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Tunneling in a time-dependent setting

Esko Keski-Vakkuri* and Per Kraus†

California Institute of Technology, Pasadena, California 91125
~Received 10 June 1996!

A standard approach to analyzing tunneling processes in various physical contexts is to use instanton or
imaginary time path techniques. For systems in which the tunneling takes place in a time-dependent setting, the
standard methods are often applicable only in special cases, e.g., due to some additional symmetries. We
consider a collection of time-dependent tunneling problems to which the standard methods cannot be applied
directly, and present an algorithm, based on the WKB approximation combined with complex time path
methods, which can be used to calculate the relevant tunneling probabilities. This collection of problems
contains, among others, the spontaneous nucleation of topological defects in an expanding universe, the
production of charged particle-antiparticle pairs in a time-dependent electric field, and false vacuum decay in
field theory from a coherently oscillating initial state. To demonstrate the method, we present detailed calcu-
lations of the time-dependent decay rates for the last two examples.@S0556-2821~96!04124-0#

PACS number~s!: 03.65.Sq, 04.62.1v
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I. INTRODUCTION

Problems involving quantum-mechanical tunneling in
time-dependent setting can arise in a wide variety of c
texts, such as the ionization of atoms by strong laser fie
@1#, pair creation of charged particles in time-depend
background electromagnetic fields@2–4#, spontaneous nucle
ation of topological defects in expanding universes@5#, and
false vacuum decay with time-dependent initial states
time-dependent potentials@6#. In some special cases, the
systems can be treated by standard instanton or imagi
time path methods; however, these techniques have lim
applicability, and confusion often arises when one tries
extend the analysis to more general time-dependent s
tions. For a discussion of various difficulties, see, e.g.,@6#.

In this paper we will investigate a collection of genera
ized time-dependent versions of ‘‘standard’’ tunneling pro
lems, where the textbook instanton and imaginary time p
methods are inapplicable due to the additional time dep
dence. The models typically have Lagrangians with an
plicit time dependence arising from external backgrounds
involve more complicated nonstatic initial states. Their u
fying aspect is that they all can be analyzed via a method
combines the use of the WKB approximation with solutio
of the classical equations of motion along complex tim
paths. We will present a straightforward algorithm which c
be used to compute the relevant tunneling or nucleation r
for such systems.

To give a concrete example of this method, let us cons
pair creation by a spatially constant electric field. In order
identify the specific features associated with a tim
dependent field, it is useful to first review the simple case
a static field. This problem, first solved by Schwinger@7#, is
most elegantly treated by an instanton approach. Calling
state with no particles present the false vacuum, the de
rate is determined by the imaginary part of the false vacu
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energy, which can be extracted from an imaginary time p
integral over fields which approach the false vacuum att5
2 i t56`. In the semiclassical approximation one satura
the path integral by a solution to the~Euclideanized! equa-
tions of motion; the corresponding configuration is the
stanton. The action of the instanton determines the de
rate:G}e2Sinstanton.

The instanton solution describes the nucleation of
particle-antiparticle pair in the background electric fie
This can be seen directly by cutting the instanton in ha
Half of the instanton solution corresponds to interpolati
between the false vacuum att52` and a turning point,
which we can take to occur att50. The turning point con-
figuration is that of a pair of particles momentarily at rest.
we were to continue evolving in imaginary time towar
t5`, then the particles would converge and disappear, le
ing the system in the false vacuum again. Instead, howe
we can continue the solution to real time at the turning po
in which case the particles accelerate away from one anot
Thus the full production process can conveniently be
scribed by a combination of real and imaginary time evo
tion.

For our purposes it is actually more convenient to co
sider the preceding discussion in the reverse order. We
start by considering the real time expanding solution a
then consider evolving it back in time. Eventually, we w
reach the turning point, at which point we continue the ev
lution to imaginary time. If the particle separation procee
to smoothly shrink to zero size in imaginary time, then t
trajectory considered corresponds to a pair production p
cess, and its action determines the decay rate. So to sum
rize in a way that is most useful for the proceeding disc
sion, we look for expanding solutions, which can
smoothly shrunk to zero size when evolved back along so
complex time contour.

Phrased in this way, it is apparent how to adapt the p
cedure to the more general problem of a time-depend
electric field. We can again look for solutions describi
expanding pairs, but this time the continuation to comp
time is more involved. Because of the time dependence
7407 © 1996 The American Physical Society
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7408 54ESKO KESKI-VAKKURI AND PER KRAUS
the problem, we no longer expect that the time contour al
which the pair shrinks to zero size is one involving perio
of purely real or purely imaginary time evolution; instea
the contour will be a more general curve in the complex ti
plane. Given that we can find such a contour, we can proc
to evaluate the action to determine the decay rate. The re
will be a decay rate with nontrivial time dependence.

By itself, the pair creation problem in a time-depende
electric field has a long history. It was studied rigorously
Brezin and Itzykson@2#, using Schwinger’s proper time ap
proach. Marinov and Popov@3# treated it as a barrier pen
etration problem and employed WKB methods. Further,
we discuss in the Appendix A, Audretsch@4# noticed that the
problem is isomorphic to overbarrier scattering in quant
mechanics. However, an advantage of the approach outl
above is that it is easily adapted to other problems involv
the decay of metastable states via the production of exten
objects. Further, it yields an instantaneous pair produc
rate with an explicit time dependence, so that one sees a
modulation in the flux of produced particles. The result
the pair production rate in@3# applies only at specific times

As an example of adapting our approach to other phys
processes, one can consider generalizing the computatio
false vacuum decay in field theory, which proceeds throu
the nucleation of bubbles of true vacuum, to include fie
potentials with explicit time dependence. A particularly i
teresting source of time dependence arises from expan
universes, where it is expected that the expansion gives
to the spontaneous nucleation of monopoles, strings, and
main walls. The nucleation rate has been computed fo
very specific case, namely, de Sitter space, but this is no
fact a time-dependent problem, as the de Sitter geomet
static. For nonstatic geometries the more general appro
discussed above is required.

