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From vacuum fluctuations to radiation. II. Black holes
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We address the problem of the physical relevance of the ‘‘trans-Planckian’’ frequencies which occur in
Hawking radiation. We first show that these frequencies characterize the fluctuations of the energy-momentum
tensor around its regular mean value. These fluctuations are isolated, and their properties obtained, by consid-
ering the energy density correlated to a specific final state of the Hawking radiation. This conditional energy
density is expressed in terms of an off-diagonal matrix element and is complex. The dynamical relevance of
these conditional fluxes is then proven in the context of perturbation theory in aS matrix formulation. In
particular, we show how this analysis can be used to study back reaction effects to the production of a single
quantum. Furthermore these conditional fluxes offer a historical description of the emergence of Hawking
quanta from vacuum fluctuations. It is shown that initially these fluctuations are located around the lightlike
geodesic that shall generate the horizon and have exponentially large energy densities. Upon exiting from the
star they break up into two pieces. The external one is red shifted and becomes an on mass shell quantum, the
other, its ‘‘partner,’’ ends up in the singularity.@S0556-2821~96!04524-9#

PACS number~s!: 04.62.1v, 04.70.Dy
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I. INTRODUCTION

Pair creation in a strong external and classical field is
well-known aspect of quantum matter field theory. For i
stance, in a constant electric field,e1e2 pairs are spontane-
ously created@1#. In addition, the subsequent emission
photons by accelerated electrons@2# is closely related to the
thermalization of the Unruh’s detector@3–5# as well as to the
Hawking’s flux engendered by the time-dependent geome
of an incipient black hole@6#.

At present the back reaction of these quanta on the ex
nal field which produces them is far from being understoo
The semiclassical treatment alone does not give rise to d
culty since the external field remains purely classical a
only the mean value of the matter current operator acts o
as a source@7–10#. All the quantum properties of the matte
including its fluctuations and correlations, are complete
discarded. It is probable that the semiclassical theory c
rectly predicts certain properties of the full theory such as
rate of particle production or the large scale structure of
geometry. But it will necessarily fail when considering mo
detailed questions related to correlations between produ
particles.

The difficult task is then to determine in which circum
stances the importance of the fluctuations will invalidate t
semiclassical treatment. This task involves two steps. Fi
one needs to identify and describe the relevant fluctuatio
and secondly, one should compute the modifications of
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physical quantities induced by these fluctuations. Both ste
have been carried out in the context of the Unruh’s detecto
in @11,12#. In that case, the classical accelerated trajectory
replaced by a dynamical wave function and the cons
quences of the recoils have been evaluated.

In the black hole situation, at present, there is no conse
sus on either aspect. The main point which has been stres
by ’t Hooft @13# and Jacobson@14# is that Hawking’s deri-
vation of black hole radiation should no longer be valid a
soon as gravitational interactions are taken into account b
cause it makes appeal to the structure of the vacuum config
rations on exponentially small scales. Furthermore, ’t Hoo
@15# and others@16–18# claim that these gravitational inter-
actions will invalidate the semiclassical scenario to the e
tent that the solution will be completely different, even a
macroscopical scales. On the other side, following the ear
work of Hawking@19#, there is the opinion that the quantum
fluctuations will not prevent the formation of the event hori
zon nor the loss of information for asymptotic observer
@20#. This argument principally relies on the weakness of th
curvature invariants at the horizon until the residual mas
approaches the Planck mass.

In order to clarify the debate, one first needs a precis
description of the quantum fluctuations relevant for blac
hole evaporation. To obtain their properties is the princip
aim of this paper. The second aspect of the problem, which
concerned by the consequences of these fluctuations, w
only be schematically discussed. Thus we consider the fi
aspect of the problem: namely,~a! how to isolate the fluc-
tuations within black hole radiance,~b! how to describe
them, and~c! what are their properties?

We isolate the fluctuations@point ~a!# by considering the
7444 © 1996 The American Physical Society
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field configurations correlated to the presence~or absence! of
a specific asymptotic Hawking quantum. We then reveal
properties of these field configurations@point ~b!# through
the study of appropriate off diagonal matrix elements of t
energy momentum operatorTmn . This approach to isolate
and study certain field configurations has already been u
in @21# to describe the emergence of a specifice1e2 pair
produced in an electric field. We have also applied it in co
panion article@22# to study the field configurations which ar
correlated to the transitions of an accelerated detector. S
the matrix elements are off diagonal, they are compl
Therefore, it requires some care to properly interpret the
We refer to@21,23# for a discussion of these aspects. We a
refer to the work of Aharonov and collaborators@24# where
these off diagonal matrix elements were first introduced a
where their dynamical relevance was first discussed.

In this paper we emphasize that these matrix eleme
arise in anyS-matrix calculation of gravitational back reac
tion effects. Furthermore, being off diagonal, they cont
back reaction effects which cannot be described by the m
theory wherein only the expectation value ofTmn is used.
Indeed, to first order in the perturbation, the modification
the amplitude of finding the specific final state is propo
tional to such a matrix element ofTmn and both its real and
imaginary part intervene. Others authors have also advoc
the study of these matrix elements, see@15,25,26#.

The result of our calculation@point ~c!# is to obtain the
pattern of the energy density correlated to the emission o
specific Hawking quantum. When a Hawking quantum
emitted at retarded timeu0 with asymptotic frequencyl, the
energy density correlated to this emission forms a dipo
structure located around the lightlike geodesicu5u0. In the
remote past, the energy density of this vacuum fluctuatio
O(v2) and located on a distance scale of orderv21 where
v5leu0/4M ~whereM is the mass of the star!. Therefore,
after a timeu05O(4M lnM) for a typicall5O(M21), v is
greater than the Planck frequency. Outside the star, one p
of the vacuum fluctuation is gradually redshifted until wh
it reaches large radius its frequency has becomel. The other
piece, the ‘‘partner,’’ is located beyond the horizon and en
up in the singularity. We recall that the presence of t
partner ensures that Hawking radiation appears to be
thermal density matrix for external observers.

All these properties result from the following two as
sumptions:free field in agivengeometry. In particular, free
propagation implies that the energy density experiences
classical redshift along the geodesics. Therefore the fluc
tions inevitably reach the trans-Planckian regime. Howe
these matrix elements ofTmn(x) also control the first correc-
tions to both of the assumptions. Thus the exponentia
growing energy densities may give rise to unbounded corr
tions and completely invalidate Hawking’s assumption
This is the trans-Planckian hiatus@15# made explicit.

There have been two attitudes in the literature to confr
this hiatus. The first is to try to guess what could be t
physics at the Planck scale near the horizon and how
Hawking radiation emerges therefrom see, e.g.,@18,27–29#.
The second has been to use Einstein equations to invest
how back reaction effects modify the production of Hawkin
the
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photons@16,30#. The present article places itself in this latter
vein and, as a preliminary exercise, we evaluate the modifi
cation of the probability to find a specific Hawking quantum
induced by a fluctuation of the mass of the infalling star. To
first order, this modification is entirely determined by the
~imaginary part of the! conditional value ofTmn . However,
despite its trans-Planckian character, the modification of th
probability is finite and related to the additional small fluc-
tuating mass only. This indicates that there is, at least in
some cases, a washing out mechanism which prevents th
trans-Planckian fluctuations from showing up in physical
amplitudes. This mechanism is reminiscent of the recen
work of Unruh @31,32# wherein it was found that the prop-
erties of emitted particles were unaffected by aphenomeno-
logical modification of the high frequency spectrum. Hence
further analysis is required to establishdynamicallywhen
and how the trans-Planckian densities invalidate the sem
classical theory.

There is another important issue which must be addresse
upon evaluating the fluctuations. It is concerned with the
final specification of the field configurations since the condi-
tional value ofTmn it defines issingular in certain cases,
such as when the final state contains a definite number o
quanta. This could have deep implications for black hole
physics since it suggests that one should impose a bounda
to space time at the horizon as in ’t Hooft’s brick wall model
@13,33# or generalizations thereof. However, when the final
state is specified by the transitions of a particle detector
there is no singularity on the horizon. In view of this, it is at
present unclear whether this singularity is an artifact of cer
tain specifications of the final state, or whether it has deep
physical meaning.

