kruskal operators in 2 N (4M)?
the expression of Boulware vacuum in terms of Kruskal (Tuun= N ———du IS\ k= 27 UFie% (50)
a\

quanta |B)=H>\(1/a}\)e—(,63\/ax)a}:'KEﬂ)\’K |0). Thus the
difference between the conditional density and the mean
density as measured in the coordinate system of an in-fallingy Schwarzschild coordinate, it becomes
observer is negative. But on the horizon it is positive and

infinite in the limit e—0 [36].

Similarly, before reflection at=v—U=0, the condi- N
tional value of the in-falling flux;T,, , is <Tuu>>\:§ (51)
(BlTwl® x| ™ 1 (4M)?
(B|0) (070 10) | = 1_2(87TM)2 (v+ie)? which corresponds to a constant flux of energy at infinity

(44) whose total energy is infinite. Therefore it is appropri@s-
o ) ) pecially since the aim is to consider backreaction effeitts
It is singular on the light ray =0 which shall generate the consider a quantum described by a normalized wave packet

future horizon. The componerty, vanishes since classi- Jzdng,e ™M/ JAmx with [Ed)|g,|2=1. The correspond-
cally the traceTUU vanishegsee the remark at the end of the jng projector is

previous section
Using the Jacobiadu/dU=1-4M/U=-4M/U [see

Eq. (4)], one obtains from Eq43) the Schwarzschild energy o + -
density correlated to the absence of emitted particles: g =l.® . drg,ayg |Or) (ORl . dr'gy.ayr (52)
(B[Ty/0)
O[Ty |0) | =~ = (45
(B|0) (OlTuu [0) 12 (8wM)? 49 and the correlations between left and right quanta lead to

which is minus the mean flux of Hawking quanta. Thus, the

conditional flux(T;(r =));;, vanishes as expected since o . By

one has specified that no quanta are emitted to infinity. I, |0>_( fo dAgia\r f dh _gh’ % r| 1B).
The conditional value when one quantum is pres&he (53

projector which imposes that onigne quantum of energy

\ defined atZ* is emitted is given by

Note that the partner beyond the horizon is not described by

HA=IL®aI’R |Or) (Ogrlay r (46)  the same wave packet as the specified partidiais will
have important consequences for the conditional engergy.
and one has, see E(.4), As in Eq.(48), the conditional energy density in this state

R contains two terms. We consider the “first” one which de-
IT) [0)=a, ray . |B). (47)  pends org, :



7452 S. MASSAR AND R. PARENTANI 54

(O[T14 T™®"|0) (B|T™"|0) The exponential decrease fift) required to have finite en-
(Tun)g, = » # — kd ergy densities is equivalent to imposing that its Fourier trans-
4§ <0|ng 10) (Bl0) form c, be analytic in the strip &Im(\)<<1/4M. However
. . 0,=0 for A<0, thusg, is not an analytic function ok.
=2 f d)‘J d\’ &_gkgw Therefore, the energy density correlated to the presence of
0 0 a\a,, one asymptotic quantum, E(4), is singular on the horizon.
Equation(56) reexpressed in terms of the Fourier compo-
«T [w*waK]}/ nentsc, reads
mvl PN
> B (Tuu) Fmdxrwdwc*c L
A = ’ o
X J’O d)\;g g)\2 (54) UuU/e o Cw A PN AN ANENCU PN K
his conditional densi be singul » ol
This conditional energy density turns out to be singular on X g™\« d)\4 X Bil. (59)
the horizon, forall g, in the limit e—~0, as in Eq.(50). In — 77

order to prove this, we shall consider the energy correlated to

a transition of a two level detector. This expression is obtained by expressing the field operators
The conditional energy correlated to a transition of the in Eq. (55) in terms of the Kruskal modeg,  andf(t) in

detector.This energy density is given by Eq@4) and(38).  terms ofc, , then carrying out the integral overnd insert-

