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From vacuum fluctuations to radiation. I. Accelerated detectors
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In this article, the properties of the mean fluxes emitted by an accelerated two level atom are analyzed in
detail. In spite of the fact that the mean flux vanishes once thermal equilibrium is reached, we show that each
transition of the atom is nevertheless accompanied by the emission of one Minkowski quantum. Furthermore,
we prove that the Minkowski energy emitted is equal to the sum of the Doppler shifted energies of each
transition. Both results are first derived to second order in the coupling between the atom and the radiation by
explicitly introducing a switch on and off function whose virtue is to regularize the fluxes on the horizon. Then
we generalize these results to arbitrary coupling. In the second part of the paper, the mean fluxes are decom-
posed according to the final state of the atom and the notion of conditional flux is introduced. This approach
sheds light on the properties of the mean fluxes and gives the energy content of the vacuum fluctuations that
shall induce the transitions of the accelerated atom. These conditional energies are expressed in terms of
off-diagonal matrix elements and are generically complex. Finally, the dynamical relevance of these condi-
tional fluxes is proven. This last point is further developed in a companion article and allows the evaluation of
gravitational back reaction effects induced by black hole radiation.@S0556-2821~96!04424-4#
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I. INTRODUCTION

It is now well known that a uniformly accelerated syste
thermalizes in Minkowski vacuum at temperaturea/2p @1#.
But it is much more complicated to obtain a complete d
scription of the fluxes emitted by this system. Controvers
debates have arisen in the literature over whether such
tems still radiate once they have reached equilibrium@2–11#.

The origin of the difficulties are twofold. First, the mode
of the radiation field coupled to the accelerated system~Rin-
dler modes! are highly singular on the horizon. This singul
behavior is due to the exponentially growing Doppler sh
relating Rindler frequencies to inertial~Minkowski! ones.
Second, the fact that the trajectory of the accelerated dete
is classical implies that the energy emitted during succes
transitions interfere perfectly. As first pointed out by Gro
@3#, these interferences lead to the vanishing of the m
energy flux when the accelerated system has reached
librium. Furthermore, the singularity of the modes on t
horizon and the destructive interferences conspire intima
to render the emitted energy localized and singular on
horizon. Thus global quantities such as the total numbe
emitted particles are ill defined as well.

In this paper, we circumvent these difficulties, which h
dered previous work, by introducing a switch off functio
which specifies how and when the accelerated system
coupled to radiation. This regulator leads to finite expr
sions for both the energy density and global quantiti
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Moreover, the interferences are also regularized by its in
duction. In spite of the fact that the flux is entirely located
transients which occur when the detector is coupled to
field @5,8#, we are now able to prove that the total Minkows
energy emitted is equal to the sum of the Doppler shif
energies associated to each transition of the detector. S
larly, the total number of quanta emitted is equal to the nu
ber of transitions and therefore grows linearly with the du
tion of proper time wherein the interaction is turned on. Th
demonstrates that the transients incorporate the entire his
of the coupling between the detector and the radiation fie

For simplicity and clarity, we have taken the accelera
system to be a two level atom and work in perturbati
theory to second order in the interaction with the radiatio
However we have included two appendices in order to g
eralize our results. In Appendix B, we consider the acce
ated oscillator model introduced by Raine, Sciama, a
Grove @4–7#. We evaluate the emitted fluxes to all order
the coupling constant and prove that all the results found
second order obtain in this case as well. In Appendix C,
prove that, irrespectively of the interaction considered,
scattering of Rindler modes by an accelerated system le
inevitably to the production of Minkowski quanta.1

1This latter generalization therefore applies in the case of acce
ated black holes in thermal equilibrium which was recently cons
ered by Yi @10#. Yi argued that when the Hawking temperature
the black holes equals their Unruh temperature they no longer r
ate. Our analysis shows that his conclusions are incorrect and
the accelerated black holes will emit a steady flux of Dopp
shifted Minkowski quanta, see@11#.
7426 © 1996 The American Physical Society
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54 7427FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
To clarify the properties of the mean fluxes is the first a
of this paper. The second one is to obtain a description of
fluctuations around this mean value. To this end, we add
the following issue. The final state of the detector, after h
ing switched off the interaction, is either excited or not.
addition, the final configurations of the radiation field a
entangled with the final detector state. Therefore, one can
what are the properties of the emitted fluxesconditional to
the fact that the final state of the detector is either excited
not. By answering this question, one obtains a description
the energy density emitted correlated to a single transitio
the accelerated detector, see@2,3,8#.

We then generalize this procedure in order to obtai
description of the energy density of the vacuum configu
tions whichshall induce a transition of the accelerated d
tector. We show that this conditional energy density is giv
in terms of a normalized off-diagonal matrix element of t
energy density operator. It reveals the pattern of the Einst
Podolsky-Rosen~EPR! correlations present in the wav
function of the coupled system atom plus radiation. In p
ticular, we obtain an explicit description of the modificatio
of these correlated field configurations when considered
fore and after the interaction has occurred.

This analysis is a particular case of a general approac
describe the vacuum fluctuations which materialize, in
presence of external fields, into pairs of asymptotic on m
shell quanta. It was applied in the context of pair product
in an external electric field to isolate the vacuum fluctuatio
which give rise to a specific pair@12#. In @13#, we apply this
analysis of vacuum fluctuations through normalized o
diagonal matrix elements ofTmn to black hole radiation. In
that article, we show how these matrix elements encode
correlations between the field configurations correspond
to the creation of a specific asymptotic Hawking quant
and the field configurations at earlier times. They furnis
historical description of the emergence of that quantum fr
vacuum fluctuations. Furthermore, they control back reac
effects which cannot be described by the mean field the
wherein only the expectation value ofTmn acts as a source
for gravity ~in a similar manner as final state interactions a
introduced upon studying strong interactions that appear
particular weak channel!. Finally, we recall that there this
approach is closely related to~and inspired by! the work of
Aharonovet al. concerning measurements on pre- and po
selected systems@14#, see@15# for a discussion of this cor
respondence.

Having understood the physical meaning of these off
agonal elements and justified their dynamical relevance,
display the properties of the conditional value ofTmn . For
the nonce, let us mention one of these properties. Owin
the free and massless propagation of the radiation, the
ditional value ofTmn(x) extends from the past to the futur
null infinities. Furthermore, owing to the absence of ba
reaction~i.e., the neglection of recoils!, this function is au-
tomatically boost covariant. Thus, after a proper time la
of the order ofaDt5 ln(M/a), the frequencies involved in
the fluxes are bigger thanM owing to the exponentially
growing Doppler effect relating Minkowski frequencies
the accelerated ones. This is similar to the ‘‘trans-Planckia
problem emphasized by ’t Hooft and Jacobson in the bl
hole evaporation context@16,17#. Therefore, if one attributes
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a finite massM to the detector, the recoils cannot be n
glected after that proper time lapse. The consequences o
recoils induced by these exponentially growing frequenc
have been analyzed in@9#. They nicely confirm the fact tha
each transition of the accelerated system leads to the pro
tion of one Minkowski quantum.

II. MEAN ENERGY EMITTED
BY AN ACCELERATED ATOM

This part is devoted to an analysis of the mean flux
emitted by an accelerated detector. In Sec. II A we pres
the model of the accelerated two level atom with an expl
switch off function. In Sec. II B we obtain formal expres
sions for the energy emitted. The mean fluxes emitted as
atom thermalizes are discussed in Sec. II C and then in t
mal equilibrium in Sec. II D. In these sections, we insist
the role of the transients in guaranteeing that global prop
ties are respected.

A. The uniformly accelerated two level atom

We consider, following Unruh@1#, a uniformly acceler-
ated two level atom coupled to a massless fieldf. Contrary
to the usual treatment@3,5,19#, we couple the atom to the
field only for a finite time by introducing a switch on and o
function, f (t), and we pay special attention to the new a
pects introduced by this time dependence. The reason
we have introduced this function is that we want finite e
ergy densities everywhere including the horizon. Then,
global properties of the fluxes such as the total energy
the total number of quanta emitted are finite and can be
lated to the period wherein the interaction is turned on. W
show in the next section that the singular behavior of
Rindler modes imposes severe restrictions onf (t) if one
requires finite energy densities.

We briefly review the Rindler quantization of massle
scalar field. The reader unfamiliar with the properties of t
Rindler modes might consult@18,1,19,15#. Let us just recall
here their salient features while insisting on their singu
behavior.

The conformal invariance of the massless field in 111
dimensions is best exploited by using the lightlike coor
natesU,V defined byU5t2z, V5t1z, whereupon the
general solution of the Klein-Gordon equation is

F5 f ~U !1g~V!. ~1!

The Minkowski modes, of energyi ]V5v are given by

wv~V!5
e2 ivV

A4pv
. ~2!

Similarly the Rindler modes, of Rindler energyiV]V5l
are given by

wl,R~v !5u~V!
~aV!2 il/a

A4pl
5

e2 ilv

A4pl
~3!

where we have introduced the Rindler lightlike coordina
av5u(V)ln(aV). Since thewl,R constitute a complete set i
R (V.0) only, they cannot be related to the Minkows
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7428 54S. MASSAR AND R. PARENTANI
basis by a unitary transformation. One must also introd
Rindler modes living in the left quadrant,wl,L(V)
5wl,R* (2V). But since both Rindler modes are singular
V50, care must be taken to define the Bogoljubov trans
mation relating Minkowski modes to these Rindler mod
To obtain regular expressions on the horizon, it is usefu
consider a new basis of positive frequency Minkows
modes, eigenmodes ofiV]V and defined for allV @1#:

wl,M~V!5E
0

`

dvgl,vwv~V!