This article is organized as follows: We first review the
quantization of a massless scalar field in the collapsing ge
ometry. We then show how the energy density correlated to
the emission of a specific Hawking quanta is given by a
certain off diagonal matrix elements ofTmn . The following
three sections are devoted to evaluating these matrix ele
ments. They are first renormalized, then they are evaluate
for several specifications of the final state of the radiation
and finally they are considered in detail when the final state
is specified by a transition of a two level detector. The article
concludes with a discussion of how these matrix elements o
Tmn enter into some specific transition amplitudes.

II. THE SCATTERED MODES

In this section, we review the main properties of the col-
lapsing geometry and the scattering of a massless field in th
geometry. In particular, we insist on the divergent characte
of the outgoing modes on the future horizon and on the cor
relations of the field configurations existing on both sides of
this horizon. Both of these properties play a determinant role
upon computing the fluctuations within Hawking radiance.

Following Hawking @6# and Unruh@3#, we work in the
background metric of a spherically symmetric collapsing sta
of massM . Outside the star the geometry is described by the
Schwarzschild metric
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ds25S 12
2M

r Ddt22S 12
2M

r D 21

dr22r 2dV2

5S 12
2M

r Ddudv2r 2dV2,

v,u5t6r * , r *5r12M ln
r22M

2M
. ~1!

For simplicity, we consider the collapse of a spherica
symmetric thin shell of pressureless massless matter. In
the shell space is then flat and the metric reads

ds25dt22dr22r 2dV25dUdv2r 2dV2,

v,U5t6r , ~2!

wherev is the same coordinate in Eqs.~1! and ~2! since on
I2 (u52`) space-time is flat on both sides. The collapsi
shell follows the geodesicv5vS . The connection between
the two metrics is obtained by imposing the continuity ofr
along the shell’s trajectory@3,34#:

dU5duS 12
2M

r ~u,vS!
D5duS 12

4M

vS2U D . ~3!

Then by choosingvS54M one obtains

u~U !5U24M lnS 2U

4M D . ~4!

With this choice ofvS , the incoming light ray which shall
generate the future horizon atU50, is v50 since r50
readsv5U.

In the static space-time outside the star, the mass
Klein-Gordon equation for a mode of the form
w l ,m5Ylm(u,w)c l(t,r )/A4pr 2 reads

F] t22] r*
2

2S 12
2M

r D S l ~ l11!

r 2
1
2M

r 3 D Gc l~ t,r !50. ~5!

Near the horizonr22M!2M , it becomes the wave equa
tion for a massless field in 111 dimensions. By considering
only thes-wave sector of a massless field and dropping t
residual ‘‘quantum potential’’ 2M (r22M )/r 4, the confor-
mal invariance holds everywhere, inside as well as outs
the star. From now on we shall work in this simplified co
text in which the wave equation becomes

]U]vc l505]u]vc l5050. ~6!

The only difference with a massless field in~111!-
dimensional flat space is thatc l50 must vanish at the origin:
c l50(r50)50.

In second quantization, the Heisenberg stateu0& is chosen
to be the initial vacuum, i.e., vacuum with respect to t
modes which have positivev frequency onI2. These modes
are

cv~v,u!5
1

A4pv
~e2 ivv2e2 ivU~u!!. ~7!
lly
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The u part is determined by the condition thatcv vanish at
r5v2U50, see@34,23# for more details. Hence, by virtue
of Eq. ~3!, for u.4M , or even on both sides of the horizon
for 2M,U,M , the state of the field tends exponentiall
quickly ~in u) to the Unruh vacuum@3#, i.e., a vacuum with
respect to the modes

1

A4pv
exp~2 ivv ! and

1

A4pv
exp~ iv4Me2u/4M !.

~8!

To the modescv are associated the Kruskal creation an
destruction operatorsav

† , av and the Heisenberg vacuum
u0& is the state annihilated by allav .

The ‘‘Schwarzschild’’ u modes xl,R(u)5u(r
22M )e2 ilu/A4pl are needed to analyze the particle con
tent of the scattered modescv on I` since they correspond
to Minkowskian spherical wave atI`. In terms ofU given
in Eq. ~4! they take the form

xl,R~U !5u~2U !
1

A4pl
S 2U

4M D il4Me2 ilU. ~9!

To these modes are associated the destruction opera
al,R . It is useful to define an additional set of Schwarzschi
modes which live only inside the horizon
xl,L(U)5xl,R* (2U) and the corresponding destruction op
erator al,L . These operators define the Schwarzschi
vacuum outside and inside the horizon:al,Ru0R&50 and
al,Lu0L&50. The state containing no Schwarzschild partic
is the Boulware vacuumuB&5 u0R& ^ u0L&.

The exact Bogolyubov coefficient betweenwv andxl is
given by the overlap

av,l5 ^wv ,xl,R&5
1

4p
Av

l
G~11 i4Ml!

3@4M ~v2l!#2 i4Ml21e62pMl ~10!

where the6 is to be understood as1 if v.l and2 if
v,l. The expression forbv,l5 ^wv ,xl,R* & is obtained by
takingl into 2l.

In the limit v→1` ~which corresponds to the late time
limit, u→1`, because of the classical Doppler shift relatin
v to l, see@35#!, these Bogolyubov coefficients tend to th
ones obtained by Hawking:

av,l5
1

4p
Av

l
G~11 i4Ml!~4Mv!2 i4Ml21e2pMl

5bv,l* e4pMl. ~11!

In this late time limit, the black hole emits a steady therm
flux at the Hawking temperature 1/8pM since
ubv,l /av,lu25e28pMl for all v.

In order to display the nature of the singularity of th
modes at fixed outgoing frequencyl, we introduce the ‘‘Un-
ruh’’ wave functions@3#
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cl,K ;
e→01

1

A4pl

1

Ae4Mpl2e24Mpl
$@~e1 iv !/4M #2 i4Ml

2@~e1 iU !/4M #2 i4Ml% ~12!

wheree.0 specifies how the functions have to be continu
in the complexU plane.e also regulates the modes at th
horizon. It is important to take the limite→0 only at the end
of the calculation in order that thecl,K constitute an alter-
native basis of in-modes@36#. The essential advantage of th
basiswl,K is that, at late times, when the factore2 ilU in
xl , Eq. ~9!, can be neglected, the Bogolyubov transform
tion between the modesxl andwl,K is diagonal inl ~this is
due to the stationary character of Hawking radiation!

cl,K5alxl,R1blxl,L* , c2l,K5alxl,L1blxl,R* ,
~13!

wherebl /al5e24plM and al
22bl

251. It is then easy to
express the Heisenberg vacuum as an entangled stat
Schwarzschild quanta living on both sides of the future h
rizon

u0&5)
l

1

al
ebl/al al,L

† al,R
†

u0R& ^ u0L&. ~14!

Since an external observer has no access to the field con
rations beyond the horizon, he must trace over them and
leads to a thermal density matrix for the outgoing radiati
@37#.

III. THE FLUCTUATIONS WITHIN BLACK HOLE
RADIANCE

We shall show that the energy density correlated to
specific final state of the Hawking radiation can be expres
as a normalized off diagonal matrix element ofTmn . To
illustrate the various aspects of its physical significance,
shall present three different ways to obtain it. The first tw
derivations are dynamical and show how this conditional e
ergy density naturally arises in a perturbative expansion
Smatrix elements. The last derivation relates it to usual co
ditional values in probability theory.

Then we shall generalize these procedures in order
cope with the facts that an external observer has no acces
the internal field configurations and that the outgoing mod
are singular on the horizon.

To display the dynamical relevance of this matrix el
ment, we introduce the interaction between the quantiz
scalar fieldf with the gravitational field. To first order in
hmn, it is given by the Hamiltonian

E dtHint52
1

2E d4xA2ghmn~x!Tmn~x! ~15!

where hmn(x) is the fluctuating part of the metric, i.e.
ds25(gmn1hmn)dx

mdxn with gmn(x) the background met-
ric. Equation~15! follows from the definition of the energy
momentum tensor as the derivative of the matter action w
respect togmn:
ed
e
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Tmn5
22

A2g

dS

dgmn . ~16!

Let us use Eq.~15! to calculate how a classical (c num-
ber! fluctuation of the background geometry modifies th
amplitude to find a specific final state. To this end, we con
sider a set of states which completely specify the field co
figurations onI`, i.e., particle content in terms of asymp-
totic Hawking quanta:

uc$nl%&5)
l

~al,R
† !nl

Anl!
u0R&)

l8

~al8,L
†

!nl8

Anl8!
u0L&. ~17!