In the next section we write down an action which
general enough to treat the various processes we hav
ferred to and then give an algorithm by which one can co
pute the time-dependent nucleation rate of the correspon
objects. In most cases, several steps in the procedure mu
performed numerically. The simplest case, in which alm
everything can be done analytically, is pair production in
time-dependent electric field. We perform these steps in S
3, showing that the production rate takes a compact inte
form. A special case of this formula was derived before
@3#. We review the connection of the problem to the proble
of above barrier scattering in quantum mechanics. This
cussed in detail in Appendix A. We then study the particu
example of a sinusoidally varying field and analyze the
stantaneous pair production rates. In Sec. IV we turn to
other source of time dependence mentioned above, ari
from the initial state rather than from external sources. S
cifically, we consider a field theory with a local, but n
global, minimum and take the initial state to be one in wh
the field is undergoing coherent oscillations about the lo
minimum. We are able to calculate analytically for sm
oscillations and to obtain the leading correction to the de
rate. Some computational details are relegated to Appe
B. Finally, in Sec. V we summarize our conclusions a
discuss directions for further study.
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II. TIME-DEPENDENT TUNNELING

In this section we discuss our general approach to tun
ing in models with explicit time dependence. Our aim is
show, using complex time contours, how such systems
be treated by a natural extension of the standard insta
method. To start with, we assume that there is an underly
field theory description of the model under consideration a
that the system is initially in some metastable state. We
ther assume that the state can decay via quantum tunn
and that the decay occurs through the production of obje
which can be described by a first quantized action. A w
variety of such objects can be described by the action

S5E dt@2a~x,t !A12 ẋ21b~x,t !#. ~1!

Some specific cases of interest are

a~x,t !5m, b~x,t !5qE~ t !x.

This is the relativistic action of a particle of massm and
chargeq moving in a time-dependent electric fieldE(t). As
will be discussed in detail, this is the appropriate action
considering pair production due to the electric field.

a~x,t !54ps~ t !x2, b~x,t !5 4
3pr~ t !x3.

This is the action of a spherical ‘‘bubble’’ of radiusx, with
time-dependent surface tensions(t) and bulk energy density
r(t). It describes false vacuum decay in a field theory from
time-dependent initial state or in a time-dependent poten
in instances where the thin wall approximation is valid.

a~x,t !5mc~ t !, b~x,t !50.

This is the action of a massive particle moving in the met

ds25c2~ t !@dt22dx22s2~x!~du21sin u2df2!#

at fixedu andf. Here the choicess(x)5sinx, x, and sinhx
give closed, flat, and open Robertson-Walker universes.

a~x,t !52pmc2~ t !s~x!, b~x,t !50.

We then have the action of a circular cosmic string mov
in the above metric. The string is located atu5p/2 and is
centered atx50.

a~x,t !54psc3~ t !s2~x!, b~x,t !50.

This, similarly, describes a spherical domain wall in t
above metric, again centered atx50.

One might question the applicability of first quantized a
tion to describe these systems, which are fundamentally fi
theories. In the electric field example, it is possible to ma
the connection rigorous and explicit, as is discussed in A
pendix A. We can see no reason why the connection sho
not be valid in the other examples as well.

We now explain how the action~1! can be used to com
pute the spontaneous creation rate of the objects whic
describes. To begin, we should find the classical, real ti
trajectories. The equations of motion are
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54 7409TUNNELING IN A TIME-DEPENDENT SETTING
d

dt Fa~x,t !ẋ

A12 ẋ2
G52A12 ẋ2a8~x,t !1b8~x,t !, ~2!

where the prime denotes]/]x. For the purposes of tunneling
the relevant trajectories are those which emanate from a t
ing point. For a trajectoryx(t), the existence of a turning
point at time t f means that the canonical momentum va
ishes there:

p~ t f !5
a~x,t !ẋ

A12 ẋ2
U
t5t f

50.

In most cases, this condition will be simplyẋ50. A nucle-
ation process corresponds to a trajectory which smoo
shrinks the object down to zero size when evolved back
time along a complex time contour. The continuation fro
real to complex time occurs at the turning point. Shrinking
zero size1 means thatx50 in the flat space examples
whereas in curved space it is the physical sizec(t)s(x)
which is required to go to zero. The condition that t
shrinking to zero size be smooth is most easily seen in
flat space examples. Then we require thatẋ→0 whenx→0;
otherwise, in the electric field case, for instance, the join
of the particle trajectoryx(t) and the antiparticle trajector
2x(t) will be singular. In curved space a slightly more d
tailed analysis is necessary, depending on the specific f
of c(t). To summarize, the trajectories of interest sati
p(t f)50, x(t0)50, ẋ(t0)→`, t f5real, t05complex, x(t)
5real. The problem is then, given some timet f , find an
initial size x(t f) and complex timet0 such that the above
conditions are satisfied.

Since x is required to be real whilet is complex, the
easiest way to proceed is to rewrite the equation of mo
~2! as an equation fort(x):

d

dx F a~x,t !

At8221
G52a8~x,t !At82211b8~x,t !t8. ~3!

The conditions ont(x) become

p~ t f !5
a~x,t !

At8221
U
t f

50, t8~0!50.

The advantage of this form is that it is straightforward
solve Eq.~3! numerically, even if it is not possible to do s
analytically. Then we can search for an initial coordina
valuexf5x(t f), which leads tot8(0)50. Having found an
appropriate tunneling trajectoryt(x), we can proceed to
evaluate its action. Again, it is easiest to change variable
Eq. ~1!, yielding

S5E
0

xf
dx@2a„x,t~x!…At82~x!211b„x,t~x!…t8~x!#.

1In the electric field case,x denotes the position of a particl
whose antiparticle is located at2x. x50 thus corresponds to zer
separation.
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The limits of integration run from 0 toxf simply because tha
gives the entire contribution to the imaginary part of t
action. The imaginary part of the action determines the de
rate:

G~ t f !5e22 Im@S~ t f !#.

Notice that the decay rate depends on the timet f , which is
the end point of the complex time path.

Before turning to some concrete examples of our form
ism, it is appropriate at this point to discuss the prec
meaning of a time-dependent tunneling rate. One might th
that the concept is necessarily vague, since tunneling is
intrinsically wavelike phenomenon, implying that a tim
cannot be assigned to the tunneling process with an accu
greater than the inverse frequency of the wave. We wo
now like to show that the above statement is misleading
that, when properly interpreted, the time-dependent tun
ing rate has a precise, unambiguous, physical meaning.
the purposes of this discussion, it is sufficient to consider
simple case of a particle impinging on a time-dependent
tential in one-dimensional quantum mechanics. There
two relevant cases to consider: The incoming state can
particlelike localized wave packet or can be a plane wave
either case one proceeds to solve the Schro¨dinger equation to
find a time-dependent transmitted wave.