5e→01

@a~e1 iV !#2 il/a

A~epl/a2e2pl/a!4pl

5
1

Auepl/a2e2pl/au
Fepl/2a

u~V!~aV!2 il/a

A4pulu

1e2pl/2a
u~2V!~2aV!2 il/a

A4pulu
G ~4!

where

gl,v5S 1

G~ il/a!
A ap

l sinhpl/aD 1

A2pav
S v

a D il/ae2ve.

~5!

The factore2ve defines the integral equation~4!, regularizes
the modeswl,M(V) at V50, and ensures the corre
Minkowski properties of the theory, see@20#. We shall see in
the next section that the window functionf (t) plays a role
similar to the cutoffe in that it leads also to well define
expressions on the horizon.

The trajectory of the uniformly accelerated atom is giv
by ~see Fig. 1!

ta~t!5a21sinhat, xa~t!5a21coshat,

Va~t!5a21eat, Ua~t!52a21e2at, ~6!

wheret is the proper time anda the acceleration. The inter
action Hamiltonian between the atom and the field is

FIG. 1. The Minkowski coordinatest,z andU,V. The left (L)
and right (R) Rindler quadrants. The Rindler coordinatest,r in
R and the trajectory of a uniformly accelerated atom.
e

t
r-
.
o
i

E dtdxHint~ t,x!5gmE dt$@ f ~t!e2 imtA

1 f * ~t!eimtA†#f„ta~t!,xa~t!…%,

~7!

whereg is a dimensionless coupling constant that shall
taken for simplicity small enough that second order pert
bation theory be valid andm is the difference of energy
between the ground (u2&) and the excited state (u1&) of
the atom.A is the lowering operator that induces a transiti
from the excited state to the ground state of the atom
f (t) is the dimensionless function that governs when a
how the interaction is turned on and off.

We shall be most interested in the situation whe
f (t)51 inside a long intervalt i,t,t f and f (t) tends to
zero outside this interval. In the ‘‘golden rule’’ limit~i.e., in
the limit t f2t i5T→` with g2T finite! the concept of a
transition rate emerges. This rate comes from the resona
of the Doppler shifted Minkowski vacuum fluctuations wi
the fixed Rindler frequencym @21#. In addition, we shall
assume that theV part of thef field only is coupled to the
atom. This is a legitimate truncation owing to Eq.~1!. For
simplicity of notation it is convenient to introduce

fm5E
2`

1`

dte1 imt f * ~t!f„Va~t!…. ~8!

Let us consider first the situation in which both the ato
and the field are initially in their ground state. The sta
uc2& at t52` is thus

uc2~ t52`!&5 u0M& u2& ~9!

where u0M& is Minkowski vacuum. Att51`, when the
interaction has been switched off, the state can again be
pressed in terms of the uninteracting states. To orderg2, it is
given by

uc2~ t51`!&5 u0M& u2&2 igmfm u0M& u1&

2
g2m2

2
@fm

†fm1D# u0M& u2& ~10!

where

D5E dt2E dt1@u~t22t1!2u~t12t2!#

3e2 imt2f ~t2!f~t2!e
1 imt1f * ~t1!f~t1!. ~11!

We have split theg2 term in two pieces in order to isolate th
steady regime from transitory periods associated with
switch on and off. The first regime is controlled by the ter
proportional tofm

†fm whereas the second is concerned
theD term which comes from the time ordering contained
exp(2i*dtdxHint). Indeed as proven in Appendix A,D does
not contribute to the energy density emitted in the stea
state regime: its energy density scales likeg2/T rather than
like mg2. Furthermore it carries no Minkowski nor Rindle
energy. We shall therefore drop this term in the rest of
paper.
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54 7429FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
In the ‘‘golden rule’’ limit, the operatorfm
†fm tends to-

wards the counting operator for Rindler quanta of ene
m (5am,R

† am,R) multiplied by p/m and the probabilityPe

for the two level atom to get excited becomes

Pe5g2m2 ^0Mufm
†fm u0M&5~1/2!g2mTNm ~12!

whereNm51/(e2pm/a21) is the mean number of Rindle
quanta present in Minkowski vacuum, see@1,18#. This
proves that the atom maintained on an accelerated trajec
reacts to the mean number of Rindler quanta as the s
atom, put on an inertial trajectory, would have reacted to
mean number of Minkowski quanta.

Similarly, when the initial state is the product o
Minkowski vacuum and the excited stateu1&, at t51` the
state is

uc1~ t51`!&5 u0M& u1&2 igmfm
† u0M& u2&

2
g2m2

2
@fmfm

† 2D# u0M& u1& ~13!

where the operatorD is the same as in Eq.~10!. In the
‘‘golden rule’’ limit, the probability to be found in the
ground state att51` is

Pd5g2m2 ^0Mufmfm
† u0M&5~1/2!g2mT~Nm11!.

~14!

Hence, at equilibrium, by Einstein’s famous argument,
probabilitiesP1 ,P2 to be in the excited or ground states a
given by

P1

P2
5
Pe

Pd
5

Nm

Nm11
5e22pm/a ~15!

that is a thermal distribution at temperaturea/2p. Had we
coupled the atom to both theU andV parts, the probabilities
Pe andPd would have been multiplied by 2 but the therm
ration equation~15! would remain unaffected.

B. The mean fluxes to orderg2

In this section, we introduce the central notion of con
tional energy emitted by decomposing the mean value of
flux according to the final state of the atom. Then we obt
the necessary condition that the switch off functionf (t)
should satisfy in order to have finite densities on the horiz
Finally, we shall express the conditional energy densities
terms of the Fourier transform off (t) in order to obtain
analytical expressions which will serve in Sec. II C for t
thermalization period and for the equilibrium situation
Sec. II D.

When the initial state isuc2& defined in Eq.~9!, to order
g2, the mean flux emitted on the left of the atom is

^TVV~V!&c2
5 ^c2~ t51`!uTVV„V,U.Ua~t!…

3uc2~ t51`!&

5g2m2 ^0Mufm
†TVVfm u0M&

2g2m2Re@ ^0MuTVVfm
†fm u0M&# ~16!
y

ry
e
e

e

-
e
n

.
in

where we have used Eq.~10! and dropped the contribution o
theD term. The physical meaning of the two terms on t
right-hand side~RHS! of Eq. ~16! was first discussed in@2#,
see also@3,8#. To prepare the discussion of the next pa
devoted to the analysis of the fluctuations, we rewrite E
~16! as

^TVV~V!&c2
5Pe^TVV&e1Pg^TVV&g ~17!

where we have defined

^TVV&e5g2m2 ^0Mufm
†TVVfm u0M&/Pe ,

^TVV&g52g2m2Re@ ^0MuTVVfm
†fm u0M&#/Pg . ~18!

Pe andPg are the probabilities to find the atom in the excit
or ground state att51`. Pe is given in Eq. ~12! and
Pg512Pe .

The interpretation of the two quantitieŝTVV&e and
^TVV&g is clear when one recalls their origin.^TVV&e comes
from the square of the second term of Eq.~10! ~linear in
g) whereaŝ TVV&g comes from an interference between t
first unperturbed term and the third term in which the int
action has acted twice. Hence^TVV&e is the energy emitted if
the atom is found excited att51` whereaŝ TVV&g is the
energy emitted if the atom is found in the ground sta
These fluxes have been normalized so as to express the
of Eq. ~17! as the probability of finding the atom in a fina
state times the energy emitted if that final state is realiz
Thus^TVV&g and^TVV&e are the conditional ‘‘mean’’ energy
emitted. The word ‘‘mean’’ is understood here in its qua
tum sense, i.e., as the average over repeated realizatio
the same situation: the same initial stateuc2& and the same
final state of the atom, see@15# for further comments on this
point.

Similarly, when the initial state of the system
uc1&5 u0M& u1&, the mean energy emitted is

^TVV~V!&c1
5g2m2 ^0MufmTVVfm

† u0M&

2g2m2Re@ ^0MuTVVfmfm
† u0M&# ~19!

where we have used Eq.~13! and dropped theD term as
well. As in Eq. ~17!, we rewrite this flux as

^TVV&c1
5Pd^TVV&d1Ph^TVV&h ~20!

wherePd is the deexcitation probability given in Eq.~14!
and wherePh512Pd is the probability to be found in the
excited state att51`. The conditional fluxeŝTVV&d and
^TVV&h are given by

^TVV&d5g2m2 ^0MufmTVVfm
† u0M&/Pd

^TVV&h52g2m2Re@ ^0MuTVVfmfm
† u0M&#/Ph ~21!

and are interpreted as the energy emitted when the ato
found in the ground state~deexcitationd) or in the excited
state att51` knowing that the atom was prepared in th
excited state att52`.

At this point, two properties which will play an importan
role in what follows should be pointed out. First, the mat
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7430 54S. MASSAR AND R. PARENTANI
elements^TVV& i ~where i stands fore, g, d, and h) are
acausal. For instance, they are nonvanishing in the left R
dler quadrantV,0, U.0 which is causally disconnected
However the mean energies^TVV&c j

~where j51,2) are

causal. Indeed, whenV,U is separated from the trajectory o
the atom by a space like distance thenTVV(V,U) commute
with H int @2#. Thus the mean value vanishes:

^TVV~V,U !&c j
5^c j uexpS 1 i E dtHintDTVV~V,U !

3expS 2 i E dtHintD uc j&

5^c j uTVV~V,U !expS 1 i E dtHintD
3expS 2 i E dtHintD uc j&

5^c j uTVV~V,U !uc j&5 ^0MuTVV~V,U ! u0M&

50. ~22!

The very same causality argument applies in regions wh
^TVV(V,U)&c j

Þ0 to guarantee that it only depends o

H int(t) for t ’s such thatV(t),V, i.e., that it only depends
on the form ofH int(t) in the past light cone of (V,U).