The Wick contractions which arise upon evaluating the fluc-ing the resulting expression fa,C.. into Eq.(56). Up to a

tuating part of these expressions can be expressed in termsfalktor m?g? the denominator in Eq59) is the probability to

the two functiongsee[22] for more details get excited, see E¢31),

C+(U):f dte”"™f(t) <0|¢(t7rp)¢(u) |0) pe=92m2j+wd)\ %Igi (60)

C_(U)=f dte™™f* (1) (0| #(t,rp)#(U) [0) (55  Equationsg59) and(54) are extremely similar. The onkout
importan} differences are factors af, , which come from
Bose statistic, and the domains of integration avewhich

where we recall tha#(t,r ;) is theu part of the field opera- )
a(t,rp) P P allows regular energy density when extended from

tor evaluated on the detector trajectoryr,. Thus one ob-

tains Tt
(Tuw)e=(TUO)+— (OITG( [0) VI. FROM VACUUM FLUCTUATIONS
292m2 TO BLACK HOLE RADIATION
= P, dyC+(U)dyC_(U). (56) Our aim is to describe the properties of the energy density

of the field configurations subject to the double specification
To study the possible singularities that can arise inthat the initial state is vacuum and that the detector gets

(Tuu)e We explicitize the Wightman propagators in E§5) excited. In the ngxt §ectlon, we s_haII see how these .p.ropertles
as (0] (1,1 ) $(U) [0)=(1/4m)In[U(try) —U—ie] cqntrol the gravitational corrections to some transition am-
=(1/4m)In(—Ce "M —U—j¢) whereC is a constant. This plitudes. We take the coupllng to be suph that the detector, of
shows thatd, C.(U) can be singular only at the horizon '€Sonance frequency=m, will be excited around the re-
U=0 where it takes the form tarded timeu=ug. In [22] a particular form of the Fourier

componentg, of the switch off functionf(t) was given for

which the energy density can be computed exactly. They are

1 1 . .
dy C+(U:O):_Ef dtwf(t)eilmt given by
1 .
~ 14M - N
= 47ch dtet f(t)e Imt. (57) C}\:DEel)\qu—(}\—m)zTZ/Z(l_e—ZﬂT}\/a) (61)

The last integral is finite if and only if(t) decreases for
t— —oo quicker thare™ M. This is the necessary condition

which ensures finite energy densities on the horizon. is tak Il inside th . Eq(4). wh
To understand why wave packets specified‘QX leadto Yo IS taken well inside the region>0, see Eq(4), where
) T , Cimt : the isomorphism of the scattered waves, Ef, and the
smgL_JIar densities, it is appropriate to exprégs)e in Unruh modes, Eq(12), is achieved. Thusy>T.
Fourier transform We first consider the fluctuating part of the energy den-
s sity, given in Eq.(59) and evaluated od . In the golden
f(t)efimt:f d)\&efi)\t. (58) rule limit, T>m~! andT>4M, using Eqgs(59) and(61) and
—w  2m the reflection at =0, one finds

whereD is a normalization constant, sg&2]. T is the inter-
val of time during which the atom is coupled to the field and
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T (T <4|\/|)2 ma% (Tuu(r>2M)),
< uv( ))e_ T \/ET g2m2

1 _
— ’ * 2 2. —i(A=\")u
P. jd)\J' dA C)\C)\'—(47T)2B)\a)\e

<o ~{7| | =)
exp —{= n .
T 4M Mapy, _ _—
~ ef(ufu07|4wM) /T . (66)
(62) 2\JnT

The reader interested by the exact expressions will consugy getting excited, the two level atom imposes that the
[22]. Due to the vanishing of the modesrat 0, see Eq(7),  Hawking radiation contains at least one particle along the
and the lightlike character of the propagation, the selectegeodesicu=u,. Furthermore since energy flows along the
final state eschews from a spherically symmetric vacuuninesy=cst, (Tuu(r>2M)), is centered around= ug with

fluctuation which extends fromi™~ and which is centered at spread\u=T. It carries a Schwarzschild energy obtained
around the light ray =0 that shall become the future hori- py integrating Eq(66)

zon U=0. From thev dependence of Eq62) we see that
this fluctuation is located in aexponentially smaltegion