In the first case, since the incoming state correspond
the classical limit to a particle with a well-defined positio
one is tempted to inquire as to the exact time at which
tunneling occurred. However, there does not seem to be
useful definition of such a time and certainly no way of me
suring one to arbitrary precision since the state is spread
a distance equal to the size of the wave packet. Thus, in
case, since one cannot associate a precise time with the
cess of tunneling, a time-dependent tunneling rate is not
pected to be physically meaningful unless suitably avera
over some duration.

Contrast this now with the case of an incoming pla
wave. From the transmitted wave one can compute a ti
dependent probability current which can, in principle,
measured to arbitrary accuracy. The current, measured
region far from the potential, represents the average num
of transmitted particles passing through one’s detector
time t f of the measurement. Although one is not able
specify precisely when a detected particle actually tunne
the time-dependent tunneling rate is nonethel
meaningful—and measurable—even over short time sca
The tunneling rates which we compute in this paper cor
spond to the latter situation, and our time-dependent tun
ing rates are then to be interpreted as the increase per
time of the average number of produced particles at timet f .
It should in particular be clear from the above discussion t
the timet f is not at all related to any concept of a ‘‘tunnelin
time,’’ but simply characterizes the time dependence of
probability current of the transmitted wave. In this way w
can see that there is no ambiguity in the interpretation of
quantities which we calculate.
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III. PARTICLE CREATION IN A TIME-DEPENDENT
ELECTRIC FIELD

As a concrete illustration of the method discussed in
previous section, we will compute the probability for produ
tion of charged particles in a time-dependent electric fie
As noted previously, a rigorous approach to this probl
involves starting from the second quantized field theory.
instance,@2# analyzed the pair production in an alternati
electric field through a Schwinger proper time approach.
alternative calculation could proceed through a Bogoliub
transformation relating the ‘‘in’’ and ‘‘out’’ asymptotic
states; this approach is outlined in Appendix A. However,
we also discuss in Appendix A, the same results can be
tained from the more intuitive first quantized approach wh
we consider in this section.

We begin by considering the simple case of a static fie
That a ~spatially and temporally! constant electric field
should be capable of creating charged pairs is eviden
energetic grounds, since the requisite energy 2mc2 needed to
create the pair is supplied by the electric field, if we separ
the particles by a distance 2mc2/qE. The creation rate is
proportional to the probability of the particles, initially lo
cated at the same point, to tunnel to this separation.
starting point is the spin-0 point particle action in the pre
ence of a constant electric field:

S52E dt@mA12 ẋ22qEx#. ~4!

For simplicity, we have taken space to be one dimensio
For ease of comparison with the discussion in Appendix A
is actually simpler to integrate by parts and use the actio

S52E dt@mA12 ẋ21qEtẋ#. ~5!

~This amounts to a different gauge choice for the gauge
tentialAm .! The equation of motion is

m
d

dt F ẋ

A12 ẋ2
G5qE.

The solution is

x~ t !5x~ t0!1
m

qE HA11FqEm ~ t2t0!1
ẋ~ t0!

A12 ẋ2~ t0!
G 2

2
1

A12 ẋ2~ t0!
J .

Since we are interested in a tunneling process, we cont
these trajectories to imaginary timet°2 i t. Let us consider
the particular trajectory for whicht052m/qE, x(t0)50,
and ẋ(t0)5 i`. This yields the circle

x2~t!1t25S mqED 2,
a quarter of which is shown in Fig. 1.
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The particle comes to rest att50 after having traveled a
distanceDx5m/qE. This portion of the path~one-quarter of
the circle! describes half of the tunneling process. The act
for this portion is found by substituting the trajectoryx(t)
into

S5 i E
2m/qE

0

dtFmA11S dxdt D
2

1qEt ẋ~t!G ,
where an overdot now meansd/dt. This yields

S5
ipm2

4qE
.

The full tunneling process is described by a semicircle~see
Fig. 2!.

Whereas the part of the trajectory betweenx50 and
x5m/qE depicts the creation of a particle with chargeq, the
part betweenx50 andx52m/qE depicts the creation o
the corresponding antiparticle of charge2q. We see that the
antiparticle trajectory is obtained from the particle trajecto
by q°2q, x(t)°2x(t). It is easy to see that this pat
yields a solution for the equation of motion and has the sa
action as the particle trajectory. The total tunneling action
thus

Stotal5
ipm2

2qE
.

The rate of pair creation is found by squaring the tunnel
amplitude:

G5ue2Im@Stotal#u25e2pm2/qE.

The exact result obtained by Schwinger@7# is

G5
~qE!2

~2p!3 (
n51

`
~21!n11

n2
e2npm2/qE.

FIG. 1. A trajectory for half of the tunneling process.

FIG. 2. A trajectory for the full tunneling process.
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54 7411TUNNELING IN A TIME-DEPENDENT SETTING
The WKB result gives a good approximation whe
pm2/qE@1. Finally, we note that after being created, th
particles move along hyperbolas, as is seen by continuing
trajectories back to real time.

We now generalize the analysis to treat a time-depend
electric field. As discussed in the previous section, we exp
that this can be accomplished by finding a complex time p
connecting the initial and final positions.

In particular, we will look for a path as shown in Fig. 3
which describes the creation of a particle at timet5t f . The
vertical axis no longer represents purely real or imagina
time, but rather some more general complex time direct
~such thatt f is real!. At t5t f the particle is at rest,ẋ(t f)50.
At t5t0 the velocity should be singular,ẋ(t0)→`, so that
the trajectory for the antiparticle can be smoothly joined on
the particle trajectory. Both of these conditions were,
course, satisfied in the static field case. The remarkable
pect of this problem, as we shall see, is that these conditi
allow us to determine the tunneling action without having
find the complex time path explicitly.

The action, after integrating by parts, has the form

S52E dt@mA12 ẋ22qA~ t !ẋ#, ~6!

where we have defined

A~ t !52E
t f

t

dt8E~ t8!. ~7!

The equations of motion then yield

ẋ~ t !52
qA~ t !/m

A11q2A2~ t !/m2
.

We have set the conserved momentumpx5]L/] ẋ to zero, so
that ẋ respects the conditionẋ(t f)50. Integrating,

x~ t !52
q

m E
t f

t

dt8
A~ t8!

A11q2A2~ t8!/m2
1x~ t f !.

FIG. 3. A trajectory for half of the generic tunneling process
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Now t0 is determined by requiringẋ(t0)→`. For a nonsin-
gular E(t), this impliesA(t0)56 im/q. We choose to se
A(t0)52 im/q.