Second, the total Minkowski energy carried by^TVV&e ,
Eq. ~18!, is strictly positive,

E
2`

1`

dV^TVV&e5g2m2 ^0Mufm
†HMfm u0M&/Pe.0

~23!

since it is the expectation value of the Hamiltoni
HM5*0

`dvvav
†av in a state which is not Minkowsk

vacuum. On the other hand, the Minkowski energy carr
by ^TVV&g vanishes identically,

E
2`

1`

dV^TVV&g52g2m2Re@ ^0MuHMfm
†fm u0M&#/Pg50,

~24!

sinceHM u0M&50. Similarly the integral of̂ TVV&d is posi-
tive whereas the integral of^TVV&h vanishes.

In preparation for the next sections and in order to obt
explicit expressions for̂TVV& i , it is appropriate to work out
certain technicalities.

First we note that the Wick contractions which arise up
evaluating ^TVV& i ( i5e,g,d,h) @Eqs. ~18! and ~21!# are
given in terms of the two functions

C1~V!5 ^0Muf~V!fm
† u0M&

5E dte2 imt f ~t!G1„V,Va~t!…,

C2~V!5 ^0Muf~V!fm u0M&

5E dte1 imt f * ~t!G1„V,Va~t!…, ~25!
n-

re

d

n

n

whereG1(V,V8) is the Wightman function in Minkowski
vacuum. Thus we obtain

^TVV&e52S g2m2

Pe
D ~]V C2!~]V C2* !,

^TVV&d52S g2m2

Pd
D ~]V C1!~]V C1* !,

^TVV&g522S g2m2

Pg
DRe@~]V C2!~]V C1!#5S Ph

Pg
D ^TVV&h .

~26!

For these matrix elements ofTVV not to be singular the func
tions ]V C1(V) and ]V C2(V) must be regular. From the
second equality of Eq.~25! we obtain

]V C1~V!52
1

4pE dt
1

V2a21eat2 i e
f ~t!e2 imt

~27!

which can be singular only forV50 where it takes the form

]V C1~V!52
1

4pE dt
1

2a21eat2 i e
f ~t!e2 imt

.
a

4pE dte2at f ~t!e2 imt. ~28!

The last integral is finite if and only iff (t) decreases for
t→2` quicker thaneat. Similarly if we had considered
right movers, the condition for finiteness on the future ho
zon would have been sufficient rapid decrease off for
t→1`. Thus the condition to have regular expressions
both horizons is thatf (t) decreases faster thane2autu. This
leads to

E dt
dt

dt
u f ~t!u5E dtu f „t~ t !…u,`, ~29!

i.e., the interaction of the atom with the field must last
finite Minkowski time.

Secondly, it is appropriate to reexpressf (t)e2 imt in Fou-
rier transform

f ~t!e2 imt5E
2`

1`

dl
cl

2p
e2 ilt. ~30!

The normalization is

E dtu f ~t!u25E dl
uclu2

2p
5T

5 total proper time of interaction. ~31!

When e2 imt f (t) contains no negative frequency, i.e
cl50 for l,0, Eq. ~7! defines a Lee model: were the d
tector inertial it would only respond to the presence
Minkowski particles. However the regularity condition@Eq.
~29!# implies that cl be an analytic function in the strip
2a,Iml,a. Hence in order to have regular energy den
ties, we shall be obliged to work with non-Lee models whi
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54 7431FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
can spontaneously excite. Nevertheless, by choosing
f (t) which satisfies Eq.~29!, but such that the negative com
ponents ofcl are exponentially small, the spontaneous ex
tation probability is exponentially small as well. Then spo
taneous transitions occur only at switch on and off transit
periods and do not contribute to rates.

More precisely, whencl is peaked aroundl5m andT
satisfies bothT@m21 andT@a21, the ‘‘golden rule’’ prob-
ability Eq. ~12! is recovered. The first of these conditions
that f (t) be spread over a distance at least equal to the
verse frequencym21 ~the time-energy uncertainty cond
tion!. The second condition, which corresponds toT being
greater than the Euclidean tunneling time 2pa21 @21#, is
required for the probabilityPe to be linear in time and pro
portional to the Bose distributionNm .

In terms ofcl the functionsC6 read

C1~V!5E
2`

1`

dlcl

1

A4pl~epl/a2e2pl/a!
epl/2awl,M~V!

5E
2`

1`

dlcl

1

4pl
@~ ñl11!~aV!2 il/au~V!

1ñle
pl/auaVu2 il/au~2V!#,

C2~V!5E
2`

1`

dlcl*
1

A4pl~epl/a2e2pl/a!

3e2pl/2aw2l,M~V!

5E
2`

1`

dlcl*
1

4pl
@ ñl~aV! il/au~V!

1ñle
pl/auaVu il/au~2V!# ~32!

where we have used Eq.~4! for the expression ofwl,M(V)
and whereñl51/(e2pl/a21). Upon inserting Eq.~30! into
Eq. ~12!, the probabilityPe to be found excited can then b
written as

Pe5g2m2E
2`

1`

dl
uclu2

4pl
ñl. ~33!

As one picture is worth a thousand words, we take a p
ticular form for cl such that all the integrals above a
Gaussian and can be evaluated explicitly. This form is

cl5D
l

m
e2~l2m!2T2/2~12e22pl/a! ~34!

whereD is a normalization constant taken such as to ve
Eq. ~31!. We shall give throughout the text the exact expr
sions followed by the approximate expressions valid wh
T..m21 andT..a21. In this golden rule limit, the ap-
proximate expressions are particularly easy to interp
These shall be preceded by the symbol.. For instance, the
switch off function f is equal to~see Fig. 2!
an

i-
-
y

n-

r-

y
-
n

t.

f ~t!5
D

A2pT
e2t2/2T2F S 12 i

t

mT2D
2e22pm/aei2pt/aT2e2p2/a2T2S 12 i

t

mT2
2

p

amT2D G
.p21/4e2t2/2T2@11Nm~12ei2pt/aT2!# ~35!

where the constantD takes the formD.21/2p1/4T(Nm11)
and Nm5(e2pm/a21)21. Equation ~35! shows the almost
Gaussian character of the switch off function whose width
T. The plateau of the Gaussian gives a good approxima
of the steady state regime which we intend to study.

C. Fluxes and particles to orderg2 during thermalization

The main results of this section are the following.
~1! During thermalization a steady flux of negative Ri

dler energy is emitted. This is understood from the isom
phism @3# with the thermal bath: as the atom gets exited
absorbs energy from the thermal bath.

~2! Notwithstanding this negative energy density, the
tegrated total Minkowski energy is positive and grows w
the probability to find the atom excited att5`.

~3! The transcription of the negative flux in terms
Minkowski quanta requires to consider the oscillatory tails
this flux since they are enhanced by the Jacobian that c
verts from Rindler to Minkowski energy. In the Minkowsk
description, the steady negative flux is due to a ‘‘repolari
tion’’ of the atom corresponding to the fact that the probab
ity of finding the atom in its exited leveldecreaseswith time.
This repolarization is similar (CPT conjugate! with what
occurs when negative energy is absorbed by an inertial
tector @22#.

To reveal the structure of the oscillatory tails and to d
play the properties in the stationary regime, both the ad
batic switch off controlled byf (t) and a sudden switch of
model shall be worked out.

We start with the adiabatic switch off. The Minkowsk
energy density radiated by the two level atom initially in
ground state is given by Eq.~16!. In terms of the Fourier
components cl , the Rindler density defined by
Tvv5TVV(dV/dv)

25TVVe
2av is

FIG. 2. The absolute value of the switch functionf (t) given in
Eq. ~35! for m52a andT53a21. t is given in units ofa21.
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7432 54S. MASSAR AND R. PARENTANI
^Tvv~v !&c2
52g2m2E dlE dl8clcl8

*
1

~4p!2

3~ ñl1ñl8!e
2 i ~l2l8!v

.
2g2m2

2
Nm

e2v2/T2

p1/2 @~Nm11!

3cos~2pv/aT2!2Nm#. ~36!

We recall that the Rindler coordinatev is v5a21ln(aV). In
Eq. ~36!, the first line is the exact expression valid for a
cl , see Eqs.~26! and ~32!. The second line is the approx
mate expression, valid in the limitT@m21 and T@a21

when cl is given by Eq.~34!. As announced,Tvv carries
negative Rindler energy

E
2`

1`

dv ^Tvv~v !&c2
52

g2m2

4p E
2`

1`

dluclu2ñl

.2
1

2
g2m2NmT52mPe ~37!

equal to the probabilityPe , Eq. ~33!, times the absorbed
Rindler energy2m.

The total Minkowski energy radiated is

^HM&e5E
0

1`

dV ^TVV~V!&c2
5E

2`

1`

dve2av ^Tvv~v !&c2

. 1
2g

2m2NmTe
at0~112Nm!

5mPee
at0~112Nm!. ~38!

We have used Eq.~22! andeat0 is the mean Doppler effec
associated with the window functionf (t), Eq. ~35!, defined
by

E
2`

1`

dve2av
e2v2/T2

Tp1/2 cos~2pv/aT2!52eat0. ~39!

The Minkowski energy is positive contrary to the total Ri
dler, Eq. ~37!. The flip in sign is due to the effect of th
transients aroundv5aT2 where the cosine is negative. In
deed whereas these transients are negligible upon comp
the Rindler energy, upon computing the Minkowski ener
they are enhanced by the Jacobiandv/dV5e2av and give
rise to the sign flip. Thus, it is the same exponential Dopp
effect,e2av, which leads both to the thermalization throug
the nontrivial Bogolyubov transformation and to the comp
ibility of absorbing Rindler energy while emitting
Minkowski energy.@Note that this sign flip can also be con
ceived as arising from the imaginary part of the saddle po
of Eq. ~39!: vsp52aT2/41 ip/a and stands therefore ex
actly on the same footing as the flip of frequency which lea
to a nonvanishingb coefficient at the saddle point approx
mation, see@21#.# The additional factor 112Nm in Eq. ~38!
comes from the inherent ambiguity in definingeat0 as the
mean Doppler shift associated to the switch functionf (t).