+Ug

d 2p2 2
fdu<Tuu(r>2M)>e:f—)\|C)\| B)\a)\:mafn. (67)

- —ug/4M 1
|Av|=4Me™ Yo (63 fd)\|cx|2XB)2\

sinceuy>T is the condition to be in the stationary Hawking

regime. Similarly, the energy density is enhanced by the exThus the mean energy emitted im times the factor

ponential Doppler shift between light rays aif andZ~.  am=21/(1—e ®™™) which takes correctly into account the

This shift appears here as the Jacobiakl(4)2. Thus, fora Bose statistics of the field since E¢7) corresponds to

typical quantumm=0(1/M) and T=0(M), (T,,)e be- evaluating(n?)/(n) in a thermal distribution.

comes “trans-Planckian” and located within a distarice Because of the strict correlations between left and right

smaller than the Planck length as soorugs 4MInM. quanta, there is a corresponding energy density on the other
This is also true for the energy density seen by an infall-side of the horizon, for <2M. It is given by

ing inertial observer crossing the horizaéh=0. Indeed, as

! ! -C 22 1 2
mentioned above, see E7), the reflection condition at T (r<2M :9 m fd)\c —~g2etmMAgitu
r=v—U=0 implies (Tuul Ve Pe "2
(Tuvde= (Tuudelv=u- (64) _ maan o (u-ug)2IT 68)
A few remarks about Eq962) and (64) are warranted. Z\ET

First note how theie in Eqg. (62) defines the logarithm The Sch hild : - - -
In(—v/4M —i€) as Ifu/4M| for v<0 and as Iv/4M|—im opSos?tel\.NarZSC ild energies on either side of the horizon are

for v>0. As expected from the analysis of the previous sec-

tion, upon taking the limit— 0 no singularity occurs on the

light ray which generates the horizon. In fa¢T ). van- f du <Tuu(r>2M)>e:f du(Tyu(r<2m)). (69

ishes forU=0. This is due to the particular form af,

chosen in Eg. (61). It has zeros for A=ina, as can be seen explicitly from Eq$6) and(68). The equal-

n=...,—1,0,1, ... which imply that upon evaluating Eq. ity of Schwarzschild energies on either side of the horizon

(59) at U=0 by contour integration the poles 8f «, have results from the invariance under Schwarzschild time trans-

zero residue. However, from the expression forlations of the Unruh vacuum. Indeed far modes, the

dy C+(U=0) given in Eq.(57), it results that the generic Schwarzschild time translation operator can be written as

behavior ofTy, is to stay finite asJ—0. In more physical id,=/[duT,,(r>2M)— [duT,,(r<2M), in complete anal-

terms this corresponds to saying that the vacuum fluctuationgy with the boost operator in Minkowski vacuum, $2&].

correlated to the transition of the detector straddles the horithe invariance under time translations implieg |U)=0

zon with no clear cut separation between the pieces in thehere |U) is the Unruh vacuum. Since the Heisenberg state

left and right quadrants. coincides with |[U) at late times, all physical processes
Secondly,e, which specified the analytical properties of which occur at late times are time translation invariant. Fi-

the modesy, ¢, see Eq(12), leads to the vanishing of the nally we note that although the integralsTqf, on either side

integrals of the horizon are equal, the energy densities are not. This
stems from the asymmetry between the particle and partner

e N _ when they are specified in a wave packsge Eq.(53)]. In

f_x dv (Too)e= f_w dU (Tuu)e=0 (65) particular (T,,(r<2M)), is real, see Eq(68). This results

from causality. Since the final state of the radiation is speci-
by contour integration. This follows from the fact thi) is  fied only outside the horizon by the transitions of the two
the ground state of, hencefdvT,, |0)=0: vacuum fluc-
tuations carry no energy.
We now consider the Schwarzschild energyrfor2M. It 1Behind the horizong, is directed towards the past so the
is given by(see[22]) Schwarzschild energy far<2M is — fduT,,(r<2M).
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level atom, the field operata® which appears in Eq(34)
depends only on the field operatrfor r>2M. Therefore
O and T,,(r<2M) commute. This implies that
(Tuu(r<2M)), is real.

