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In this article, the properties of the mean fluxes emitted by an accelerated two level atom are analyzed in
detail. In spite of the fact that the mean flux vanishes once thermal equilibrium is reached, we show that each
transition of the atom is nevertheless accompanied by the emission of one Minkowski quantum. Furthermore,
we prove that the Minkowski energy emitted is equal to the sum of the Doppler shifted energies of each
transition. Both results are first derived to second order in the coupling between the atom and the radiation by
explicitly introducing a switch on and off function whose virtue is to regularize the fluxes on the horizon. Then
we generalize these results to arbitrary coupling. In the second part of the paper, the mean fluxes are decom-
posed according to the final state of the atom and the notion of conditional flux is introduced. This approach
sheds light on the properties of the mean fluxes and gives the energy content of the vacuum fluctuations that
shall induce the transitions of the accelerated atom. These conditional energies are expressed in terms of
off-diagonal matrix elements and are generically complex. Finally, the dynamical relevance of these condi-
tional fluxes is proven. This last point is further developed in a companion article and allows the evaluation of
gravitational back reaction effects induced by black hole radiafi®8556-282196)04424-4

PACS numbds): 04.62:+v, 04.70.Dy

[. INTRODUCTION Moreover, the interferences are also regularized by its intro-
duction. In spite of the fact that the flux is entirely located in
It is now well known that a uniformly accelerated systemtransients which occur when the detector is coupled to the
thermalizes in Minkowski vacuum at temperat@®7 [1].  field [5,8], we are now able to prove that the total Minkowski
But it is much more complicated to obtain a complete de-energy emitted is equal to the sum of the Doppler shifted
scription of the fluxes emitted by this system. Controversiakenergies associated to each transition of the detector. Simi-
debates have arisen in the literature over whether such sykarly, the total number of quanta emitted is equal to the num-
tems still radiate once they have reached equilibri@m1l.  ber of transitions and therefore grows linearly with the dura-
The origin of the difficulties are twofold. First, the modes tion of proper time wherein the interaction is turned on. This
of the radiation field coupled to the accelerated sysiem-  demonstrates that the transients incorporate the entire history
dler modeg are highly singular on the horizon. This singular of the coupling between the detector and the radiation field.
behavior is due to the exponentially growing Doppler shift For simplicity and clarity, we have taken the accelerated
relating Rindler frequencies to inertigMinkowski) ones.  system to be a two level atom and work in perturbation
Second, the fact that the trajectory of the accelerated detecttieory to second order in the interaction with the radiation.
is classical implies that the energy emitted during successivelowever we have included two appendices in order to gen-
transitions interfere perfectly. As first pointed out by Groveeralize our results. In Appendix B, we consider the acceler-
[3], these interferences lead to the vanishing of the meaated oscillator model introduced by Raine, Sciama, and
energy flux when the accelerated system has reached eq@rove[4—7]. We evaluate the emitted fluxes to all order in
librium. Furthermore, the singularity of the modes on thethe coupling constant and prove that all the results found to
horizon and the destructive interferences conspire intimatelgecond order obtain in this case as well. In Appendix C, we
to render the emitted energy localized and singular on th@rove that, irrespectively of the interaction considered, the
horizon. Thus global quantities such as the total number ofcattering of Rindler modes by an accelerated system leads
emitted particles are ill defined as well. inevitablyto the production of Minkowski quanta.
In this paper, we circumvent these difficulties, which hin-
dered previous work, by introducing a switch off function
which specifies how and when the accelerated system is'This latter generalization therefore applies in the case of acceler-
coupled to radiation. This regulator leads to finite expresated black holes in thermal equilibrium which was recently consid-
sions for both the energy density and global quantitiesered by Yi[10]. Yi argued that when the Hawking temperature of
the black holes equals their Unruh temperature they no longer radi-
ate. Our analysis shows that his conclusions are incorrect and that
*Electronic address: massar@ccsg.tau.ac.il the accelerated black holes will emit a steady flux of Doppler
TElectronic address: parenta@celfi.phys.univ-tours.fr shifted Minkowski quanta, sdd 1].
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To clarify the properties of the mean fluxes is the first aima finite massM to the detector, the recoils cannot be ne-
of this paper. The second one is to obtain a description of thglected after that proper time lapse. The consequences of the
fluctuations around this mean value. To this end, we addreggcoils induced by these exponentially growing frequencies
the following issue. The final state of the detector, after havhave been analyzed [9]. They nicely confirm the fact that
ing switched off the interaction, is either excited or not. In€ach transition of the accelerated system leads to the produc-
addition, the final configurations of the radiation field aretion of one Minkowski quantum.
entangled with the final detector state. Therefore, one can ask
what are the properties of the emitted fluxamnditional to Il. MEAN ENERGY EMITTED
the fact that the final state of the detector is either excited or BY AN ACCELERATED ATOM
not. By answering this question, one obtains a description of
the energy density emitted correlated to a single transition o&

thev\?cctilerated det?ctorthg[@eS,Sl. q . der to obtai the model of the accelerated two level atom with an explicit
€ then generalize this procedure in order to oblaiN a,itch off function. In Sec. 11 B we obtain formal expres-
description of the energy density of the vacuum configurag;, g for the energy emitted. The mean fluxes emitted as the

tions whichshall mducg a transition of the accele_rat.ed .de'atom thermalizes are discussed in Sec. Il C and then in ther-
tector. We show that_ this conQ|tlonaI energy density is gVeNa| equilibrium in Sec. Il D. In these sections, we insist on
in terms of a normalized off-diagonal matrix element of the '

: . ~the role of the transients in guaranteeing that global proper-
energy density operator. It reveals the pattern of the Einsteing o 4re respected
Podolsky-Rosen(EPR correlations present in the wave '
function of the coupled system atom plus radiation. In par-
ticular, we obtain an explicit description of the modifications
of these correlated field configurations when considered be- We consider, following Unruli1], a uniformly acceler-
fore and after the interaction has occurred. ated two level atom coupled to a massless figldContrary
This analysis is a particular case of a general approach tm the usual treatmerB,5,19, we couple the atom to the
describe the vacuum fluctuations which materialize, in thdield only for a finite time by introducing a switch on and off
presence of external fields, into pairs of asymptotic on masginction, f(7), and we pay special attention to the new as-
shell quanta. It was applied in the context of pair productionpects introduced by this time dependence. The reason why
in an external electric field to isolate the vacuum fluctuationsve have introduced this function is that we want finite en-
which give rise to a specific paid2]. In [13], we apply this ergy densities everywhere including the horizon. Then, the
analysis of vacuum fluctuations through normalized off-global properties of the fluxes such as the total energy and
diagonal matrix elements df ,, to black hole radiation. In the total number of quanta emitted are finite and can be re-
that article, we show how these matrix elements encode thiated to the period wherein the interaction is turned on. We
correlations between the field configurations correspondinghow in the next section that the singular behavior of the
to the creation of a specific asymptotic Hawking quantumRindler modes imposes severe restrictions f¢n) if one
and the field configurations at earlier times. They furnish arequires finite energy densities.
historical description of the emergence of that quantum from We briefly review the Rindler quantization of massless
vacuum fluctuations. Furthermore, they control back reactioscalar field. The reader unfamiliar with the properties of the
effects which cannot be described by the mean field theorRindler modes might consuli8,1,19,1%. Let us just recall
wherein only the expectation value @f,, acts as a source here their salient features while insisting on their singular
for gravity (in a similar manner as final state interactions arebehavior.
introduced upon studying strong interactions that appear in a The conformal invariance of the massless field i 1L
particular weak channglFinally, we recall that there this dimensions is best exploited by using the lightlike coordi-
approach is closely related fand inspired bythe work of  natesU,V defined byU=t—z, V=t+2z, whereupon the
Aharonovet al. concerning measurements on pre- and postgeneral solution of the Klein-Gordon equation is
selected systemd 4], see[15] for a discussion of this cor-
respondence. O=f(U)+g(V). 1)
Having understood the physical meaning of these off di- . . . .
agonal e?ements and justif?edytheir dynamigal relevance, Wghe Minkowski modes, of energy)y = are given by

This part is devoted to an analysis of the mean fluxes
mitted by an accelerated detector. In Sec. Il A we present

A. The uniformly accelerated two level atom

display the properties of the conditional value of, . For ooV
the nonce, let us mention one of these properties. Owing to @, (V)= 2)
the free and massless propagation of the radiation, the con- V4w

ditional value ofT ,,(x) extends from the past to the future o ) ) )

null infinities. Furthermore, owing to the absence of back Similarly the Rindler modes, of Rindler energy dy =\
reaction(i.e., the neglection of recoilsthis function is au- are given by
tomatically boost covariant. Thus, after a proper time lapse A i
of the order ofaA r=In(M/a), the frequencies involved in (v)zg(v)(av) _¢

the fluxes are bigger thaM owing to the exponentially PLR Jamn  amn
growing Doppler effect relating Minkowski frequencies to

the accelerated ones. This is similar to the “trans-Planckian’where we have introduced the Rindler lightlike coordinate
problem emphasized by 't Hooft and Jacobson in the blaclav = 6(V)In(aV). Since thep,  constitute a complete set in
hole evaporation contexi6,17. Therefore, if one attributes R (V>0) only, they cannot be related to the Minkowski

)
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S i N J dtdxHim(t,x)=ng dr{[f(r)e ™A

? +1* (1M AT p(ta( 1), Xa( 7))},

left quadrant (L} right quadrant (R) (7)