We notice that the total Minkowski energy radiated c
also be expressed as
ing
y

r

-

t

s

^HM&e5E
0

1`

dV ^TVV~V!&c2
5PeE

2`

1`

dV^TVV&e

~40!

because of Eq.~24!. But ^TVV&e is located essentially in the
region V,0. Thus the^TVV&g term, defined in Eq.~17!,
‘‘restores’’ causality, see Eq.~22!, and localizes all the en
ergy in the right quadrant. This shall be explained with ca
in Sec. III B, after Eq.~70!.

Another case of interest is the golden rule limit for whic
cl52pd(l2m) corresponding tof (t)51 for all t. In this
case there is a constant negative flux for allV.0 which can
be seen by taking the limitT→` at fixedv in Eq. ~36!. The
transients are located on the past horizonV50 where they
consist of a singular positive flux@5#. Rather than this case
we shall analyze the case where the time dependent coup
is f (t)5u(t)u(T2t) in order to prove point~3! mentioned
above. With this time dependence, the transients are
singular and will not be studied here because the diverg
behavior is already present in the inertial case. On the c
trary, the steady part is easily computed and gives a dif
ential version of the relation between the probability and
total Rindler energy, see Eq.~37!.

The probability of spontaneous emission is given by

Pe~T!5g2m2E
0

T

dt1E
0

T

dt2e
2 im~t22t1! ^f~t2!f~t1!&

. 1
2g

2mNmT. ~41!

The second line contains the golden rule result valid wh
aT→` with g2T finite. It is useful to introduce the rate o
transition, the derivative ofPe(T):

Ṗe~T!5
dPe~T!

dT

5g2m22 ReF E
0

T

dte2 im~T2t! ^f~T!f~t!&G
.
1

2
g2mNm . ~42!

This rate is related to the steady part of the stress ene
tensor. Indeed one finds

^Tvv~v5T!&c2
5g2m22 ReF E

0

T

dt2E
0

t2
dt1e

2 im~t22t1!

3^@f~t2!,Tvv~T!#2f~t1!&G
5g2m22 ReF E

0

T

dte2 im~T2t!

3^ i ]vf~T!f~t!&G
52mṖe~T!

1g2m22 Re@ ie2 imT ^f~T!f~0!&#. ~43!
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54 7433FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
The first equality follows straightforwardly from the expa
sion of the evolution operator exp(2i*Hintdt) in g2. The
second equality is obtained using the commutator relat
@f(t2),Tvv(t1)#25 i ]vfd(t12t2) which itself follows
from the fundamental commutator@f(v8),]vf(v)#
5( i /2)d(v82v) evaluated on the accelerated trajecto
The third equality follows by integration by parts. The fin
result contains a steady part proportional to2mṖe(T) which
tends to2 1

2g
2m2Nm in the golden rule limit and an oscilla

tory term which is damped if one adds a term
(m21 i e)f2 to the action off. The steady piece simply
indicates that to anincreaseof the probability to make a
transition corresponds theabsorptionof the necessary Rin
dler energy to provoke this increase, i.e., the local version
Eq. ~37!.

We now turn to the Minkowski description of this stead
piece. We first rewrite Eqs.~41!–~43! in terms of the
Minkowski basise2 ivV/A4pv, Eq. ~2!. The probability of
the transition equation~41! reads

Pe~T!5E
0

`

dvg2m2U E
0

T

dte2 imt

expS 2 i
v

a
eatD

A4pv
U 2

5E
0

`

dvPe,v~T! ~44!

where Pe,v(T) is the probability to have emited
Minkowski quantum of energyv at time T @since we are
working ing2, i.e., emission ofonequantum,Pe,v(T) can be
expressed asPe,v(T)5^c2uu1&av

†av^1uuc2&#. Similarly
the transition rate, Eq.~42!, and the total Minkowski energy
can be expressed as

Ṗe~T!5E
0

`

dv Ṗe,v~T!, ~45!

^HM~T!&e5E
2`

1`

dveav ^Tvv&c2
5E

0

`

dvvPe,v~T!.

~46!

The second equality follows from the diagonal character
the Hamiltonian:HM5*0

`dvvav
†av and the matrix elemen

which definesPe,v(T). The positivity of ^HM(T)&e is mani-
fest since all thePe,v(T) are positive definite. Nevertheles
within the steady regime, the time derivative of^H(T)&e is
negative:

d ^HM~T!&e
dT

5eav~T! ^Tvv~v~T!!&c2

52meav~T!@ Ṗe~T!1 ‘‘damped’’ term#

5E
0

`

dvv Ṗe,v~T!. ~47!

SinceṖe(T).0, d ^HM&/dT negative implies that, for large
v, someṖe,v are negative. This corresponds to a ‘‘repola
ization’’ since all Pe,v are positive definite and vanish fo
n:

.

f

f

-

t<0. This repolarization is exactly the inverse process of
absorption of negative energy by an atom described in@22#.

D. Fluxes and particles to orderg2 at equilibrium

The important result of this section lies in Eq.~53! for the
energy density and Eq.~55! for the total Minkowski radiated
by the accelerated atom. These equations prove how the
ishing of the flux during the whole equilibrium regime b
nevertheless preceded and followed by small oscillatory t
is perfectly coherent with the naive guess that each inte
transition of the atom should be accompanied by the em
sion of a Minkowski quantum.

Before studying the equilibrium situation it behooves
first to consider the flux emitted by an atom that make
transition from excited to ground state. The mean ene
emitted when the initial state isuc1& is

^Tvv&c1
5g2m2E dlE dl8clcl8

*
1

~4p!2

3~ ñl1ñl812!e2 i ~l2l8!v

.
g2m2

2Ap
~Nm11!e2v2/T2

3@12Nm$cos~2pv/aT2!21%# ~48!

and the total Rindler energy radiated is, compared with
~37!,

E dv ^Tvv~v !&c1
5
g2m2

4p E dluclu2~ ñl11!

. 1
2g

2m2~Nm11!T5mPd . ~49!

In the example for which the time-dependent coupling
f (t)5u(t)u(T2t), the relation between the derivative o
the probability,Ṗd(T), and the flux ^Tvv&c1

is

^Tvv~T!&c1
51mṖd~T!1 ‘‘damped’’ term. ~50!

Contrary to the sign in Eq.~43!, the relative sign between

^Tvv(T)&c1
and Ṗd(T) is now positive: Deexcitation con

sists in emitting the energy stored in the atom. Similarly,
total Minkowski energy emitted is

E
0

1`

dV ^TVV&c1
.
g2m2

2
~Nm11!Teat0~2Nm11!

5mPde
at0~2Nm11!. ~51!

For deexcitation, the integrated Rindler and Minkowski e
ergies have the same sign and are related by the mean
pler shifteat0 times (2Nm11).

We now turn to the thermal equilibrium situation. Th
energy radiated is the weighted sum of the fluxes^Tvv&c2

and ^Tvv&c1
. This stems from the fact that the energy m

mentum operator changes the photon number by an e



th
ta

e
ve
he
si-
ap

of

n-

is
ra-
on

er
ta
ba-

t-
in-

ix
a-

m

,
es

as
nal
er-
or

he
nal
e of
tion

f
. I
ia

7434 54S. MASSAR AND R. PARENTANI
number and that the interaction Hamiltonian changes
photon number by an odd number while changing the s
of the atom. Hence one has

^Tvv& therm5P2 ^Tvv&c2
1P1 ^Tvv&c1

.2mP2Ṗe1mP1Ṗd50. ~52!

The steady fluxes given in Eqs.~43! and ~50! cancel each
other exactly because at thermal equilibriumP6 satisfy Eq.
~15!. This is Grove theorem to orderg2 @3,7#. Only the os-
cillatory transients remain. Using Eqs.~36! and ~48! and
P21P151, they read

^Tvv& therm5g2m2E dlE dl8
clcl8

*

~4p!2FNm~ ñl1ñl812!

2Nm11

2
~Nm11!~ ñl1ñl8!

2Nm11 Ge2 i ~l2l8!v

.
g2m2

A4p
Nm~Nm11!e2v2/T2@12cos~2pv/aT2!#.

~53!

To illustrate these transients, we have plotted^Tvv& therm in
Fig. 3. The total Rindler energy emitted is

E
2`

`

dv ^Tvv& therm5
g2m2

4p

1

2Nm11E dluclu2~Nm2ñl!

.
g2m2

2
Nm~Nm11!

p2

a2T2
. ~54!

It tends to zero as the time of interactionT tends tò , i.e., as
cl tends to ad function. In this limit, the two level atom
tends to Lee model. This can be seen in Eq.~34! where the
negative frequencies are exponentially suppressed.

However, the total Minkowski energyincreaseswith the
interaction timeT and is given by

FIG. 3. The mean Rindler energy density„^Tvv(v)& therm… emit-
ted to orderg2 at thermal equilibrium is represented form52a and
T53a21. v is given in units ofa21 andTvv in arbitrary units since
the flux is proportional to the couplingg. One sees the vanishing o
the flux in the steady regime and the positivity of the transients
the Minkowski description they are enhanced by the Jacob
dV/dv to make the total Minkowski energy emitted positive.
e
te

E
0

1`

dV ^TVV& therm5P2E
0

1`

dV ^TVV&c2

1P1E
0

1`

dV ^TVV&c1
.m~P2Ṗe

1P1Ṗd!Te
at0~2Nm11!. ~55!

