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Tunneling in a time-dependent setting
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A standard approach to analyzing tunneling processes in various physical contexts is to use instanton or
imaginary time path techniques. For systems in which the tunneling takes place in a time-dependent setting, the
standard methods are often applicable only in special cases, e.g., due to some additional symmetries. We
consider a collection of time-dependent tunneling problems to which the standard methods cannot be applied
directly, and present an algorithm, based on the WKB approximation combined with complex time path
methods, which can be used to calculate the relevant tunneling probabilities. This collection of problems
contains, among others, the spontaneous nucleation of topological defects in an expanding universe, the
production of charged particle-antiparticle pairs in a time-dependent electric field, and false vacuum decay in
field theory from a coherently oscillating initial state. To demonstrate the method, we present detailed calcu-
lations of the time-dependent decay rates for the last two exanj§i@556-282(196)04124-Q

PACS numbegps): 03.65.Sq, 04.62:v

[. INTRODUCTION energy, which can be extracted from an imaginary time path
integral over fields which approach the false vacuum=at
Problems involving quantum-mechanical tunneling in a—it=*o0. In the semiclassical approximation one saturates
time-dependent setting can arise in a wide variety of conthe path integral by a solution to th&uclideanizeyl equa-
texts, such as the ionization of atoms by strong laser field§ons of motion; the corresponding configuration is the in-
[1], pair creation of charged particles in time-dependenstanton. The action of the instanton determines the decay
background electromagnetic fielt-4], spontaneous nucle- rate: I"«e™ Sinstanton
ation of topological defects in expanding univer§g} and The instanton solution describes the nucleation of a
false vacuum decay with time-dependent initial states oparticle-antiparticle pair in the background electric field.
time-dependent potentia[$]. In some special cases, these This can be seen directly by cutting the instanton in half.
systems can be treated by standard instanton or imaginaialf of the instanton solution corresponds to interpolating
time path methods; however, these techniques have limitebetween the false vacuum at—< and a turning point,
applicability, and confusion often arises when one tries towvhich we can take to occur at=0. The turning point con-
extend the analysis to more general time-dependent situdiguration is that of a pair of particles momentarily at rest. If
tions. For a discussion of various difficulties, see, €., we were to continue evolving in imaginary time towards
In this paper we will investigate a collection of general- 7=, then the particles would converge and disappear, leav-
ized time-dependent versions of “standard” tunneling prob-ing the system in the false vacuum again. Instead, however,
lems, where the textbook instanton and imaginary time patfive can continue the solution to real time at the turning point,
methods are inapplicable due to the additional time deperin which case the particles accelerate away from one another.
dence. The models typically have Lagrangians with an exThus the full production process can conveniently be de-
plicit time dependence arising from external backgrounds oscribed by a combination of real and imaginary time evolu-
involve more complicated nonstatic initial states. Their uni-tion.
fying aspect is that they all can be analyzed via a method that For our purposes it is actually more convenient to con-
combines the use of the WKB approximation with solutionssider the preceding discussion in the reverse order. We can
of the classical equations of motion along complex timestart by considering the real time expanding solution and
paths. We will present a straightforward algorithm which canthen consider evolving it back in time. Eventually, we will
be used to compute the relevant tunneling or nucleation ratagach the turning point, at which point we continue the evo-
for such systems. lution to imaginary time. If the particle separation proceeds
To give a concrete example of this method, let us consideto smoothly shrink to zero size in imaginary time, then the
pair creation by a spatially constant electric field. In order totrajectory considered corresponds to a pair production pro-
identify the specific features associated with a time-cess, and its action determines the decay rate. So to summa-
dependent field, it is useful to first review the simple case ofize in a way that is most useful for the proceeding discus-
a static field. This problem, first solved by Schwingé}, is  sion, we look for expanding solutions, which can be
most elegantly treated by an instanton approach. Calling themoothly shrunk to zero size when evolved back along some
state with no particles present the false vacuum, the decagomplex time contour.
rate is determined by the imaginary part of the false vacuum Phrased in this way, it is apparent how to adapt the pro-
cedure to the more general problem of a time-dependent
electric field. We can again look for solutions describing
*Electronic address: esko@theory.caltech.edu expanding pairs, but this time the continuation to complex
TElectronic address: perkraus@theory.caltech.edu time is more involved. Because of the time dependence in
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the problem, we no longer expect that the time contour along [l. TIME-DEPENDENT TUNNELING

which the pair shrinks to zero size is one involving periods In this section we discuss our general approach to tunnel-

of purely real or purely imaginary time evolution; instead, ing in models with explicit time dependence. Our aim is to

the contour will be a more general curve in the complex t'meshow, using complex time contours, how such systems can

plane. Given that we can find Suf:h a contour, we can proceege treated by a natural extension of the standard instanton

to evaluate the action to determine the decay rate. The resyiethod. To start with, we assume that there is an underlying

will be a decay rate with nontrivial time dependence. field theory description of the model under consideration and
By itself, the pair creation problem in a time-dependentihat the system is initially in some metastable state. We fur-

electric field has a long history. It was studied rigorously byther assume that the state can decay via quantum tunneling

Brezin and Itzyksorj2], using Schwinger’s proper time ap- and that the decay occurs through the production of objects

proach. Marinov and Popol3] treated it as a barrier pen- which can be described by a first quantized action. A wide

etration problem and employed WKB methods. Further, avariety of such objects can be described by the action

we discuss in the Appendix A, Audretsph| noticed that the

problem is isomorphic to overbarrier scattering in quantum _ el

mechanics. However, an advantage of the approach outlined S_j At~ a0 HNI=XTHb(x 1], @

above is that it is easily adapted to other problems involving - _

the decay of metastable states via the production of extendezPme specific cases of interest are

objects. Further, it yields an instantaneous pair production

rate with an explicit time dependence, so that one sees a time

modulation in the flux of produced particles. The result for-l-hiS is the relativistic action of a particle of mass and
the pair production rate i[BJ applies only at specific times_. chargeq moving in a time-dependent electric figk{t). As
As an example of adapting our approach to other physica,jj pe discussed in detail, this is the appropriate action for

processes, one can consider generalizing the computation %nsidering pair production due to the electric field.
false vacuum decay in field theory, which proceeds through

the nucleation of bubbles of true vacuum, to include field a(x,t)=4ma(t)x?, b(x,t)=2mp(t)x3.
potentials with explicit time dependence. A particularly in-
teresting source of time dependence arises from expandinghis is the action of a spherical “bubble” of radius with
universes, where it is expected that the expansion gives rigéne-dependent surface tensiofit) and bulk energy density
to the spontaneous nucleation of monopoles, strings, and de{t). It describes false vacuum decay in a field theory from a
main walls. The nucleation rate has been computed for §me-dependent initial state or in a time-dependent potential,
very specific case, namely, de Sitter space, but this is not iif! instances where the thin wall approximation is valid.
fact a time-dependent problem, as the de Sitter geometry is
static. For nonstatic geometries the more general approach ax,Hy=md(t), b(x,t)=0.
discussed above is required.