In the background geometry, when the Heisenberg state
the in-vacuum, Eq.~14!, the amplitude of probability for the
radiation to be in thec state is

S$nl%
0 5 ^c$nl%u0&. ~18!

In the perturbed geometry, to first order inhmn, this ampli-
tude becomes

S$nl%
1 5 ^c$nl%u12 i E d4x

21

2
A2ghmnTmn u0&

5S$nl%
0 S 12 i E d4x

21

2
A2ghmn

^c$nl%uTmn u0&

^c$nl%u0& D .
~19!

The normalized matrix element ofTmn ,

^Tmn~x!&$nl%5
^c$nl%uTmn~x! u0&

^c$nl%u0&
~20!

appears therefore to be theenergy density correlated to the
final state uc$nl%&. Notice that both its real part and its

imaginary part modify the complex amplitudeS$nl% . In Sec.
VII, we shall explicitly compute the change in the probabil
ity to find uc$nl%& and relate this change to the properties o

^Tmn&$nl% .

We now consider another situation in which^Tmn&$nl%

comes up in order to confirm that its correct interpretation
indeed the one of a conditional energy density. Suppose th
the gravitational field has been quantized and that its Heise
berg state isu0g&. Then, the first order modification of the
state of the gravitational field due to the presence of th
quanta$nl% introduces some entanglement between the ma
ter part and the gravitational part of the wave function. T
first order, the final entangled state is

S 12 i E d4x
21

2
A2gĥmnTmnD u0& u0g& ~21!

whereĥmn(x) is now a quantized field operator.
When the final state of the radiation isuc$nl%&, the state of

the gravitational field correlated to this outcome is obtaine
by projecting the brâ c$nl%u onto the coupled state equation
~21! and one finds
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uF$nl%&5 uc$nl%& ^c$nl%uS 12 i E d4x
21

2

3A2gĥmnTmnD u0& u0g&

5S$nl%
0 uc$nl%&S 12 i E d4x

21

2

3A2gĥmn^Tmn&$nl%D u0g&. ~22!

Then, the value of the gravitational field fluctuation which
conditional to the fact that the final state isuc$nl%& reads

^hab~y!&$nl%5
^$nl%Fuĥab~y! uF$nl%&

^$nl%FuF$nl%&

5ImF E d4xA2g^Tmn~x!&$nl%

3^0guĥab~y!ĥmn~x! u0g&G . ~23!

It is given in terms of the conditional value ofTmn(x) and
the graviton propagator evaluated in the unperturbed gr
tational state, see Sec. III A in@22# for a more traditional
example of this kind of response function.

In summary, from Eqs.~22! and ~23!, we see that the
Hamiltonian which acts on the gravitational state is given

E d4x
21

2
A2gĥmn^Tmn&$nl% .

This confirms that̂ Tmn&$nl% , Eq. ~20!, is indeed the condi-
tional energy momentum.

We now present the third derivation for^Tmn&$nl% which
makes manifest the relation between this formalism and
usual notion of the conditional value in probability theor
This derivation proceeds through the decomposition of
mean value of the energy-momentum tensor in terms o
complete set of final states, Eq.~17!:

^0uTmn~x! u0&5(
$nl%

^0uc$nl%& ^c$nl%uTmn~x! u0&

5(
$nl%

u^0uc$nl%&u
2

^c$nl%uTmn~x! u0&

^c$nl%u0&

5(
$nl%

uS$nl%
0 u2^Tmn&$nl% . ~24!

Since uS$nl%
0 u2 is the probability to obtain the final stat

uc$nl%&, this expression confirms that^Tmn&$nl% has the in-
terpretation of a conditional value,exactly as in probability
theory. Indeed, we have rewritten the mean energy density
a sum over all possible outcomes of the product of the pr
ability of each outcome times the conditional value of t
energy density if that outcome is realized. Note that since
is

avi-
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the
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the
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e
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ob-
he
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left-hand side of Eq.~24! is real, this implies the imaginary
parts of the terms on the right-hand side sum to zero.

In the remainder of this section we shall generalize Eq.
~20! for ^Tmn&$nl% in two different ways and for two different
reasons. Namely, we want to take into account the inacces
sible character of the field configurations on the other side of
the horizon and the divergent properties of the outgoing
modes on that horizon.

The set of statesuc$nl%& specify the state of the radiation
onbothsides of the future horizon. But since only the region
outside the horizon is accessible to the asymptotic observer
we must considerpartial specifications of the final state.
These can be introduced by using a complete set of projec
tors which act as the identity operator when applied to the
field configurations located beyond the horizon:

P$nl%5I L^ )
$nl%

~alR
† !nl

Anl!
u0R& ^0Ru

~alR!nl

Anl!
. ~25!

We can now decompose the mean energy momentum densit
using these projectors as

^Tmn&5(
$nl%

^0uP$nl%Tmn u0&5(
$nl%

P$nl%

^0uP$nl%Tmn u0&

^0uP$nl% u0&
~26!

whereP$nl%5 ^0uP$nl% u0& is the probability to obtain the

final configurations specified by the projectorP$nl% . This
decomposition is once more of the type used in usual condi-
tional probabilities and

^Tmn&P$nl%
5

^0uP$nl%Tmn u0&

^0uP$nl% u0&
~27!

is the energy correlated to these final configurations. Note
that one recovers Eq.~20! if P$nl%5 uc$nl%& ^c$nl%u, i.e., if
P$nl% is the projector onto the pure stateuc$nl%&.

We now address the second problem, namely the difficul-
ties engendered by the singular behavior of the Schwarzs
child modes. Indeed, as displayed in Eq.~12!, the Schwarzs-
child modes specified onI` are singular on the horizon~for
the same reasons that the Rindler modes are singular in fla
space-time, see@36#!. In the next section, we shall prove that
this leads to singular conditional energy densities in most
cases except when the final specification is carried out by
particle detectors. Thus, we turn to these specifications when
the particle detector sits still at a large radiusr p@2M . The
model of the two level particle detector we shall use is the
one studied in detail in@22#. Here, we shall only repeat the
salient aspects which will intervene upon computing the
quantum response to the fluctuations among Hawking radia-
tion.

The two level detector with ground stateu2& and excited
state u1& is coupled to the fieldf by the interaction Hamil-
tonian:
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E dtd3xHint
D ~ t,x!5gmE dt@ f ~ t !e2 imt u2&

3^1u1 f * ~ t !eimt u1& ^2u#f~ t,r p!

~28!

whereg is a dimensionless coupling constant that shall
taken for simplicity small enough that second order pert
bation theory be valid,m is the difference of energy betwee
the ground and the excited state of the atom, andf (t) is the
dimensionless function that governs when and how the in
action is turned on and off.

If the detector is initially in its ground state and the radi
tion described by the in-vacuum, the state of the coup
system, at late times, is

uC&5 u0& u2&2 igmE dt f* ~ t !eimtf~ t,r p! u0& u1&

1O~g2!. ~29!

To second order ing, the probability to find the detector in
its excited state is

Pe5 ^Cu1& ^1uC&

5g2m2E dt8 f ~ t8!e2 imt8E dt f* ~ t !eimt ^0uf~ t8,r p!

3f~ t,r p! u0&. ~30!

Sincer p@M , thes wave solution of the Klein-Gordon equa
tion separates into a left and a right moving pa
f5 f (u)1g(v). It is therefore consistent to take the detec
to be coupled to theu part only. From now on we shall mak
this assumption which isolates the effects of the Hawk
radiation.~The v modes would in any case give rise only
exponentially small effects since they are in the vacuum s
relative toe2 ivt, see@22#.!

If the function f (t) is equal to 1 for a long timeT and
tends to 0 outside this interval, the concept of a rate of tr
sition emerges. More precisely, in the ‘‘golden rule’’ limi
T@M with g2T finite, one finds

Pe5
1

2
g2mT

1

e8pMm21
. ~31!