The Minkowski energy of the two fluxes coincide, by virtu
of Eq. ~15! and sum up. This result is what one might ha
‘‘naively’’ guessed: The total energy is the integral over t
interacting period of the weighted sum of the rates of tran
tion times the varying Doppler shift times the energy g
m.

This is nicely confirmed by evaluating the total number
Minkowski quanta emitted by the atom. One has

^N& therm5E
0

`

dv ^av
†av& therm5E

2`

`

dl ^al,M
† al,M& therm

5E
2`

`

dlg2m2
uclu2

4pl
@ ñlP21~ ñl11!P1#

5T~P2Ṗe1P1Ṗd! ~56!

whereal,M is the destruction operator associated to the U
ruh mode equation~4!. We have used the expression~33! for
Pe in terms ofcl and a similar expression forPg. Equation
~56! proves that the mean number of Minkowski quanta
equal to the mean number of transitions, i.e., the total du
tion of interaction times the weighted sum of the transiti
rates.

In Appendix B, we generalize these properties to all ord
in g in order to prove that the emission of Minkowski quan
we just found is not an artifact of the second order pertur
tion theory.

In Appendix C, we prove in full generality that the sca
tering of Rindler modes by an accelerated system leads
evitably to theproduction of Minkowski quanta. The key
point lies in the noncommutativity of the scattering matr
with the matrix which describes the Bogoljubov transform
tion from Rindler modes to Minkowski modes.

In @9#, upon taking into account the recoils of the ato
induced by the transitions, it is proven that both Eqs.~55!
and ~56! perfectly hold. On the contrary, the local flux
^TVV&c2

is drastically modified since it no longer vanish
in the equilibrium regime.

III. THE CONDITIONAL VALUES OF Tµn

In Sec. II D, the mean energy radiated by the atom w
decomposed into two contributions according to the fi
state of the two level atom. This decomposition was p
formed in the future of the atom’s trajectory only, i.e., f
U.Ua(V), whereUa(V) is the trajectory of the atom. In
this part, we generalize this decomposition forall points
(U,V) so as to obtain as well the energy density of t
vacuum field configurations which are correlated to the fi
state of the atom. Then we prove the dynamical relevanc
this generalized decomposition by considering a perturba
of the system treated quantum mechanically.

n
n
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54 7435FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
In Sec. III A, the generalized decomposition according
the final state is performed and the modified action is int
duced. In Sec. III B, the resulting conditional values of t
energy correlated to the transitions of the atom are calcul
and interpreted.

A. The conditional energy correlated to a transition
of the accelerated atom

In Eq. ~17!, the mean energy emitted to the left was wr
ten as

^TVV~U,V!&c2
5Pe^TVV~U,V!&e1Pg^TVV~U,V!&g .

~57!

This decomposition was discussed for (U,V) in the future of
the accelerated trajectory,U.Ua(V), as well as in the left
quadrant, forV,0, allU. On the basis of this decompositio
and of the structure of the two terms to orderg2, we argued
that ^TVV&e (^TVV&g) should be interpreted as the ener
emitted if the atom has~has not! gotten excited.

We shall now generalize this decomposition to a fo
valid for allU,V rather thanU.Ua(V) only. To this end we
introduce the projectorsP15 u1& ^1u andP25 u2& ^2u
onto the excited and ground state of the atom. In order no
encumber the notation with exponents ofH int we shall work
in Heisenberg representation rather than the interaction
resentation used so far. In this representation, the state o
system is uc2&5 u0M& u2& and the projector is a time de
pendent operator given by

P1~ t !5expS i E
2`

t

dtHintDP1expS 2 i E
2`

t

dtHintD .
~58!

The probability to be found in the excited state att51` can
then be written as

Pe5^c2uP1~ t51`!uc2&. ~59!

The conservation of probabilityPe1Pg51 is realized
through the completeness of the projecto
P1(t)1P2(t)5I .

The conditional energies are now defined by decompos
the mean energy using the projectorsP6(t) at t5`:

^TVV~U,V!&c2
5^c2u@P1~`!1P2~`!#TVV~U,V!uc2&

5Pe

^c2uP1~`!TVV~U,V!uc2&

^c2uP1~`!uc2&

1Pg

^c2uP2~`!TVV~U,V!uc2&

^c2uP2~`!uc2&

5Pe^TVV~U,V!&e1Pg^TVV~U,V!&g . ~60!

In the future of the accelerated trajectory, whenU.Ua(V),
the explicit expression for̂TVV@U.Ua(V),V#&e , obtained
by going back to interaction representation, is
-

ed

to

p-
he

g

^TVV@U.Ua~V!,V#&e5
1

Pe
^c2uexpS i E dtHintD

3P1TVV~U,V!

3expS 2 i E dtHintD uc2&

5S g2m2

Pe
D ~]V C2!~]V C2* !. ~61!

The relative ordering of the evolution operat
exp(2i*dtHint) and ofP1 and TVV is dictated by the fact
that bothP1 and TVV act in the future of the accelerate
trajectory~to which is confinedH int). To orderg2, Eq. ~61!
coincides with the expression previously obtained in E
~18! and ~26!.

In the past of the accelerated trajectory, wh
U,Ua(V), these matrix elements are the desired expr
sions of the conditional energy if the atom shall be found
t51` in the excited~ground! state. This results from the
fact that the decomposition, Eq.~60!, is exactly the same a
in usual conditional probabilities: to wit, the mean is ex-
pressed as the sum over possible outcomes of the proba
for each outcome to be realized times the value ofTVV if that
outcome is realized.

The explicit expression for̂TVV@U,Ua(V),V#&e is

^TVV@U,Ua~V!,V#&e5
1

Pe
^c2uexpS i E dtHintDP1

3expS 2 i E dtHintD
3TVV~U,V!uc2&

5
g2m2

Pe
^0Mufm

†fmTVV~U,V!u0M&

5
g2m2

Pe
]V C1* ~V!]V C2* ~V!, ~62!

where in the second line we have given the expression v
to orderg2 and used Eq.~10! and Eq.~25!. We emphasize
that the difference between Eq.~61! and Eq.~62! lies in the
relative order ofTVV and exp(i*dtHint). This ordering en-
codes the fact thatTVV in Eq. ~61! is evaluated in the future
of the trajectory while it is evaluated in the past in Eq.~62!.

Two important properties of the conditional fluxes when
is evaluated in the past, forU,Ua(V), should be noted.
First

^TVV@U,Ua~V!,V#&e52
Pg

Pe
^TVV@U,Ua~V!,V#&g

~63!

since the mean flux̂TVV@U,Ua(V),V#&c2
vanishes identi-

cally ~the interaction with the accelerated atom has not
perturbed Minkowski vacuum!.

Secondly, ^TVV@U,Ua(V),V#&e is complex whereas
^TVV@U.Ua(V),V#&e is real as can be seen from the e
plicit expressions~61! and ~62!. Note that the relative time
ordering ofTVV andH int ensures that the first is real where
the second is complex.
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7436 54S. MASSAR AND R. PARENTANI
Being complex when evaluated in the past of the atom
trajectory, the interpretation of^TVV&e requires some care. In
what follows, we shall prove that both the real and imagin
part of ^TVV&e intervene directly into dynamical process
and have therefore an intrinsic physical meaning. To t
end, we shall perturb the action and introduce an additio
quantum system coupled to the operatorTVV , following the
approach of@14#.

For definiteness, we take the additional system to b
quantum oscillator sitting atx5x0 and coupled toTVV by the
interaction Hamiltonian

E dtHosc5E dtgVV~ t !p~ t !TVV~ t,x0! ~64!

wherep(t) is the momentum conjugate to the positionq(t)
of the oscillator andgVV(t) is a switch function with the
correct Lorentz variance, i.e.,gVVTVV is a scalar. When the
initial state of the oscillator isuosc& , the state of the entire
system~i.e., field1 two level atom1 oscillator! is simply
the product uC2&5 uc2& uosc&.

We work in the interaction picture with respect toHosc
and we stay in the Heisenberg representation for the inte
tion between the field and the two level atom. Then to fi
order ingVV(t), the mean position of the oscillator is give
by
e

als

f

w

th
o
th
s

y

is
al

a

c-
t

^q~ t !&C2
5 ^C2uS 11 i E

2`

t

dt8HoscD q~ t !

3S 12 i E
2`

t

dt8HoscD uC2&

5^oscuq~ t !uosc&

2E
2`

t

dt8gVV~ t8! ^oscu i @q~ t !,p~ t8!#2 uosc&

3^TVV~ t8,x0!&c2
. ~65!

That is, themeanchange of the position is driven by th
meanvalue ofTVV(t,x0) in the stateuc2&. It corresponds to
the response ofq(t) to a classical but fluctuating driving
force. Notice that in this first order approximation there is
back reaction of the HamiltonianHosc, Eq. ~64!, while com-
puting ^TVV(t,x0)&c2

.
But, one can also investigate thecorrelationsamong the

oscillator state and the atom by asking more detailed qu
tions such as: What is the position of the oscillator when
two level atom is found in its excited state? Exactly as in E
~60!, the answer is the conditional value ofq obtained by
decomposing the mean position according to the final stat
the atom att5`

^q~ t !&C2
5Pe^q~ t !&e1Pg^q~ t !&g . ~66!