In the next section we write down an action which is
general enough to treat the various processes we have re-  ds?=c?(t)[dt?—dx?—s(x)(d#%+sin 62d$?)]
ferred to and then give an algorithm by which one can com-
pute the time-dependent nucleation rate of the correspondingt fixed 6 and ¢. Here the choices(x) =sinx, x, and sinhx
objects. In most cases, several steps in the procedure must §iwe closed, flat, and open Robertson-Walker universes.
performed numerically. The simplest case, in which almost
everything can be done analytically, is pair production in a a(x,t)=2muc’(t)s(x), b(x,t)=0.
time-dependent electric field. We perform these steps in Sec. i i ) ) .
3, showing that the production rate takes a compact integral/® then have the action of a circular cosmic string moving
form. A special case of this formula was derived before inin the above metric. The string is located &t #/2 and is
[3]. We review the connection of the problem to the problemcenterEd ak=0.
of above barrier scattering in quantum mechanics. This dis-
cussed in detail in Appendix A. We then study the particular
example of a sinusoidally varying field and analyze the in—rpis  similarly, describes a spherical domain wall in the
stantaneous pair _producnon rates. In Sep. IV we turn to_th%bove metric, again centeredxat 0.
other source of time dependence mentioned above, arising one might question the applicability of first quantized ac-
from the initial state rather than from external sources. Spetion to describe these systems, which are fundamentally field
cifically, we consider a field theory with a local, but not theories. In the electric field example, it is possible to make
global, minimum and take the initial state to be one in whichthe connection rigorous and explicit, as is discussed in Ap-
the field is undergoing coherent oscillations about the locapendix A. We can see no reason why the connection should
minimum. We are able to calculate analytically for small not be valid in the other examples as well.
oscillations and to obtain the leading correction to the decay We now explain how the actiofi) can be used to com-
rate. Some computational details are relegated to Appendigute the spontaneous creation rate of the objects which it
B. Finally, in Sec. V we summarize our conclusions anddescribes. To begin, we should find the classical, real time,
discuss directions for further study. trajectories. The equations of motion are

a(x,t)y=m, b(x,t)=qE(t)x.

This is the action of a massive particle moving in the metric

a(x,t)=4macd(t)s’(x), b(x,t)=0.
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The limits of integration run from 0 t&; simply because that

d |a(x,t)x : k k e ] )
gt = =—J1-x%a’(x,t) +b’(x,t), (2)  gives the entire contribution to the imaginary part of the
Vi=x action. The imaginary part of the action determines the decay
rate:

where the prime denote#dx. For the purposes of tunneling,
the relevant trajectories are those which emanate from a turn-
ing point. For a trajectory(t), the existence of a turning

) . X p(tf):emm[snm_
point at timet; means that the canonical momentum van-
ishes there:
a(x,t)x Notice that_ the decay rate depends on the ttmewhich is
p(tf)z—_2 =0. the end point of the complex time path.
V1-x t=t, Before turning to some concrete examples of our formal-

ism, it is appropriate at this point to discuss the precise
In most cases, this condition will be simpk=0. A nucle- meaning of a time-dependent tunneling rate. One might think
ation process corresponds to a trajectory which smoothlyhat the concept is necessarily vague, since tunneling is an
shrinks the object down to zero size when evolved back inntrinsically wavelike phenomenon, implying that a time
time along a complex time contour. The continuation fromcannot be assigned to the tunneling process with an accuracy
real to complex time occurs at the turning point. Shrinking togreater than the inverse frequency of the wave. We would
zero sizé means thatx=0 in the flat space examples, now like to show that the above statement is misleading and
whereas in curved space it is the physical si€)s(X)  that, when properly interpreted, the time-dependent tunnel-
which is required to go to zero. The condition that theing rate has a precise, unambiguous, physical meaning. For

shrinking to zero size be smooth is most easily seen in thg,e b moses of this discussion, it is sufficient to consider the

flat space examples. Then we require that0 whenx—>'0;. . simple case of a particle impinging on a time-dependent po-

%ential in one-dimensional guantum mechanics. There are
two relevant cases to consider: The incoming state can be a
r[ﬁarticlelike localized wave packet or can be a plane wave. In

either case one proceeds to solve the Sdimger equation to

of the particle trajectork(t) and the antiparticle trajectory
—x(t) will be singular. In curved space a slightly more de-
tailed analysis is necessary, depending on the specific for
of c(t). To summarize, the trajectories of interest satisfy : ;
P(t}) =0, X(t5) =0, X(ty)—c, t;=real, ty=complex, x(t) find a t|me_-dependen_t transml_tted wave. .

—real. The problem is then, given some tirg find an In the first case, since the incoming state corresponds in

initial size x(t;) and complex timet, such that the above the classical limit to a particle with a well-defined position,
conditions are satisfied. one is tempted to inquire as to the exact time at which the

Since x is required to be real whilé is complex, the tunneling occurred. However, there does not seem to be any
easiest way to proceed is to rewrite the equation of motior!seful definition of such a time and certainly no way of mea-
(2) as an equation fa(x): suring one to arbitrary precision since the state is spread over

a distance equal to the size of the wave packet. Thus, in this

case, since one cannot associate a precise time with the pro-
=—a'(xHOV'*=1+b'(x,)t". (3  cess of tunneling, a time-dependent tunneling rate is not ex-
pected to be physically meaningful unless suitably averaged
over some duration.