The factor (e8pMm21)215bl5m
2 is the Planckian distribu-

tion of outgoing Hawking quanta, see Eq.~13!.
If the detector makes a transition there necessarily wa

particle emitted by the black hole. Thus we can use the fi
state of the detector to isolate the field configurations c
taining specific outgoing quanta. Then, the energy den
correlated to the transitions of the detector is obtained
strict analogy with Eq.~22! by considering how the state o
the gravitational field is correlated to the final state of t
detector. The specification that the detector is in its exci
or ground state is carried out by the projecto
P15 u1& ^1u and P25 u2& ^2u. Because we are only
specifying partially the final state it is necessary to work in
density matrix formulation. The density matrix of the corr
lated fieldf, gravitational field, and detector is
be
ur-
n

ter-

a-
led

-
rt
tor
e
ing
to
tate

an-
t,

s a
nal
on-
sity
in
f
he
ted
rs

a
e-

r5FexpS 2 i E dtHint
D D S 12 i E d4x

21

2
A2gĥmnTmnD G

3u0& u0g& u2& ^2u ^0gu ^0u@H.c.# ~32!

where the interaction with the detector acts after the interac-
tion with the gravitational field since the detector is located
at arbitrarily large distance from the black hole. We now
project onto the excited state of the detector and trace over
the fieldf to obtain the reduced density matrix of the gravi-
tational field correlated to the excitation of the detector. To
second order ing and to first order inhmn, the reduced den-
sity matrix is

Trf,detector@P1r#5TrfF2g2m2E dt8 f ~ t8!e2 imt8f~ t8,x!

3E dt f* ~ t !eimtf~ t,x!

3S 12 i E d4x
21

2
A2gĥmnTmnD

3u0& u0g& ^0gu ^0u~H.c.!#

5PeF S 12 i E d4x
21

2
A2gĥmn^Tmn&1D

3u0g&^0gu~H.c.!# ~33!

where

^Tmn&15
^0uOTmn u0&

^0uO u0&
, ~34!

whereO5*dt8 f (t8)e2 imt8f(t8,r p)*dt f(t)* e
imtf(t,r p).

^Tmn&1 is thus the energy density correlated to the exci-
tation of the detector. When compared with Eq.~27!, one
sees that the role of the projectorP$nl% is now played by the

field operatorO.

IV. MATRIX ELEMENTS IN CURVED SPACE-TIME

The off diagonal matrix elements ofTmn which describe
the energy density correlated to a specific final state obtained
in the previous section are formally infinite and have to be
renormalized. We now address this point since in the text-
books only the renormalization of the diagonal partTmn in
curved space-time is described.

Wald has proposed a set of eminently reasonable condi-
tions that a renormalized energy momentum operator should
satisfy @38#. By Wald’s argumentation one deduces that the
renormalized energy momentum operatorTmn

(ren)(x) can be
written in the following way

Tmn
~ren!~x!5Tmn~x!2tmn~S!~x!I ~35!

whereTmn(x) is the bare energy momentum operator andI
the identity operator. The subtraction termtmn(S)(x) is an
~infinite! conservedc-number function only of the geometry
atx @34#. It can be understood@39,40# as the~infinite! ground
state energy of the ‘‘local inertial vacuum:’’ that state which
most resembles Minkowski vacuum atx. Numerous tech-
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niques have been developed to calculatetmn(S) and we refer
the reader to Ref.@34# for a review.

In the Heisenberg vacuumu0&, the renormalized expec
tation value ofTmn takes the form

^0uTmn
~ren!~x! u0&5 ^0uTmn~x! u0&2tmn~S!~x! ~36!

where both terms on the right-hand side are infinite but th
difference is finite. We remind the reader that the mean va
of the energy density in the Heisenberg states is regular
the future horizonU50 and that Hawking radiation can b
conceived as the matter response that gives regular m
energy densities sinceTmn(x) computed in Boulware
vacuum diverges on the horizon. We refer to Refs.@34,23#
for further discussion of the mean flux.

Inserting Eq.~35! into the expression for the conditiona
value ofTmn , Eq. ~27! yields

^Tmn
ren~x!&P5

^0uPTmn~x!u0&

^0uPu0&
2tmn~S!~x!. ~37!

Then by expressing the operatorTmn(x) in terms of the op-
erators which annihilate the in-vacuum one obtains

^Tmn
ren~x!&P5E

0

`

dvE
0

`

dv8
^0uPav

†av8
† u0&

^0uPu0&
T̂mn~x!

3@wv*wv8
* #1 ^0uTmn

~ren!~x!u0& ~38!

whereT̂mn(x) is the classical differential operator which ac
ing on the in-waveswv* gives their energy density. The
renormalized energy density correlated to transitions of a
tector takes a similar form, with the operatorP replaced by
the field operatorO @see Eq.~34!#.

The important point is that the renormalized condition
value contains two contributions which have different origi
and play different roles in dynamical processes. The fi
term is the fluctuating part which depends on the parti
content of the state specified byP. It is complex. The second
term is the~real! mean energy density, Eq.~36!, obtained
when no specification on the final state is added.

Equation~37! warrants a few additional comments. Firs
notice that there are parts of̂Tmn&P that are entirely con-
tained in the subtraction. Most notably there is the tra
anomaly and those components of the energy momen
tensor which are related to it by energy conservation. F
instance, under the neglect of the potential term in the wa
equation fors waves, the classical differential operatorT̂mn

acting ons waves is

T̂vv~x!@ww8#5
1

r 2
]v@rw~x!#]v@rw8~x!#

5
1

4pr 2
]vc~x!]vc8~x!5

1

4pr 2
Tvv~x!@cc8#,
-

eir
lue
on
e
ean

l

t-

de-

al
ns
rst
cle

t,

ce
tum
or
ve

T̂uu~x!@ww8#5
1

r 2
]u@rw~x!#]u@rw8~x!#

5
1

4pr 2
]uc~x!]uc8~x!

5
1

4pr 2
Tuu~x!@cc8#,

T̂uv~x!@ww8#50. ~39!

Thus (4pr 2 ^Tuu&P) ,v , (4pr 2 ^Tvv&P) ,u , and ^Tuv&P are
independent ofP or, expressed differently, do not fluctuate.
This implies that the specification of an outgoing particle on
I1 affects the ingoing flux^Tvv&P only because of the re-
flection condition at r50. Thus on the future horizon
^Tvv(r52M )&P is unaffected by such a specification on
I1. This last effect disappears partially when considering th
potential barrier in the wave equation~5!.

From Eq.~39! we see that 4pr 2Tmn@cc8# takes an ex-
tremely simple form. Therefore, when dealing withs waves
only, it is convenient to multiplyTmn by 4pr 2. We shall do
so in Secs. V and VI which are purely kinematical in char
acter. However in Sec. VII, upon considering dynamica
backreaction effects, the four-dimensional character of th
problem can no longer be neglected.

V. THE CONDITIONAL VALUE OF Tµn

The purpose of this section is to obtain explicit expres
sions for the energy density correlated to specific final state
of the Hawking radiation. This will be done by using the
formal expressions of the renormalized energy momentum
Eqs.~20!, ~27!, ~34!, and the properties of the modes of the
field f. In addition, we will identify which class of final
states gives rise to regular conditional values ofTmn(x) on
the horizon. We shall see that the exponentially growin
Doppler factor relatingU to u, see Eq.~4!, imposes severe
restrictions on the acceptable final states.

We consider three cases, namely when the final state co
tains no particles, when the final state contains one particl
and when the final state is specified by the transition of
detector at large distance from the black hole.

The conditional value in Boulware vacuum.The projector
which specifies that the final state contains no (s-wave! par-
ticles is

PB5I L^ u0R& ^0Ru. ~40!

Due to the correlations between left and right quanta in Eq
~14!, one finds that

PB u0&5 u0L& ^ u0R&5 uB&, ~41!

i.e., if no external particles are emitted, their necessarily ar
no Schwarzschild quanta beyond the horizon. The energ
density ~multiplied by 4pr 2) correlated to this absence of
radiation is
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^Tmn
ren&PB

5

^0uPBTmn
renu0&

^0uPB u0&
5

^BuTmnu0&

^Bu0&

2 ^0uTmn u0&1 ^0uTmn
ren u0&

5E
0

`

dvE
0

`

dv8
^Buav

†av8
† u0&

^Bu0&

3Tmn@cv* ,cv8
* #1 ^0uTmn

ren u0& ~42!

where, as in Eq.~38!, the second term is the renormalize
energy density in the Heisenberg stateu0&. The component
TUU is

S ^BuTUUu0&

^Bu0&
2 ^0uTUU u0& D

522E
0

`

dl
bl

al
]Ucl,K* ]Uc2l,K*

52
p

12

1

~8pM !2
~4M !2

~U1 i e!2
. ~43!