We will now write the action in terms ofA(t) and see that
it takes a simple form. Substituting the expression forẋ into
Eq. ~6! gives

S52mE
t0

t f
dtA11q2A2~ t !/m2.

Now we change the integration variable fromt to v5
2qA/m using

dt5
mdv

qE„t~v !…
,

wheret(v) is found by inverting Eq.~7!. Then,

S52
m2

q E
i

0

dv
A11v2

E„t~v !,t f…
5
im2

q E
0

p/2

du
cos2u

E„t~ i sinu!,t f…
.

This is the action corresponding to the creation of t
charge-q particle. As before, the action for the antiparticle
obtained by replacingq°2q, x(t)°2x(t), which yields
the same result as for the particle. Therefore, the pair
ation rate is given by

G~ t f !5exp$24 Im@S~ t f !#%.

To recapitulate, the essential trick that was used was to m
the potentially complicated complex time contour into t
complexv plane, where it always takes the simple form o
line from 0 to i . This simplifies the problem considerabl
since it is no longer necessary to try to find the complex ti
contour. We only need to know its image in thev plane, and
we do.

A. Example of time-dependent pair creation

Having obtained the general result2

S5
im2c3

q E
0

p/2

du
cos2u

E„t~ ic sinu!,t f…
~8!

for the action along the complex time path, we shall no
evaluate the pair creation rate

G~ t f !5expH 2
4

\
Im@S~ t f !#J

in an example case of a time-dependent electric field.
first, we check the formula with a constant electric fie
E5E0 . Now the denominator in Eq.~8! is a constant, and
what remains is an elementary integral; so we easily ob
the standard WKB result for the pair creation rate

G5expH 2
pm2c3

\qE0
J . ~9!

2In this subsection, we restore\ andc.
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FIG. 4. An example plot of the time modula
tion function I (t f ) in the action.
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This pair creation rate is generally truly small. Even for t
strongest electric fields obtained in a laboratory,E0;1011

N/C @8#, the exponent is still enormous: Usingq5e;10219

C, mc2;mec
2;106 eV;10213 N m, c;108 m/s,\;10234

J s, we get a vanishingly small production rate

G;exp$2108%.

Now let us consider an example of a time-dependent e
tric field, an oscillating strong electric field

E~ t f !5E0cosvt f .

Note that no magnetic field is required to satisfy the Ma
well’s equations, only an alternating uniform current dens
This case is different from pair creation in the background
an electromagnetic plane wave, which was considered o
nally by Schwinger@7# in the sense that the intensity of th
plane wave is time independent.

We first findv andE„t(v),t f…:

v~ t,t f !5
q

m E
t f

t

dt8E~ t8!5
qE0
mv

~sinvt2sinvt f !

and

E„t~ ic sinu!,t f…5E0A12S imvc sinu

qE0
1sinvt f D 2.

After changing the integration variable tox5sinu, the action
can be written as

S5
im2c3

qE0
E
0

1

dx
A12x2

A12@ i ~mvc/qE0!x1sinvt f #
2
.

Finally, isolating the imaginary part of the action, we find t
instantaneous pair creation rate to be of the form

G5expH 2
pm2c3

\qE0
I ~ t f !J ,
c-

-
.
f
i-

where I (t f) is a modulation factor which characterizes t
time dependence@compare with Eq.~9!#. We find that

I ~ t f !5
2A2
p E

0

1

dx
A12x2Ar ~x,t f !1u~x,t f !

r ~x,t f !
,

u~x,t f !511a2x22sin2vt f ,

r ~x,t f !5Au2~x,t f !14a2x2sin2vt f ,

a[
mvc

qE0
.

This integral can be evaluated numerically, and we show
Fig. 4 a plot ofI (t f) for a51(v5qE0/mc).

We can see thatI (t f) is a periodic function of time. It
reaches a minimum value at timesvt f501np and a maxi-
mum atvt f5p/21np. The dependence of the minimum
and maximum values ofI on the frequencyv turns out to be
interesting:

At zero frequency, the minimum value of the time mod
lation function is equal to 1. The maximum value becom
infinite: At small frequencies the decay rate is complet
dominated by the minimum value of the action. Thus at z
frequency the decay rate reduces to that of the static cas
it should. As the oscillation frequency increases, the ma
mum and minimum values decrease monotonically and b
seem to approach the asymptotic value zero. This means
the ~average! pair creation rateincreasesas the oscillation
frequency of the field increases. Finally, the action becom
so small~and the rate so high! that the WKB approximation
is no longer valid.

Let us try to check the asymptotic behavior of the ma
mum and minimum~see Fig. 5!. For the minimum, this can
be done rigorously. Setting sinvt f50 simplifies the integral
and we can identify it in terms of complete elliptic integra
We find



.
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FIG. 5. A plot of the minimum and maximum
values of the action as a function of frequency
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This result was also found in@3#. As v→` (a→`), we get

Imin;
ln a

a
→0

for the leading asymptotic behavior. For the maximum val
the analysis is a bit more complicated, but we find the sa
leading asymptotic behavior

Imax;
ln a

a
→0.

IV. DECAY OF A FALSE VACUUM

We now turn to another problem involving tunneling wi
nontrivial time dependence, whose treatment requires m
ods slightly different from those we have discussed to t
point. Let us consider a scalar field

S5E d4x@ 1
2 ]mf]mf2V~f!# ~10!

and take the potential to be of the form shown in Fig. 6.
We take the initial state to be one in which the field

concentrated in the well centered atf5f f . The field will be
taken to be constant in space, but can have a nontrivial t
dependence. In particular, we have in mind semiclassi
looking states in which the field oscillates coherently in t
well. Such a configuration, though stable classically provid
the amplitude of oscillation is below the barrier, is expec
to be unstable quantum mechanically. The presence of
well atf5f t signals a decay process whereby the field c
tunnel through the barrier. This process is described
bubble nucleation, meaning that regions of field concentra
atf t spontaneously form within the initial configuration an
rapidly expand. We would like to know the rate at whic
,
e

h-
s

e
l-

d
d
he
n
y
d

bubble nucleation occurs and describe the resulting bub
trajectory. It is also important to determine the state of
field inside the bubble—we might imagine that the oscil
tions about the false vacuum outside the bubble feed into
interior of the bubble, causing the field there to oscilla
about the true vacuum. By solving the field equations,
will see that such oscillations are actually confined to a
gion near the bubble wall, so that the interior field in the bu
of the bubble is frozen at the true vacuum.