Contrast this now with the case of an incoming plane

d

dx

a(x,t)

W1

The conditions ort(x) become

a(x,t) wave. From the transmitted wave one can compute a time-
p(ts)= = =0, t'(0)=0. dependent probability current which can, in principle, be
Vel t measured to arbitrary accuracy. The current, measured in a

region far from the potential, represents the average number
The advantage of this form is that it is straightforward toof transmitted particles passing through one’s detector at a
solve Eq.(3) numerically, even if it is not possible to do so time t; of the measurement. Although one is not able to
analytically. Then we can search for an initial coordinatespecify precisely when a detected particle actually tunneled,
value x¢=x(t;), which leads ta’(0)=0. Having found an the time-dependent tunneling rate is nonetheless
appropriate tunneling trajectory(x), we can proceed t0 meaningful—and measurable—even over short time scales.
evaluate its action. Again, it is easiest to change variables ifpe tunneling rates which we compute in this paper corre-

Eq. (1), yielding spond to the latter situation, and our time-dependent tunnel-
% ing rates are then to be interpreted as the increase per unit
s:f dx[ —a(x, t(x))Vt'?(x) — 1+ bx,t))t’ (x)]. time of the average number of produced particles at time
0

It should in particular be clear from the above discussion that
the timet; is not at all related to any concept of a “tunneling
time,” but simply characterizes the time dependence of the
YIn the electric field casex denotes the position of a particle probability current of the transmitted wave. In this way we
whose antiparticle is located atx. x=0 thus corresponds to zero can see that there is no ambiguity in the interpretation of the
separation. guantities which we calculate.
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lll. PARTICLE CREATION IN A TIME-DEPENDENT x=m/ qE
ELECTRIC FIELD

As a concrete illustration of the method discussed in the
previous section, we will compute the probability for produc-
tion of charged particles in a time-dependent electric field.
As noted previously, a rigorous approach to this problem
involves starting from the second quantized field theory. For
instance[2] analyzed the pair production in an alternating
electric field through a Schwinger proper time approach. An FIG. 1. A trajectory for half of the tunneling process.

alternative calculation could proceed through a Bogoliubov . .
transformation relating the “in” and “out” asymptotic The particle comes to rest a0 after having traveled a

states; this approach is outlined in Appendix A. However, aglistancedx=m/qE. This portion of the patlione-quarter of
we also discuss in Appendix A, the same results can be oghe C|_rcle de_scrlpes half of the tun'nel_mg process. The action
tained from the more intuitive first quantized approach whichfor this portion is found by substituting the trajectaxyr)
we consider in this section. Into
We begin by considering the simple case of a static field.
That a (spatially and temporally constant electric field S=i J’O d
. . . . T
should be capable of creating charged pairs is evident on —miqE
energetic grounds, since the requisite enengyc2needed to
create the pair is supplied by the electric field, if we separatgvhere an overdot now meaxiédr. This yields
the particles by a distancen®%?/qE. The creation rate is o,
proportional to the probability of the particles, initially lo- S rm
cated at the same point, to tunnel to this separation. Our 4qE -’
starting point is the spin-0 point particle action in the pres-
ence of a constant electric field: The full tunneling process is described by a semicifskee
Fig. 2.
. Whereas the part of the trajectory betwees O and
S=- f difmy1-x°—qEx]. (4 x=m/qE depicts the creation of a particle with chagethe
part betweerk=0 andx=—m/qE depicts the creation of
For simplicity, we have taken space to be one dimensionakhe corresponding antiparticle of charga). We see that the
For ease of comparison with the discussion in Appendix A, itantiparticle trajectory is obtained from the particle trajectory
is actually simpler to integrate by parts and use the action by g——q, x(7)——x(7). It is easy to see that this path
yields a solution for the equation of motion and has the same

x=0, T=-m/qE

2

my\/1+ +qEmX(7)

dr

- : action as the particle trajectory. The total tunneling action is
s=—f dt{my1-x*+qEtX]. B thus P jectony J
(This amounts to a different gauge choice for the gauge po- s =i77m2
tential A, .) The equation of motion is o™ 2qE
d X The rate of pair creation is found by squaring the tunneling
m at —|=¢qE. amplitude:
t]J1-x?

= |e—|m[s[0tal]|2: e~ ™MIQE.
The solution is

The exact result obtained by Schwind@t is

X(t):X(to)"”E \/1+ E(t_to)‘“j((;())l2 E)? o (-1
qE m \/1—5(z(t0) I‘—(q ) E (-1 @~ NTM?/qE,

a (277)3 n=1 n?

1
\/1—5( (to)] x=-m/qE x=m/gE

Since we are interested in a tunneling process, we continue
these trajectories to imaginary tinbe> —i 7. Let us consider

the particular trajectory for whichy=—m/qE, x(7y)=0,
andx(7o)=ic. This yields the circle

2
qE) ’ x=0, T= -m/qE

x*(7)+ 2=

a quarter of which is shown in Fig. 1. FIG. 2. A trajectory for the full tunneling process.
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Now t, is determined by requiring(t,)— . For a nonsin-
Xx=xpt=t gular E(t), this impliesA(ty)=*=im/g. We choose to set
A(ty)=—1im/q.
We will now write the action in terms o4(t) and see that
it takes a simple form. Substituting the expressionxanto
Eq. (6) gives

complex time

t
S=-— mJ "dtyTT A% (D) m2.
to

Now we change the integration variable fromto v=
—gA/m using

mdv
t>=0.c= T dt= ———

qE(t(v))’
wheret(v) is found by inverting Eq(7). Then,

FIG. 3. A trajectory for half of the generic tunneling process. S m? fo V1+v? im2 JWZ 0 cogd
- — O —77—~—F—~— — NN
_ o i Et(v),ty) g Jo E(t(i sing),t;)
The WKB result gives a good approximation when
mm?/qE>1. Finally, we note that after being created, theThis is the action corresponding to the creation of the
particles move along hyperbolas, as is seen by continuing théhargeq particle. As before, the action for the antiparticle is
trajectories back to real time. obtained by replacingj— —q, x(t)— —x(t), which yields