ConclusionsWe have a complete picture of the energy
density correlated to the transition of the detector.ZOnthe
total energy carried by these field configurations vanishes
because one is in the vacuum stggee Eq.(65)]. However
their energy density is enhanced by the Jacobian
du/dU=e"*M centered aroundi=u,. Hence whenu, is
larger thanO(4MInM), the energy densitie$yy and T,,
(rescaled by 4r?) become “trans-Planckian” and located
within a distanceAv much smaller than the Planck length.
After issuing fromZ~, the vacuum fluctuation contracts until
it reachesr=0 and then reexpands alongj=const lines.
Upon crossing the surface of the star in a region
AU=Av=4Me(T"U/*M centered on the horizon, it sepa-
rates into two pieces. The first one, the partner, falls into the
singularity and carries a negative Schwarzschild energy
equal to— mafn. The second piece keeps expanding, escapes
toZ", and Constltutes the qqgntum that mduc_es the transition FIG. 1. The local description of a vacuum fluctuation giving rise
of the atom. It carries a positive Schwarzschild energy equal, , Hawking photon emitted aroung=uy is represented in a

to maﬁq. Penrose diagram. The shaded areas correspond to the regions where
It is interesting to obtain a description of the energy den-T_-(¥i) is nonvanishingy =vs is the trajectory of the collapsing

sity in the intermediate regions in order to interpolate be-pherically symmetric shell of massless matter.

tween the descriptions aii- andZ". One possible interpo-

lation consists in using a set of static observers at constapty | in its direction 0o,

r. Then the "Rindler” description would be used every- jq essentially the same as for awave except that o~ the

where Ol.Jts'de the star. However a difficulty qnss:g In .th,',svacuum fluctuation is localized on the antipodal point of the
scheme if one really considers a set of material “fiducial detector, i.e., £— 6o, 0o+ )

[27] detectors at constamt For upon interacting with the
field and thermalizing at the local temperature
(87wM 1—2M/r) ! the detectors will emit large amounts
of ultraviolet Kruskal quantésee Ref[22], Sec. Il B). The
back reaction of these on mass shell quanta cannot be ne-
glected and cannot be evaluated perturbatively owing to the
trans-Planckian energy they carry.

An alternative interpolation consists in giving the value of
T, in the local inertial coordinate syste(Riemann normal
coordinates This stems from the idea that local physics
should be described locally in such a coordinate system. This
approach has been used in defining the subtraction necessary
to renormalize the energy momentum tenga®,39,4Q. For
spherically symmetric situations, the local inertial radial co-
ordinates are easy to construct sincer(u,v) is an affine
parameter along the geodesigsconstant. The outgoing
flux in these coordinates is

=0

I

©g). Then the picture that emerges

du(r,v)

Toa(u) = —ar

2
) Tuu(u(r,v)). (70

This is represented in a Penrose diagram in Fig. 1 and
Eddington-Finkelstein coordinates in Fig. 2. The inertial co-

ordinateU will come up spontaneously in the next section

upon investigating back reaction effects, thereby justifying
dynamically this local description.