To first order ingVV, the conditional valuêq(t)&e is given
by
^q~ t !&e5
^C2u S 11 i E dtHoscDP1~`!q~ t !S 12 i E dtHoscD uC2&

^C2u S 11 i E dtHoscDP1~`!S 12 i E dtHoscD uC2&

5^oscuq~ t !uosc&2E
2`

t

dt8gVV~ t8!^oscu i @q~ t !,p~ t8!#2uosc& Rê TVV~ t8,x0!&e

1E
2`

t

dt8gVV~ t8!^oscu$q~ t !,p~ t8!%1uosc& Im^TVV~ t8,x0!&e . ~67!
ta-
or.
i-

di-

or-
t of
the
an-
nce

e

The conditional valuêTVV&e is the source which drives th
conditional value of the oscillator position.Both its real and
imaginary part control the conditional position.2 Note that
Rê TVV&e enters exactly in the same way in the integr
giving rise to^q(t)&e as the mean valuêTVV&c2

drove the

mean q(t) in Eq. ~65!. Instead, the imaginary part o

2For the reader interested by these aspects, we note that this
not the case in the original work of Aharonovet al. since they
considered the simplified case in which the free Hamiltonian of
oscillator vanishes. This corresponds to the large mass limit of
case. We hope to return to the new aspects brought in by
additional dependence.
^TVV&e appears in an unusual way through an anticommu
tor which depends explicitly on the state of the oscillat
Note also that the complex ‘‘driving force’’ of the cond
tional ^q(t)&e is thenormalizedmatrix element ofTVV . This
legitimates dynamically the decomposition in Eq.~60!.

In quantum mechanics therefore, by coupling an ad
tional system to the operatorTVV , one can isolate in a well-
defined manner both the energy content of the particle c
related to a transition of the atom and the energy conten
the vacuum fluctuations that shall induce the transition of
atom at later times. This procedure wherein an external qu
tum system is introduced to reveal the physical significa
of matrix elements likêTVV&e is displayed in more details in
Appendix C of Ref.@15# wherein it is put in parallel with the
treatment of Aharonovet al. @14#. We shall use the sam

as

e
ur
is



on
a

n
s,

ur

te

fo

e

l-

e

le-

r
-

54 7437FROM VACUUM FLUCTUATIONS TO RADIATION. I. . . .
procedure in the black hole situation for evaluating the c
ditional value of the metric correlated to a particular fin
state of the radiation, see@13#.

B. The properties of the conditional energy

Having indicated by an example how both the real a
imaginary parts of̂ TVV&e intervene in physical processe
we now display the properties of the conditional values.

By virtue of Eq. ~63!, we shall discusŝTVV&e only. In
order to obtain exact expressions, we use again the Fo
componentscl introduced in Eq.~34!. We obtain three ex-
pressions for̂TVV&e . Three because the point (U,V) can be
in the causal past of the atom’s trajectoryV.0, U,Ua(V)
or in its causal futureV.0, U.Ua(V), i.e., before or after
the interaction occurs, or even in the causally disconnec
region,V,0 all for U ’s:

^Tvv~U,Ua ,V.0!&e5
g2m2

Pe,v
E dlE dl8clcl8

*

3
1

~4p!2
ñl~ ñl811!e2 i ~l2l8!v

5
m~Nm11!

2ApTC0
S 12

iv12p/a

mT2 D
3S 11

iv
mT2De2~v2 ip/a!2/T2

.
m~Nm11!

2ApT
e2~v2 ip/a!2/T2, ~68!

^Tvv~U.Ua ,V.0!&e5
g2m2

Pe,v
U E dlcl

1

4p
ñle

2 ilvU2

5
mNm

2ApTC0
U12

iv12p/a

mT2 U2
3e2v2/T2e3p2/a2T2

.
mNm

2ApT
e2v2/T2, ~69!

^TvLvL~U,V,0!&e5
g2m2

Pe,v
U E dlcl

1

4p
ñle

pl/ae2 ilvLU2

5
m~Nm11!

2ApTC0
U12

ivL1p/a

mT2 U2e2vL
2/T2

.
m~Nm11!

2ApT
e2vL

2/T2, ~70!

wherevL5u(2V)a21ln(2aV) is the Rindler coordinate in
the left quadrant. The second equalities in Eqs.~68!–~70!
give the exact expressions ifcl is given by Eq.~34!. The last
equalities furnish the approximate expressions valid
-
l

d

ier

d

r

T@m21, T@a21. In this limit C0.1. We now present the
complementary Rindler and Minkowski properties of thes
conditional values ofTvv . These functions are presented in
Fig. 4.

The Rindler description is that used by a uniformly acce

FIG. 4. The conditional valuê Tvv&e if the two level atom is
initially in its ground state and ends up in its excited state. Th
parameters are the same as in Figs. 2 and 3:m52a and
T53a21. The v axis is given in units ofa21 andTvv in units of
a2. For U,Ua ,V.0, ^Tvv&e is complex and oscillates. The real
part has a central positive bump which encodes that their is a rind
ron carrying positive energy which will induce the transition of the
atom. ForV,0, ^Tvv&e is real and positive. It describes the partne
of the rindleron which will be absorbed by the atom. The oscilla
tions of ^Tvv(U,Ua , V.0)&e are such that the total Minkowski
energy of the vacuum fluctuation vanishes. ForU.Ua , V.0,
^Tvv&e is positive and of orderNm . In order to represent it we have
had to change the vertical scale.
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7438 54S. MASSAR AND R. PARENTANI
erated observer in the same quadrant as the two level ato
is best understood by making appeal to the isomorphism w
an inertial thermal bath.

By specifying that the two level atom shall be found e
cited, one imposes that, in the past, forU,Ua , the thermal
state contains at least one particle in the mode created
fm
† . Furthermore since energy flows along the lin

v5cst, ^Tvv(U,Ua ,V.0)&e is centered aroundv50
with at spreadDv5T. It carries a Rindler energy obtaine
by integrating Eq.~68!:

E dv ^Tvv~U,Ua ,V.0!&e5
E dluclu2ñl~ ñl11!

E dluclu2~1/l!ñl

.m~Nm11!. ~71!

The factorNm11 takes correctly into account the Bose s
tistics of the field since Eq.~71! corresponds to evaluatin
^n2&/^n& in a thermal distribution.

WhenU.Ua , the two level atom has absorbedonequan-
tum and the residual energy is@see Eq.~69!#

E dv ^Tvv~U.Ua ,V.0!&e5
E dluclu2ñ l

2

E dluclu2~1/l!ñl

.mNm .

~72!

We now consider what is ‘‘seen’’ by a uniformly acce
erated in the left Rindler quadrant,V,0, i.e., what is the
nature of the correlations between the transition of the a
and an additional system uniformly accelerated in the
Rindler quadrant. Because of the strict correlations betw
the left and right quadrants in Minkowski vacuum, to t
(Nm11) Rindler quanta present in the past on the rig
correspond (Nm11) Rindler quanta on the left. Indeed, sin
Minkowski vacuum u0M& is annihilated by the boost gener
tor HR5*dVaVTVV , the Rindler energy in the left quadran
is equal to the energy in the right quadrant. This can
verified by integrating Eq.~70! and using the relation
ñl(ñl11)5ñ l

2e2pl/a.
Furthermore, the symmetry between the left and the ri

Rindler quadrants results in̂TvLvL&e being centered aroun

vL50 with the same widthDvL5T. Thus^TvLvL&e is almost
exactly the symmetric of̂Tvv(U,Ua ,V.0)&e except for
small transient oscillations present forV.0, see the explicit
expressions~68! and ~70! and Fig. 4. Notice however tha
^TvLvL&e is real whereaŝTvv(U,Ua ,V.0)&e is complex.
This results from causality and can be proven in comp
generality by making appeal to a reasoning similar to tha
Eq. ~22!. This has important consequences in the black h
problem, see@13#.

The Minkowski description, i.e., that used by an inert
observer, is best understood by rewriting the conditio
value ofTVV in terms of thewl,M(V) modes, Eq.~4!.

For U,Ua(t) and allV, one finds
. It
th

by
s

-

m
ft
n

t,

e

t

e
n
le

l
l

^TVV~U,Ua ,V!&e5
1

a2V2

g2m2

Pe
E dlE dl8cl* cl8

1

4p

3All8ñl8~ ñl11!wl,M* w2l8,M
*

5
1

a2V2

m~Nm11!

2ApTC0
S 11

i

maT2

3 ln~2aV2 i e!2
p

maT2D S 12
i

maT2

3 ln~2aV2 i e!2
p

maT2D
3e2[ ln~2aV2 i e!] 2/a2T2. ~73!

The i e defines ln(2aV2ie) as lnuaVu for V,0 and as
lnuaVu2ip for V.0. In the limit e→0 at fixed T,
^TVV(U,V)&e stays finite. Thei e prescription controls also
the analyticity of the modeswl,M , Eq. ~4!, in the lower half
complex plane which in turn leads to the vanishing of t
integral

E
2`

1`

dV ^TVV~U,Ua ,V!&e50 ~74!

by contour integration. This reflects the fact thatu0M& is the
ground state ofHM . In other words, vacuum fluctuation
carry no energy. Finally, thei e controls the above mentione
slight asymmetry between the left and right quadran
^TVV(U,Ua ,V)&e is real and positive forV,0 whereas it
is complex and oscillates forV.0.

In view of the vanishing of the total Minkowski energ
and of the positivity in the regionV,0, the energy in the
regionV.0 must integrate to an exactly compensating r
and negative value. This is not in contradiction with the po
tivity of Rindler energy in the right quadrant, Eq.~71!, since
the expressions for the Rindler and the Minkowski ene
differ by the Jacobiandv/dV51/aV. The oscillations of
Tvv for V.0 that occur in Eq.~68! asv→2` are negligible
in the Rindler description but are dramatically enhanced
the Jacobian in such a way that the Minkowski energy in
right quadrant becomes negative, c.f. Eq.~39!.

For U.Ua , all V, after the atom has made a transitio
the conditional Minkowski energy takes the form

^TVV~U.Ua ,V!&e5
1

a2V2

g2m2

Pe,v
U E dlclAlñl

4p
w2l,M* U2

5
1

a2V2

m~Nm11!

2ApTC0

3U12
i

maT2
ln~2aV2 i e!2

p

maT2U
2

3ue2[ ln~2aV2 i e!] 2/a2T2e2 imln~2aV2 i e!/au2.