We now generalize the analysis to treat a time-dependenhe same result as for the particle. Therefore, the pair cre-
electric field. As discussed in the previous section, we expedition rate is given by

that this can be accomplished by finding a complex time path
connecting the initial and final positions. [(t;)=exp[—4 Im[S(t;)]}.
In particular, we will look for a path as shown in Fig. 3,
which describes the creation of a particle at titmet;. The  To recapitulate, the essential trick that was used was to map
vertical axis no longer represents purely real or imaginarythe potentially complicated complex time contour into the
time, but rather some more general complex time directiorcomplexv plane, where it always takes the simple form of a
(such that; is rea). At t=t; the particle is at resk(t;)=0. line from O toi. This simplifies the problem considerably,
At t= 7, the velocity should be singulax(r,)—, so that since it is no longer necessary to try to find the complex time
the trajectory for the antiparticle can be smoothly joined ontacontour. We only need to know its image in thelane, and
the particle trajectory. Both of these conditions were, ofwe do.
course, satisfied in the static field case. The remarkable as-
pect of this problem, as we shall see, is that these conditions A. Example of time-dependent pair creation
allow us to determine the tunneling action without having to
find the complex time path explicitly.
The action, after integrating by parts, has the form im2c3 fw,z co2d

q 0 do E(t(ic sind),t;)

Having obtained the general reult

®

Sz—f dtfmy1—Xx2—qA(t)x], (6)
for the action along the complex time path, we shall now

where we have defined evaluate the pair creation rate

4
t — - —
A<t>=—f dUE(), @ F(tf)—exp{ - |m[$(tf)]]
t
in an example case of a time-dependent electric field. But
first, we check the formula with a constant electric field
E=E,. Now the denominator in Eq8) is a constant, and

The equations of motion then yield

X(t)= — gA(t)/m what remains is an elementary integral; so we easily obtain
J1+g2AZ(t)/m? the standard WKB result for the pair creation rate
We have set the conserved momentoy dL/ox to zero, SO I'=expl — mm?c® 9
thatx respects the conditior(t;) =0. Integrating, - hQEy |-

t A(t’
x(t)=—ﬂ dt’ 2(2) 2~|—x(tf).
m Ji V1+g7A<(t")/m 2In this subsection, we restofeandc.
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1.151

1.1+

1.051
FIG. 4. An example plot of the time modula-

tion functionl(t;) in the action.

0.951

x axis = omega * t

5 i ; ; i : :

This pair creation rate is generally truly small. Even for thewherel(t;) is a modulation factor which characterizes the
strongest electric fields obtained in a laboratdey~10''  time dependencicompare with Eq(9)]. We find that
N/C [8], the exponent is still enormous: Usiog=e~10"1°

C, m&~mg?~10° eV~10""* N m, c~10° m/s, i~10* 22 (1 I Jrixt) +u(at)
J s, we get a vanishingly small production rate I(ty)= f dx ,
m Jo r(x,ts)
I'~exp{— 1C°}.

— 22 __ o
Now let us consider an example of a time-dependent elec- u(xtp) =1+a’ = siroty,

tric field, an oscillating strong electric field

r(X,te) = JU2(x,t;) + 4a°x°sirf wts,
E(t;) = Eocosot; . (xt (x.tr) f

Note that no magnetic field is required to satisfy the Max- __ Moc
well's equations, only an alternating uniform current density. a= qEy
This case is different from pair creation in the background of
an electromagnetic plane wave, which was considered orig
nally by Schwingef7] in the sense that the intensity of the
plane wave is time independent.

We first findv andE(t(v),t¢):

This integral can be evaluated numerically, and we show in
Fig. 4 a plot ofl(t;) for a=1(w=qEy/mc).

We can see thak(t;) is a periodic function of time. It
reaches a minimum value at timeg;=0+ns and a maxi-
q [t qE, mum at wt;=m/2+nm. The dependence of the minimum
v(tt)=— f dt’E(t')= — (sinwt— sinwt;) and maximum values df on the frequency turns out to be

m Ji Me interesting:
At zero frequency, the minimum value of the time modu-

and lation function is equal to 1. The maximum value becomes

mac Sind 5 infini'te: At small fre'ql.Jencies the decay ra.te is completely

E(t(ic sind),t;)=E, \/1_ ———— +sinot;| . dominated by the minimum value of the action. Thus at zero
aEo frequency the decay rate reduces to that of the static case, as

it should. As the oscillation frequency increases, the maxi-
mum and minimum values decrease monotonically and both
seem to approach the asymptotic value zero. This means that

After changing the integration variable x&=sin 6, the action
can be written as

.5 3 I~ the (averagg pair creation ratencreasesas the oscillation
_me f dx 1-x ) frequency of the field increases. Finally, the action becomes
aE Jo  Vi-[i(mwc/qEy)x+ sinwt]? so small(and the rate so highthat the WKB approximation

. . ) ) . ) _ is no longer valid.
_Fmally, isolating the imaginary part of the action, we find the | gt us try to check the asymptotic behavior of the maxi-
instantaneous pair creation rate to be of the form mum and minimurr(see Fig. 5 For the minimum, this can
2 3 be done rigorously. Setting swit;=0 simplifies the integral
F=exp{ _ I(tf)] ’ and we can identify it in terms of complete elliptic integrals.
hqEq We find



54 TUNNELING IN A TIME-DEPENDENT SETTING 7413

MAXIMUM AND MINIMUM VALUES OF THE ACTION

FIG. 5. A plot of the minimum and maximum
values of the action as a function of frequency.