[
=
z

whereg is a dimensionless coupling constant that shall be
taken for simplicity small enough that second order pertur-
bation theory be valid andn is the difference of energy
acoslerated trajectory between the ground |(-)) and the excited state|¢)) of
p=a the atomA is the lowering operator that induces a transition
from the excited state to the ground state of the atom and
f(7) is the dimensionless function that governs when and
FIG. 1. The Minkowski coordinatesz andU,V. The left (L) how the interaction is turned on and off.
and right R) Rindler quadrants. The Rindler coordinate in We shall be most interested in the situation where
R and the trajectory of a uniformly accelerated atom. f(r)=1 inside a long intervak, <7< 7, and f(7) tends to
] ] ) ) zero outside this interval. In the “golden rule” limit.e., in
basis by a unitary transformation. One must also introducene [imit 7 —1=T—c with g2T finite) the concept of a
Rindler modes living in the left quadrantp, (V)  transition rate emerges. This rate comes from the resonance
= ¢y r(—V). But since both Rindler modes are singular atof the Doppler shifted Minkowski vacuum fluctuations with
V=0, care must be taken to define the Bogoljubov transforthe fixed Rindler frequencyn [21]. In addition, we shall
mation relating Minkowski modes to these Rindler modesassume that th¥ part of the¢ field only is coupled to the
To obtain regular expressions on the horizon, it is useful taatom. This is a legitimate truncation owing to Ed). For

consider a new basis of positive frequency Minkowskisimplicity of notation it is convenient to introduce
modes, eigenmodes ¥ 3, and defined for alV [1]:

— oo

. = | dre e (1) g v, ®
@x,M(V):L doy, ,¢,(V)

Let us consider first the situation in which both the atom

B [a(e+iV)]~ ™ and the field are initially in their ground state. The state
T e-07F \/(ewxla_ e_”)‘/a)4777\ |¢_> att=—o s thus
1 { s (V) (@V) N2 [ (t=—2))=|Oy) |—) (9)
= | @7 -
[em™/a—e" ™| VAm|\| where |0y,) is Minkowski vacuum. Att=+c, when the
Cina interaction has been switched off, the state can again be ex-
+e- N2 o(—V)(—aV) 4) pressed in terms of the uninteracting states. To ogdgit is
Jaan| given by
where |17//_(t=+oo)>= |OM>|_>_igm¢m|oM>|+>
in 92m2 T
( 1 [ am ) 1 w)' & ) [ dm®m+D][Om) [—) (10
= - - — e e
Mo\ T(ix/a) VX sinhmh/a) orag | &
(5) where
The factore™ “€ defines the integral equati¢d), regularizes sz dej dr 0(mo— 1) — 0(71— 75)]
the modes ¢, w(V) at V=0, and ensures the correct
Minkowski properties of the theory, s€20]. We shall see in X e~ IM2f (1) b(rp)et M (1) b(7y).  (11)

the next section that the window functidir) plays a role

similar to the cutoffe in that it leads also to well defined \we have split the? term in two pieces in order to isolate the

expressions on the horizon. ~ steady regime from transitory periods associated with the
The trajectory of the uniformly accelerated atom is givenswitch on and off. The first regime is controlled by the term

by (see Fig. 1 proportional to¢! ¢, whereas the second is concerned by
i . the D term which comes from the time ordering contained in

ta(7)=a "sinhar, x,(7)=a “coshar, exp(—ifdtdxH,,). Indeed as proven in Appendix A does
not contribute to the energy density emitted in the steady

Vu(r)=a"1e?, U,(r)=—a le @, (6) state regime: its energy density scales l§&T rather than

like mg?. Furthermore it carries no Minkowski nor Rindler
wherer is the proper time and the acceleration. The inter- energy. We shall therefore drop this term in the rest of the
action Hamiltonian between the atom and the field is paper.
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In the “golden rule” limit, the operator| ¢, tends to-  where we have used E€L0) and dropped the contribution of
wards the counting operator for Rindler quanta of energythe D term. The physical meaning of the two terms on the
m (=a] gramr) Multiplied by #/m and the probabilityP,  right-hand siddRHS) of Eq. (16) was first discussed if2],
for the two level atom to get excited becomes see alsg3,8]. To prepare the discussion of the next part,

devoted to the analysis of the fluctuations, we rewrite Eq.

Pe=0?m? (Oy|¢Ldm |Om)=(1/2g?mTN, (12)  (16) as

where N,,=1/(e2™™2—1) is the mean number of Rindler (TwiV))y_ =Pe(Tuv)et Pg(Tuv)g 17
guanta present in Minkowski vacuum, sé#,18]. This

proves that the atom maintained on an accelerated trajectoyhere we have defined

reacts to the mean number of Rindler quanta as the same

atom, put on an inertial trajectory, would have reacted to the (Tuv)e=g°M? (Op| B Tuvebm [Om)/ Pe,
mean number of Minkowski quanta. > 2 +

Similarly, when the initial state is the product of (Tuv)g=—9°M°Re (Oy| Tyydmdm [Om)1/Py.  (18)
Minkowski vacuum and the excited state- ), att= + the - . . )
state is P. andPg are the probabilities to find the atom in the excited

or ground state at=-+«. P, is given in Eqg.(12) and
|4 (t=+20))=[Oy) [+) —igmey, [Ou) | -) Pg=1-Pe.
! M2 ) miu The interpretation of the two quantitie§Tyy). and

g'm + (Tvv)g is clear when one recalls their origi(iTyy). comes

2 [m¢m—DI|0Om) |+) (13 from the square of the second term of E@O) (linear in
g) whereas(Tyy)4 comes from an interference between the

where the operatoD is the same as in Eq10). In the first unperturbed term and the third term in which the inter-
“golden rule” limit, the probability to be found in the action has acted twice. Hen(€y ). is the energy emitted if

ground state at= +x is the atom is found excited at= +< whereas(Tyy), is the
- . ) energy emitted if the atom is found in the ground state.
Pa=0°m* (Op|bmém [Om)=(1/2g*mT(Ny+1). These fluxes have been normalized so as to express the RHS

(14)  of Eq. (17) as the probability of finding the atom in a final

state times the energy emitted if that final state is realized.

Hence, at equilibrium, t_>y Einstein’s famous argument, theThus(TVV)g and(T\\). are the conditional “mean” energy
probabilitiesP , ,P_ to be in the excited or ground states are amitted. The word “mean” is understood here in its quan-

given by tum sense, i.e., as the average over repeated realizations of
= = N the same situation: the same initial stdtg¢_) andthe same
_r__e__ M _g-2mma (15  final state of the atom, s¢&5] for further comments on this
P. Py Nj+1 point,
Similarly, when the initial state of the system is
[ Y= |0pm) |+), the mean energy emitted is

that is a thermal distribution at temperata® . Had we
coupled the atom to both thé andV parts, the probabilities
P. and P4 would have been multiplied by 2 but the thermal (Tw(V)) . =g°m? (Ol b Tyvedr |04
ration equation(15) would remain unaffected. *

—g’m?Re (Oy|Tyydmdr [0m)] (19

where we have used E@13) and dropped théD term as
gvell. As in Eq.(17), we rewrite this flux as

B. The mean fluxes to orderg?

In this section, we introduce the central notion of condi-
tional energy emitted by decomposing the mean value of th
flux according to the final state of the atom. Then we obtain T =P AT+ PuAT (20)
the necessary condition that the switch off functibfr) < VVM* alTwa® Pr(Tvn

should satisfy in order to have finite densities on the horizon, . o.e p - is the deexcitation probability given in E¢l4)
Finally, we shall express the conditional energy densities "bnd WhedrePh= 1— P, is the probability to be found in the

terms.of the Four.ier tran_sform. dfi(7) in_ order to obtain gy cited state at=+o. The conditional fluxegTyy)g and
analytical expressions which will serve in Sec. Il C for the<-|-vv>h are given by

thermalization period and for the equilibrium situation in

Sec. II D. — 02m?2 t
When the initial state i§_) defined in Eq(9), to order (Tv)a=gmOul émTvvebm [Ou)/ Py
2. the mean flux emitted on the left of the atom is o 42m2 t
g (Tywin=—g’m’Re (Ou| Tyvdmdm [0M) 1P, (21)
(TwV))y_= (i (t=+0) [ Tyu(V,U>Uq(7) and are interpreted as the energy emitted when the atom is
X[ (t=+0)) found in the ground statéleexcitationd) or in the excited
state att=+o knowing that the atom was prepared in the
=g%m? (Oy| ¢! Tyydm |Om) excited state att=— .