Up to now, we have considered a two-level atom coupled o
to s wave only. If more realistically, we take a two-level
atom coupled locally to the fieldi.e., coupled to all the FIG. 2. The same as in Fig. 1 drawn in Eddington-Finkelstein

modesl >0), it will select particles coming out of the black coordinates.
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We take the opportunity of mentioning>0 modes to  Only the imaginary part of T,,), controls the change in
point out that upon considerirgl the modes and specifying probability induced byh,,. And since the mean flux
that we are in Boulware vacuum, the resulting conditionak0|T/?10) is real,only the fluctuating term(T ,,)., see Eq.
value of T, is much more singular than E3). Indeed  (56), which depends explicitly on the selected quantum con-

near the horizon it behaves ke tributes topg+h_ PI=5P.
We now illustrate by a specific example how the proper-
B|TyulO ; ; ; ;
(BITuul0) —{0|Tui: |0 ties of the fluctuating paxfT ,,). intervene intoSP. We take
(0[Tyy |0) : . . .
(B|0) the simple case whereim,, is due to the in-fall of an addi-

1 M2 2M tional lightlike shell of masséM at time v=v’ with
—— 5 ( S (71) v'=vsWherevsis the trajectory of the star’s shell. Then for
(87M)“ (U+ie)r—2M vs<v<v' the metric, Eq(1) and Eq.(4) is unchanged,

where the factor/(r —2M) takes into account the number oM
of excitedl >0 modes which can propagate uprtdNe refer ds’= ( 1- T) dv?—2dvdr—r2d3(Q, (74)
to [41] for a discussion of the fluctuations of the metric in-

duced by these thermally distributed modes. whereas fow >0’ it is

VII. THE GRAVITATIONAL BACK REACTION 2
ds*=|1

2M +28M
- —)de—Zdvdr—rdeQ (75)

The aim of this section is to illustrate how the various
properties of theicompley conditional value ofT ,, corre-  where we have used for obvious convenience the Eddington-
lated to the transition of a detector modifies the transitionsjnkelstein coordinates andr.
amplitgdgs of certai.n proEesseﬁ. p‘Ne rgc_all Ifhg; ccl).ntroI? A The change in the matter action
perturbative corrections through the minimal coupling of thec_ ¢ 4, /=71 u» :
field to gravity, Eq(15). We first illustrate the role of ,, by S=/d™X=020"0,¢0,¢ s, for s waves,
explicitly calculating the change in the probability to find the toe w
atom excited engendered by a fluctuation of the geometry. §S= —f deim:f dvf dramr2(8M/Ir)d, ¢d, ¢
We then propose a perturbative scheme for taking into ac- v’ 0
count self interactions among Hawking quanta. o -

As in Sec. lll, we consider a change in the background :5|v|f dvf drdmr
geometryg,,—4g,,+h,,. This perturbation modifies both v’ 0
the mean values of the flux at later times as well as more
detailed properties such as the probability to find a specifi®vhere Ty is the rescaled energy density given by EdD).
photon onZ*. We focus on this latter type of changes. In AS eémphasized at the end of Sec. VI, it is the energy mo-
order to have finite energy densities on the horizon, we conMentum in Riemann normal coordinates which appears au-
sider howh,,, modifies the probability for a two level detec- tomatically in such problems since the matter response to a
tor to absorb a Hawking photon and get excited. local change in the geometry is local as well.

In the unperturbed background geometry, this probability In the case when’ =vs, one simply has a single shell of
is given by Eq(sl) In the modified geometry’ the probab”_ massM + M. Thus the probablllty to find the atom excited
ity to find the same photon is, in the interaction representals simply, see Eq(31),
tion with respect to the perturbation equatiti®), cf. Eq.