41 1 a bubble nucleation occurs and describe the resulting bubble
lmin=—= \V =2 +1{ K - : trajectory. It is also important to determine the state of the
T a a2 2 2 . L . . . .
Jai+1 Va®+1 field inside the bubble—we might imagine that the oscilla-

. , tions about the false vacuum outside the bubble feed into the
This result was also found if8]. As w—= (a—), We gét  jyiarior of the bubble, causing the field there to oscillate
about the true vacuum. By solving the field equations, we
.0 will see that such oscillations are actually confined to a re-
gion near the bubble wall, so that the interior field in the bulk

for the leadi totic behavior. For th . | of the bubble is frozen at the true vacuum.
or the leading asymptotic behavior. For the maximum value, - ,q begin by considering the simplest case, where the

the analysis is a bit more complicated, but we find the SaAMBeq is initially located at the bottom of the leftmost well,

leading asymptotic behavior #(t)= ¢¢. This, of course, is the case considered by Cole-
Ina man [9]. Our strategy will be to look for an expanding
I max~ — —0. bubble solution which can be shrunk to zero size when

evolved back along a complex time contour. This problem is
most efficiently solved by utilizing the S8,1) symmetry of
IV. DECAY OF A FALSE VACUUM the theory. However, we will later be considering initial
) ) . . states which oscillate coherently and break thé 50 sym-
We now turn to another problem involving tunneling with metry to S@3). Therefore we will discuss the solution in a

nontri\(ial time_ dependence, whose treatment requires me'_d?anguage which explicitly uses only the latter symmetry.
ods slightly different from those we have discussed to this

point. Let us consider a scalar field
V(o)
S= f d*X[3,$3*d— V()] (10)

and take the potential to be of the form shown in Fig. 6.

We take the initial state to be one in which the field is
concentrated in the well centeredgt ¢; . The field will be
taken to be constant in space, but can have a nontrivial time
dependence. In particular, we have in mind semiclassical-
looking states in which the field oscillates coherently in the
well. Such a configuration, though stable classically provided
the amplitude of oscillation is below the barrier, is expected
to be unstable quantum mechanically. The presence of the
well at = ¢, signals a decay process whereby the field can 0 \_/
tunnel through the barrier. This process is described by f
bubble nucleation, meaning that regions of field concentrated o
at ¢, spontaneously form within the initial configuration and
rapidly expand. We would like to know the rate at which FIG. 6. Potential.
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For simplicity, we will work in the thin wall approxima- Tm(t)
tion, which is valid provided the difference in energies be-
tween the true and false vacya=\V(¢;)—V(¢,), is suffi- s HR,
ciently small. The bubble solution then has the form of a
spherical region of true vacuum separated by a thin wall
from the outside region of false vacuum:

by for r<R(t),

Hr.)= b¢ for r>R(t).

11

The trajectory of the bubble walR(t), can be determined
from energy conservation. Consider the energy in the region
r<R. There are two contributions to the energy. The interior 0 Re(t)
of the bubble contribute&(inside=%mV(¢,)R®. There is
also an energy proportional to the area of the bubble wall
associated with the field gradient in passing from true

vacuum to false vacuung(wall) =4mwoy,R?/\/1—R?. Here

FIG. 7. Time path for bubble nucleation.

oy is the energy density of the wall: 3=J’ At Lpuobis™ 37V (1) R%]
Uozf lldr[%(¢r)2+v(¢)], :—f dt[4mooR*V1—R?— 3 mpR3].
wal

The action can be put in a useful form by inserting the equa-

In the next section we will compute its value from the field tion of motion(12) and changing variables :

equations. The energ(inside+E(wall) must be equal to

the energy present in the region before the nucleation of the pp )
bubble:E,=37V(¢¢)R3. So s=f dR RZ\/(?p()) R?—(4mag)?

4rrooR? 4 RS R,\?2
=~ $mpR*=0, (12 =de ho 1—(—0) .
/1_ R2 3 R
with The action has an imaginary part coming from the part of the

trajectory 0<KR<R,, when the bubble is tunneling:

po=V(¢s)—V(dy).

4 R Ro\? 27mlal
Im S= 3p°J "dR R (—0) 1=
The trajectory is then 0 R 4pp
The nucleation rate is then
R(t) = VR3+12, ! ' !
7T2 4
with F%e‘z'm[s]=exp{ — 5 PoR }
30y which is Coleman’s result.
RO:E- (13 Now let us generalize to the case where the field is ini-

tially oscillating around the false vacuump= ¢;(t). In Sec.
For t>0 this describes an expanding bubble solution. TdV A we will study the bubble solutions with this initial con-
consider tunneling, we evolve the solution back to the turndition, and we summarize the results here. For small oscilla-
ing point att=0 and then try to shrink the bubble to zero 1ONS #1(t) = ¢;+a(t), the bubble looks like
size along a complex time contour. In the present case thia {r.)
bubble. '

step is trivial—the contour displayed in Fig. 7 does the job.

It remains to determine the amplitude for the tunneling 0N for r<R—A,
process, and for this we require the classical action. The R
bubble has a Lagrangian ~\ ¢t T exd(r—R)/AJa(t)  for R-A<r<R,
Lpubpie= — 4mogR2\1—R%2—$V( ) RE. ¢e(t)  for r>R,

(14
Since we wish to compute the relative probability of bubble

nucleation versus remaining in the false vacuum, what weavhereA is small compared to the typical size of the bubble
actually want is the difference in action between the bubbleR. In other words, the field oscillations only penetrate a rela-
solution and the false vacuum state. This is given by tively small distance into the bubble; the bulk of the bubble’s
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interior simply sits at the true vacuum as before. As we have Now that we have obtained the bubble trajectory, we turn
already mentioned, although one might have expected thi the evaluation of the decay rate. As before, the decay rate
bubble to leave a state oscillating about the true vacuum, wis found by integrating the action over an imaginary time
see that this is not the case. contour running from some initial timg, to ty+iR,, where
Now we invoke the same energy considerations as beforéhe bubble shrinks to zero size. The action which is to be
Since the field oscillations inside the bubble are localizedntegrated is the difference between the bubble action and the
near the wall, the energy inside the bubble is essentialljalse vacuum action. The bubble action is
given by the true vacuum configuratiah . Thus

Epusbidinside)= 37V () R. Soubble= — f dt

The bubble wall has the energy

4P R2(t) 1~ R2

4
am 3
47 rPIgR2 T3 V(dR }

Epuppidwall) = .
1-R? where
where

_ opuPPe= — fwa”d H{ 3 Boubbid >~ 3(Phuppid > — V( Poubpid
o= fwa”d {3 (bubbid>+ 3(bhubbie >+ V(bbupbie -

___bubble_ d 2
o _— . . =0g I Poubble
og is time independent. The initial energy is also divided wall

into two contributions o
The false vacuum action is

41
4mo 'RP1-R*+ —

3

Einiga (iNside)= § mR3[ 3 (¢h¢(1))2+ V(s(1))]= 4 mpE R
and SFV:_f dt

47op'R? where
Einita(Wall) = —,
1-R?