- N At this point, two properties which will play an important
—9°m°Re (Oum|Tyvémém 0m)] (16)  role in what follows should be pointed out. First, the matrix
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elements(Tyy); (wherei stands fore, g, d, andh) are whereG,(V,V') is the Wightman function in Minkowski
acausal. For instance, they are nonvanishing in the left Rinvacuum. Thus we obtain

dler quadrantv<<0, U>0 which is causally disconnected.
However the mean energie{é’v\,}th (wherej=+,—) are
causal. Indeed, whewi,U is separated from the trajectory of

the atom by a space like distance thBp,(V,U) commute
with H;,; [2]. Thus the mean value vanishes:

gZrnZ

. (dy C_)(dy CE),

(Tvw)e=2

2.2
<TVV>d:2(%) (dv Ci)(ay CY),

<Tvv(V7U)>¢j:<¢j|eXF{+iJ dtHint)TVV(Vru) g2m2 P,
(Tyw)g= _2<P_) Re(dy C_)(dy Cy)]= (P_> (Tvw)h -
g g
XeXF<_if dtH|m)|l/ll> (26)
For these matrix elements ®f,,, not to be singular the func-
:(,/,.|TVV(V,U)exp<+if dtHim) tions ¢y, C, (V) and dy C_(V) must be regular. From the
. second equality of Eq25) we obtain
XeXF{*J dtHint)|¢j> __ij 1 —imr
aVCJr(V)_ A dTV_afleaT_ief(T)e
= (i TwAV,U)[9) = (Om|Tuw(V,U) [Ow) (27)
=0. (220  which can be singular only fov¥ =0 where it takes the form
The very same causality argument applies in regions where oy Co (V) = — _J d f(r)e mr
(Tuy(V,U)),,#0 to guarantee that it only depends on VeI T T an ] T e e —ie VT
Hin(7) for 7's such thatV(7)<V, i.e., that it only depends a
on the form ofH;,(7) in the past light cone of\(,U). ~ _f dre 27f(r)e M. (28)
Second, the total Minkowski energy carried 8%yy)e, Am

Ea. (18), Is strictly positive, The last integral is finite if and only if(7) decreases for

oo 7— —oo quicker thane?’. Similarly if we had considered
f dV(Tyy)e=g?m? (Oy| &l Hy bm |Om)/ Pe>0 right movers, the condition for finiteness on the future hori-
- zon would have been sufficient rapid decreasef ofor
23 7— + . Thus the condition to have regular expressions on
both horizons is thaf(r) decreases faster that /. This

since it is the expectation value of the Hamiltonian
leads to

Hu=/sdwwa'a, in a state which is not Minkowski

vacuum. On the other hand, the Minkowski energy carried dt
by (Tyv)4 vanishes identically, f dTE-“(TN:f dt|f(7(t))| <o, (29
f“‘ 2?2 i i.e., the interaction of the atom with the field must last a
dW(T =—g°m°Rg (Oy|H Om)1/Py=0,
—o < VV)g g 4 (OulHui b [Ow)] g finite Minkowski time. .
(29 Secondly, it is appropriate to reexpre$s)e ™" in Fou-

) o ) ) ~ rier transform
sinceHy, |0y )=0. Similarly the integral of Tyy)4 is posi-

tive whereas the integral ¢fTyy)y, vanishes. Cime [T S i
In preparation for the next sections and in order to obtain f(r)e = f_w d)‘ﬂe : (30)
explicit expressions fofTyy); , it is appropriate to work out
certain technicalities. The normalization is
First we note that the Wick contractions which arise upon
evaluating(Tyy); (i=e,g.d,h) [Egs. (18) and (21)] are delf()|2= d)\|CK|2—T
given in terms of the two functions TH(7)]"= 27
Co(V)= (Opnld(V) ! |0y) = total proper time of interaction. (31)
_ —imr When e~ '™7f(7) contains no negative frequency, i.e.,
= | dre""H(7)G . (V,V4(7)), c,=0 for A\<0, Eq.(7) defines a Lee model: were the de-
tector inertial it would only respond to the presence of
C_(V)= (Opn|d(V)dm |Om) Minkowski particles. However the regularity conditipBqg.

(29)] implies thatc, be an analytic function in the strip
—a<ImA<a. Hence in order to have regular energy densi-

— +imr
- f dre” (NG (V.Va(1), (29 ies we shall be obliged to work with non-Lee models which
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can spontaneously excite. Nevertheless, by choosing an

f(7) which satisfies Eq(29), but such that the negative com- 1 @l
ponents ofc, are exponentially small, the spontaneous exci-

tation probability is exponentially small as well. Then spon-

taneous transitions occur only at switch on and off transitory
periods and do not contribute to rates.

More precisely, whert, is peaked around=m and T
satisfies botir>m~! andT>a 1!, the “golden rule” prob-
ability Eq. (12) is recovered. The first of these conditions is
that f(7) be spread over a distance at least equal to the in-
verse frequencym ! (the time-energy uncertainty condi-
tion). The second condition, which correspondsTtdeing
greater than the Euclidean tunneling timer& ! [21], is
required for the probabilityP, to be linear in time and pro-
portional to the Bose distributioN,.

In terms ofc, the functionsC.. read

=

5 10 at

FIG. 2. The absolute value of the switch functibfy) given in

Eq. (35) for m=2a andT=3a" 1. ris given in units ofa™?.

D T
too 1 f(r)=— e 2T [ 1 _j )
C+(V)=J7 e \/477)\(e7T>\/a_e77T>\/a)em\/za@)\’M(V) 7 \/27TTe ( ImT
oo 1 , _ a-2mmiagi2arat?g2na?r? 4 o T T
=J7 dheyg [\ +1)@v) ™Mag(v) € € € (1 'mT amTz”
:7771/497 7'2/2T2[1+ Nm(l_eiZﬂ'T/aTz)] (35)

+’ﬁ)\e77)\/a|avl —i)\/aa( —V)],

1 where the constar takes the fornD =2Y27Y4T(N,,,+1)

and N,,=(e?"™2—1)"1 Equation(35) shows the almost
Vam\(e™a— e~ ™7 Gaussian character of the switch off function whose width is
T. The plateau of the Gaussian gives a good approximation
of the steady state regime which we intend to study.

+ o0
c,(V)zf dic?
Xe_”)‘/2a<p,;\,M(V)

o 1 .
= drer—n,(aVv)Mag(v
f—m "477)\[ v@av) ) C. Fluxes and particles to orderg? during thermalization
+T,e™3lav|Nag(—v)] (32) The me}in results qf th.is section are the foIIowing. .

(1) During thermalization a steady flux of negative Rin-

. dler energy is emitted. This is understood from the isomor-

where we have US;S\E@) for the expression op, m(V)  phism[3] with the thermal bath: as the atom gets exited it
and wheren, =1/(e i —1). Upon inserting Eq30) into  5psorbs energy from the thermal bath.

Eq. (12), the probabilityP, to be found excited can then be  (2) Notwithstanding this negative energy density, the in-

written as tegrated total Minkowski energy is positive and grows with
the probability to find the atom excited &t .

. o[t NG (3) The transcription of the negative flux in terms of

Pe=g"m f } dx I (33 Minkowski quanta requires to consider the oscillatory tails of

this flux since they are enhanced by the Jacobian that con-
verts from Rindler to Minkowski energy. In the Minkowski
As one picture is worth a thousand words, we take a parelescription, the steady negative flux is due to a “repolariza-
ticular form for ¢, such that all the integrals above are tion” of the atom corresponding to the fact that the probabil-
Gaussian and can be evaluated explicitly. This form is ity of finding the atom in its exited levelecreasesvith time.
This repolarization is similar P T conjugate with what
A oo occurs when negative energy is absorbed by an inertial de-
c,=D—e A\"MT72(]_g=27Ma) (34) tector[22].
m To reveal the structure of the oscillatory tails and to dis-
play the properties in the stationary regime, both the adia-
whereD is a normalization constant taken such as to verifybatic switch off controlled byf(7) and a sudden switch off
Eq. (31). We shall give throughout the text the exact expres-model shall be worked out.
sions followed by the approximate expressions valid when We start with the adiabatic switch off. The Minkowski
T>>m ! andT>>a"1. In this golden rule limit, the ap- energy density radiated by the two level atom initially in its
proximate expressions are particularly easy to interpretground state is given by Ed16). In terms of the Fourier
These shall be preceded by the symbal For instance, the components c,, the Rindler density defined by
switch off functionf is equal to(see Fig. 2 T,,=Tu(dV/dv)?=T\\e?® is
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+

1 + oo o)
(To(©))y = _gzmzf d)\j d)\'C)\C:,W (Hm)e= fo dV(Tyw(V))y = Pef_w dV(Tyv)e
-~ oy (40)
X (M, +1n, e 1A\
because of Eq24). But (Tyy). is located essentially in the
region V<0. Thus the(Tyy), term, defined in Eq(17),
“restores” causality, see Eq22), and localizes all the en-
) ergy in the right quadrant. This shall be explained with care
Xcog2mv/aT?) —Np]. (36)  in Sec. Il B, after Eq(70).

Another case of interest is the golden rule limit for which

212 e—uz/T2
= 2 Nm 12 [(Nn+1)

We recall that the Rindler coordinateis v=a"lIn(aV). In

. S i : c\=2md(A—m) corresponding td(7)=1 for all 7. In this
Eq. (36), the first line is the exact expression valid for all case there is a constant negative flux fona# 0 which can
c,, see Eqs(26) and(32). The second line is the approxi-

mate expression. valid in the limE>m-* and T>a~ be seen by taking the limE—« at fixedv in Eq. (36). The

h S . transients are located on the past horix6n0 where they
whenc, is given by Eq.(34). As announcedT,, carries  cqngjst of a singular positive flg]. Rather than this case

negative Rindler energy we shall analyze the case where the time dependent coupling
o 202 oo is f(7)=0(7) 6(T— ) in order to prove point3) mentioned
dv (T,,(v)), =— gm d\|c, |2 above. With this time dependence, the transients are also
v (Tuu(v))y 4 MDY X : . ;
— T J - singular and will not be studied here because the divergent

behavior is already present in the inertial case. On the con-
~— lgzmszTz -mP, (37 trary, the s_teady part is gasily computed and gi\_/_es a differ-
2 ential version of the relation between the probability and the
total Rindler energy, see E(37).
equal to the probabilityP,, Eg. (33), times the absorbed  The probability of spontaneous emission is given by
Rindler energy—m.

