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Hyperextended scalar-tensor gravity

Diego F. Torres* and Héctor Vucetich
Departamento de Fı´sica, Universidad Nacional de La Plata, C.C. 67, 1900, La Plata, Buenos Aires, Argentina

~Received 27 March 1996!

We study a general scalar-tensor theory with an arbitrary coupling functionv(f) but also an arbitrary
dependence of thegravitational constant G(f) in the cases in which either one of them, or both, do not admit
an analytical inverse, as in the hyperextended inflationary scenario. We present the full set of field equations
and study their cosmological behavior. We show that different scalar-tensor theories can be grouped in classes
with the same solution for the scalar field.@S0556-2821~96!00424-9#

PACS number~s!: 04.50.1h, 04.20.Cv, 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

Scalar-tensor theories of gravity have an interest
physical embodiment which makes them a natural gene
zation of general relativity~GR!. This provides a convenien
framework for the study of observational limits on possib
deviation of Einstein’s theory, making them a profitab
arena for cosmology.

The archetypical and best known case of scalar-ten
theory is Brans-Dicke~BD! gravity @1# where there is a cou
pling functionv(f) equal to a constant. More general cas
with more complicated couplings have also been studied@2#.
In any case, in order to evaluate the cosmological scen
and to test the predictable force of any scalar-tensor theor
is necessary to have exact analytical solutions of the fi
equations. Once having these solutions, simultaneous
straints arising from different epochs of cosmic history m
be set up. That is the case for primordial nucleosynthesis@3#
and the weak-field solar system test@4#. It has also been
shown that scalar-tensor theories may drive new forms
inflation @5,6# and that unusual physical effects arise
black hole physics if thegravitational constantbecomes a
scalar-field-dependent magnitude@7#. On the other hand, per
haps a more philosophical way of thinking about scal
tensor theories of gravity is related to the Mach’s princip
and the nature of space and the inertial properties of
bodies. Comparatively, little advance has been reache
this area up to date@8#. Scalar-tensor theories have also be
related with strings, in which a dilaton field coupled to t
curvature appears in the low energy effective action@9#.

Recently, a great improvement in the search of soluti
of the field equations has been given in the form of meth
that allow analytical integration through suitable changes
variables. Barrow@10# presented a method which enabl
exact solutions to be found for vacuum and radiation do
nated Friedmann universes of all curvatures in arbitrary c
pling scalar-tensor theories. Then, and also for arbitr
v(f), Barrow and Mimoso@11# and Mimoso and Wands
@12# derived exact Friedmann-Robertson-Walker~FRW! cos-
mological solutions in models with a perfect fluid satisfyin
the equation of statep5(g21)r ~with g a constant and
0<g<2).

*Electronic address: dtorres@venus.fisica.unlp.edu.ar
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However, scalar-tensor theories have been formulate
two different ways depending on the choice of the basic
tion or, equivalently, of the Lagrangian density for the fie
Via a field redefinition one can establish the equivalence
tween these Lagrangians~see below! and so between the
theories of gravitation they lead. But, as was clearly
marked by Liddle and Wands@13# this is not always pos-
sible. So, we have two physically different theories arisi
from the fact that, in the general case, we have two non
lated functions of the fieldf; i.e., G(f) and the coupling
v(f); whereG(f) is not limited to the form 1/f but it is an
arbitrary function of the field. Since there is a deep conn
tion between these models and hyperextended inflation
propose to call hyperextended scalar-tensor gravity to th
kinds of two free functions theories.

In this work, we study the equivalence among the diffe
ent scalar Lagrangian densities coupled to gravity that m
be constructed retaining only a term proportional to the c
vature scalar. We present the field equations for the m
general scalar-tensor theory, i.e., with arbitrary depende
of v(f), G(f), and eventually a potential termV(f) and
show how to extend the procedure described in@12# to ana-
lytically solve the system of the field equations in any of t
geometries of space time. As in@10–12# the solutions will be
given in terms of a single integral overf which may be
performed exactly in many cases~namely, in the cases o
vacuum, radiation and stiff filled universes! and numerically
in all cases.