FV
PL R )

o' =0t~ [ ar gt
where wall

AE fwa”dr[%(¢f<t>)2+V(¢f<t>)]. pL'=pE'~ &7

. . The action to be integrated is thus
Conservation of energy then requires

4
4WER2_ 4 peRI=0 S= —f dt| 4o (1)R?(1) V1—R?— = pL(t)R3},
V1-R? (18
with where
O_Ezo_téubble_ O_EV’ (15)
=oe— | dr[ e b1, 19
pe=pEV— V(). (16) o (t)=og fwa” [ Pbubble P71 (19
We emphasize thatz andog are constants. This fact means _ ‘5 20
that the complex time contour relevant for tunneling runs in pL(t)=pe—o5. (20

the purely imaginary direction, just as in the static case. ) L
However, we expect that this behavior is an accident of thé\ crucial point is that althouglre andpg are constantsy,
analysis in the limit of small oscillations; more general, ~and pL are time dependent—their time dependence deter-

and o will acquire time dependence and the time contour™MiNes the time dependence of the decay rate.
will be a more complicated curve in the complex time plane., '€ calculation has thus been reduced down to perform-
Now we define ing the integrals foro , p_, andS. These are straightfor-

ward to do; they can be done analytically for small oscilla-
30 tions about the false vacuum, as shown in Sec. IV B,
E' although in the general case numerical integration is re-

quired. The result is an expression for the time-dependent
so that the trajectory is decay rate:

R(t)= VR§+ (t—tg)?. (17) T (to)~exp{—2 Im[S(tg) ]}

RO:
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A. Structure of the oscillating bubble (1)

To analyze the case when the field is initially oscillating
around the false vacuungi= ¢:(t), we first need to deter-
mine how the structure of the bubble is altered. We will now
present an example calculation of the bubble solution
bounnid T >1), Which interpolates between the true vacugm
and the oscillating initial state;(t). We shall refer to this as
the oscillating bubble.

The field equation that we need to study is

y 1 2 41\ dv
bz (1P0) =~ g5

o
As an example, we consider the potential discussed by Cole-
man,
A € FIG. 8. Picture of the qualitative behavior of the static solution
V(¢)=5 (¢*—a%)2+ — (¢-a), q
2 2a éo(r).
wheree>0. The true vacuum is located at Now we try to find a time-dependent solutiég, ,pdrt),
which reduces to the coherently oscillating field
~—a— € +0() ¢:(t)= ¢, + aq Sinwt about the false vacuum as-«~. We
b- 8\a’ (€9, assume that the amplitudg of the oscillations is small. The

frequencyw of the oscillations is given by
where the potential has the valté¢_)~ — e+0O(€%). The

' d2v 3e
false vacuum is located at W= () =ANaP— 5 1 O(eD). 22
do¢ 2a
€
~g_ 2
$.~a gnas +0(e€), We make the following ansatz fapy,,,{r,t):
whereV(¢,)~0+0(&). Poubpid T+ t) = o(1) + a(r)sinwt.

true vacuum, the structure of the bubble is obtained from th ubstituting thi_s ansatz ".“0 the _fuII field eq“?‘“"” _and gsing
static solutio,nqs (r) of the field equation: e fact thate, is the static solution, we obtain a linearized
O -

differential equation for the profile functioa(r):

In the standard scenario of decay from false vacuum t%

dv

” 2 r_ 2
¢O+F¢O_d¢ (¢O) (21) a//(r)+§a/(r)+ d°v

w?— ag? (éo)
¢ interpolates between the true vacuwh inside the \wjhoyt knowing the exact form of the static solutigp, we
bubble and the false vacuu#, outside the bubble, with the . «iill proceed by using its known asymptotic properties.

nontrivial r dependence concentrated in the bubble wall;, {he region outside of the bubble> R, ¢, reduces tas
Without going into the mathematics of the exact form of the, 4 5o GZV/dqbz)(¢0)—>(d2V/d¢2)(q,5+)0. We see t+h’at

solution, we recall that the qualitative behavior of the solu-g;a the frequency? is equal to @2V/d¢2) (4., ), the pro-
tion is as depicted in Fig. 8. file function a(r) must be constant in this region. So

The radius of the bubble B=30/¢ [see Eq(13)], and r,t) correctly reduces to the oscillating initial con-
the thickness. of the bubble wall is of the ordel~1/u, lﬁf’é’;ﬁ%‘;ﬁo'n)@(t) o region: g

where

a(r)=0. (23

Doubbid I,t)— @4 + agSinwt as r>R.

[d?V
M dTﬁ(ia)Ma\/X' In the region inside the bubble;<R, ¢ reduces to

the true vacuum value¢_. Thus @°V/d¢?) (o)
An approximation to the static solution in the vicinity of the —>(d2V/d¢2)(¢_). Using
wall can be obtained by dropping the termr(26, in the )
static field equatiorisincer ~R>0) and dropping the small d_V (¢ )=ara’+ £:w2+ ﬁ
constant terme/2a. The solution of the approximate field de? "~ 2a’ a’

equation is the “kink” _ _ _ .
and denotink®’=3e¢/a?, we see that the differential equation

$2PP"r)=a tanhu(r —R), (23) reduces to a familiar equation

\I/:vigergeﬂ:a\/f. Its behavior is similar to that depicted in a”(r)+§ @' () —k2a(r)=0.
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The solution fora(r) is, a(r)

a(r)=A SinL(rkr)_ @y r=R+L/2

@o
We fix the constan by matchinge(r) with «y atr=R: _l 2 tanff((r—R)/L]-1}, R-L/2sr<R+L/2,

= — kR _ aOrEe“*RVA, r<R—L/2.
% sinhkR) (24

The solution fora(r) tells us that the oscillations(r)sinwt

decay to zero inside the bubble, in a region of thickness B. Calculation of the bubble nucleation rate

A=1/k. Thus there are three scales that characterize the

structure of the oscillating bubblgl) the radius of the

bubble R~3a/€; (2) the thickness of the bubble wall

~1/(ay\); (3) the thickness of the region inside the bubble

where the oscillations decay~a/(3+/€). The relative sizes

of these scales are

Now that we have found the oscillating bubble solution
doubnid 1), We can proceed to calculate the instantaneous
bubble nucleation ratE (ty) ~{2 Im[S(ty)]}, wheret, is the
time immediately after the bubble has nucleated.