The total Minkowski energy radiated is T T .
Pe(T)=92m2f d7'1f dre” ™27 (¢(75) p(71))
0 0

+ o + oo
— — —av
<HM>e_ J;) dV<TVV(V)>¢1,_fix dve <Tvv(U)>t//, :%gszmT. (41)
=39°m°Np,Te*o(1+2N,) The second line contains the golden rule result valid when
_ ar aT—o with g2T finite. It is useful to introduce the rate of
=MPee™(1+2Nm). (38 transition, the derivative oP(T):
We have used E22) ande?™ is the mean Doppler effect dP.(T)
associated with the window functidi{7), Eq. (35), defined Po(T)= deT
by
T
—v?IT? — 2m?2 —im(T-7)
+oo e =g°m-2 R j dre T)p(r
J dve™® Wz—cos{Zwu/aTZF —e?7, (39 g E{ 0 (¢(T)d(m)
. : . . - =~ lmeN . (42)
The Minkowski energy is positive contrary to the total Rin- 2 m

dler, Eq. (37). The flip in sign is due to the effect of the

transients around =aT? where the cosine is negative. In- This rate is related to the steady part of the stress energy
deed whereas these transients are negligible upon computifgnhsor. Indeed one finds

the Rindler energy, upon computing the Minkowski energy

they are enhanced by the Jacob@n'dV=e 2" and give T > ,

rise to the sign flip. Thus, it is the same exponential Dopplef T,,(v=T)), =g’m*2 Re{f dej dre” M2

effect,e” 2, which leads both to the thermalization through 0 0

the nontrivial Bogolyubov transformation and to the compat-

ibility of absorbing Rindler energy while emitting X{([(72),Tyu(T)]-p(71))
Minkowski energy[Note that this sign flip can also be con-

ceived as arising from the imaginary part of the saddle point T ,

of Eq. (39): vsy=—aT?/4+im/a and stands therefore ex- =g°m*2 RE{ fo dre”m(T=7)
actly on the same footing as the flip of frequency which leads

to a nonvanishing3 coefficient at the saddle point approxi-

mation, sed21].] The additional factor * 2N, in Eq. (39) X(id,d(T) (7))
comes from the inherent ambiguity in definie§™ as the

mean Doppler shift associated to the switch functi¢n). = —mPy(T)

We notice that the total Minkowski energy radiated can _
also be expressed as +g°m*2 Rdie "™ (¢(T)(0))]. (43
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The first equality follows straightforwardly from the expan- 7<0. This repolarization is exactly the inverse process of the
sion of the evolution operator exp{/H;yd7) in g?>. The  absorption of negative energy by an atom describd@.
second equality is obtained using the commutator relation:
[¢(72), T, (71)]-=id,8(71—715) which itself follows
from the fundamental commutator[¢(v'’),d,¢(v)] ) ) o
—(i/2)8(v' —v) evaluated on the accelerated trajectory. The important result of this section Ile_s in E(63_) for_the

The third equality follows by integration by parts. The final €nergy density and E@55) for the total Minkowski radiated
result contains a steady part proportionatto P,(T) which by the accelerated atom. These equations prove how the van-

tends to— 2g>m2N,., in the golden rule limit and an oscilla- ishing of the flux during the whole equilibrium regime but
tory term2 Whichmis damped if one adds a term in nevertheless preceded and followed by small oscillatory tails

(u?+ie)p? to the action ofp. The steady piece simply Eaﬂiirfi%?l)(/)fc%le;etgawwslztrr\]oﬁ]lg Ezl\gecg(;ﬁsz;?sdt ebacgén;er:i]g-l
indicates that to arincreaseof the probability to make a P y

transition corresponds thabsorptionof the necessary Rin- sion of a Minkowski quantum.

o . : Before studying the equilibrium situation it behooves us
dler energy to provoke this increase, i.e., the local version o{. ider the fi ited b h K
Eq. (37). irst to consider the flux emitted by an atom that makes a

We now turn to the Minkowski description of this steady g%?ég?:vg;onqhixﬂﬁgl tsc:atgéczggdfitsate. The mean energy
piece. We first rewrite Eqs(41)—(43) in terms of the +
Minkowski basise™'“V/\4mw, Eq. (2). The probability of

D. Fluxes and particles to orderg? at equilibrium

1
the transition equatiofd1) reads (Tvv>¢+=92m2f d)\J d)\,C”C:’_Z(MT)
2 N
" T exr{—igear) X(ﬁ)\_"ﬁx""z)eil()\i)\ "
it [t [[aramr 2" .
o(T)= | dog . - _9M 1ye T
= fo dwPe (T) (44) X[1-Ny{cog2mv/aT?)—1}] (48

where P, (T) is the probability to have emited a and the total Rindler energy radiated is, compared with Eq.
Minkowski quantum of energy» at time T [since we are (37,

working ing?, i.e., emission obnequantumpP, ,(T) can be -

expressed aP. ,(T)=(y_||+)ala,(+||¥_)]. Similarly . g'm )~

the transition rate, Eq42), and the total Minkowski energy do (T (0))y, = 7= | A" (M+1)

can be expressed as 122
=50°M° (N, +1)T=mPy. (49

pe(T)=fO dwPe ,(T), (49 In the example for which the time-dependent coupling is
f(7)=6(7)6(T— 1), the relation between the derivative of

the probability,P4(T), and the flux(Ty, )y, is

+ oo

(Hu(T))e= f_w dve® (TUU>¢7=f:dwae,w(T).
(46) (TUU(T))¢+=+de(T)+ “damped” term.  (50)

The second equality follows from the diagonal character OfContrary to the sign in Eq43), the relative sign between
the HamiItonian:HszfjdwwaZ,aw and the matrix element

which definesP,, ,(T). The positivity of (Hy(T))e is mani- ¢ 1vo{T))y, andPq(T) is now positive: Deexcitation con-
fest since all theP, ,(T) are positive definite. Nevertheless, sists |n'em|tt|ng the energy'store_‘d in the atom. Similarly, the
within the steady regime, the time derivative OH(T)).is  total Minkowski energy emitted is
negative:

oo g%m?
fo dV(TVV>1/,+2 5 (Np+1)Te?0(2N,+1)

d (Hu(T))e _

aT eaU(T) <TUU(U(T))>1//_

=mP4e® (2N, +1). (51
=-—me® [ Py(T)+ “damped” term
‘ For deexcitation, the integrated Rindler and Minkowski en-
- | dewP. (T). 4 ergies _have th.e same sign and are related by the mean Dop-
Jo ©0oPeu(T) @7 pler shifte?7 times (N,,+1).
We now turn to the thermal equilibrium situation. The
SinceP(T)>0, d (Hy)/dT negative implies that, for large €nergy radiated is the weighted sum of the flux&s,),_
, someP, , are negative. This corresponds to a “repolar-and (Ty,),, . This stems from the fact that the energy mo-
ization” since all P, ,, are positive definite and vanish for mentum operator changes the photon number by an even
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<TVV>therm.

-10 -5 5 10 av
-0.25
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FIG. 3. The mean Rindler energy dens{tyT,,(v) e €Mit-
ted to orderg? at thermal equilibrium is represented for=2a and
T=3a"1 v is given in units ola ! andT,, in arbitrary units since

the flux is proportional to the coupling. One sees the vanishing of
the flux in the steady regime and the positivity of the transients. In
the Minkowski description they are enhanced by the Jacobian

dV/dv to make the total Minkowski energy emitted positive.

number and that the interaction Hamiltonian changes the
photon number by an odd number while changing the state

of the atom. Hence one has

<Tvv>therm: P_ <Tvv>lﬂ_ +P. <Tvv>¢+

~—mP_Pg+mP, Py=0. (52

The steady fluxes given in Eq#&3) and (50) cancel each
other exactly because at thermal equilibritta satisfy Eq.
(15). This is Grove theorem to ordey [3,7]. Only the os-
cillatory transients remain. Using Eq&36) and (48) and

P_+P,=1, they read

GGy [Ny +Ty0+2)
<Tvv>therm:gzm2f d)\J’ dx (477)2{ i

2N, +1
_ (Nm+ 1)(’h’)\+’ﬁ)\’) e_i(}\_)\/)v
2N, +1
22
g m 2,2
~Z N (N,+1)e T [1-cog2nmv/aT?)].
Jan m(Nm [ g )]

(53

To illustrate these transients, we have plott€d,, )erm iN
Fig. 3. The total Rindler energy emitted is

22

- g’ 1 o
4o (Tomem= 7= 557 | M (Nm=T)
92m2 2

o

—TNm(Ner 1);2?2. (54)
It tends to zero as the time of interactidriends tox, i.e., as
c, tends to as function. In this limit, the two level atom
tends to Lee model. This can be seen in B4) where the
negative frequencies are exponentially suppressed.

However, the total Minkowski energycreaseswith the
interaction timeT and is given by
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+

+ oo %
fo dV<TVV>therm:P7J’O dV<TVV>¢_

+o )
+P+JO dV(TV\/>¢/+:m(P,Pe

+P.Py)Te* (2N, +1). (55)
The Minkowski energy of the two fluxes coincide, by virtue
of Eqg. (15 and sum up. This result is what one might have
“naively” guessed: The total energy is the integral over the
interacting period of the weighted sum of the rates of transi-
tion times the varying Doppler shift times the energy gap

This is nicely confirmed by evaluating the total number of
Minkowski quanta emitted by the atom. One has

<N>therm: fo dw <a:ruaw>therm: fﬁxd)\ <a>1:,Ma)\,M>therm

« 2 2|C}\|2~ ~
=/ drgm m[nAP_Jr(nﬁl)PJr]

=T(P_Pe+P,Py) (56)
wherea, \ is the destruction operator associated to the Un-
ruh mode equatiofd). We have used the expressi(@8) for

P in terms ofc, and a similar expression fd?y. Equation
(56) proves that the mean number of Minkowski quanta is
equalto the mean number of transitions, i.e., the total dura-
tion of interaction times the weighted sum of the transition
rates.