The first equality results from the Wick contractions betwe
the Kruskal operators inTUU and the Kruskal operators in
the expression of Boulware vacuum in terms of Krusk
quanta uB&5)l(1/al)e2(bl /al)al,K

† a2l,K
† u0&. Thus the

difference between the conditional density and the me
density as measured in the coordinate system of an in-fal
observer is negative. But on the horizon it is positive a
infinite in the limit e→0 @36#.

Similarly, before reflection atr5v2U50, the condi-
tional value of the in-falling flux,Tvv , is

S ^BuTvvu0&

^Bu0&
2 ^0uTvv u0& D52

p

12

1

~8pM !2
~4M !2

~v1 i e!2
.

~44!

It is singular on the light rayv50 which shall generate the
future horizon. The componentTUv vanishes since classi
cally the traceT̂Uv vanishes~see the remark at the end of th
previous section!.

Using the Jacobiandu/dU5124M /U.24M /U @see
Eq. ~4!#, one obtains from Eq.~43! the Schwarzschild energy
density correlated to the absence of emitted particles:

S ^BuTuuu0&

^Bu0&
2 ^0uTuu u0& D52

p

12

1

~8pM !2
~45!

which is minus the mean flux of Hawking quanta. Thus, t
conditional flux ^Tuu

ren(r5`)&PB
vanishes as expected sinc

one has specified that no quanta are emitted to infinity.
The conditional value when one quantum is present.The

projector which imposes that onlyone quantum of energy
l defined atI` is emitted is given by

Pl5I L^al,R
† u0R& ^0Rual,R ~46!

and one has, see Eq.~14!,

Pl u0&5al,R
† al,L

† uB&. ~47!
d

en

al

an
ling
nd

-
e

he
e

Thus the specification of one asymptotic particle automati-
cally implies that there is a partner beyond the horizon. The
energy density correlated to this final state is

^0uPlTmn
ren u0&

^0uPl u0&
5

2

albl
Tmn@cl,K* c2l,K* #1

^BuTmn
ren u0&

^Bu0&
~48!

which is easily obtained using the identity

al,R
† al8,L

† uB&5
1

alal8
al,K
† a2l8,K

† uB&1
bl

al
d~l2l8! uB&.

~49!

Thus the conditional energy density decomposes into two
terms. The second is the energy density when no quanta ar
emitted, see Eq.~42!. The first term describes the energy
density correlated to the quantuml. Its UU component is
given by

^TUU&l5
2

albl
]Ucl,K* ]Uc2l,K* 5

l

2p

~4M !2

~U1 i e!2
. ~50!

In Schwarzschild coordinateu, it becomes

^Tuu&l5
l

2p
~51!

which corresponds to a constant flux of energy at infinity
whose total energy is infinite. Therefore it is appropriate~es-
pecially since the aim is to consider backreaction effects! to
consider a quantum described by a normalized wave packe
*0

`dlgle
2 ilu/A4pl with *0

`dluglu251. The correspond-
ing projector is

Pgl
5I L^ E

0

`

dlglalR
† u0R& ^0Ru E

0

`

dl8gl8
* al8R ~52!

and the correlations between left and right quanta lead to

Pgl
u0&5S E

0

`

dlglalR
† D S E

0

`

dl8
bl8
al8

gl8
* al8R

† D uB&.

~53!

Note that the partner beyond the horizon is not described by
the same wave packet as the specified particle.~This will
have important consequences for the conditional energy.!

As in Eq.~48!, the conditional energy density in this state
contains two terms. We consider the ‘‘first’’ one which de-
pends ongl :
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^Tmn&gl
5

^0uPgl
Tmn
ren u0&

^0uPgl
u0&

2
^BuTmn

ren u0&

^Bu0&

52F E
0

`

dlE
0

`

dl8
bl8

alal8
2 glgl8

3Tmn@clK* clK#G Y
3F E

0

`

dl
bl
2

al
2 UglU2G . ~54!

This conditional energy density turns out to be singular
the horizon, forall gl in the limit e→0, as in Eq.~50!. In
order to prove this, we shall consider the energy correlate
a transition of a two level detector.

The conditional energy correlated to a transition of th
detector.This energy density is given by Eqs.~34! and~38!.
The Wick contractions which arise upon evaluating the flu
tuating part of these expressions can be expressed in term
the two functions~see@22# for more details!:

C1~U !5E dte2 imtf ~ t ! ^0uf~ t,r p!f~U ! u0&

C2~U !5E dte1 imtf * ~ t ! ^0uf~ t,r p!f~U ! u0& ~55!

where we recall thatf(t,r p) is theu part of the field opera-
tor evaluated on the detector trajectoryr5r p . Thus one ob-
tains

^TUU&e5^TUU
ren&12 ^0uTUU

ren u0&

5
2g2m2

Pe
]UC1~U !]UC2~U !. ~56!

To study the possible singularities that can arise
^TUU&e we explicitize the Wightman propagators in Eq.~55!
as ^0uf(t,r p)f(U) u0&5(1/4p)ln@U(t,rp)2U2ie#
.(1/4p)ln(2Ce2t/4M2U2 i e) whereC is a constant. This
shows that]U C1(U) can be singular only at the horizo
U50 where it takes the form

]U C1~U50!52
1

4pE dt
1

2Ce2t/4M2 i e
f ~ t !e2 imt

.
1

4pCE dtet/4M f ~ t !e2 imt. ~57!

The last integral is finite if and only iff (t) decreases for
t→2` quicker thane2t/4M. This is the necessary conditio
which ensures finite energy densities on the horizon.

To understand why wave packets specified byPgl
lead to

singular densities, it is appropriate to expressf (t)e2 imt in
Fourier transform

f ~ t !e2 imt5E
2`

1`

dl
cl

2p
e2 ilt. ~58!
on

d to

e

c-
s of

in

n

n

The exponential decrease off (t) required to have finite en-
ergy densities is equivalent to imposing that its Fourier tra
form cl be analytic in the strip 0<Im(l),1/4M . However
gl50 for l,0, thusgl is not an analytic function ofl.
Therefore, the energy density correlated to the presenc
one asymptotic quantum, Eq.~54!, is singular on the horizon.

Equation~56! reexpressed in terms of the Fourier comp
nentscl reads

^TUU&e5F E
2`

1`

dlE
2`

1`

dl8cl* cl8

1

4pAll8
blal]Ucl,K*

3]Uc2l8,K
* G Y F E

2`

1`

dl
uclu2

4pl
bl
2G . ~59!

This expression is obtained by expressing the field opera
in Eq. ~55! in terms of the Kruskal modescl,K and f (t) in
terms ofcl , then carrying out the integral overt and insert-
ing the resulting expression for]UC6 into Eq. ~56!. Up to a
factorm2g2 the denominator in Eq.~59! is the probability to
get excited, see Eq.~31!,

Pe5g2m2E
2`

1`

dl
uclu2

4pl
bl
2 . ~60!

Equations~59! and~54! are extremely similar. The only~but
important! differences are factors ofal , which come from
Bose statistic, and the domains of integration overl, which
allows regular energy density when extended fro
2`→1`.

VI. FROM VACUUM FLUCTUATIONS
TO BLACK HOLE RADIATION

Our aim is to describe the properties of the energy den
of the field configurations subject to the double specificat
that the initial state is vacuum and that the detector g
excited. In the next section, we shall see how these prope
control the gravitational corrections to some transition a
plitudes. We take the coupling to be such that the detector
resonance frequencyl5m, will be excited around the re-
tarded timeu5u0. In @22# a particular form of the Fourier
componentscl of the switch off functionf (t) was given for
which the energy density can be computed exactly. They
given by

cl5D
l

m
eilu0e2~l2m!2T2/2~12e22pl/a! ~61!

whereD is a normalization constant, see@22#. T is the inter-
val of time during which the atom is coupled to the field an
u0 is taken well inside the regionu.0, see Eq.~4!, where
the isomorphism of the scattered waves, Eq.~7!, and the
Unruh modes, Eq.~12!, is achieved. Thusu0@T.

We first consider the fluctuating part of the energy de
sity, given in Eq.~59! and evaluated onI2. In the golden
rule limit, T@m21 andT@4M , using Eqs.~59! and~61! and
the reflection atr50, one finds
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^Tvv~I2!&e.S 4Mv D 2 mam
2

A4pT

3expS 2H 1T F4M lnS 2v2 i e

4M D1u0G J 2D .
~62!