This paper is organized as follows. In Sec. II we descr
the equivalence problems among Lagrangians; Sec. III p
sents the field equations, and in Sec. IV the FRW models
introduced together with a convenient choice of variabl
The procedure to obtain cosmological solutions is shown
Sec. V. Finally, our conclusions are sketched in Sec. VI.

II. EQUIVALENCE AMONG SCALAR
LAGRANGIAN DENSITIES

The more general Lagrangian density for a scalar fi
coupled to gravity in the usual way; i.e., it has only a te
proportional to the curvature scalar, is

L516pLM1
K~f!

2
f ,mf ,m1G~f!21R1V~f!, ~1!
7373 © 1996 The American Physical Society



tte

e

ie
y

ion

d
ea

on
e
f

-
e
sk

o
e
L
a
f
e

n
be-

ng
a
the
n-

ual
r of

n

by

iva-

els
er

e
we
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whereLM represents the Lagrangian density for the ma
content of the space-time with no dependence onf and
K,G2151/G andV are arbitrary functions of the field.

In general, it is common to find in the literature only on
of the two following Lagrangian densities:

L1516pLM1fR2
v~f!

f
f ,mf ,m2V~f!, ~2!

L2516pLM1 f ~f!R1
1

2
f ,mf ,m2V~f!. ~3!

L1 leads to the well-known generalized Brans-Dicke theor
of gravity @2# while L2 is referred to as a nonminimall
coupled gravity. As particular cases ofL we shall haveL1
reproduced whenK(f)522v(f)/f andG(f)51 /f si-
multaneously ~the BD cases! and L2 when K(f)51.
L1and L2 are related through a scalar field transformat
which may be completed defining another fieldc by

c5 f ~f!. ~4!

Defining also the coupling as

v52
1

2

f ~f!

~d f /df!2
, ~5!

L2 may be transformed to the form ofL1 for the new field
c. This kind of transformation was first noted by Nordtve
@2# and usually recalled by almost all the workers in the ar
In particular, Steinhardt and Ascetta@6# used this transfor-
mation to study the mechanism of hyperextended inflati
However, it is easy to see that we have here a dependenc
the simplicity of the coupling or the functional form o
G(f). As it is noted in @13# if one takes v(f)
5v01vmfm ~as in @14#! or f (f) as a truncated Taylor se
ries ~as in @6#! one cannot write down the equivalence b
tweenL1 andL2; in fact, to do such a thing one has to a
for the existence of the analytical inverse off (f) ~note that
f[1/G). So, the choice of Steinhardt and Ascetta leads t
singularity in thef-c transformation and this constitutes th
representation of a physical difference between the two
grangian densities. In these cases, and in general, in all c
in which G(f) is not an analytically invertible function o
f the basic actions differs and so the theory of gravity th
r
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lead and the cosmological effects of it. A similar situatio
comes down when one tries to establish an equivalence
tweenL andL1-L2.

III. HYPEREXTENDED SCALAR-TENSOR THEORIES

From now on, we shall callK(f)522v(f)/f to facili-
tate comparison with the BD cases by only particularizi
the dependence ofG(f). Anyway, this does not represent
loss of generality but only a change in the names of
functions. Taking variational derivatives of the action co
structed using the Lagrangian density~1! with respect to the
dynamical variablesgmn andf yields to the field equations
@15#

Rmn2
1

2
gmnR5G~f!F8pTmn1

v

f
f ,mf ,m2

v

2f
f ,af ,agmn

2
V

2
gmn1~G21! ,m;n2gmnh~G21!G , ~6!

R
dG21

df
1
1

f

dv

df
f ,mf ,m2

v

f2f ,mf ,m1
2v

f
hf2

dV

df
50.

~7!

The second equation may be written down in a more us
way which involves the trace of the stress-energy tenso
matter fields instead of the curvature scalar.

It is very important to remark that the usual relatio
T;n

mn50 establishing the conservation laws~in the meaning
of GR! of the matter fields holds true. This may be seen
direct differentiation from Eq.~6! recalling the identities of
the curvature tensor as a commutator of covariant der
tives.