Tou(r,v)

4r? (76)

33): 1 1 1
33 P!t M= EgzmTesw(MMM)m__l = EgzmT|5§nM+5M)|2
Pg+h: <1[/|eifdtHintH+e*ifdtHint|\I/>_ (72) (77
To first order inh,,, the relative change in probability is hence
PET"—Pg_(W|IT, (—ifdtHin|¥) SP
= + H.c. — =~ oM(8mm)|ap”|>. (78)
PJ (W, | W) P m

Y Thus, in this case, the trans-Planckian character of the energy
:f d“x\/—_gh“ IM(T ) (73 density is washed out by the integration in Eg6).
It is interesting to analyze more closely how this washing
out mechanism follows from the behavior ¢f,).. We
2Equation(71) differs from thes-wave result equatiofd3) by the  first recall that the imaginary part ¢f,). vanishes on the
factor 2M/(r —2M). This factor is estimated by counting the num- other side of the horizon, far<2M [see discussion after Eq.
ber of high angular momentum modes that can propagate up t69)]. From Eq.(76) we understand that this is dictated by
r—2M and multiplying thes-wave result by this number. From Eq. causality: a change ig,,, in the regionr <2M cannot affect
(5) the high angular modes with typical energy=1/M that can  the probability to find a specific Hawking photon on this
propagate up tor must obey the condition I(l+1) side. Because of this vanishing one rewrites the contribution
<2M/(r—2M). to 6P/P of the integral over at fixedv as
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e real, cannot contribute to this response. We then insist on the
localized character of this response. Even tho(igh,). ex-
+oo 2 tends fromZ~ to Z', it is only the imaginary part of
=J’ dUmW(Tuu)e: (79 (T,.e which contributes in a well localized region to
” SP/P. This region lies along the classical trajectary u

see Egs.(73) and (76). We have also used the JacobianbPeétweenr=2M andr<O(6M). This local response fur-
dr/dul,, see Eq(). nishes a precise answer to the longstanding question: where

Since the trans-Planckian frequencies appear close to tfg @ Hawking photon “born”42]. _
horizon, we first analyze the behavior dfTyy)e for We now present a perturbative scheme to take into ac-

o (T )e w 1 geometry. We first recall that theeanvalue of T, , being
f drdarim =j drrlm(Trr>e
0 2M

r—2M<2M. There,r —2M is count backreaction effects among Hawking quanta. The first
step in this procedure is relatively simple. It consists in quan-
r—2M=2Mel?"U=4MI/aM (] _ glv—u=4M)/aM tizing h,, as in Eq.(21) et seq.Then the mean value of
—u—aM)i2M h,, is obtained by integrating Einstein’s equations with the
+(3/2)ev " o) (800 mean energy momentum tensor as a source, see Sec. Il of

[22] for a more conventional example. This corresponds to
the linear approximation to the semiclassical solutiafl.
+e 2Im(Tye  (+=du e But one can also evaluate tieenditional valueof h,,, cor-
J UWZJ VIm(Tuu)e(e““*”+ V/AM 41 related to a specific final state. This has been carried out
*°° *°° formally in Eq. (23). We recall that the change in,, is
— (1/2)elv—u=4M)am given by

and Eq.(79) becomes

(v—u—4M)/2M
+0(e ). (81 <haﬁ(x)>e: |m[f d4X,\/__gG’U'VaB(X,X’XT/LV(X,))e}
The first term is proportional tfdulm(T,).e**™. Hence it (84)
vanishes because it is equaltdUIm(T)e, see Eq(65).
The second term, being proportional fdulm(Tyy)e, Van-  where G#**# is the graviton propagator and we have sub-
ishes as well, see Eq69). The th_ird term vanishe_s also. tracted the contribution of the mean enet@yT"|0). Since
Indeed, under the change- —u, this term behaves like the ¢ total energy carried by the conditional valueTof, van-
first term which vanishes for all selected wave packetsigheg fromz~ till the emergence of the fluctuation from the
Hence one is left with the fourth term which gives a contri- g5 after reflection on=0, (h,,)e will vanish outside the
bution proportional to interval Av centered around =0 and given in Eq.(63).
bo Within that (exponentially smallinterval the precise shape
dAue 2YMIm(T, (Ug+Au))e of (h,,)e will depend on the particular choice of wave

* packet to which the two level atom responds. On the con-
1 (fo(v)—ZM)ZC trary, outside the star, for>4M and u>u,, i.e., in the