The reader interested by the exact expressions will cons
@22#. Due to the vanishing of the modes atr50, see Eq.~7!,
and the lightlike character of the propagation, the select
final state eschews from a spherically symmetric vacuu
fluctuation which extends fromI2 and which is centered
around the light rayv50 that shall become the future hori
zonU50. From thev dependence of Eq.~62! we see that
this fluctuation is located in anexponentially smallregion

uDvu.4Me2u0 /4M ~63!

sinceu0@T is the condition to be in the stationary Hawking
regime. Similarly, the energy density is enhanced by the e
ponential Doppler shift between light rays onI1 and I2.
This shift appears here as the Jacobian (4M /v)2. Thus, for a
typical quantumm5O(1/M ) and T5O(M ), ^Tvv&e be-
comes ‘‘trans-Planckian’’ and located within a distanceDv
smaller than the Planck length as soon asu0.4M lnM.

This is also true for the energy density seen by an infa
ing inertial observer crossing the horizonU50. Indeed, as
mentioned above, see Eq.~7!, the reflection condition at
r5v2U50 implies

^TUU&e5 ^Tvv&euv5U . ~64!

A few remarks about Eqs.~62! and ~64! are warranted.
First note how thei e in Eq. ~62! defines the logarithm
ln(2v/4M2 i e) as lnuv/4M u for v,0 and as lnuv/4M u2 ip
for v.0. As expected from the analysis of the previous se
tion, upon taking the limite→0 no singularity occurs on the
light ray which generates the horizon. In fact^TUU&e van-
ishes forU50. This is due to the particular form ofcl

chosen in Eq. ~61!. It has zeros for l5 ina,
n5 . . . ,21,0,1, . . . which imply that upon evaluating Eq
~59! atU50 by contour integration the poles ofblal have
zero residue. However, from the expression fo
]U C6(U50) given in Eq.~57!, it results that the generic
behavior ofTUU is to stay finite asU→0. In more physical
terms this corresponds to saying that the vacuum fluctuat
correlated to the transition of the detector straddles the ho
zon with no clear cut separation between the pieces in
left and right quadrants.

Secondly,e, which specified the analytical properties o
the modescl,K , see Eq.~12!, leads to the vanishing of the
integrals

E
2`

1`

dv ^Tvv&e5E
2`

1`

dU ^TUU&e50 ~65!

by contour integration. This follows from the fact thatu0& is
the ground state onI2, hence*dvTvv u0&50: vacuum fluc-
tuations carry no energy.

We now consider the Schwarzschild energy forr.2M . It
is given by~see@22#!
ult
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^Tuu~r.2M !&e

5
g2m2

Pe
E dlE dl8clcl8

*
1

~4p!2
bl
2al

2e2 i ~l2l8!u

.
mam

2ApT
e2~u2u02 i4pM !2/T2. ~66!

By getting excited, the two level atom imposes that the
Hawking radiation contains at least one particle along the
geodesicu5u0. Furthermore since energy flows along the
linesu5cst, ^Tuu(r.2M )&e is centered aroundu5u0 with
at spreadDu5T. It carries a Schwarzschild energy obtained
by integrating Eq.~66!

E du ^Tuu~r.2M !&e5
*dluclu2bl

2al
2

*dluclu2
1

l
bl
2

.mam
2 . ~67!

Thus the mean energy emitted ism times the factor
am
2 51/(12e28pMm) which takes correctly into account the

Bose statistics of the field since Eq.~67! corresponds to
evaluating^n2&/^n& in a thermal distribution.

Because of the strict correlations between left and righ
quanta, there is a corresponding energy density on the oth
side of the horizon, forr,2M . It is given by

^Tuu~r,2M !&e5
g2m2

Pe
U E dlcl

1

4p
bl
2e4pMle2 iluU2

.
mam

2

2ApT
e2~u2u0!2/T2. ~68!

The Schwarzschild energies on either side of the horizon ar
opposite:1

E du ^Tuu~r.2M !&e5E du ^Tuu~r,2M !&e ~69!

as can be seen explicitly from Eqs.~66! and~68!. The equal-
ity of Schwarzschild energies on either side of the horizon
results from the invariance under Schwarzschild time trans
lations of the Unruh vacuum. Indeed foru modes, the
Schwarzschild time translation operator can be written a
i ] t5*duTuu(r.2M )2*duTuu(r,2M ), in complete anal-
ogy with the boost operator in Minkowski vacuum, see@22#.
The invariance under time translations impliesi ] t uU&50
where uU& is the Unruh vacuum. Since the Heisenberg state
coincides with uU& at late times, all physical processes
which occur at late times are time translation invariant. Fi-
nally we note that although the integrals ofTuu on either side
of the horizon are equal, the energy densities are not. Th
stems from the asymmetry between the particle and partn
when they are specified in a wave packet@see Eq.~53!#. In
particular ^Tuu(r,2M )&e is real, see Eq.~68!. This results
from causality. Since the final state of the radiation is speci
fied only outside the horizon by the transitions of the two

1Behind the horizon]u is directed towards the past so the
Schwarzschild energy forr,2M is 2*duTuu(r,2M ).
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level atom, the field operatorO which appears in Eq.~34!
depends only on the field operatorf for r.2M . Therefore
O and Tuu(r,2M ) commute. This implies that
^Tuu(r,2M )&e is real.
Conclusions.We have a complete picture of the energ

density correlated to the transition of the detector. OnI2, the
total energy carried by these field configurations vanish
because one is in the vacuum state@see Eq.~65!#. However
their energy density is enhanced by the Jacobia
du/dU5eu/4M centered aroundu5u0. Hence whenu0 is
larger thanO(4M lnM), the energy densitiesTUU and Tvv
~rescaled by 4pr 2) become ‘‘trans-Planckian’’ and located
within a distanceDv much smaller than the Planck length
After issuing fromI2, the vacuum fluctuation contracts until
it reachesr50 and then reexpands alongU5const lines.
Upon crossing the surface of the star in a regio
DU5Dv.4Me(T2u0)/4M centered on the horizon, it sepa-
rates into two pieces. The first one, the partner, falls into th
singularity and carries a negative Schwarzschild ener
equal to2mam

2 . The second piece keeps expanding, escap
to I1, and constitutes the quantum that induces the transiti
of the atom. It carries a positive Schwarzschild energy equ
to mam

2 .
It is interesting to obtain a description of the energy den

sity in the intermediate regions in order to interpolate be
tween the descriptions onI2 andI1. One possible interpo-
lation consists in using a set of static observers at consta
r . Then the ‘‘Rindler’’ description would be used every-
where outside the star. However a difficulty arises in th
scheme if one really considers a set of material ‘‘fiducial’
@27# detectors at constantr . For upon interacting with the
field and thermalizing at the local temperature
(8pMA122M /r )21 the detectors will emit large amounts
of ultraviolet Kruskal quanta~see Ref.@22#, Sec. III B!. The
back reaction of these on mass shell quanta cannot be
glected and cannot be evaluated perturbatively owing to t
trans-Planckian energy they carry.

An alternative interpolation consists in giving the value o
Tmn in the local inertial coordinate system~Riemann normal
coordinates!. This stems from the idea that local physics
should be described locally in such a coordinate system. T
approach has been used in defining the subtraction necess
to renormalize the energy momentum tensor@34,39,40#. For
spherically symmetric situations, the local inertial radial co
ordinates are easy to construct sinceũ5r (u,v) is an affine
parameter along the geodesicsv5constant. The outgoing
flux in these coordinates is

Tũ ũ~ ũ!5S du~r ,v !

dr D 2Tuu„u~r ,v !…. ~70!

This is represented in a Penrose diagram in Fig. 1 a
Eddington-Finkelstein coordinates in Fig. 2. The inertial co
ordinateũ will come up spontaneously in the next section
upon investigating back reaction effects, thereby justifyin
dynamically this local description.

Up to now, we have considered a two-level atom couple
to s wave only. If more realistically, we take a two-level
atom coupled locally to the field~i.e., coupled to all the
modesl.0), it will select particles coming out of the black
s

n

e
y
es
n
al

-
-

nt

s

e-
e

f

is
ary

-

d
-

g

d

hole in its direction (u0 ,w0). Then the picture that emerges
is essentially the same as for ans wave except that onI2 the
vacuum fluctuation is localized on the antipodal point of the
detector, i.e., (p2u0 ,w01p).