IV. FRIEDMANN-ROBERTSON-WALKER MODELS

We shall consider homogeneous and isotropic mod
with the metric given by the Friedmann-Robertson-Walk
~FRW! line element:

ds25dt22a~ t !2F dr2

12kr2
1r 2~du21sin2udF2!G . ~8!

In this framework, all the scalars are functions only of tim
and not of the space coordinates. As an equation of state
shall use that of a perfect fluidp5(g21)r ~with g a con-
stant and 0<g<2). The field equations become
by
S ȧ
a
D 22S ȧ

a
D 1
G

dG

df
ḟ2

v

6

ḟ2

f
G1

k

a2
5
8p

3
Gr, ~9!

ḟ2F 1f dv

df
2

v

f2 2
1

G

dG

df

v

f
2

6

G4 S dGdf D 31 3

G3

dG

df

d2G

df2G1hfF2v

f
1

3

G3 S dGdf D 2G5 2
1

G

dG

df
8pr~423g!, ~10!

2
d

dt
S ȧ
a
D 13S ȧ

a
D 21 k

a2
2S ȧ

a
D 2
G

dG

df
ḟ52G 8pr~g21!2

v

2

ḟ2

f
G22S 1

G

dG

df
D 2ḟ1

1

G

d2G

df2ḟ
21

1

G

dG

df
f̈. ~11!

Note that the solutions of these equations, as remarked by Weimberg@16# in the case of Brans-Dicke theory, are defined
four integration constants. It is useful to have the spatial equation in alternative forms: for instance,

Ḣ1H21H
1

G

dG

df
ḟ1

v

3

ḟ2

f
G5HG 8pr

3 F ~223g!
v

f
2

3

G3 S dGdf D 2G1
1

2
ḟ2DJ 1

@2v/f1~3/G3!~dG/df!2#
~12!
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where we have definedH as usual and

D52
3

G2 S dGdf D 2v

f
1

1

G

d2G

df2

2v

f
2

1

G

dG

df

1

f

dv

df

1
1

G

dG

df

v

f2 . ~13!

The derivation of general barotropic solutions were do
only for the case of generalized BD theories, i.
G(f)51/f. The most salient ones were derived by Nar
@17#, O’Hanlon and Tupper@18#, Gurevich, Finkelstein, and
Ruban@19#, Lorenz-Petzold@20#, Barrow @10#, Barrow and
Mimoso @11#, and Mimoso and Wands@12#. Recently, a
complete cualitative study of the behavior of scalar-ten
theories was also presented@21#. In what follows we gener-
alize the method described in@12# for Eqs. ~9!, ~10!, and
~11!. In generalized BD cases it was shown that the cha
of variables

X5a2f, ~14!

Y5EA2v~f!13

3

df

f
, ~15!

together with the introduction of the conformal time defin
by the differential relation

dt5adh, ~16!
ze

k
ni
e
,
i

r

e

allows one to rewrite the BD field equations as

~X8!214kX22~Y8X!254MXa423g, ~17!

~Y8X!85M ~423g!A 3

2v13
a423g, ~18!

X914kX53~22g!Ma423g, ~19!

where the density of the barotropic fluid has been written
r53M /8pa3g and the prime denotes differentiation wit
respect toh. In the general case given by the system~9-10-
11! the leading idea is to retain the simplicity of the tran
formed system by asking for a suitable choice of new va
ables. So we propose them in the form

X5
a2

G
j ~f!, ~20!

Y5E a~f!
df

f
, ~21!

where j anda ought to be selected in order to maintain t
form of ~17-18-19! and have to reduced to their particul
values for BD theories (j51 anda5A2v(f)13/3) when
G51/f. So, computing all the necessary terms of the tra
formed system we obtain two constraint equations~we shall
show them in the vacuum case!:
1

a

da

df
2
1

f
2

1

G

dG

df
1
1

j

d j

df

5
@dv/df2v/f22~1/G!~dG/df!~v/f!2~6/G4!~dG/df!31~3/G3!~dG/df!~d2G/df2!#

@2v/f1~3/G3!~dG/df!2#
,

~22!