In Appendix B, we generalize these properties to all order
in g in order to prove that the emission of Minkowski quanta
we just found is not an artifact of the second order perturba-
tion theory.

In Appendix C, we prove in full generality that the scat-
tering of Rindler modes by an accelerated system leads in-
evitably to theproduction of Minkowski quanta. The key
point lies in the noncommutativity of the scattering matrix
with the matrix which describes the Bogoljubov transforma-
tion from Rindler modes to Minkowski modes.

In [9], upon taking into account the recoils of the atom
induced by the transitions, it is proven that both E@5)
and (56) perfectly hold. On the contrary, the local flux,
(Tyv)y_ is drastically modified since it no longer vanishes

in the equilibrium regime.

Ill. THE CONDITIONAL VALUES OF T,

In Sec. Il D, the mean energy radiated by the atom was
decomposed into two contributions according to the final
state of the two level atom. This decomposition was per-
formed in the future of the atom’s trajectory only, i.e., for
U>U,4(V), whereU,(V) is the trajectory of the atom. In
this part, we generalize this decomposition fdt points
(U,V) so as to obtain as well the energy density of the
vacuum field configurations which are correlated to the final
state of the atom. Then we prove the dynamical relevance of
this generalized decomposition by considering a perturbation
of the system treated quantum mechanically.
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In Sec. lll A, the generalized decomposition according to 1
the final state is performed and the modified action is intro- ~ (Tw[U>Ua(V),V])e=5+ ¢|9X% if dtHint)
duced. In Sec. lll B, the resulting conditional values of the €
energy correlated to the transitions of the atom are calculated XTI, Tyy(U,V)

and interpreted.
Xexp{ _|f dtHint)|(/I_>

22

g’m
Pe

A. The conditional energy correlated to a transition
of the accelerated atom

. . )(&VC_)(aVC’i). (61
In Eq. (17), the mean energy emitted to the left was writ-

ten as The relative ordering of the evolution operator

_ exp(—ifdtH,,) and of I, and Ty, is dictated by the fact
(MU V) =Pe(Tvl U, V))et Po(TuulU:V))g thapt( bothHIT)and Tyy act in thg\{‘uture of the gccelerated
(57) trajectory(to which is confinedH,,). To orderg?, Eq. (61)

coincides with the expression previously obtained in Egs.
This decomposition was discussed faf,{/) in the future of  (18) and(26).
the accelerated trajectorid>U,(V), as well as in the left In the past of the accelerated trajectory, when
quadrant, foV<<0, allU. On the basis of this decomposition U<U,(V), these matrix elements are the desired expres-
and of the structure of the two terms to ordgt we argued sions of the conditional energy if the atom shall be found at
that <TVV>e (<Tvv>g) should be interpreted as the energyt=+00 in the excited(ground state. This results from the
emitted if the atom haghas not gotten excited. fact that the decomposition, E¢0), is exactly the same as

We shall now genera"ze this decomposition to a formin usual conditional prObab”itie:StO Wlt, the mean is ex- -
valid for all U,V rather tharlJ>U (V) only. To this end we Pressed as the sum over possible outcomes of the probability
introduce the projectorl, = |+) (+| andII_= |-) (- for each outcome to be realized times the valu&gj if that
onto the excited and ground state of the atom. In order not tguicome is realized. ,
encumber the notation with exponentstf, we shall work The explicit expression fofT\\[U<U,(V),V])e is
in Heisenberg representation rather than the interaction rep- 1
resentation used so far. In this representation, the state of the(TVV[U<Ua(V),V]>e=P—(z,//|exp< i f dtHim)H+
system is|¢_)= |0y) |—) and the projector is a time de- e

pendent operator given by
Xexr{—if dtHim)
t t
H+(t)=exr<if dtHim)H+exp(—iJ dtHim>. XTyw(U,V)|_)
(58 g°m?
=5 (Ol $hbmTvu(U,V)|0y)

e

The probability to be found in the excited state at+ o can 2002

then be written as :gp o C (V) CE (V). (62)
e

Pe=(y_|IT (t=+)[¢_). (59 where in the second line we have given the expression valid

to orderg? and used Eq(10) and Eq.(25). We emphasize
The conservation of probabilityP.+P,=1 is realized that the difference between E@1) and Eq.(62) lies in the
through the completeness of the projectorsrelative order ofTyy and expifdtH;,). This ordering en-

I, (t)+I1_(t)=1. codes the fact thaky,, in Eq. (61) is evaluated in the future
The conditional energies are now defined by decomposingf the trajectory while it is evaluated in the past in E62).
the mean energy using the projectdfs (t) att=oo: Two important properties of the conditional fluxes when it

N is evaluated in the past, fdd<U,(V), should be noted.

First
(Tw(U, V) =(_|[TT, () +TT_ () ]Ty(U,V)[p_)
P
o ST T(U )[4 ) (TWU<Ua(V),V])e= = SHTWU<Ua(V),V])q
= e
(YT ()]y) (63)
ip (¢ [T_(=) Ty (U, V)[-) since the mean flugTy\,[U<U,(V),V1]), vanishes identi-
g (g |TT_(0)|¢r_) cally (the interaction with the accelerated atom has not yet

perturbed Minkowski vacuum

Secondly, (Tw[U<U,(V),V]). is complex whereas
(TyU>U,(V),V])e is real as can be seen from the ex-
In the future of the accelerated trajectory, wheépr U ,(V), plicit expressiong61) and (62). Note that the relative time
the explicit expression fofT\\[U>U,(V),V])., obtained ordering ofT,,, andH;,; ensures that the first is real whereas
by going back to interaction representation, is the second is complex.

=Pe(Tyv(U,V))e+ Pg<TVV(U uV)>g . (60)
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Being complex when evaluated in the past of the atom’s
trajectory, the interpretation @ffy,) requires some care. In (Q(t)y_=(¥_|
what follows, we shall prove that both the real and imaginary
part of (Tyy)e intervene directly into dynamical processes
and have therefore an intrinsic physical meaning. To this
end, we shall perturb the action and introduce an additional

t
1+iJ dt’HOSC)q(t)

X

t
1—if dt’HOSC> [T _)

quantum system coupled to the operalqt,, following the =(0sdq(t)|osg
approach of14]. ¢
For definiteness, we take the additional system to be a _J dt'g"Vv(t") (osc|i[q(t),p(t")]_ |osd

guantum oscillator sitting at= X, and coupled tdy by the

interaction Hamiltonian X (Tyy(t’ yXo)>¢,- (65)

That is, themeanchange of the position is driven by the
meanvalue of Ty/(t,Xo) in the state|_). It corresponds to
J' dtHosczf dtg"V(t)p(t) Tyu(t,Xo) (64)  the response ofj(t) to a classical but fluctuating driving

force. Notice that in this first order approximation there is no
back reaction of the Hamiltoniad ..., Eq. (64), while com-
puting (Ty\(t,Xo))y._-

wherep(t) is the momentum conjugate to the positipft) But, one can also investigate tleerrelationsamong the

of the oscillator andgVV(t) is a switch function with the oscillator state and the atom by asking more detailed ques-

correct Lorentz variance, i_@,VVTVV is a scalar. When the tions such as: \_Nhat is t_he_ positi(_)n of the oscillator Wh_en the

initial state of the oscillator igosd , the state of the entire tWo level atom is found in its excited state? Exactly as in Eq.

system(i.e., field + two level atom+ oscillatop is simply (60, the answer is the conditional value gfobtained by

the product| W _)= |_) |0s6. decomposing the mean position according to the final state of
We work in the interaction picture with respect i, e atom at=o
and we stay in the Heisenberg representation for the interac- (A =Pela(t))et Pe(a(t))g- (66)

tion between the field and the two level atom. Then to first
order ing¥¥(t), the mean position of the oscillator is given To first order ing¥", the conditional valuéq(t)). is given
by by

<\If|(1+iJ dtHOSC)H+(00)q(t)(1—iJ dtHosc)|\If>

(o) <\p|(1+iJ dtHosc)H+(°°)(1_if dtH"SC) -y

t
=(osdq(t)0sg - f_wdt'gw(t’xosdi[q(t>,p(t’)]_|osc> Re(Tyy(t',X0))e

t
+ f_wdt’gw(t'><osd{q(t>,p(t'>}+losc> IM(Tu(t’ Xo))e.- (67)

The conditional valu€Ty). is the source which drives the (Tyy). appears in an unusual way through an anticommuta-
conditional value of the oscillator positioBoth its real and  tor which depends explicitly on the state of the oscillator.
imaginary part control the conditional positiériote that ~Note also that the complex “driving force” of the condi-
Re(Tyy)e enters exactly in the same way in the integralstional (d(t))e is thenormalizedmatrix element oflyy . This
giving rise to(q(t)). as the mean valugT\), drove the legitimates dynamically the decomposition in EGO).

_ . . In quantum mechanics therefore, by coupling an addi-
mean g(t) in Eq. (69). Instead, the imaginary part of tional system to the operatdy,,, one can isolate in a well-

defined manner both the energy content of the particle cor-

related to a transition of the atom and the energy content of

2For the reader interested by these aspects, we note that this wise vacuum fluctuations that shall induce the transition of the

not the case in the original work of Aharonat al. since they atom at later times. This procedure wherein an external quan-

considered the simplified case in which the free Hamiltonian of thetum system is introduced to reveal the physical significance
oscillator vanishes. This corresponds to the large mass limit of ouof matrix elements liké T\, is displayed in more details in
case. We hope to return to the new aspects brought in by thif\ppendix C of Ref[15] wherein it is put in parallel with the
additional dependence. treatment of Aharonowet al. [14]. We shall use the same
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procedure in the black hole situation for evaluating the con-
ditional value of the metric correlated to a particular final

FROM VACUUM FLUCTUATIONS TO RADIATION. |I. ...

state of the radiation, s¢&3].