We begin by considering the simplest case, where
field is initially located at the bottom of the leftmost wel
f(t)5f f . This, of course, is the case considered by Co
man @9#. Our strategy will be to look for an expandin
bubble solution which can be shrunk to zero size wh
evolved back along a complex time contour. This problem
most efficiently solved by utilizing the SO~3,1! symmetry of
the theory. However, we will later be considering initi
states which oscillate coherently and break the SO~3,1! sym-
metry to SO~3!. Therefore we will discuss the solution in
language which explicitly uses only the latter symmetry.

FIG. 6. Potential.



e

f a
a

io
io

a
u

ld

th

T
rn
ro
th
b
ng
Th

le
w
bl

ua-

the

ini-

-
illa-

le
la-
’s

7414 54ESKO KESKI-VAKKURI AND PER KRAUS
For simplicity, we will work in the thin wall approxima-
tion, which is valid provided the difference in energies b
tween the true and false vacua,r[V(f f)2V(f t), is suffi-
ciently small. The bubble solution then has the form o
spherical region of true vacuum separated by a thin w
from the outside region of false vacuum:

f~r ,t !'H f t for r,R~ t !,

f f for r.R~ t !.
~11!

The trajectory of the bubble wall,R(t), can be determined
from energy conservation. Consider the energy in the reg
r<R. There are two contributions to the energy. The inter
of the bubble contributesE~inside!5 4

3pV(f t)R
3. There is

also an energy proportional to the area of the bubble w
associated with the field gradient in passing from tr
vacuum to false vacuum:E(wall)54ps0R

2/A12Ṙ2. Here
s0 is the energy density of the wall:

s05E
wall

dr@ 1
2 ~f8!21V~f!#.

In the next section we will compute its value from the fie
equations. The energyE~inside!1E~wall! must be equal to
the energy present in the region before the nucleation of
bubble:Etotal5

4
3pV(f f)R

3. So

4ps0R
2

A12Ṙ2
2 4

3pr0R
350, ~12!

with

r05V~f f !2V~f t!.

The trajectory is then

R~ t !5AR0
21t2,

with

R05
3s0

r0
. ~13!

For t.0 this describes an expanding bubble solution.
consider tunneling, we evolve the solution back to the tu
ing point at t50 and then try to shrink the bubble to ze
size along a complex time contour. In the present case
step is trivial—the contour displayed in Fig. 7 does the jo

It remains to determine the amplitude for the tunneli
process, and for this we require the classical action.
bubble has a Lagrangian

Lbubble524ps0R
2A12Ṙ22 4

3pV~f t!R
3.

Since we wish to compute the relative probability of bubb
nucleation versus remaining in the false vacuum, what
actually want is the difference in action between the bub
solution and the false vacuum state. This is given by
-

ll

n
r

ll
e

e

o
-

is
.

e

e
e

S5E dt@Lbubble1
4
3pV~f f !R

3#

52E dt@4ps0R
2A12Ṙ22 4

3pr0R
3#.

The action can be put in a useful form by inserting the eq
tion of motion ~12! and changing variables toR:

S5E dR R2AS 4p

3
r0D 2R22~4ps0!

2

5E dR
4pr0R

3

3
A12SR0

R D 2.
The action has an imaginary part coming from the part of
trajectory 0,R,R0 , when the bubble is tunneling:

Im S5
4pr0
3 E

0

R0
dR R3ASR0

R D 2215
27p2s0

4

4r0
3 .

The nucleation rate is then

G'e22 Im@S#5expH 2
p2

6
r0R0

4J ,
which is Coleman’s result.

Now let us generalize to the case where the field is
tially oscillating around the false vacuum:f5f f(t). In Sec.
IV A we will study the bubble solutions with this initial con
dition, and we summarize the results here. For small osc
tionsf f(t)5f f1a(t), the bubble looks like

fbubble~r ,t !

'H f t for r,R2D,

f t1
R

r
exp@~r2R!/D#a~ t ! for R2D,r,R,

f f~ t ! for r.R,

~14!

whereD is small compared to the typical size of the bubb
R. In other words, the field oscillations only penetrate a re
tively small distance into the bubble; the bulk of the bubble

FIG. 7. Time path for bubble nucleation.



av
t
, w

or
e
al

ed

s
in
se
th

u
e

rn
rate
e

be
the

ter-

rm-
-
la-
B,
re-
ent

54 7415TUNNELING IN A TIME-DEPENDENT SETTING
interior simply sits at the true vacuum as before. As we h
already mentioned, although one might have expected
bubble to leave a state oscillating about the true vacuum
see that this is not the case.

Now we invoke the same energy considerations as bef
Since the field oscillations inside the bubble are localiz
near the wall, the energy inside the bubble is essenti
given by the true vacuum configurationf t . Thus

Ebubble~inside)5
4
3pV~f t!R

3.

The bubble wall has the energy

Ebubble~wall)5
4psE

bubbleR2

A12Ṙ2
,

where

sE5E
wall

dr$ 1
2 ~ḟbubble!

211
2~fbubble8 !21V~fbubble!%.

sE is time independent. The initial energy is also divid
into two contributions

Einitial~inside)5
4
3pR3@ 1

2 „ḟ f~ t !…
21V„f f~ t !…#[

4
3prE

FVR3

and

Einitial~wall)5
4psE

FVR2

A12Ṙ2
,

where

sE
FV5E

wall
dr@ 1

2 „ḟ f~ t !…
21V„f f~ t !…#.

Conservation of energy then requires

4psER
2

A12Ṙ2
2 4

3prER
350,

with

sE5sE
bubble2sE

FV , ~15!

rE5rE
FV2V~f t!. ~16!

We emphasize thatrE andsE are constants. This fact mean
that the complex time contour relevant for tunneling runs
the purely imaginary direction, just as in the static ca
However, we expect that this behavior is an accident of
analysis in the limit of small oscillations; more generally,rE
andsE will acquire time dependence and the time conto
will be a more complicated curve in the complex time plan
Now we define

R05
3sE

rE
,

so that the trajectory is

R~ t !5AR0
21~ t2t0!

2. ~17!
e
he
e

e.
d
ly

.
e

r
.