_ ie(v—u0—4M/2M)f
2M

(820  middle of the two members of the paith,,,). will encode

the mass losd =m and in fact describes a new classical real

valued Schwarzschild space where the madd ism.

f=ro(v) is the expression for the geodesie=u, in r,v The next step cqnsists in tak_ing into account the effect of
0 0 T h,, on the production of Hawking photons themselves. To

C is a constant with respect will,. Therefore, the contri- first order this gravitational self-interaction is encoded in a
bution to the change in probability near the horizon is. 9

bounded. As announced all the trans-Planckian oscillation@teraCtlon Hamiltonian for the quanium fiel of the form
have been washed out.

- 2M 2M

where we have changed variables tb=uy+Au and

In addition, at large ro (i.e., rog>2M), where f dtﬁim:f d4x‘/_gf d4x"/—gT J(X)GHraP
Ar|,=—(1/2)Au, Eqg. (79 decreases rapidly. Indeed, one .
finds X (X,X) T p(X"). (85

F“ IM(Tyu)e

+ o
v uwe This is in strict analogy with the interaction among charged
. ur(u,v)—ZM le dAUIM(Ty(Ug+AU))e ay g g

pairs created in an electric field. Indeed, in this case, upon
functionally integrating over the electro magnetic field, one
obtains an  effective  current-current interaction
for the charged field of the form
@83  Jd*xJd*™x'J,(x)D**(x,x")J,(x") whereD#* is the photon
propagator.
The first term vanishes since it is proportional to We now obtain an expression f@*”%# valid for the
JdAulm(T,)e. Hence the contribution at largg decreases spherically symmetric case from the form of the Berger-
as 11‘5. Chitre-Moncrief-Nutku(BCMN) Hamiltonian for a self in-
Thus we have obtained a local description of the quantunteracting spherically symmetric field considered 48], cor-
matter response to a modification of the classical backgrouncected in[3], and generalized to the case of a background

X

l+ Au
ro—2M = 2(rg—2M)?/"
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black hole in[44]. To first order in the gravitational interac-
tion the BCMN Hamiltonian can be written in the form

= 2M 2 (r 2M
H=M+J’0 drh(r)[l—T— FJ(}dr’h(r’)(l—r—,”,

1
h(r)= E

2
115

7;+r2<ar¢>2), (®6)

wherell , is the momentum conjugate . The metric as-
sociated to the solution of E@86) is

ds’=(1+a)L"2dt?—L%dr?-r2dQ? (87
where
2M 2 (r 2M
L—2:1————f dr’h(r’)(l——,) (88)
r rjo r

and « is a slowly varying function oh. This shows that the

gravitational interactions arise from the existence of a self-
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C12=—i<0|H1H2J dt:Hip:]0) + H.c. (91)

wherell; (II;) is the projector which specifies that particle
1 (2) is present andH;,: is the interaction Hamiltonian
normal ordered with respect to the Heisenberg vacuum.

Because of the normal ordering, upon evaluatihg one
will obtain both a direct term and a cross term but no self-
interaction term. The direct term is given entirely in terms of
the conditional values of ,,:

C12|direct_ J 4 f 4oy <O|H1TMV(X)|O>
PP, ') XN XNTIT M o)
0|1, T, 4(x")|0
><G‘“’“'3(x,x’)< 2T (X")] >+ H.c.

(O[11,/0)

=2 1m

j d'xy—g f A (T, (),

. (92

XGH P, X T op(X' ),

consistentr dependent mass in the Schwarzschild solution.
Furthermore one can show that the energy-momentum tens@&robably the dominarntong lasting effect is encoded in Eq.

is given by
Ty=5—>h “——21 L (89)
" 42 S Anr? (1+a)’

So that the interaction Hamiltonian can be written as

2M
Hin=— T

o 2 r
f dr4wr2T,,—f ar'dar 2T, | 1- —
0 ro r

(90

which is the sought for expression for the propagator

G#veB_Equation(90) should be compared with E¢76). It
is now 2fgdr'4mr'?T,,.,(1—2M/r')/r which plays the
role of change of the geometrys®1/r. Note also the simi-

larity between these expressions and the instantanem&tends fromZ- to 7+. On I_‘“"

Coulomb-Coulomb interaction in electrodynamics.