ḟ2F S 1
G

dG

df
D 22S a

f
D 21S 1

j

d j

df
D 22 2

G

dG

df

1

j

d j

df
G1ḟF4ȧ

a

1

j

d j

df
G52

2

3
vG

ḟ2

f
, ~23!
s-
e
ld
which allow for a solution to be found in the form

j51, ~24!

a5AS f

GD 2S dGdf D 21 2

3
vGf. ~25!

So, defining the variablesX andY as in Eqs.~20! and ~21!
and the conformal time as in Eq.~16! the system of field
equations simplifies to a form analogous to the generali
BD cases. As a matter of fact, the functiona(f) becomes
the same as in Eq.~15! for G(f)51/f. In the general hy-
perextended scalar-tensor formalism it is necessary to as
the positivity of the term under the square root in the defi
d

for
-

tion ~25!. That was also the case in BD theories@12# where
v must be greater than23/2. The final expression of the
system is then

~X8!214kX22~Y8X!254MX~XG!~423g!/2, ~26!

~Y8X!852M ~423g!
1

a
~XG!~423g!/2

1

G

dG

df
f, ~27!

X914kX53~22g!M ~XG!~423g!/2. ~28!

V. COSMOLOGICAL SOLUTIONS

In this section we sketch how to analytically obtain co
mological solutions for different perfect fluid universes. W
follow, using the exact reproduction of the form of the fie
equations obtained in the previous section, the work of@12#,
which may be seen for further details.
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A. Vacuum solutions

Let us first consider the simplest case. In a vacuum mo
the right-hand sides of Eqs.~26!–~28! are equal to zero
Now, we use the fact that the new equations have the s
form as the generalized BD ones. So, the work made in@12#,
i.e., the solutions of the system, is completely applica
here, except for the different meaning of the variables. Fr
Eq. ~27! we haveY8X5c, constant, and so the solutions f
X may be obtained using Eq.~26!. They are given by Eq
~3.20! of @12#. Note X(h) is independent of the particula
form of v and ofG. As Y8X5c, this implies that

Y5EAS f

GD 2S dGdf D 21 2

3
vGf

df

f
5E c

X
dh5I ~h!.

~29!

We can compute this integral because of our knowledge
the dependence ofX over h. So, given the functionsG(f)
and v(f), we can computeY(f) and invert it using our
knowledge of the right side of Eq.~29! to obtainf(h). To-
gether witha25XG, this yields the solution of the problem

Even without solving these equations for particular valu
of G(f) and v(f) it is possible to obtain some gener
conclusions about the nature of the singularity in the
vacuum models. WhenX→0 and (X8/X)2→`, it can be
seen thatX8/X→6Y8. Using the definition of the variable
it is easy to show that

ȧ→
1

2 F17
1

a

f

G

dG

df GX8

X
~30!

and the initial singularity, which is produced whenȧ→6`
can only be avoided in these cases whenv→0 or
(dG/df)2@(2v/3)(G3/f). Note that in the generalized BD
cases only the first condition is obtained@12#.

B. Nonvacuum solutions: Radiation

With g54/3 the equation of state becomes that of a
diation fluid. The two first field equations read, in this case
r
ith
f

l,

e

e

of

s

e

-
s

~X8!214kX22~Y8X!254MX, ~31!

~Y8X!850. ~32!

Note that the second equation retains its form from
vacuum case and this implies again thatY8X5c. Using this
in Eq. ~31! it is possible to integrate for the variableX and
then obtain as above the functionI (h). Once again, due to
the exact reproduction of the form of the equations, we h
the same solutions as in the BD case but in the new v
ables, Eq.~3.70! of @12#. It can be seen in this case that
early times all solutions approach the vacuum ones. Th
definingG(f) andv(f) we can follow again the same log
cal steps to obtaina2 andf as functions ofh.