Now that we have obtained the bubble trajectory, we tu
to the evaluation of the decay rate. As before, the decay
is found by integrating the action over an imaginary tim
contour running from some initial timet0 to t01 iR0 , where
the bubble shrinks to zero size. The action which is to
integrated is the difference between the bubble action and
false vacuum action. The bubble action is

Sbubble52E dtF4psL
bubble~ t !R2~ t !A12Ṙ2

1
4p

3
V~f t!R

3G ,
where

sL
bubble52E

wall
dr$ 1

2 ~ḟbubble!
22 1

2 ~fbubble8 !22V~fbubble!%

5sE
bubble2E

wall
dr ḟbubble

2 .

The false vacuum action is

SFV52E dtF4psL
FVR2A12Ṙ21

4p

3
rL
FVR3G ,

where

sL
FV5sE

FV2E
wall

dr ḟ f
2,

rL
FV5rE

FV2ḟ f
2.

The action to be integrated is thus

S52E dtF4psL~ t !R
2~ t !A12Ṙ22

4p

3
rL~ t !R

3G ,
~18!

where

sL~ t !5sE2E
wall

dr@ḟbubble
2 2ḟ f

2#, ~19!

rL~ t !5rE2ḟ f
2. ~20!

A crucial point is that althoughsE andrE are constants,sL
and rL are time dependent—their time dependence de
mines the time dependence of the decay rate.

The calculation has thus been reduced down to perfo
ing the integrals forsL , rL , andS. These are straightfor
ward to do; they can be done analytically for small oscil
tions about the false vacuum, as shown in Sec. IV
although in the general case numerical integration is
quired. The result is an expression for the time-depend
decay rate:

G~ t0!'exp$22 Im@S~ t0!#%.
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A. Structure of the oscillating bubble

To analyze the case when the field is initially oscillati
around the false vacuum,f5f f(t), we first need to deter
mine how the structure of the bubble is altered. We will no
present an example calculation of the bubble solut
fbubble(r ,t), which interpolates between the true vacuumf t
and the oscillating initial statef f(t). We shall refer to this as
the oscillating bubble.

The field equation that we need to study is

f̈2
1

r 2
~r 2f8!852

dV

df
.

As an example, we consider the potential discussed by C
man,

V~f!5
l

2
~f22a2!21

e

2a
~f2a!,

wheree.0. The true vacuum is located at

f2'2a2
e

8la3
1O~e2!,

where the potential has the valueV(f2)'2e1O~e2!. The
false vacuum is located at

f1'a2
e

8la3
1O~e2!,

whereV(f1)'01O~e2!.
In the standard scenario of decay from false vacuum

true vacuum, the structure of the bubble is obtained from
static solutionf0(r ) of the field equation:

f091
2

r
f085

dV

df
~f0!. ~21!

f0 interpolates between the true vacuumf2 inside the
bubble and the false vacuumf1 outside the bubble, with the
nontrivial r dependence concentrated in the bubble w
Without going into the mathematics of the exact form of t
solution, we recall that the qualitative behavior of the so
tion is as depicted in Fig. 8.

The radius of the bubble isR53s0/e @see Eq.~13!#, and
the thicknessL of the bubble wall is of the orderL;1/m,
where

m;Ad2V

df2 ~6a!;aAl.

An approximation to the static solution in the vicinity of th
wall can be obtained by dropping the term (2/r )f08 in the
static field equation~sincer;R@0! and dropping the smal
constant terme/2a. The solution of the approximate fiel
equation is the ‘‘kink’’

f0
approx~r !5a tanhm~r2R!,

wherem5aAl. Its behavior is similar to that depicted i
Fig. 8.
n

le-

o
e

l.

-

Now we try to find a time-dependent solutionfbubble(r ,t),
which reduces to the coherently oscillating fie
f f(t)5f11a0 sinvt about the false vacuum asr→`. We
assume that the amplitudea0 of the oscillations is small. The
frequencyv of the oscillations is given by

v25
d2V

df2 ~f1!54la22
3e

2a2
1O~e2!. ~22!

We make the following ansatz forfbubble(r ,t):

fbubble~r ,t !5f0~r !1a~r !sinvt.

Substituting this ansatz into the full field equation and us
the fact thatf0 is the static solution, we obtain a linearize
differential equation for the profile functiona(r ):

a9~r !1
2

r
a8~r !1Fv22

d2V

df2 ~f0!Ga~r !50. ~23!

Without knowing the exact form of the static solutionf0, we
can still proceed by using its known asymptotic properti
In the region outside of the bubble,r.R, f0 reduces tof1 ,
and so (d2V/df2)(f0)→(d2V/df2)(f1). We see that
since the frequencyv2 is equal to (d2V/df2)(f1), the pro-
file function a(r ) must be constant in this region. S
fbubble(r ,t) correctly reduces to the oscillating initial con
figurationf f(t) in this region:

fbubble~r ,t !→f11a0sinvt as r.R.

In the region inside the bubble,r,R, f0 reduces to
the true vacuum valuef2 . Thus (d2V/df2)(f0)
→(d2V/df2)(f2). Using

d2V

df2 ~f2!54la21
3e

2a2
5v21

3e

a2

and denotingk2[3e/a2, we see that the differential equatio
~23! reduces to a familiar equation

a9~r !1
2

r
a8~r !2k2a~r !50.

FIG. 8. Picture of the qualitative behavior of the static soluti
f0(r ).
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54 7417TUNNELING IN A TIME-DEPENDENT SETTING
The solution fora(r ) is,

a~r !5A
sinh~kr !

kr
.

We fix the constantA by matchinga(r ) with a0 at r5R:

A5a0

kR

sinh~kR!
.

The solution fora(r ) tells us that the oscillationsa(r )sinvt
decay to zero inside the bubble, in a region of thickn
D51/k. Thus there are three scales that characterize
structure of the oscillating bubble:~1! the radius of the
bubbleR;3s0/e; ~2! the thickness of the bubble wallL
;1/(aAl); ~3! the thickness of the region inside the bubb
where the oscillations decayD;a/(3Ae). The relative sizes
of these scales are

D

R
;
aAe

s0
→0 as e→0,

L

D
;

Ae

a2Al
→0 as e→0.

Thus

L!D!R.

Also,

kR;
s0

Ae
@1.

