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Hyperextended scalar-tensor gravity
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We study a general scalar-tensor theory with an arbitrary coupling funeti@f) but also an arbitrary
dependence of thgravitational constant G¢) in the cases in which either one of them, or both, do not admit
an analytical inverse, as in the hyperextended inflationary scenario. We present the full set of field equations
and study their cosmological behavior. We show that different scalar-tensor theories can be grouped in classes
with the same solution for the scalar fie[60556-282196)00424-9

PACS numbg(s): 04.50:+h, 04.20.Cv, 98.80.Cq, 98.80.Hw

[. INTRODUCTION However, scalar-tensor theories have been formulated in
two different ways depending on the choice of the basic ac-
Scalar-tensor theories of gravity have an interestingion or, equivalently, of the Lagrangian density for the field.
physical embodiment which makes them a natural generaliVia a field redefinition one can establish the equivalence be-
zation of general relativityGR). This provides a convenient tween these Lagrangiarisee below and so between the
framework for the study of observational limits on possibletheories of gravitation they lead. But, as was clearly re-
deviation of Einstein’s theory, making them a profitable marked by Liddle and Wandgl3] this is not always pos-
arena for cosmology. sible. So, we have two physically different theories arising
The archetypical and best known case of scalar-tensdrom the fact that, in the general case, we have two nonre-
theory is Brans-DickéBD) gravity [1] where there is a cou- lated functions of the fieldp; i.e., G(¢) and the coupling
pling functionw(¢) equal to a constant. More general casesw(¢); whereG(¢) is not limited to the form 1¢ but it is an
with more complicated couplings have also been stuftéd arbitrary function of the field. Since there is a deep connec-
In any case, in order to evaluate the cosmological scenarition between these models and hyperextended inflation we
and to test the predictable force of any scalar-tensor theory, firopose to call hyperextended scalar-tensor gravity to these
is necessary to have exact analytical solutions of the fiel&inds of two free functions theories.
equations. Once having these solutions, simultaneous con- In this work, we study the equivalence among the differ-
straints arising from different epochs of cosmic history mustent scalar Lagrangian densities coupled to gravity that may
be set up. That is the case for primordial nucleosyntti@is be constructed retaining only a term proportional to the cur-
and the weak-field solar system tddil. It has also been vature scalar. We present the field equations for the more
shown that scalar-tensor theories may drive new forms ofjeneral scalar-tensor theory, i.e., with arbitrary dependence
inflation [5,6] and that unusual physical effects arise onof w(¢), G(¢), and eventually a potential terivi(¢) and
black hole physics if theravitational constantoecomes a show how to extend the procedure describeflli] to ana-
scalar-field-dependent magnitudd. On the other hand, per- lytically solve the system of the field equations in any of the
haps a more philosophical way of thinking about scalar-geometries of space time. As[ih0—12 the solutions will be
tensor theories of gravity is related to the Mach’s principlegiven in terms of a single integral oves which may be
and the nature of space and the inertial properties of thperformed exactly in many casésamely, in the cases of
bodies. Comparatively, little advance has been reached imacuum, radiation and stiff filled universesnd numerically
this area up to date8]. Scalar-tensor theories have also beenin all cases.
related with strings, in which a dilaton field coupled to the This paper is organized as follows. In Sec. Il we describe
curvature appears in the low energy effective acfi@h the equivalence problems among Lagrangians; Sec. Il pre-
Recently, a great improvement in the search of solutionsents the field equations, and in Sec. IV the FRW models are
of the field equations has been given in the form of method#troduced together with a convenient choice of variables.
that allow analytical integration through suitable changes offhe procedure to obtain cosmological solutions is shown in
variables. Barrow[10] presented a method which enablesSec. V. Finally, our conclusions are sketched in Sec. VL.
exact solutions to be found for vacuum and radiation domi-
nated Friedmann universes of all curvatures in arbitrary cou-

pling scalar-tensor theories. Then, and also for arbitrary IIl. EQUIVALENCE AMONG SCALAR
w(¢), Barrow and Mimosd11] and Mimoso and Wands LAGRANGIAN DENSITIES
[12] derived exact Friedmann-Robertson-Wall&RW) cos- The more general Lagrangian density for a scalar field

mological solutions in models with a perfect fluid satisfying coupled to gravity in the usual way: i.e., it has only a term

the equa;tion of statp=(y—1)p (with y a constant and proportional to the curvature scalar, is
Oo=y=2).