~75!

It is real and positive because we are calculating the m
energy density in a state that contains one Minkowski qu
tum. Then the integral*dV ^TVV(U.Ua ,V)&e is strictly
positive, cf. Eq.~23!. Notice also how thei e prescription in
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Eq. ~75! encodes the asymmetry between the left quad
~proportional toNm11) and the right quadrant~proportional
to Nm).

The interaction with the accelerated atom transforms
field configurations in such a way that the conditional va
Eq. ~73! which was complex and carried no energy in t
past, becomes real and carries positive energy. There
one can say that by absorbing the positive Rindler ene
m, the two level atom has reduced the negative Minkow
energy on the right and has converted a vacuum fluctua
into a quantum. This conversion is summarized in Fig. 5
is worth pointing out that this conclusion was anticipated
Unruh and Wald @2# on the basis of their analysis o
^TVV(U.Ua ,V)&e . Indeed in the last paragraph of their a
ticle they state: ‘‘But our analysis suggests a rather surp
ing viewpoint on this radiation process: it seems as tho
the detector is excited by swallowing part of the vacuu
fluctuation of the field in the region of spacetime containi
the detector. This liberates the correlated fluctuation in
noncausally related region of the spacetime to become a
particle.’’ By introducing the notion of generalized cond
tional values, we have shown in this section how to g
precise physical meaning to Unruh and Wald’s qualitat
picture.

C. Conclusions

The main properties of the conditional values of the e
ergy distribution correlated to an excitation of the atom
the following.

~1! Owing to the free character of the propagation of t
masslessf field everywhere but on the accelerated traje
tory, the conditional values of the energy density form
pattern which extends through all space, from past null
finity to future null infinity.

FIG. 5. A schematic picture of the energy fluxes^Tvv&e . We
have represented in dark grey the regions where^Tvv&e is
O(Nm11) and in light grey the regions where it isO(Nm).
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~2! In the past infinity, the total conditional Minkowsk
energy, i.e., the integral of the density on a Cauchy surfa
vanishes identically: vacuum configurations carry no ener
This can be deduced from the fact that the total energy d
not fluctuate in Minkowski vacuum even though the dens
does so.

~3! In the past infinity, the total conditional Rindler en
ergy vanishes as well. This is due to the fact that Minkow
vacuum is an eigenstate of the boost operator with zero
genvalue.

~4! In the future infinity, the conditional energy density
real, contrariwise to what happens in the past. It encode
positive conditional Minkowski energy, since a Minkows
quantum has been produced, but a negative Rindler en
since a Rindler quantum has been absorbed in the right
tor.

Because of the close formal and physical analogies
tween black hole radiation and the Unruh process, the c
ditional values of the energy density correlated to the em
sion of a quantum by a black hole present similar propert
This is the subject of the next article@13#. In that paper, the
gravitational back reaction to black hole evaporation eng
dered by these conditional energy fluxes are also discus
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APPENDIX A: THE D TERM

We recall that this term arises from the following decom
position of the secondg2 Born term in uc2(t51`)&
5exp(2i*dtdxHint) u0M& u2&, see Eq.~10!:

2g2m2E
2`

1`

dtE
2`

t

dt8 f ~t!e2 imtf~t! f * ~t8!e1 imt8f~t8!

3u0M& u2&

52
g2m2

2 E
2`

1`

dtE
2`

1`

dt8 f ~t! f * ~t8!e2 im~t2t8!

3f~t!f~t8!@11e~t2t8!# u0M& u2&

52
g2m2

2
@fm

†fm1D# u0M& u2& ~A1!

where

D5E
2`

1`

dt2E
2`

1`

dt1f ~t2! f * ~t1!e~t22t1!

3e2 im~t22t1!f~t2!f~t1! ~A2!

and wheree(t22t1)5u(t22t1)2u(t12t2).
To explicitize the role of theD term, it is appropriate to

compute the energy density carried by it when the init
state is u0M& u2&. One finds, to orderg2,
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7440 54S. MASSAR AND R. PARENTANI
^TVV~V!&D52g2m2 Re@ ^0MuTVV~V!D u0M&#

52
g2m2

2
^0Mu@TVV~V!,D#2u0M& ~A3!

where we have used the anti-Hermitian property ofD:
D†52D.

^TVV(V)&D enjoys the following properties.
~1! Being a commutator,̂ TVV(V)&D is causal@see Eq.

~22!#, and vanishes in the left quadrantV,0 contrary to
^TVV(V)&e and ^TVV(V)&g .

~2! ^TVV(V)&D carries no Minkowski energy since th
HamiltonianHM @see the paragraph after Eq.~23!#, annihi-
lates Minkowski vacuum.

~3! ^TVV(V)&D carries no Rindler energy sinceHR @the
boost generator —see the paragraph after Eq.~72!# annihi-
lates Minkowski vacuum. Therefore by virtue of 1, the Ri
dler energy in the right quadrant (V.0) vanishes:

E
2`

1`

dv ^Tvv~v !&D50. ~A4!

Thus ^Tvv(v)&D is, at most, an energy density repartition
~4! When f (t)51 for all t, ^Tvv(v)&D vanishes identi-

cally. To prove this one evaluates the commutator in
~A3! and one finds

^Tvv~v !&D52g2m2E
2`

1`

dt2e~t22v ! Re@ f ~t2!

3 f * ~v !e2 im~t22v ! ^0Muf~t2!i ]vf~v ! u0M&#

~A5!

where we have used the commutation relation

@Tvv~v !,f~t2!f~t1!#2522id~t12v !f~t2!]vf~v !

22id~t22v !]vf~v !f~t1!

~A6!

and the antisymmetric character ofe(t22t1). Since the ex-
pectation value^0Muf(t2)f(v)u0M& is evaluated along the
accelerated trajectory equation~6!, it is a function oft22v
only. Therefore the integrand of Eq.~A5! is an odd function
of t22v and the integral vanishes. Hence^Tvv(v)&D is an
energy repartition which is concerned only with the tra
sients induced by the switch on and off effects.

~5! When f (t) is a slowly varying function with respec
to both 1/m and 1/a @cf. the discussion associated with E
~31!#, ^Tvv(v)&D is smaller than the contribution o
Re@^Tvv(v)fmfm

† &# by a factor 1/aT except near the edge
of the interaction period wheref (t) almost vanishes. This
can be seen by developingf (t2) given in Eq. A5 in a series
aroundt25v and evaluating the magnitude of the first no
vanishing term, i.e., one treats the variations of the switch
function f (t) as an adiabatic effect. One finds that indeed
D is smaller than Re@^Tvv(v)fmfm

† &# except when
t.aT2.
.

-

ff
e

APPENDIX B: FLUXES TO ALL ORDER IN g

We use the exactly solvable model, used by Rai
Sciama, and Grove~RSG! @4–7#, to prove that one does
recover, to all order ing, that every quantum jump of the
accelerated oscillator leads to the emission of a Minkow
quantum even when the oscillator has reached the statio
state characterized by the Unruh temperature. Hence, the
of production of the Minkowski quanta is simply the rate
the thermal internal transitions of the oscillator. But, as
second order perturbation theory, these quanta interfere
their energy content is found at the edges of the interac
period only. This is due to the complete neglection of t
recoils of the oscillator. Indeed upon taking into account
recoils by giving the oscillator a finite mass and by quant
ing the position of its center of mass, one proves that
Minkowski quanta no longer interfere after a short time~a
few 1/a) @9#.

We first recall the main properties of the RSG model a
then analyze the particle content of the emitted fluxes. T
system consists of a massless field coupled to a harm
oscillator maintained in constant acceleration. Its action i

S5E dtdxF12 @~] tf!22~]xf!2#1E dtF12 @~]tq!22m2q2#

1e~]tq!fGd2~Xm2Xa
m~t!!G ~B1!

whereXm(t) is the accelerated trajectory equation~6! and
e5gA2m is a rescaled coupling constant. Since this action
quadratic, the Heisenberg equations are identical to the c
sical Euler Lagrange ones. They read

]u]vf5
e

4
u~V!d~r21/a!]tq, ~B2!

]t
2q1m2q52e]tf„X

m~t!…. ~B3!

The left part of the field~i.e., for V,0) is, by causality,
identically free. And, forV.0, on the left of the accelerate
oscillator trajectory, thev-part of the field only is scattered
There the general solution is

f̃~u,v !5f~u!1f~v !1
e

2
q̃~v !, ~B4!

q̃~v !5q~v !1 i E
2`

1`

dlcle
2 ilv@fl,R,v1fl,R,u#,

~B5!

wheref(u) andf(v) are the homogeneous free solutions
Eq. ~B2!; where the operatorfl,R,v is defined by

fl,R,v5E dv
2p

eilvf~v !5
1

A4pulu
@u~l!al,R

1u~2l!a2l,R
† # ~B6!

~a similar equation definesfl,R,u); wherecl is given by
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cl5
el

m22l22 ie2l/2
~B7!

and whereq(v) is a solution of

]t
2q1m2q1

e2

2
]tq50. ~B8!

The two independent solutions of Eq.~B8! are exponentially
damped ast increases. Being interested by the properties
equilibrium, we dropq(v) from now on. Then, the remain
ing part ofq̃(v) is a function of the free field only. Hence, i
Fourier transform, Eq.~B4! reads

f̃l,R,u5fl,R,u ,

f̃l,R,v5fl,R,vS 11 i
e

2
clD1S i e2clDfl,R,u . ~B9!

The second term in Eq.~B9! mixes u and v modes. It en-
codes the static Rindler polarization cloud~see@5–7#! which
accompanies the oscillator and carries neither Minkow
nor Rindler energy. In order to simplify the following equ
tions, we drop it and multiply the other scattered term by t
for unitary reason—see below.~By a simple algebra, one ca
explicitly verify that this modification does not affect th
main properties of the emitted fluxes.! Then Eq.~B9! be-
comes

f̃l,R,v5fl,R,v~11 iecl!. ~B10!