First, we need to find the quantities andpg that appear
in the equation of motion of the bubble. They are

éNa_\/Eﬁo as €—>O, O'E%O'O_O.42a)2a'gl_,
R (0] (25)
pg~€+ %wzag.
L e
A az\/xﬁo as e—0. For some calculational details, see Appendix B. Sioge
andpg are constant, we could use energy conservation which
Thus gave us the trajectory of the bubkl€7):
L<A<R. R=JR5+ (t—ty)?,
Also’ WhereR0:30'E/pE
For bubble nucleation, we need a time path which shrinks
KR~ 0o S1 the bubble to zero radius. Thus the time path has an imagi-
Je = nary segment
Hence the solution for(r) can be rewritten as t=to+iVRG—R?
(r—R)/A for R<R,. The above branch choice gives the correct expo-
a(r)~ag T € nential behavior for the nucleation rate.
To calculate the imaginary part of the action, it is first
to a good approximation. convenient to divide the action18) into two parts:

Finally, we would like to obtain at least an approximate S=S;+S;, where
solution fora/(r) in the bubble wall regiom~R. We do this
by replacingg(r) in Eqg. (23) with the approximate solution _ to 5 5 4 3
atanhu(r—R) and dropping the term (&)a’(r). Further, s dt) 4mogR°V1-R"~ 3 peR
we approximate the frequen¢g2) by w?=4xa?. Then Eq.

otiRg

(23) reduces to and
a"(X) + o a(x)=0 o 2 o [RHH2 o "2
costx ' S = _dt{ 47R°V1-R dr( bbbl #7)
tot+iRg R-L/2
wherex= u(r —R). This has the solution 4r .
o R3¢2]
3 i

B
a(r)=§{3tanﬁ[,u(r—R)]—1}.
For the first termS,, the calculation proceeds as in the

Since a(r)—B in regions r=R, where we know that 'Static” case. The resultis
a(r)=ag, we setB=qy.

To summarize, we have found an approximate solution
for the oscillating bubbledy, ppidr,t) = ¢do(r) + a(r)sin wt,
where ¢(r) is the solution in the static case, modified by
small oscillations with a profile functior(r) given by For the second term, after a bit longer calculation we find

w? 4
ImSo=75 peRo-
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5 ) (20Rg)? the quantum nucleation of defects in an expanding universe.
|m31~aoW2Ro[ 35 T10:84,(20Ry) The form of the expansion can have an important effect on
the resulting distribution of the defects. Consider cosmic

. string nucleation, for instance. The strings nucleate with a
+2l2(20Rg)]cog 2wtp) | . size equal to the horizon, or inverse Hubble constant, which

thus also sets the scale for the duration of the complex time

(We have used. ~2/w and dropped a negligible subleading evolution. If the expansion rate of the universe varies appre-
term) The functionsl (2wR,) are modified Bessel func- ciably on this time scale, then the nucleation rate will depart

tions. The total instantaneous bubble nucleation rate is theffom what a naive quasistatic analysis would indicate. De-
pending on the cosmological model, the resulting distribu-

(2wR,)? tion of strings is potentially relevant.

16 To illustrate another source of time dependence—that
arising from initial conditions, rather than external

) sources—we considered the problem of false vacuum decay

2
F(to)wexp[ - pERg— ag’ITZRS

+[1.681(20Ro) + 3 1,(20Rg)]cog 2wto) in field theory, where the initial state consists of coherent
field oscillations about the false vacuum. Again, instanton
The decay rate is oscillatory, with the leading correction tol€chniques are not directly applicable to this system. Al-

the static decay rate coming from the oscillatory term in thethough the analysis was rather involved, we were able to

exponent. Recall th&,w~radius of the bubble/thickness of obtain an expressiqn fqr the time-dependent decay rate !n the

the bubble wall, and s®R,w>1. Thus the leading order case of small oscillations. Of course, to see large time-

correction is of ,the ordebszRZez.‘”RO/ZwR - This is much dependent effects one must allow for large oscillations, but
0'*0 0

) . . .this would require a rather intricate computation which we
larger than what one might have anticipated. However, this i : .
. ; ave not attempted. But again, we stress that the steps are, in
reminiscent of what happens when a particle tunnels through . ~. .
principle, straightforward.

an oscillating barrier. Biker and Landauer showed.0]
that the tunneling particle absorbs quanta from the oscillating
barrier; the net effect is that tunneling becomes easier. In the ACKNOWLEDGMENTS
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APPENDIX A
V. CONCLUSION
In this appendix, based on Ré#], we discuss how the

In this paper we have presented a rather general approagioblem of pair production in a homogeneous time-
to treating time-dependent tunneling problems and have ilgependent electric field is related to overbarrier scattering in
lustrated the method with some concrete examples. Throughgnrelativistic quantum mechanics; this connection is the ba-
the use of the WKB approximation, we found that we couldsis for the first quantized approach presented in Sec. Ill.
reduce such problems to solving classical equations of mo- \ye start from a relativistic field theory formulation, in

tion along complex time contours. Even when such equationghich a charged scalar in an electric field has the equation of
of motion are analytically intractable, we have shown thatygtion

they are amenable to straightforward numerical analysis. The
standard approach to tunneling problems in field theory, us- {(3,+igA,)(*+igA*)+m?}¢$=0. (A1)
ing instantons, is seen as a special case of the complex time
method. In particular, the familiar procedure of evolving In the canonical quantization approach, we seek “natural”
along the imaginary time direction is valid when there is nomode solutions of EqA1) with suitable asymptotic proper-
nontrivial time dependence in the problem, but more generaies, which we then use in the oscillator expansion of the
problems require more general complex time contours. field operator to identify the asymptotic states. If we consider
The most straightforward and elegant application of ourthe background of a classical time-dependent homogeneous
dependent slectic fied, As cisoussbd proviously, this pronc St TEIE=E(E, itis convenient [ take the gauge
lem has been analyzed by a number of workers over thghmce A= (A%A)=(0,A(1),0,0, where — A(t)=
years by a variety of methods; we derived a slightly more_f dt E(t). Then we can use the separable ansatz
general result than had been previously been obtained, but 1
our main interest in the problem was as a prototype for more b= ——ap fﬁ(t)eiﬁi
complicated time-dependent systems. The qualitative fea- (2m)
tures of the electric field problem carry over to these sys- ) , , ,
tems, the only difference being that several steps must b the field equation, to reduce it to a time-dependent gener-
performed numerically rather than analytically. alized oscillator equation
As an example of an interesting process which can be . )
tackled by the methods developed here, we mention again fﬁ+wﬁ(t)fﬁ:0’ (A2)