Hence the solution fora(r ) can be rewritten as

a~r !'a0

R

r
e~r2R!/D

to a good approximation.
Finally, we would like to obtain at least an approxima

solution fora(r ) in the bubble wall regionr;R. We do this
by replacingf0(r ) in Eq. ~23! with the approximate solution
a tanhm(r2R) and dropping the term (2/r )a8(r ). Further,
we approximate the frequency~22! by v254la2. Then Eq.
~23! reduces to

a9~x!1
6

cosh2x
a~x!50,

wherex[m(r2R). This has the solution

a~r !5
B

2
$3 tanh2@m~r2R!#21%.

Since a(r )→B in regions r:R, where we know that
a(r )5a0 , we setB5a0 .

To summarize, we have found an approximate solut
for the oscillating bubble:fbubble(r ,t)5f0(r )1a(r )sinvt,
wheref0(r ) is the solution in the static case, modified b
small oscillations with a profile functiona(r ) given by
s
he

n

a~r !

55
a0 r*R1L/2

a0

2
$3 tanh2@~r2R!/L#21%, R2L/2&r&R1L/2,

a0

R

r
e~r2R!/D, r&R2L/2.

~24!

B. Calculation of the bubble nucleation rate

Now that we have found the oscillating bubble soluti
fbubble(r ,t), we can proceed to calculate the instantane
bubble nucleation rateG(t0)'$2 Im[S(t0)] %, wheret0 is the
time immediately after the bubble has nucleated.

First, we need to find the quantitiessE andrE that appear
in the equation of motion of the bubble. They are

sE's020.42v2a0
2L,

~25!
rE'e1 1

2v2a0
2.

For some calculational details, see Appendix B. SincesE
andrE are constant, we could use energy conservation wh
gave us the trajectory of the bubble~17!:

R5AR0
21~ t2t0!

2,

whereR053sE/rE .
For bubble nucleation, we need a time path which shrin

the bubble to zero radius. Thus the time path has an im
nary segment

t5t01 iAR0
22R2

for R,R0 . The above branch choice gives the correct ex
nential behavior for the nucleation rate.

To calculate the imaginary part of the action, it is fir
convenient to divide the action~18! into two parts:
S5S01S1 , where

S052E
t01 iR0

t0
dtH 4psER

2A12Ṙ22
4p

3
rER

3J
and

S15E
t01 iR0

t0
dtH 4pR2A12Ṙ2E

R2L/2

R1L/2

dr~ḟbubble
2 2ḟ f

2!

2
4p

3
R3ḟ f

2J .
For the first termS0 , the calculation proceeds as in th
‘‘static’’ case. The result is

ImS05
p2

12
rER0

4.

For the second term, after a bit longer calculation we fin
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ImS1'a0
2p2R0

2H ~2vR0!
2

32
1@0.84I 1~2vR0!

1 1
4 I 2~2vR0!#cos~2vt0!J .

~We have usedL'2/v and dropped a negligible subleadin
term.! The functionsI n(2vR0) are modified Bessel func
tions. The total instantaneous bubble nucleation rate is t

G~ t0!'expH 2
p2

6
rER0

42a0
2p2R0

2F ~2vR0!
2

16

1@1.68I 1~2vR0!1 1
2 I 2~2vR0!#cos~2vt0!G J .

The decay rate is oscillatory, with the leading correction
the static decay rate coming from the oscillatory term in
exponent. Recall thatR0v;radius of the bubble/thickness o
the bubble wall, and soR0v@1. Thus the leading orde
correction is of the ordera0

2R0
2e2vR0/2vR0 : This is much

larger than what one might have anticipated. However, thi
reminiscent of what happens when a particle tunnels thro
an oscillating barrier. Bu¨ttiker and Landauer showed@10#
that the tunneling particle absorbs quanta from the oscilla
barrier; the net effect is that tunneling becomes easier. In
leading order correction to the tunneling probability, the a
plitude of the oscillations of the barrier is multiplied by a
exponential term, and so the correction is much larger.
we can see in our case, small oscillations about the f
vacuum also render the state more unstable.

V. CONCLUSION

In this paper we have presented a rather general appr
to treating time-dependent tunneling problems and have
lustrated the method with some concrete examples. Thro
the use of the WKB approximation, we found that we cou
reduce such problems to solving classical equations of
tion along complex time contours. Even when such equati
of motion are analytically intractable, we have shown th
they are amenable to straightforward numerical analysis.
standard approach to tunneling problems in field theory,
ing instantons, is seen as a special case of the complex
method. In particular, the familiar procedure of evolvin
along the imaginary time direction is valid when there is
nontrivial time dependence in the problem, but more gen
problems require more general complex time contours.

The most straightforward and elegant application of o
methods is to the case of pair production by a tim
dependent electric field. As discussed previously, this pr
lem has been analyzed by a number of workers over
years by a variety of methods; we derived a slightly mo
general result than had been previously been obtained,
our main interest in the problem was as a prototype for m
complicated time-dependent systems. The qualitative
tures of the electric field problem carry over to these s
tems, the only difference being that several steps mus
performed numerically rather than analytically.

As an example of an interesting process which can
tackled by the methods developed here, we mention a
n
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the quantum nucleation of defects in an expanding unive
The form of the expansion can have an important effect
the resulting distribution of the defects. Consider cosm
string nucleation, for instance. The strings nucleate with
size equal to the horizon, or inverse Hubble constant, wh
thus also sets the scale for the duration of the complex t
evolution. If the expansion rate of the universe varies app
ciably on this time scale, then the nucleation rate will dep
from what a naive quasistatic analysis would indicate. D
pending on the cosmological model, the resulting distrib
tion of strings is potentially relevant.

To illustrate another source of time dependence—t
arising from initial conditions, rather than extern
sources—we considered the problem of false vacuum de
in field theory, where the initial state consists of cohere
field oscillations about the false vacuum. Again, instan
techniques are not directly applicable to this system.
though the analysis was rather involved, we were able
obtain an expression for the time-dependent decay rate in
case of small oscillations. Of course, to see large tim
dependent effects one must allow for large oscillations,
this would require a rather intricate computation which w
have not attempted. But again, we stress that the steps a
principle, straightforward.
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APPENDIX A

In this appendix, based on Ref.@4#, we discuss how the
problem of pair production in a homogeneous tim
dependent electric field is related to overbarrier scattering
nonrelativistic quantum mechanics; this connection is the
sis for the first quantized approach presented in Sec. III.

We start from a relativistic field theory formulation, i
which a charged scalar in an electric field has the equatio
motion

$~]m1 iqAm!~]m1 iqAm!1m2%f50. ~A1!