B. The properties of the conditional energy
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Re[<TVV(U<Ua,V>0)>e]

N\ \ Im[<Ty (U<Ug, V>0) >

\

LY
LY
\

el

Having indicated by an example how both the real and -1o Y / \/ 1o>av
imaginary parts of Tyy). intervene in physical processes, N oY
we now display the properties of the conditional values. \ 0.2
By virtue of Eq.(63), we shall discusgTyy)e only. In “gﬁ'f3
order to obtain exact expressions, we use again the Fourier
components, introduced in Eq(34). We obtain three ex-
pressions foTyy)e. Three because the point/(V) can be
in the causal past of the atom’s trajectdry-0, U<U,(V) 0-5F <Tyy (U, V<0) >
or in its causal futurd/>0, U>U4(V), i.e., before or after 0.4 LL
the interaction occurs, or even in the causally disconnected
. . 0.3
region,V<O0 all for U’s:
0.2
g2 2
(T,,(U<U,,V>0))e= 5. fdxfdx el /\
-10 -5 5 10 . avy
X ——— ! —— (N +1)e 1A= o
(4 )2 AN 0.2
. -0.3
~ mM(Np+1) iv+2w/a
27T C, mT?

wherev = 6(—V)a lin(—aV) is the Rindler coordinate in

iv : 2,72
1+ — e*(U*HT/a) /T
mT2>

m(N +1) (v—iw/a)2/T2 (68)
2\/_T '
2
(Ton(U>U, V>0)),= j dhe g The ™
MmN, 1 iv+2mlal?
27T C, mT?
% e—v2/T2e3772/a2T2
mN,
~ ﬁe—vzﬁz, (69)
o
2
(Ty,0, (U,V<0)) —U d)\cx—n L
m(Ny+1) v twlal® oo
- _ L
27 TC, mT
m(N +1)
(70)

CoynT ’

the left quadrant. The second equalities in E@8)—(70)

give the exact expressionsdf is given by Eq(34). The last
equalities furnish the approximate expressions valid for

<Tyy (U>Uy , V>0) >4 ]
0.00004

0.00003

0.00002

0.00001+

-10 -5

5 10 av
-0.00001}

~0.00002

FIG. 4. The conditional valugT,,). if the two level atom is
initially in its ground state and ends up in its excited state. The
parameters are the same as in Figs. 2 andm3:2a and
T=3a ! Thev axis is given in units o~ andT,, in units of
a2 ForU<U,,V>0, (T,,)e is complex and oscillates. The real
part has a central positive bump which encodes that their is a rindle-
ron carrying positive energy which will induce the transition of the
atom. ForvV<0, (T,,). is real and positive. It describes the partner
of the rindleron which will be absorbed by the atom. The oscilla-
tions of (T,,(U<U,, V>0)), are such that the total Minkowski
energy of the vacuum fluctuation vanishes. Rér-U,, V>0,
(T,,)e is positive and of ordeN,. In order to represent it we have
had to change the vertical scale.

T>m™ 1, T>a 1. In this limit Cy=1. We now present the
complementary Rindler and Minkowski properties of these
conditional values ofl,,. These functions are presented in
Fig. 4.

The Rindler description is that used by a uniformly accel-
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erated observer in the same quadrant as the two level atom. It 1 ¢’°m? 1
is best understood by making appeal to the isomorphism with{ Tyw\(U<U, -V)>e:g27 J d)\f d\'cycy pp.

oSt L Pe
an inertial thermal bath.
By specifying that the two level atom shall be found ex- XA (M + 1) eX me™
cited, one imposes that, in the past, ib<U,, the thermal ' ’
state contains at least one particle in the mode created by 1 m(N,+1) i
¢;rn. Furthermore since energy flows along the lines T a2z 2ynTC + mat
v=cst, (T,,(U<U,,V>0)), is centered around =0 0
with at spreadAv =T. It carries a Rindler energy obtained ) T i
by integrating Eq(689): XIn(—avV—ie)———m|| 1= —p
. T
J [ axle i+ 1) XIn(-aV=ie)~ fog
dv (T, (U<U,,V>0))e= 124272
—~ ~[In(-aV-ie)]%a®T
J'd)\|c)\|2(1/)\)n)\ X e tntmavmaia, (73
The ie defines InFaV—ie) as IfaV| for V<0 and as
=m(Np+1). (7D Injav]—im for V>0. In the limit e—0 at fixed T,

(Tyw(U,V)), stays finite. The e prescription controls also

The factorN,,+ 1 takes correctly into account the Bose sta-the analyticity of the modeg, v , EQ.(4), in the lower half
tistics of the field since Eq(71) corresponds to evaluating complex plane which in turn leads to the vanishing of the

(n?)/{n) in a thermal distribution. integral
WhenU>U,, the two level atom has absorbedequan- o
tum and the residual energy [isee Eq.(69)] f dV{(Tyy(U<U,,V)).=0 (74

2 by contour integration. This reflects the fact thak,) is the
J'd)\|cx| nx ground state oH,,. In other words, vacuum fluctuations
f dv (T, (U>U,,V>0))e= =mNpy,. carry no energy. Finally, thiee controls the above mentioned
fd)\|0x|2(1/7\)ﬁx slight asymmetry between the left and right quadrants:

(Ty(U<U,L,V)), is real and positive foV<<0 whereas it
is complex and oscillates for>0.

In view of the vanishing of the total Minkowski energy
We now consider what is “seen” by a uniformly accel- and of the positivity in the regioV<0, the energy in the
erated in the left Rindler quadran¥,<O0, i.e., what is the regionV>0 must integrate to an exactly compensating real
nature of the correlations between the transition of the atorand negative value. This is not in contradiction with the posi-

and an additional system uniformly accelerated in the leftivity of Rindler energy in the right quadrant, E.1), since
Rindler quadrant. Because of the strict correlations betweethe expressions for the Rindler and the Minkowski energy
the left and right quadrants in Minkowski vacuum, to thediffer by the Jacobiardv/dV=1/aV. The oscillations of
(Nn+1) Rindler quanta present in the past on the right,T for V>0 that occur in Eq(68) asv— — are negligible
correspondl,,+1) Rindler quanta on the left. Indeed, since in the Rindler description but are dramatically enhanced by
Minkowski vacuum|Oy) is annihilated by the boost genera- the Jacobian in such a way that the Minkowski energy in the
tor Hg=JfdVaVT,y, the Rindler energy in the left quadrant right quadrant becomes negative, c.f. E3p).

is equal to the energy in the right quadrant. This can be ForU>U,, all V, after the atom has made a transition,
verified by integrating Eq.(70) and using the relation the conditional Minkowski energy takes the form

(M +1)=nge’™"2, 1 Ay,
Jd)\c)\ 2P

Furthermore, the symmetry between the left and the right(TVV(U>Ua,V)>e=W
v, =0 with the same widtihv, =T. Thus(T, , ). is almost 1 m(N,+1)

Rindler quadrants results i|(1TULUL>e being centered around
exactly the symmetric ofT,,(U<U,,V>0)), except for ~ a2\ 2JaTC
0

(72

2

g2 2
Peo

small transient oscillations present fér>0, see the explicit
expressiong68) and (70) and Fig. 4. Notice however that
(Ty, 0 )e is real whereagT,,(U<U,,V>0)), is complex. X

This results from causality and can be proven in complete
generality by making appeal to a reasoning similar to that in
Eqg. (22). This has important consequences in the black hole (75)
problem, se¢13].

The Minkowski description, i.e., that used by an inertial It is real and positive because we are calculating the mean
observer, is best understood by rewriting the conditionaknergy density in a state that contains one Minkowski quan-
value of Tyy in terms of thep, (V) modes, Eq(4). tum. Then the integraldV (Tyy(U>U,,V)), is strictly

ForU<U,(7) and allV, one finds positive, cf. Eq.(23). Notice also how thée prescription in

2
I . ™
1—m—a_l_zln(—aV—|e)—m—a_|_2

% |e—[m(—av—ie)]Z/aZTZe—imm(—av—ie)/alz
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(2) In the past infinity, the total conditional Minkowski

50 energy, i.e., the integral of the density on a Cauchy surface,
: vanishes identically: vacuum configurations carry no energy.
X This can be deduced from the fact that the total energy does
not fluctuate in Minkowski vacuum even though the density

does so.

(3) In the past infinity, the total conditional Rindler en-
ergy vanishes as well. This is due to the fact that Minkowski
vacuum is an eigenstate of the boost operator with zero ei-
genvalue.

(4) In the future infinity, the conditional energy density is
real, contrariwise to what happens in the past. It encodes a
positive conditional Minkowski energy, since a Minkowski
quantum has been produced, but a negative Rindler energy
since a Rindler quantum has been absorbed in the right sec-

,+): excited state

tor.