54 TUNNELING IN A TIME-DEPENDENT SETTING 7419

where - w{(t)=m"+[p,—eAN)]*+py+pz=u’+[py ()
—eA(t)]“. In addition, the relativistic Klein-Gordon scalar
product reduces to a simple form

(f1,F2)=i(f§ T~ 11y (A3)
Equation (A2) is identical to a nonrelativistic time- to
independent Schainger equation ®
¥ +K*(x,E) =0, .
via the identifications b
tex, fzed, (A4) Re(t)
w%(t)=,u,2+[px—qA(t)]2<—>k2(X,E)=2m E—2mV(x). FIG. 9. The integration contolE.
(A5)
] and the RHS reduces fast—«)
Also, the scalar produdiA3) can be seen to match with the
inner product for wave functiong, . If we make the more 1 o o
precise identifications — e 95 L Te kX,

%p
/.,L2<—>2m E, (AB) . . ) .
We see that the analysis of the oscillator equat#®) in the
[p— GA(t) ]2 —2mV(x), (a7)  field theory picture exactly corresponds to an overbarrier

scattering problem in a quantum-mechanical picture, with
we notice that in guantum-mechanics language we must takée reflection and transmission coefficients being related to
E>0 andV=0. This suggests that we are dealing with athe Bogoliubov coefficients by
guantum-mechanical overbarrier scattering problem.

To complete this connection, we first outline the pair pro- Bg
duction calculation in the field theory picture. If we switch IRI= i
the electric field on in the far past and off in the far future,
the gauge potential is asymptotically constakt) — Ao
ast— *. Then the oscillator equation has two natural lin- |T|=|—].
early independent solutiorfd™°“ with the asymptotic prop- “p

: in,ou i in,ou f
erties f5 ‘(t)—>e>§p( g ), t—=*e. These give tWO  py4 e averaged pair production probability is
bases for the oscillator expansion of the field operator, cor-

responding to the “in” and “out” Fock spaces, as in a quan- I'=|R2.
tum field theory in curved spaddl]. In particular, the defi-

nition of an initial vacuum state is different from a final If the electric fieldE(t) is not very rapidly varying, we

vacuum state; this gives_ rise to particle proc_duction. To COMean simplify the problem further with the use of WKB ap-
pute the particle production rate, one must find a B°9°|'Ub°‘broximation. We use the WKB solution of the oscillator

transformation which relates the two bases: Schradinged equation
fi= agf 2 Bt (A8)
f~exp[—if w dt]eexp[—if k dx}. (A9)
Then the time-averaged pair production probabilityis
given by

The treatment of semiclassical reflection above a barrier re-
2 quires an extension of the WKB methfitl]. One method is

to first find the complex turning points off the real axis where

w~k=0. Then the leading contribution to the reflection co-
To see the connection to the quantum-mechanical scatterirgfficient can be found by computing the integfal dt along
problem, we first rewrite Eq(A8) as a complex time contou€, traveling from some initial time

t, on the real axis to the closest complex turning pojrand
fout, & f*out:i in back(see Fig. 9.
P

@ p a; p- This procedure yields the reflection coefficient

Then, asymptotically, as— —, the left-hand siddLHS) 2 _
reduces to |IR|*=exp —2Im K dt;. (A10)
efiwg“‘ur ﬁ el wgui_)efikx_’_ R dkx Altematively, we can.derive the expo'nent of the WKB wave
ap function (A9) by starting from the action
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Substitutin r,t)=o(r)+ 6(r,t)= do(r
S=- J dt{my1-x*—qA(t)x} (A1l)  +a(r)sin a?t and expa(rﬁ]l()jui%bglje(to )se(f)on(d)ordér &)1 wgofgn()j
that the leading order term gives the surface tensipim the
for the relativistic charged particle in the background electrictraditional false vacuum decay,
field (using the same gauge choice as befotésing the

equation of motion Uozf dr[3(g)>+V(eo)].
wall
v= X q_A+p The contribution from the linear order i vanishes after
1—x m X integration by parts and using the equation of motiondggr

The contribution from the second order dis

d2v
a2<w (o) — @?

and substituting, gives

The WKB wave function(A9) is e'S as expected. Therefore + wzaz]-
we can use the one-particle action to calculate the reflection _ _ _ '
coefficient (A10); this is the basis for the first quantized Using the differential equatiori23) for « (dropping the

+(a')?|sirfwt

analysis of the pair production rate presented in Sec. lll. 2'/r term) and integrating by parts, we find
w2 [R+L2
APPENDIX B o= dr a?(r).
2 Jr-Lr2

We now calculate the quantities: andpg that appear in
the equation of motion of the bubble. The energy density
is

Substituting

. a(r)= 2 (3 tanR[(r—R)/L]—- 1}
pe= (D 12+V(i(1) V() 2

Z%wzagcoszwt-f-V((bJr)

1 d?v , o2PPlEC 0+ 0,16 w?adL.

+ E W (¢+)a08|n2wt+ €

and combining the contributions,

There is also the contribution from the initial state,
1.2 2
=sw ant €. .
e UE":f dr[3¢2+V(¢p)]=Lw?all.
For the surface tension, we first need wall
Then, finally, the surface tension is

bubble_ 1. 2.1 41
— 1 +1 + :
OE Jwa”dr{z(d’bube 2Pbubbiet V(Poubbid } o= oROble_ G FV_ 0420202 .
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