FIG. 1. The local description of a vacuum fluctuation giving rise
to a Hawking photon emitted aroundu5u0 is represented in a
Penrose diagram. The shaded areas correspond to the regions whe
Tũ ũ(ũ) is nonvanishing.v5vS is the trajectory of the collapsing
spherically symmetric shell of massless matter.

FIG. 2. The same as in Fig. 1 drawn in Eddington-Finkelstein
coordinates.
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We take the opportunity of mentioningl.0 modes to
point out that upon consideringall the modes and specifying
that we are in Boulware vacuum, the resulting conditiona
value of Tmn is much more singular than Eq.~43!. Indeed
near the horizon it behaves like2

S ^BuTUUu0&

^Bu0&
2^0uTUU u0& D

.2
1

~8pM !2
~4M !2

~U1 i e!2
2M

r22M
~71!

where the factorr /(r22M ) takes into account the number
of excitedl.0 modes which can propagate up tor . We refer
to @41# for a discussion of the fluctuations of the metric in
duced by these thermally distributed modes.

VII. THE GRAVITATIONAL BACK REACTION

The aim of this section is to illustrate how the variou
properties of the~complex! conditional value ofTmn corre-
lated to the transition of a detector modifies the transitio
amplitudes of certain processes. We recall thatTmn controls
perturbative corrections through the minimal coupling of th
field to gravity, Eq.~15!. We first illustrate the role ofTmn by
explicitly calculating the change in the probability to find the
atom excited engendered by a fluctuation of the geomet
We then propose a perturbative scheme for taking into a
count self interactions among Hawking quanta.

As in Sec. III, we consider a change in the backgroun
geometrygmn→gmn1hmn . This perturbation modifies both
the mean values of the flux at later times as well as mo
detailed properties such as the probability to find a speci
photon onI1. We focus on this latter type of changes. In
order to have finite energy densities on the horizon, we co
sider howhmn modifies the probability for a two level detec-
tor to absorb a Hawking photon and get excited.

In the unperturbed background geometry, this probabili
is given by Eq.~31!. In the modified geometry, the probabil-
ity to find the same photon is, in the interaction represent
tion with respect to the perturbation equation~15!, cf. Eq.
~33!:

Pe
g1h5^Cuei*dtHintP1e

2 i*dtHintuC&. ~72!

To first order inhmn the relative change in probability is

Pe
g1h2Pe

g

Pe
g 5

^CuP1~2 i*dtHint!uC&

^CuP1uC&
1 H.c.

5E d4xA2ghmn Im^Tmn&1 . ~73!

2Equation~71! differs from thes-wave result equation~43! by the
factor 2M /(r22M ). This factor is estimated by counting the num-
ber of high angular momentum modes that can propagate up
r22M and multiplying thes-wave result by this number. From Eq.
~5! the high angular modes with typical energyl.1/M that can
propagate up to r must obey the condition l ( l11)
,2M /(r22M ).
l
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Only the imaginary part of̂Tmn&1 controls the change in
probability induced byhmn . And since the mean flux
^0uTmn

renu0& is real,only the fluctuating term̂Tmn&e , see Eq.
~56!, which depends explicitly on the selected quantum con-
tributes toPe

g1h2Pe
g5dP.

We now illustrate by a specific example how the proper-
ties of the fluctuating part̂Tmn&e intervene intodP. We take
the simple case whereinhmn is due to the in-fall of an addi-
tional lightlike shell of massdM at time v5v8 with
v8>vSwherevS is the trajectory of the star’s shell. Then for
vS,v,v8 the metric, Eq.~1! and Eq.~4! is unchanged,

ds25S 12
2M

r Ddv222dvdr2r 2d2V, ~74!

whereas forv.v8 it is

ds25S 12
2M12dM

r Ddv222dvdr2r 2d2V ~75!

where we have used for obvious convenience the Eddington
Finkelstein coordinatesv and r .

The change in the matter action

S5*d4xA2g 1
2g

mn]mf]nf is, for s waves,

dS52E dvH int5E
v8

1`

dvE
0

`

dr4pr 2~dM /r !] rf] rf

5dME
v8

1`

dvE
0

`

dr4pr FTũ ũ~r ,v !

4pr 2 G ~76!

whereTũ ũ is the rescaled energy density given by Eq.~70!.
As emphasized at the end of Sec. VI, it is the energy mo-
mentum in Riemann normal coordinates which appears au
tomatically in such problems since the matter response to a
local change in the geometry is local as well.

In the case whenv85vS , one simply has a single shell of
massM1dM . Thus the probability to find the atom excited
is simply, see Eq.~31!,

Pe
M1dM5

1

2
g2mT

1

e8p~M1dM !m21
5
1

2
g2mTubm

~M1dM !u2

~77!

hence

dP

P
52dM ~8pm!uam

~M !u2. ~78!

Thus, in this case, the trans-Planckian character of the energ
density is washed out by the integration in Eq.~76!.

It is interesting to analyze more closely how this washing
out mechanism follows from the behavior of^Tuu&e . We
first recall that the imaginary part of^Tuu&e vanishes on the
other side of the horizon, forr,2M @see discussion after Eq.
~69!#. From Eq.~76! we understand that this is dictated by
causality: a change ingmn in the regionr,2M cannot affect
the probability to find a specific Hawking photon on this
side. Because of this vanishing one rewrites the contribution
to dP/P of the integral overr at fixedv as

to
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E
0

`

dr4pr ImF ^Trr &e4pr 2 G5E
2M

`

dr
1

r
Im^Trr &e

5E
2`

1`

du
2

r22M
Im^Tuu&e ; ~79!

see Eqs.~73! and ~76!. We have also used the Jacobia
dr/duuv , see Eq.~1!.

Since the trans-Planckian frequencies appear close to
horizon, we first analyze the behavior of^TUU&e for
r22M!2M . There,r22M is

r22M52Me~v2u24M !/4M~12e~v2u24M !/4M

1~3/2!e~v2u24M !/2M1••• ! ~80!

and Eq.~79! becomes

E
2`

1`

du
2Im^Tuu&e
r22M

5E
2`

1`du

M
Im^Tuu&e„e

~2v1u14M !/4M11

2~1/2!e~v2u24M !/4M

1O~e~v2u24M !/2M !…. ~81!

The first term is proportional to*duIm^Tuu&ee
u/4M. Hence it

vanishes because it is equal to*dUIm^TUU&e , see Eq.~65!.
The second term, being proportional to*duIm^Tuu&e , van-
ishes as well, see Eq.~69!. The third term vanishes also
Indeed, under the changeu→2u, this term behaves like the
first term which vanishes for all selected wave packe
Hence one is left with the fourth term which gives a cont
bution proportional to

2
1

2M
e~v2u024M /2M !E

2`

1`

dDue2Du/2MIm^Tuu~u01Du!&e

52
1

2M S r 0~v !22M

2M D 2C ~82!

where we have changed variables tou5u01Du and
r5r 0(v) is the expression for the geodesicu5u0 in r ,v.
C is a constant with respect withu0. Therefore, the contri-
bution to the change in probability near the horizon
bounded. As announced all the trans-Planckian oscillati
have been washed out.

In addition, at large r 0 ~i.e., r 0@2M ), where
Dr uv52(1/2)Du, Eq. ~79! decreases rapidly. Indeed, on
finds

E
2`

1`

du
Im^Tuu&e

r ~u,v !22M
5E

2`

1`

dDuIm^Tuu~u01Du!&e

3S 1

r 022M
1

Du

2~r 022M !2D .
~83!

The first term vanishes since it is proportional
*dDuIm^Tuu&e . Hence the contribution at larger 0 decreases
as 1/r 0

2.
Thus we have obtained a local description of the quant

matter response to a modification of the classical backgro
n
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geometry. We first recall that themeanvalue ofTmn , being
real, cannot contribute to this response. We then insist on th
localized character of this response. Even though^Tmn&e ex-
tends from I2 to I1, it is only the imaginary part of
^Tuu&e which contributes in a well localized region to
dP/P. This region lies along the classical trajectoryu5u0
betweenr52M and r<O(6M ). This local response fur-
nishes a precise answer to the longstanding question: wher
is a Hawking photon ‘‘born’’?@42#.