Because of the close formal and physical analogies be-
tween black hole radiation and the Unruh process, the con-
ditional values of the energy density correlated to the emis-
sion of a quantum by a black hole present similar properties.
This is the subject of the next artic]&3]. In that paper, the
gravitational back reaction to black hole evaporation engen-

FIG. 5. A schematic picture of the energy flux€B,,).. We  dered by these conditional energy fluxes are also discussed.
have represented in dark grey the regions whéfe,), is

O(N,,+1) and in light grey the regions where it@(N,,).
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The interaction with the accelerated atom transforms the
field configurations in such a way that the conditional value APPENDIX A: THE D TERM
Eqg. (73) which was complex and carried no energy in the
past, becomes real and carries positive energy. Therefor bsition of the secondy? Born term in |¢_(t=+o))
one can say that by absorbing the positive Rindler energy (—ifdtdxHyy) [Oy) | ), see Eq(10):
m, the two level atom has reduced the negative Minkowski P nv 1M ' a0
energy on the right and has converted a vacuum fluctuation
into a quantum. This conversion is summarized in Fig. 5. It * T, —imr N sime .
is worth pointing out that this conclusion was anticipated by ~ g°m* fﬁx dTﬁxdT f(r)e” ™ (n)f*(r")e"™ ¢(7')
Unruh and Wald[2] on the basis of their analysis of
(Tyw(U>U,4,V))e. Indeed in the last paragraph of their ar- X[0m) | =)
ticle they state: “But our analysis suggests a rather surpris-
ing viewpoint on this radiation process: it seems as though
the detector is excited by swallowing part of the vacuum
fluctuation of the field in the region of spacetime containing . ,
the detector. This liberates the correlated fluctuation in a X #(7)d(7)[1+e(r—7")][Ow) | =)
noncausally related region of the spacetime to become a real g2m?
particle.” By introducing the notion of generalized condi- —
tional values, we have shown in this section how to give
precise physical meaning to Unruh and Wald’'s qualitative
picture. where

We recall that this term arises from the following decom-

g2r.r.|2

+ o . ,
dr' f(7)f* (7" )e M=)

dr

[ bmdbm+D]|0m) [ =) (A1)

. —+ oo —+ o
C. Conclusions D= def dryf () F* () e(p— 1)

The main properties of the conditional values of the en- - -
ergy distribution correlated to an excitation of the atom are —im(rp— 1)
the following. xe T g(r) ¢() (A2)

(1) Owing to the free character of the propagation of the
masslessp field everywhere but on the accelerated trajec-and wheree(ro— 71) = 0(7o— 71) — 0(71— 7).
tory, the conditional values of the energy density form a To explicitize the role of theD term, it is appropriate to
pattern which extends through all space, from past null incompute the energy density carried by it when the initial
finity to future null infinity. state is|0y) |—). One finds, to ordeg?,
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(Tw(V))p=—g?m? Re[ (Oy| Tyy(V)D [0y)] APPENDIX B: FLUXES TO ALL ORDER IN g

g?m? We use the exactly solvable model, used by Raine,
- (OmI[Tyw(V),D]_|0y) (A3)  Sciama, and GrovéRSG [4-7], to prove that one does
recover, to all order irg, that every quantum jump of the
accelerated oscillator leads to the emission of a Minkowski
where we have used the anti-Hermitian property f  quantum even when the oscillator has reached the stationary
D'=-D. state characterized by the Unruh temperature. Hence, the rate
(Twu(V))p enjoys the following properties. of production of the Minkowski quanta is simply the rate of
(1) Being a commutator(Ty\(V))p is causal[see Eq. the thermal internal transitions of the oscillator. But, as in
(22)], and vanishes in the left quadramt<O contrary to  second order perturbation theory, these quanta interfere and
(Tuv(V))e and (Tyy(V))g- their energy content is found at the edges of the interacting
(2) (Tyw(V))p carries no Minkowski energy since the period only. This is due to the complete neglection of the
HamiltonianH), [see the paragraph after E@3)], annihi-  recoils of the oscillator. Indeed upon taking into account the

lates Minkowski vacuum. recoils by giving the oscillator a finite mass and by quantiz-
(3 (Tyw(V))p carries no Rindler energy sindég [the  ing the position of its center of mass, one proves that the

boost generator —see the paragraph after (8.] annihi-  Minkowski quanta no longer interfere after a short tifae

lates Minkowski vacuum. Therefore by virtue of 1, the Rin- few 1/a) [9].

dler energy in the right quadran¥{0) vanishes: We first recall the main properties of the RSG model and

then analyze the particle content of the emitted fluxes. The
+oo system consists of a massless field coupled to a harmonic
J dv (T, (v))p=0. (A4)  oscillator maintained in constant acceleration. Its action is

—

1
509,07~ m?q?)

1
Thus (T,,(v))p is, at most, an energy density repartition. S:f dtd{i[((?@)z—(ﬂx(ﬁ)z]‘kj dr
(4) Whenf(7)=1 for all =, (T,,(v))p vanishes identi-
cally. To prove this one evaluates the commutator in Eq.

(A3) and one finds +e(3,9) ¢ | S XH—XE(7)) (B1)

NPT where X*(7) is the accelerated trajectory equatitd) and
(Tou(v))p=29"m f_x d7e(m—v) REf(7) e=g+2mis a rescaled coupling constant. Since this action is
. quadratic, the Heisenberg equations are identical to the clas-
X f*(v)e M 727 (O] b(7,)id, d(v) |Oy)] sical Euler Lagrange ones. They read

(A5) e
dudy =7 0(V)é(p—1/a)d.q, (B2)
where we have used the commutation relation

. 92q+m2q=—ed,p(X*(1)). B3

[Tuul©). () blr1) |- =~ 21 8(71~0) (7, 3, b(0) A+ e =—ed,g(XH(n) (B3
—2i6(m—v)d,¢(v) (71) The left part of the field(i.e., for V<O0) is, by causality,

identically free. And, foV>0, on the left of the accelerated

(AB) oscillator trajectory, the-part of the field only is scattered.

. . . There the general solution is
and the antisymmetric character efr,— ;). Since the ex-

pectation value(Oy| #(7,) #(v)|0y) is evaluated along the - e_
accelerated trajectory equatio®), it is a function ofr,—v P(u,v)=d(U)+d(v)+5q(v), (B4)
only. Therefore the integrand of E(A5) is an odd function
of 7,—v and the integral vanishes. Hené& ,,(v))p is an

energy repartition which is concerned only with the tran- qv)=q(v)+i fmd)\%e—ihv[qu Rot &y rul,
sients induced by the switch on and off effects. —o o o
(5) Whenf(7) is a slowly varying function with respect (BY)

to both 1m and 1A [cf. the discussion associated with Eq. _
(31)], (T,,(v))p is smaller than the contribution of Where¢(u) and¢(v) are the homogeneous free solutions of

RE(T,,(v) dmd)] by a factor 14T except near the edges Ed- (B2); where the operato, r, is defined by
of the interaction period wherg(r) almost vanishes. This

can be seen by developirigr,) given in Eq. A5 in a series ([ dv o _

aroundr,=v and evaluating the magnitude of the first non- PrRo= J ﬁe b(v)= m[e()‘)akﬂ
vanishing term, i.e., one treats the variations of the switch off

functionf(7) as an adiabatic effect. One finds that indeed the +6(— )\)aim] (B6)

D is smaller than Ré&T,,(v)dmp)] except when
>aT>. (a similar equation defineg, r,); wherey, is given by
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ex |[1+iey,|?=1. (B15)
T TN, ®&7)

This unitary relation expresses the conservation of the num-
and whereg(v) is a solution of ber of Rindler particles. Indeed there is no mixing of positive
and negative frequencies in E@11); in other words, the
5 ) B term of the “Bogolyubov” transformation equatiqiB11)

Jq+m-q+ > d.q=0. (B8)  vanishes. The identity of the Green functions, EB14),
proves that, once the steady regime is established, the mean
The two independent solutions of E@8) are exponentially ~ flux vanishes, see Reff4,7] for more details.
damped as increases. Being interested by the properties at We now examine how this stationary scattering of Rindler
equilibrium, we dropg(v) from now on. Then, the remain- Modes is perceived in Minkowski terms. The Minkowski
ing part ofg(v) is a function of the free field only. Hence, in Scattered modeg,  are defined by
Fourier transform, Eq(B4) reads

2

EA,MZ[E(V)aa;M]f

¢)\ R, ¢)\ R,u» . .
" ) :<P>\,M(l+|eai¢>\)_|ea>ﬁ>\‘//x<Pt>\,M
~ e e ~ -~
D2 Ro= Pr R 1+i§¢>\ + |§¢>\>¢>\,R,u- (B9) =\ mt B Mo (B16)
~ =T t
The second term in EB9) mixesu andv modes. It en- e am=Ld(V),a_ ml-

codes the static Rindler polarization clo(s®e[5—7]) which _ Y s *
accompanies the oscillator and carries neither Minkowski =eomlmiefigo) mieaByyoaenu

nor Rindler energy. In order to simplify the following equa- =a_, ¢\ M+:éf)\(P: M (B17)
tions, we drop it and multiply the other scattered term by two ' ’

for unitary reason—see beloBy a simple algebra, one can
explicitly verify that this modification does not affect the
main properties of the emitted fluxgsThen Eq.(B9) be-
comes

where A\>0 and where we have introduced the scattered
Bogolyubov coefficients:

E)\Zl-l—leailﬂ}\, E_}\:1+|eﬁ}2\,

brro=drro(LHieY). (810 - _
Br=—iea\B\¥y, B-r=—ieaq\f\i. (BLY
It is useful, for future discussions, to introduce explicitly the

scattered operato@, g, and the scattered modes r(v), One verifies that the unitary relation is satisfied:
_ ~ _ |a,|?—|By|?=1. The fact that the8 are different from zero
a\r=(errl®)=ay r(1+iey), (B11)  indicates that each couple of jumps of the oscillator, i.e., the
absorption and subsequent emission of a Rindler quantum,
ey r(v)= [am,q&(v)],—(lﬂe%)% r(V) leads, in Minkowski vacuum, to the production of two