Upon calculatingsP/P to first order due to this self-
interaction, it is the conditional value dfl;,, which will
come up. Howeverd;,; being quartic in the field, the calcu-

(92 and corresponds to the fact one patrticle lives in a geom-
etry where the mass is reduced by the energy of the other
particle. In view of the fact that the effect of a classical
change in mass on the probability to produce one particle
was insensitive to the trans-Planckian frequencies, we are
inclined to believe that the correlatiofs, will also be finite

and small even though in the integrand of E&2) (and of

the corresponding cross terrthere appear trans-Planckian
energy densities. However this remains to be proven by a
detailed calculation.

VIIl. CONCLUSION

In resumewe have described the field configurations cor-
related to the presence of a specific Hawking quantum by
using the conditional value of This conditional value
the energy density grows
exponentially with the timeiy at which the photon reaches
I*. This results from the two hypothesis of Hawking,
namely free propagation in a given classical background. It
is important to realize that the conditional valueTof, be-

lation of its conditional value is much more complicated thancomes trans-Planckian dfi in the unique inertial coordi-

the evaluation of the conditional value ®f,, carried out in

nate system at rest with respect to the star. If one introduces

the preceding section. Among other difficulties one musta new coordinate system such they, on 7~ becomes

renormalize the infinities which arise in loops.

smoother by rescaling aroundv =0, then any regular field

~ However in both electroproduction and Hawking radia- configuration onZ~ would become trans-Planckian in the
tion, this interaction Hamiltonian not only modifies the prob- new system.

ability of creating a specific particle but also induces corre-

We then showed how a modification of the geometry in-

lations among the produced particles. In particulal’ tthuceS, through the minimal Coup"mgm, Eq_(15),achange

probability to find two particles will no longer factorize into jn the probability to find a specific Hawking quantum. It is

the products of the probabilities to find them independentlyonly the imaginary part of the fluctuating term Of e

An important problem is to evaluate these correlations. TQyhich determines the change in probability. Furthermore,
first order inH;,; they are finite, i.e., it is a zero loop correc- when the modification of the geometry is due to an in-falling

tion. They are given byC,,=P,,— PP, whereP, is the
probability to find both particles 1 and 2, whike, (P,) is
the probability to find particle 12) independently of particle
2 (1). To first order inH;,; one obtains

shell, the contribution comes from a region comprised be-
tween M <r<O(6M). Thus, one can interpret this region
as the locus where Hawking radiation is produced. Finally,
we showed that the trans-Planckian oscillations(®f,,).
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average out since only a small change, proportional to thevas modified so that energies above the Planck scale can no
mass increase, is obtained. We also suggested how to cotonger occur. The remarkable result is that the thermal prop-
pute the correlations between successively emitted quanterties of Hawking radiation are completely unaffected by the
and argued that these correlations may essentially be due faodification of the theory. This suggests that the gravita-
the soledecrease of mass induced by the emitted quanta. tional interactions may induce a taming mechanism which

~ Nevertheless the trans-Planckian energies might inducgoes not modify the properties of Hawking radiation. How-
important consequences in the full treatment of the back regyer this still needs to be proven.

action. In Ref[26], together with Englert, we argued that the
nonlinearity of general relativity cannot accommodate these
densities and that there must be a dynamical taming mecha-
nism if Hawking radiation does exist. To illustrate the pos-
sible effects of a taming, in Ref§31,32 the dispersion re- The authors would like to thank R. Brout, F. Englert, S.
lation of the free field theory in a Schwarzschild backgroundPopescu, and Ph. Spindel for very helpful discussions.
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