It is useful, for future discussions, to introduce explicitly t
scattered operatorsãl,R , and the scattered modesw̃l,R(v),

ãl,R5^wl,Ruf̃&5al,R~11 iecl!, ~B11!

w̃l,R~v !52@al,R
† ,f̃~v !#25~11 iecl!wl,R~v !

~B12!

whereupon the scattered field operatorf̃(v) may be written
as

f̃~v !5E
0

`

dl@ ãl,Rwl,R1H.c.#5E
0

`

dl@al,Rw̃l,R1H.c.#.

~B13!

It is now straightforward to obtain the scattered Green fu
tion. If the initial state is Minkowski vacuum, thev part of
the scattered Green function is, forV,V8.Va(U),

G̃1~v,v8!5 ^0Muf̃~v !f̃~v8! u0M&

5E
0

`

dlu11 ieclu2wl,M~v !wl,M* ~v8!

5G1~v,v8!, ~B14!

where we have used Eq.~4!. G1(v,v8) is the ~unperturbed!
Minkowski Green function and we have availed ourselves
the identity@see Eq.~B7!#
t

i

o

-

f

u11 ieclu251. ~B15!

This unitary relation expresses the conservation of the n
ber of Rindler particles. Indeed there is no mixing of positi
and negative frequencies in Eq.~B11!; in other words, the
b term of the ‘‘Bogolyubov’’ transformation equation~B11!
vanishes. The identity of the Green functions, Eq.~B14!,
proves that, once the steady regime is established, the m
flux vanishes, see Refs.@4,7# for more details.

We now examine how this stationary scattering of Rind
modes is perceived in Minkowski terms. The Minkows
scattered modesw̃l,M are defined by

w̃l,M5@f̃~V!,al,M
† #2

5wl,M~11 ieal
2cl!2 iealblclw2l,M*

5ãlwl,M1b̃lw2l,M* , ~B16!

w̃2l,M5@f̃~V!,a2l,M
† #2

5w2l,M~12 iebl
2c2l!2 iealblc2lwl,M*

5ã2lw2l,M1b̃2lwl,M* , ~B17!

where l.0 and where we have introduced the scatte
Bogolyubov coefficients:

ãl511 ieal
2cl , ã2l511 iebl

2 ,

b̃l52 iealblcl* , b2l52 iealblcl . ~B18!

One verifies that the unitary relation is satisfie
uãlu22ub̃lu251. The fact that theb̃ are different from zero
indicates that each couple of jumps of the oscillator, i.e.,
absorption and subsequent emission of a Rindler quant
leads, in Minkowski vacuum, to the production of tw
Minkowski quanta. The memberw2l,M is emitted when the
oscillator absorbs a rindleron and jumps into a higher le
and the other one,wl,M is emitted during the inverse proces
This is apparent in the mean energy flux

^T̃VV&5 lim
V8→V

]V]V8 ^@f̃~V!f̃~V8!2f~V!f~V8!#&

52E
2`

1`

dlub̃lu2u]Vwl,Mu2

1 Re@ãlb̃l* ]Vwl,M]Vw2l,M# ~B19!

whereupon the total Minkowski energy is

^H̃M&5E
0

1`

dll~ ub̃lu21ub̃2lu2!E
2`

1`dV

2p

1

a2uV1 i eu2

~B20!

since the integral of the second term of^T̃VV& vanishes.
Exactly as in second order perturbation theory, there

steady regime during which all the emitted quanta interf
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destructively leaving no contribution to themeanflux @see
Eq. ~B14!#. But all nondiagonal matrix elements will be se
sitive to the created pairs. This is also the case for the
total energy equation~B20! since being diagonal inv it ig-
nores the destructive interferences. The second term of
~B19! whose role is to make the mean flux vanishing dur
the steady regime gives no contribution to^H̃M&.

In order to prove that Eq.~B20! corresponds to a stead
production of Minkowski quanta during the whole interac
ing periodDt5T @infinite in Eq. ~B20!# we evaluate how
many quanta are produced. Contrary to the energy, the
number of Minkowski quanta is a scalar under the Lore
group, hence not affected by the exponentially growing D
pler shift present in the energy:

^Ñ~Dt!&5E
0

1`

dv ^ 0̃Muav
†av u 0̃M&

5E
0

1`

dv ^0Muãv
† ãv u0M&

5E
0

1`

dvE
2`

1`

dlugl,v~Dt!u2ub̃lu2 ~B21!

whereu 0̃M. is the scattered~Schrödinger! state.3 As in Eq.
~4!, the ãv are related to theãl,M by

ãl5E
0

`

dlgl,v~Dt!ãv,M ~B22!

wheregl,v(Dt) takes into account the time dependence
the coupling. As shown in@21,15#, gl,v(Dt) is nonvanish-
ing only for thev which enter into resonance with the osc
lator frequency m during the interaction period
t i,t,t f5t i1T. When these frequencies belong to

v i5me2at i,v,me2at f5v f ~B23!

gl,v(Dt) may be replaced bygl,v @given in Eq.~5!#. Hence
Ñ(Dt) reads

^Ñ~Dt!&5E
v i

v f dv

2pavE2`

1`

dlub̃lu25
T

2pE2`

1`

dlub̃lu2.

~B24!

The total energy emitted obtained from Eq.~B24! is

^H̃M~Dt!&5E
v i

v f dv

2paE2`

1`

dlub̃lu2

5E
t i

t f dt

2p
e2atmE

2`

1`

dlub̃lu2, ~B25!

in perfect agreement with Eq.~B20! if the frequency width
of the oscillator in small compared tom. In that case, the rate
of production, Eq.~B24! divided byT, is e2am

2bm
2 . This is

3The simplest way to obtain this state is to find the scatter
operatorU such that ãl,M5U†al,MU where ãl,M5 ^wl,Muf̃&.
Then u 0̃M&5Uu0M&.
e

q.

tal
z
-

f

the rate of jumps for an inertial oscillator in a bath at te
peraturea/2p, exactly as in Eq.~56!. Therefore, to all order
in g as well, the number of Minkowski quanta produced
the thermalized oscillator equals the number of inter
jumps.

APPENDIX C: THE QUANTA EMITTED
BY ACCELERATED SYSTEMS

We generalize the results of Sec. II D and Appendix B
proving that, for any accelerated system coupled to the
diation in such a way that the scattered radiation modes
linearly related to the ingoing modes, the elastic characte
the scattering process in the accelerated frame, i.e., the
sence of creation of Rindler quanta, implies a production
Minkowski quanta. This general proof is therefore applica
to the accelerated mirror considered by Davies and Ful
@23#, as explained in@24#, as well as to accelerated blac
holes@10,11#, see the footnote in the Introduction. In add
tion, we believe that it can be further generalized, using
same type of argumentation, to nonlinear scattering p
cesses.

The proof goes as follow. Any linear scattering of Rindl
quanta by an accelerated system which does not lead to
production of Rindler quanta can be described, as in
~B11!, by

ãl,R5Sll8al8,R , ~C1!

where repeated indices are summed over and where the
mation overl8 includes bothu andv modes as in Eq.~B9!.
The matrixS satisfy the unitary relation

Sll9Sl9l8
†

5dll8 ~C2!

which express the conservation of the number of Rind
quanta:Sll8 mixes positive Rindler frequencies only. It i
convenient to introduce the matrixT ~from now on we do not
write the indices!

S511 iT ~C3!

which satisfies

2 ImT5TT†. ~C4!

We introduce also the vector operat
b5(al,R ;al,L ;al,R

† ;al,L
† ). Then Eq.~C1! can be written as

b̃5Sb ~C5!

whereS has the block structure

S5S 11 iT 0 0 0

0 1 0 0

0 0 12 iT† 0

0 0 0 1

D ~C6!g
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since theu andv modes on the left quadrant are still free
On the other hand, the Bogolyubov transformation wh

relates Minkowski and Rindler quanta reads in this notat

c5Bb ~C7!

where c5(al,M ;a2l,M ;al,M
† ;a2l,M

† ) are the Minkowski
operators associated to the Unruh modes, Eq.~4!, and where
B is

B5S a 0 0 2b

0 a 2b 0

0 2b a 0

2b 0 0 a
D . ~C8!

The diagonal matrices~in l) a andb have been taken rea
Then, from Eq. ~C5! and Eq. ~C7!, the scattered

Minkowski operatorsc̃ are given in terms of the ingoing
operatorsc by the following matrix relation

c̃5BSB21c5~S1B@S,B21#2!c5SMc. ~C9!

SinceS and B do not commute,SM has nondiagonal ele
ments:
Se

ra

k
-

nd
h
n

SM5S ã1 0 0 2b̃1

0 ã2 b̃1
† 0

0 b2
† a1

† 0

2b̃2 0 0 ã2
†
D . ~C10!

ã b̃ are given in terms ofT by @see Eq.~B18!#

ã1511 iaTa, ã2511 ibT†b,

b̃152 iaTb, b25 ibTa. ~C11!

The nondiagonal matrix elements, theb̃ ’s mix creation and
destruction operators, and encode as usual the amplitud
pair creation.

Therefore, the noncommutativity ofS andB is sufficient
to deduce that any scattering giving rise to no production
Rindler quanta necessarily induces pair production
Minkowski quanta.

If furthermore, the Rindler scattering is stationary duri
a lapse of proper time much greater than 1/a, that is,Sll8 is,
to a good approximation, diagonal inl, then, the number of
created pairs of Minkowski quanta is proportional to the
terval of proper time. See Eq.~B24! for the proof.
s.
.
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