(B12 Minkowski quanta. The membes_,  is emitted when the
_ oscillator absorbs a rindleron and jumps into a higher level
whereupon the scattered field operafev) may be written  and the other onep, \ is emitted during the inverse process.

as This is apparent in the mean energy flux
B(v)= f “AN[E, rey mt H.C]= f “dN[ay 1Es at HCl. (Tw)=lim ayay: ([HV) V)= (V) b(V)])
0 0 V' =V
(B13)

+ oo _
=2f dx 2oy ml?
It is now straightforward to obtain the scattered Green func- —o Bl overnl

tion. If the initial state is Minkowski vacuum, the part of

the scattered Green function is, fdrV' >V,(U), + R @\ By dyer mdve—x ] (B19)
G.(v,v")= (Ould) (") [On) whereupon the total Minkowski energy is
B fmdkl1+iewA|2%,M<v><p:,M<v') J 2 J 1
0 <HM> AN (| B2+ (B2 27 aV+ie]?
=G, (v,v"), (B14) (B20)

where we have used E¢). G, (v,v’) is the(unperturbegl  since the integral of the second term ()?VV> vanishes.
Minkowski Green function and we have availed ourselves of Exactly as in second order perturbation theory, there is a
the identity[see Eq(B7)] steady regime during which all the emitted quanta interfere
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destructively leaving no contribution to thmeanflux [see the rate of jumps for an inertial oscillator in a bath at tem-
Eq. (B14)]. But all nondiagonal matrix elements will be sen- peraturea/2, exactly as in Eq(56). Therefore, to all order
sitive to the created pairs. This is also the case for the thin g as well, the number of Minkowski quanta produced by
total energy equatiofB20) since being diagonal im it ig-  the thermalized oscillator equals the number of internal
nores the destructive interferences. The second term of Equmps.

(B19) whose role is to make the mean flux vanishing during

the steady regime gives no contribution ¢él ). APPENDIX C: THE QUANTA EMITTED
In order to prove that Eq.B20) corresponds to a steady BY ACCELERATED SYSTEMS

production of Minkowski quanta during the whole interact-

ing period A7=T [infinite in Eq. (B20)] we evaluate how We generalize the results of Sec. Il D and Appendix B by
many quanta are produced. Contrary to the energy, the tot@roving that, for any accelerated system coupled to the ra-
number of Minkowski quanta is a scalar under the Lorentzdiation in such a way that the scattered radiation modes are
group, hence not affected by the exponentially growing Dop{inearly related to the ingoing modes, the elastic character of
pler shift present in the energy: the scattering process in the accelerated frame, i.e., the ab-
sence of creation of Rindler quanta, implies a production of
Minkowski quanta. This general proof is therefore applicable
to the accelerated mirror considered by Davies and Fulling
[23], as explained if24], as well as to accelerated black

—~ +o - -
Many=| “do Gulala, )

_(* —f holes[10,11], see the footnote in the Introduction. In addi-

B fo do (Om[a,a, [Owm) tion, we believe that it can be further generalized, using the
same type of argumentation, to nonlinear scattering pro-

e e 2 12 cesses.

- fo d“’J',x N7y, u(ADIFI BT (B2D) The proof goes as follow. Any linear scattering of Rindler

quanta by an accelerated system which does not lead to the

where|0y,> is the scatteredSchralingep state® As in Eq. production of Rindler quanta can be described, as in Eq.
(4), thea, are related to th@, y by (B11), by

3= | o A (822 PR S BR, (D
0

_ _ where repeated indices are summed over and where the sum-
where y, (A7) takes into account the time dependence ofmation over\’ includes bottu andv modes as in Eq(B9).

the coupling. As shown 21,15, vy, ,(A7) is nonvanish-  The matrixS satisfy the unitary relation
ing only for thew which enter into resonance with the oscil-

lator frequency m during the interaction period SMNS;[,, =Sy (C2
7<7<7;=T1;+T. When these frequencies belong to »

wi=me < p<me 7= o, (B23)  Which express the conservation of the number of Rindler
quanta:S,,. mixes positive Rindler frequencies only. It is
7r.o(A7) may be replaced by, , [given in Eq.(5)]. Hence  convenient to introduce the matfix(from now on we do not
N(A7) reads write the indicey

—~ [0) d + oo —_ T + oo —_ _ .
<N(A7)>=L_f - ﬁwdkl,@dz:—wﬁxd)\lﬁqz. S=1+1T (C3)

2m7aw 2
(B24) which satisfies

The total energy emitted obtained from Eg§24) is o ImT=TT" (C4)

~ oi dow [+* ~
<HM(AT)>ZJ ﬁf NN We  introduce  also  the  vector  operator
“i - b=(a, r:a..:a] r;al ). Then EQ.(C1) can be written as

b=sSb (C5)

— oo

[T fmdx B2  (B25
- . 2’7Te m |IB)\| ' ( )
in perfect agreement with E4B20) if the frequency width whereS has the block structure
of the oscillator in small compared to. In that case, the rate

of production, Eq(B24) divided by T, is e?a? 82 This is

1+iT O 0 0
0 1 0 0

3The simplest way to obtain this state is to find the scattering S= i (Co)
operator U such thatd, y=U"a, wU where @, y= (o) w|®)- 0 0 1-iT" 0O



54

since theu andv modes on the left quadrant are still free.

On the other hand, the Bogolyubov transformation which
relates Minkowski and Rindler quanta reads in this notation

c=B5b (C7)
where c=(a, m;a-\m;a v;a ,y) are the Minkowski
operators associated to the Unruh modes,(Bg.and where
Bis

@ 0 0O -8B
0 a —B 0
B={ 0 - a o0 | (C8)

-B 0 0 @

The diagonal matriceén \) « and B have been taken real.
Then, from Egqg. (C5 and Eq. (C7), the scattered
Minkowski operatorsc are given in terms of the ingoing
operatorsc by the following matrix relation
T=BSB lc=(S+B[S,B 1 )c=8yc. (C9Y
Since S and B do not commuteSy has nondiagonal ele-
ments:
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a;, 0 0 -3,
@ Bl 0
Sw=| o I ol 0 (C10
-3, 0 0 @
@ E are given in terms of by [see Eq(B18)]
a=1+iaTa, a,=1+ipT'B,
Bi=—iaTB, B,=ifTa. (C11)

The nondiagonal matrix elements, tj3és mix creation and
destruction operators, and encode as usual the amplitudes of
pair creation.

Therefore, the noncommutativity of and B is sufficient
to deduce that any scattering giving rise to no production of
Rindler quanta necessarily induces pair production of
Minkowski quanta.

If furthermore, the Rindler scattering is stationary during
a lapse of proper time much greater thaa, hat is,S,, ' is,
to a good approximation, diagonal i) then, the number of
created pairs of Minkowski quanta is proportional to the in-
terval of proper time. See EB24) for the proof.

[1] W. G. Unruh, Phys. Rev. D4, 287 (1976.
[2] W. G. Unruh and R. M. Wald, Phys. Rev. 29, 1047(1984).
[3] P. G. Grove, Class. Quantum Gra3;.801(1986.

[14] Y. Aharonov, D. Albert, A. Casher, and L. Vaidman, Phys.
Lett. A 124, 199(1987; Y. Aharonov and L. Vaidman, Phys.
Rev. A41, 11 (1990.

[4] D. Raine, D. Sciama, and P. Grove, Proc. R. Soc. London, Se[15] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, Phys. Rep.

A 435 205(199)).
[5] W. G. Unruh, Phys. Rev. @6, 3271(1992.
[6] F. Hinterleitner, Ann. PhysIN.Y.) 226, 165(1993.

260 329(1995.
[16] G. 't Hooft, Nucl. PhysB256, 727 (1985.
[17] T. Jacobson, Phys. Rev. 84, 1731(1991); 48, 728(1993.

[7] S. Massar, R. Parentani, and R. Brout, Class. Quantum Gra\mS] S. A. Fulling, Phys. Rev. 7, 2850(1973.

10, 385(1993.

[8] J. Audretsch and R. Mier, Phys. Rev. D49, 4056(1994; 49,
6566 (1994); Phys. Rev. A50, 1755(1994).

[9] R. Parentani, Nucl. Phy&454, 227 (1995.

[10] P. Yi, Phys. Rev. Lett75, 382(1995; Phys. Rev. D63, 7041
(1996.

[19] N.D. Birrel and P.C.W. DaviesQuantum Fields in Curved
Space (Cambridge University Press, Cambridge, England,
1982.

[20] R. Parentani, Class. Quantum Grd@, 1409(1993.

[21] R. Parentani and R. Brout, Int. J. Mod. Phys1D169(1992.

[11] S. Massar and R. Parentani, Comment on “Vanishing Hawk-[zz] P. G. Grove, iriThe Origin of Structure in the Universedited

ing Radiation from a Uniformly Accelerated Black Hole,” Re-

port No. LPTENS 96/17 TAU 2325-96 gr-qc/960301&pub-
lished; P. Yi, Phys. Rev. Lett75, 382(1995.

by E. Gunzig and P. Nardon&luwer Academic, Dordrecht,
1993; L. H. Ford, P. G. Grove, and A. C. Ottewill, Phys. Rev.
D 46, 4566(1992.

[12] R. Brout, S. Massar, R. Parentani, S. Popescu, and Ph. Spindé?,3] P.C. W. Davies and S. A. Fulling, Proc. R. Soc. London, Ser.

Phys. Rev. D52, 1119(1995.
[13] S. Massar and R. Parentani, following paper, Phys. Rev4,D
7444(1996.

A 356, 237 (1977).
[24] R. Parentani, Nucl. Phy8456, 175 (1996.