C. Nonvacuum solutions: Stiff matter fluid

Let us finally consider case in whichg52. That election
represents a barotropic equation of state given byp5r. The
field equation becomes in this case,

~X8!214kX22~Y8X!25
4M

G
, ~33!

~Y8X!8522M
1

a

1

X

1

G2

dG

df
f, ~34!

X914kX50. ~35!

The last equation is identical to the corresponding vacu
equations and soX(h) is given by the same expressions as
the vacuum case. In addition, we have a useful relation:

Y8X56AA24
M

G
~36!

with A a constant of integration. This requires that

A

4M
>

1

G
. ~37!

It can be seen that only fork521 couldA be negative. This
means thatG is a negative function. In this case an ext
solution forX(h) arise in addition to the vacuum ones. Fro
Eq. ~36! it can be shown that defining
Z~f!5EAS f

GD 2S dGdf D 21 2

3
vGf

df

fAA24~M /G!
56E 1

X
dh ~38!

and

AS f

GD 2S dGdf D 21 2

3
vGf5AS f

Gvac
D 2S dGvac

df D 21 2

3
vvacGvacfFA24

M

G G1c , ~39!
tead
en-
t.
the vacuum solutions forvvac and Gvac carry with the
g52 solutions forv andG. The behavior of the scale facto
and of the scalar field in the stiff matter universe w
coupling v and gravitational constant Gare the same o
those of the vacuum universe withvvac andGvac. In this
general theory and as we have two generic functions ins
of one in the leading Lagrangian we can put all the dep
dence onf in only one vacuum function if convenien
Then, proceeding as previously done, we can obtainf(h)
anda(h)2.
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VI. CONCLUSIONS

We have shown how to extend the recently presented
cedure by Mimoso and Wands@12# to obtain the solutions
for a generic coupling simultaneously with a generic dep
dence of thegravitational constanton the fieldf, reducing
the whole problem to the solution of a single integral ov
the field like in@10–12#. This can be done for all curvature
in vacuum, radiation and stiff matter universes.

The particular case in which the leading Lagrangian d
sity of the theory is Eq.~3! may be exploited in this genera
formalism definingv(f)52f/2 for all the G(f)’s that
still retain the positivity of the expression under the squ
root ina. That case seems to be clearly important since o
for particular choices ofG(f) an analytical solution is
known @22#. Examples of the kind of results that may b
obtained in that way, together with other couplings, will
presented in a forthcoming work.

A crucial point is to note that in this formalism, to equ
a @Eq. ~25!# correspond equal solution for the fieldf. This
point actually means that if a solution for a particul
v(f) in a BD-like theory~sayvBD) is known, and we have
as result thef and a2 dependences onh, we can use the
f(h) as a solution for a class of hyperextended scalar-ten
theories, i.e., those which have

S f

GD 2S dGdf D 21 2

3
vGf5

2vBD13

3
~40!

and obtain thea2 dependence in each member of the class
using theX definition. In this way, we could speak of equiv
.

s

c.

y

ta
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-

r
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e
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or
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lence classes of scalar-tensor gravitation, that may, in p
ciple, be formed by an infinite set of members. In additio
all members of a given class will predict the same results
all observable quantities that are functions off andX. So, if
we were able to prove that for a given set (f,X) or equiva-
lently (v,G), a correct behavior in the gravity tests is o
tained, we were proving that not only is there not a uniq
theory of gravity with equal predictive observational verifie
power but an infinite set of them.

Let us finally comment on the overall feeling that one h
after the development of the theory concerning how muc
is like generalized BD cases. It can be seen that, for insta
in the vacuum cases the solutions behave as a whole lik
BD theory with respect to the initial singularity provide
G(f) satisfies mildly restrictive conditions. In the radiatio
case, the solutions behave like in vacuum in exactly the sa
way as in BD. And finally, we have also shown that t
solutions for a stiff matter universe are contained in those
vacuum through a convenient choice of the functions. W
believe that the correct way of thinking in these similariti
is to understand that generalized Brans-Dicke theories s
as a particular case of the formalism presented in this pa
and so, the cualitative behavior must be expected as sim
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