We now present a perturbative scheme to take into ac
count backreaction effects among Hawking quanta. The firs
step in this procedure is relatively simple. It consists in quan-
tizing hmn as in Eq.~21! et seq.Then the mean value of
hmn is obtained by integrating Einstein’s equations with the
mean energy momentum tensor as a source, see Sec. III o
@22# for a more conventional example. This corresponds to
the linear approximation to the semiclassical solution@10#.
But one can also evaluate theconditional valueof hmn cor-
related to a specific final state. This has been carried ou
formally in Eq. ~23!. We recall that the change inhmn is
given by

^hab~x!&e5 ImF E d4x8A2gGmnab~x,x8!^Tmn~x8!&eG
~84!

whereGmnab is the graviton propagator and we have sub-
tracted the contribution of the mean energy^0uTmn

renu0&. Since
the total energy carried by the conditional value ofTmn van-
ishes fromI2 till the emergence of the fluctuation from the
star after reflection onr50, ^hmn&e will vanish outside the
interval Dv centered aroundv50 and given in Eq.~63!.
Within that ~exponentially small! interval the precise shape
of ^hmn&e will depend on the particular choice of wave
packet to which the two level atom responds. On the con-
trary, outside the star, forr.4M and u.u0, i.e., in the
middle of the two members of the pair,^hmn&e will encode
the mass lossl5m and in fact describes a new classical real
valued Schwarzschild space where the mass isM2m.

The next step consists in taking into account the effect of
hmn on the production of Hawking photons themselves. To
first order this gravitational self-interaction is encoded in a
interaction Hamiltonian for the quantum fieldf of the form

E dtH̃int5E d4xA2gE d4x8A2gTmn~x!Gmnab

3~x,x8!Tab~x8!. ~85!

This is in strict analogy with the interaction among charged
pairs created in an electric field. Indeed, in this case, upon
functionally integrating over the electro magnetic field, one
obtains an effective current-current interaction
for the charged field of the form
*d4x*d4x8Jm(x)D

ma(x,x8)Ja(x8) whereD
ma is the photon

propagator.
We now obtain an expression forGmnab valid for the

spherically symmetric case from the form of the Berger-
Chitre-Moncrief-Nutku~BCMN! Hamiltonian for a self in-
teracting spherically symmetric field considered in@43#, cor-
rected in@3#, and generalized to the case of a background
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black hole in@44#. To first order in the gravitational interac
tion the BCMN Hamiltonian can be written in the form

H5M1E
0

`

drh~r !F12
2M

r
2
2

r E0
r

dr8h~r 8!S 12
2M

r 8 D G ,
h~r !5

1

2 S Pf
2

r 2
1r 2~] rf!2D , ~86!

wherePf is the momentum conjugate tof. The metric as-
sociated to the solution of Eq.~86! is

ds25~11a!L22dt22L2dr22r 2dV2 ~87!

where

L22512
2M

r
2
2

r E0
r

dr8h~r 8!S 12
2M

r 8 D ~88!

anda is a slowly varying function ofh. This shows that the
gravitational interactions arise from the existence of a s
consistentr dependent mass in the Schwarzschild soluti
Furthermore one can show that the energy-momentum te
is given by

Trr5
1

4pr 2
h, Ttt5

1

4pr 2
h

~11a!
. ~89!

So that the interaction Hamiltonian can be written as

H̃ int52E
0

`

dr4pr 2Trr
2

r E0
r

dr84pr 82Tr 8r 8S 12
2M

r 8 D
~90!

which is the sought for expression for the propaga
Gmnab. Equation~90! should be compared with Eq.~76!. It
is now 2*0

r dr84pr 82Tr 8r 8(122M /r 8)/r which plays the
role of change of the geometry 2dM /r . Note also the simi-
larity between these expressions and the instantane
Coulomb-Coulomb interaction in electrodynamics.

Upon calculatingdP/P to first order due to this self-
interaction, it is the conditional value ofH̃ int which will
come up. However,H̃ int being quartic in the field, the calcu
lation of its conditional value is much more complicated th
the evaluation of the conditional value ofTmn carried out in
the preceding section. Among other difficulties one m
renormalize the infinities which arise in loops.

However in both electroproduction and Hawking radi
tion, this interaction Hamiltonian not only modifies the pro
ability of creating a specific particle but also induces cor
lations among the produced particles. In particular
probability to find two particles will no longer factorize int
the products of the probabilities to find them independen
An important problem is to evaluate these correlations.
first order inH̃ int they are finite, i.e., it is a zero loop correc
tion. They are given byC125P122P1P2 whereP12 is the
probability to find both particles 1 and 2, whileP1 (P2) is
the probability to find particle 1~2! independently of particle
2 ~1!. To first order inH̃ int one obtains
-
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C1252 i ^0uP1P2E dt:H̃ int :u0&1 H.c. ~91!

whereP1 (P2) is the projector which specifies that particle
1 ~2! is present and :H̃ int : is the interaction Hamiltonian
normal ordered with respect to the Heisenberg vacuum.

Because of the normal ordering, upon evaluatingC12 one
will obtain both a direct term and a cross term but no self-
interaction term. The direct term is given entirely in terms of
the conditional values ofTmn :

C12udirect
P1P2

52 i E d4xA2gE d4x8A2g
^0uP1Tmn~x!u0&

^0uP1u0&

3Gmnab~x,x8!
^0uP2Tab~x8!u0&

^0uP2u0&
1 H.c.

52 ImF E d4xA2gE d4x8A2g^Tmn~x!&P1

3Gmnab~x,x8!^Tab~x8!&P2
G . ~92!

Probably the dominant~long lasting! effect is encoded in Eq.
~92! and corresponds to the fact one particle lives in a geom-
etry where the mass is reduced by the energy of the othe
particle. In view of the fact that the effect of a classical
change in mass on the probability to produce one particle
was insensitive to the trans-Planckian frequencies, we ar
inclined to believe that the correlationsC12 will also be finite
and small even though in the integrand of Eq.~92! ~and of
the corresponding cross term! there appear trans-Planckian
energy densities. However this remains to be proven by a
detailed calculation.

VIII. CONCLUSION

In resume´, we have described the field configurations cor-
related to the presence of a specific Hawking quantum by
using the conditional value ofTmn . This conditional value
extends fromI2 to I1. On I2 the energy density grows
exponentially with the timeu0 at which the photon reaches
I1. This results from the two hypothesis of Hawking,
namely free propagation in a given classical background. It
is important to realize that the conditional value ofTmn be-
comes trans-Planckian onI2 in the unique inertial coordi-
nate system at rest with respect to the star. If one introduce
a new coordinate system such thatTmn on I2 becomes
smoother by rescalingv aroundv50, then any regular field
configuration onI2 would become trans-Planckian in the
new system.

We then showed how a modification of the geometry in-
duces, through the minimal couplingH int , Eq.~15!, a change
in the probability to find a specific Hawking quantum. It is
only the imaginary part of the fluctuating term of^Tmn&e
which determines the change in probability. Furthermore,
when the modification of the geometry is due to an in-falling
shell, the contribution comes from a region comprised be-
tween 2M,r,O(6M ). Thus, one can interpret this region
as the locus where Hawking radiation is produced. Finally,
we showed that the trans-Planckian oscillations of^Tmn&e
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average out since only a small change, proportional to
mass increase, is obtained. We also suggested how to c
pute the correlations between successively emitted qu
and argued that these correlations may essentially be du
the soledecrease of mass induced by the emitted quanta

Nevertheless the trans-Planckian energies might ind
important consequences in the full treatment of the back
action. In Ref.@26#, together with Englert, we argued that th
nonlinearity of general relativity cannot accommodate the
densities and that there must be a dynamical taming me
nism if Hawking radiation does exist. To illustrate the po
sible effects of a taming, in Refs.@31,32# the dispersion re-
lation of the free field theory in a Schwarzschild backgrou
the
om-
anta
e to
.
uce
re-
e
se
cha-
s-

nd

was modified so that energies above the Planck scale can n
longer occur. The remarkable result is that the thermal prop-
erties of Hawking radiation are completely unaffected by the
modification of the theory. This suggests that the gravita-
tional interactions may induce a taming mechanism which
does not modify the properties of Hawking radiation. How-
ever this still needs to be proven.
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