In the canonical quantization approach, we seek ‘‘natur
mode solutions of Eq.~A1! with suitable asymptotic proper
ties, which we then use in the oscillator expansion of
field operator to identify the asymptotic states. If we consid
the background of a classical time-dependent homogene

electric fieldEW 5E(t)êx , it is convenient to take the gaug

choice Am5(A0,AW )5„0,A(t),0,0…, where A(t)5
2* dt E(t). Then we can use the separable ansatz

f5
1

~2p!3/2
f pW~ t !e

ipW •xW

in the field equation, to reduce it to a time-dependent gen
alized oscillator equation

f̈ pW1vpW
2~ t ! f pW50, ~A2!
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where v pW
2(t)5m21[px2eA(t)] 21p y

21p z
2[m21[px

2eA(t)] 2. In addition, the relativistic Klein-Gordon scala
product reduces to a simple form

~ f 1 , f 2!5 i ~ f 1* ḟ 22 ḟ 1* f 2!. ~A3!

Equation ~A2! is identical to a nonrelativistic time
independent Schro¨dinger equation

c91k2~x,E!c50,

via the identifications

t↔x, f pW↔c, ~A4!

vpW
2~ t !5m21@px2qA~ t !#2↔k2~x,E!52mE22mV~x!.

~A5!

Also, the scalar product~A3! can be seen to match with th
inner product for wave functionsc1,c2. If we make the more
precise identifications

m2↔2mE, ~A6!

@px2qA~ t !#2↔22mV~x!, ~A7!

we notice that in quantum-mechanics language we must
E.0 andV<0. This suggests that we are dealing with
quantum-mechanical overbarrier scattering problem.

To complete this connection, we first outline the pair p
duction calculation in the field theory picture. If we switc
the electric field on in the far past and off in the far futur
the gauge potential is asymptotically constant:A(t)→Ain,out

as t→6`. Then the oscillator equation has two natural li
early independent solutionsf in,out with the asymptotic prop-
erties f pW

in,out(t)→exp(2ivpW
in,outt), t→6`. These give two

bases for the oscillator expansion of the field operator, c
responding to the ‘‘in’’ and ‘‘out’’ Fock spaces, as in a qua
tum field theory in curved space@11#. In particular, the defi-
nition of an initial vacuum state is different from a fin
vacuum state; this gives rise to particle production. To co
pute the particle production rate, one must find a Bogoliub
transformation which relates the two bases:

f pW
in5apW f pW

out1bpW f pW*
out. ~A8!

Then the time-averaged pair production probabilityG is
given by

G5UbpW

apW
U2.

To see the connection to the quantum-mechanical scatte
problem, we first rewrite Eq.~A8! as

f pW
out1

bpW

apW
f pW*

out5
1

apW
f pW
in .

Then, asymptotically, ast→2`, the left-hand side~LHS!
reduces to

e2 ivpW
out
t1

bpW

apW
eivpW

out
↔e2 ikx1Reikx
ke

-

,

r-

-
v

ng

and the RHS reduces to~as t→`!

1

apW
e2 ivpW

out
t↔Te2 ik8x.

We see that the analysis of the oscillator equation~A2! in the
field theory picture exactly corresponds to an overbar
scattering problem in a quantum-mechanical picture, w
the reflection and transmission coefficients being related
the Bogoliubov coefficients by

uRu5UbpW

apW
U,

uTu5U 1apW
U.

The time-averaged pair production probability is

G5uRu2.

If the electric fieldE(t) is not very rapidly varying, we
can simplify the problem further with the use of WKB ap
proximation. We use the WKB solution of the oscillator~or
Schrödinger! equation

f'expH 2 i E v dtJ↔expH 2 i E k dxJ . ~A9!

The treatment of semiclassical reflection above a barrier
quires an extension of the WKB method@12#. One method is
to first find the complex turning points off the real axis whe
v;k50. Then the leading contribution to the reflection c
efficient can be found by computing the integral*v dt along
a complex time contourC, traveling from some initial time
t1 on the real axis to the closest complex turning pointt0 and
back ~see Fig. 9!.

This procedure yields the reflection coefficient

uRu25expH 22 ImE
C
v dtJ . ~A10!

Alternatively, we can derive the exponent of the WKB wa
function ~A9! by starting from the action

FIG. 9. The integration contourC.
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S52E dt$mA12 ẋ22qA~ t !ẋ% ~A11!

for the relativistic charged particle in the background elec
field ~using the same gauge choice as before!. Using the
equation of motion

v[
ẋ

A12 ẋ2
52

qA

m
1px ,

and substitutingẋ, gives

S52E dtA11v252E dtA~px2qA!21m252E dt v.

The WKB wave function~A9! is eiS as expected. Therefor
we can use the one-particle action to calculate the reflec
coefficient ~A10!; this is the basis for the first quantize
analysis of the pair production rate presented in Sec. III.

APPENDIX B

We now calculate the quantitiessE andrE that appear in
the equation of motion of the bubble. The energy densityrE
is

rE5 1
2 @ḟ f~ t !#

21V„f f~ t !…2V~f f !

5 1
2v2a0

2cos2vt1V~f1!

1
1

2

d2V

df2 ~f1!a0
2sin2vt1e

5 1
2v2a0

21e.

For the surface tension, we first need

sE
bubble5E

wall
dr$ 1

2 ~ḟbubble!
211

2fbubble8 1V~fbubble!%.
y

c

n

Substituting fbubble(r ,t)5f0(r )1d(r ,t)5f0(r )
1a(r )sinvt and expanding to second order ind, we find
that the leading order term gives the surface tensions0 in the
traditional false vacuum decay,

s05E
wall

dr@ 1
2 ~f08!21V~f0!#.

The contribution from the linear order ind vanishes after
integration by parts and using the equation of motion forf0.
The contribution from the second order ind is

s25
1

2 E
wall

drH Fa2S d2Vdf2 ~f0!2v2D1~a8!2Gsin2vt
1v2a2J .

Using the differential equation~23! for a ~dropping the
2a8/r term! and integrating by parts, we find

s25
v2

2 E
R2L/2

R1L/2

dr a2~r !.

Substituting

a~r !5
a0

2
$3 tanh2@~r2R!/L#21%

and combining the contributions,

sE
bubble's010.1612v2a0

2L.

There is also the contribution from the initial state,

sE
FV5E

wall
dr@ 1

2 ḟ f
21V~f f !#5 1

2v2a0
2L.

Then, finally, the surface tension is

sE5sE
bubble2sE

FV's020.42v2a0
2L.
d,
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