L=16nLy+ Py putG(e) RIV(S), (D)
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whereL, represents the Lagrangian density for the mattetead and the cosmological effects of it. A similar situation
content of the space-time with no dependencedorand comes down when one tries to establish an equivalence be-

K,G'=1/G andV are arbitrary functions of the field. tweenL andL;-L.
In general, it is common to find in the literature only one
of the two following Lagrangian densities: I1l. HYPEREXTENDED SCALAR-TENSOR THEORIES
w( ) " From now on, we shall cak(¢)=—2w(¢)/ ¢ to facili-
Li=167Ly+ #R— % Pu ¢, =V(9), (2)  tate comparison with the BD cases by only particularizing

the dependence @(¢). Anyway, this does not represent a
loss of generality but only a change in the names of the
functions. Taking variational derivatives of the action con-
structed using the Lagrangian dendity with respect to the

L, leads to the well-known generalized Brans-Dicke theorieslynamical variableg*” and ¢ yields to the field equations
of gravity [2] while L, is referred to as a nonminimally [15]

1
L,=167Ly+f(d)R+ §¢’M¢’“—V(¢). (3

coupled gravity. As particular cases bfwe shall have. ; = @
reproduced whet(¢)=—2 w(¢p)/¢ and G(¢p)=1/¢ si- wy 2gle G() 87Tt ¢¢ ¢ ¢¢ a® G
multaneously (the BD cases and L, when K(¢)=1. Vv
L,and L, are related through a scalar field transformation - =g,,+(G Y .,—g,,06GH|, ®)
which may be completed defining another figidoy # S
_f 4 dG™! 1 dw L@ " 2w dv
p=1(). (4) d¢+¢d¢¢,ﬂ¢ ¢2¢’#¢+¢D¢ O|qbo
Defining also the coupling as ()
1 f(¢) The second equation may be written down in a more usual
w="5 (df/de¢)?’ ) way which involves the trace of the stress-energy tensor of
matter fields instead of the curvature scalar.
L, may be transformed to the form &f; for the new field It is very important to remark that the usual relation

. This kind of transformation was first noted by Nordtvedt T#’=0 establishing the conservation lais the meaning

[2] and usually recalled by almost all the workers in the areadf GR) of the matter fields holds true. This may be seen by
In particular, Steinhardt and Ascetfé] used this transfor- direct differentiation from Eq(6) recalling the identities of
mation to Study the mechanism of hyperextended |nf|at|0nthe curvature tensor as a commutator of covariant deriva-
However, it is easy to see that we have here a dependence BHeS-

the simplicity of the coupling or the functional form of
G(¢). As it is noted in [13] if one takes w(¢)
=wot+ wn¢™ (as in[14]) or f($) as a truncated Taylor se-  We shall consider homogeneous and isotropic models
ries (as in[6]) one cannot write down the equivalence be-with the metric given by the Friedmann-Robertson-Walker
tweenlL; andL,; in fact, to do such a thing one has to ask (FRW) line element:

for the existence of the analytical inversefgf)) (note that dr?

f=1/G). So, the choice of Steinhardt and Ascetta leads toa  ds’°=dt*—a(t)? T kr? +r3(de*+sirfedd?)|. (8)
singularity in theg-¢ transformation and this constitutes the

representation of a physical difference between the two Lah this framework, all the scalars are functions only of time
grangian densities. In these cases, and in general, in all casasd not of the space coordinates. As an equation of state we
in which G(¢) is not an analytically invertible function of shall use that of a perfect fluid=(y—1)p (with y a con-

¢ the basic actions differs and so the theory of gravity theystant and & y<2). The field equations become

-

dG\® 3 dG d%G
dp) "G dgde?) "

IV. FRIEDMANN-ROBERTSON-WALKER MODELS

1dG. o ¢2 _877

ldo o 1dGow

‘45@‘?‘6@5‘? ~8mp(4—3y), (10

20 3<de)2_ 1dG
% ' Gildg) |7 Gdo

d(a) (a) k (a)sz._ w $? <1dG)2. 1d2G.. 1dG.
Za 5 +3 5 +¥— 5 awd)——GS’ﬂp(’y 1)— = ¢G 2 G do b+ Gd(f)2¢ 6% . (11

Note that the solutions of these equations, as remarked by Weirib&rgn the case of Brans-Dicke theory, are defined by
four integration constants. It is useful to have the spatial equation in alternative forms: for instance,

o 1de, w4 mp (dG) 1., 1
A H +ng 35070 3 |@Mgwlag) |39 meisracyaeasy W2
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where we have defineld as usual and allows one to rewrite the BD field equations as
~ 3(dG|’w 1d°G20w 1dG1de (X")2+4kX?—(Y'X)?=4MXa* %7, (17)
T G?\dg) 47GdP 6 Gdd 4 ds

3
1dG o 13 (Y'X)'=M(4-3y)\/555a" > (19

o _ _ X"+ 4kX=3(2—y)Ma*~ 37, (19
The derivation of general barotropic solutions were done

only for the case of generalized BD theories, i.e.,where the density of the barotropic fluid has been written as
G(¢)=1/¢. The most salient ones were derived by Nariai ,=3M/87a3” and the prime denotes differentiation with
[17], O’'Hanlon and Tuppef18], Gurevich, Finkelstein, and respect toy. In the general case given by the systed¥lo-
Ruban[19], Lorenz-Petzold20], Barrow[10], Barrow and  11) the leading idea is to retain the simplicity of the trans-

Mimoso [11], and Mimoso and Wandp12]. Recently, a formed system by asking for a suitable choice of new vari-
complete cualitative study of the behavior of scalar-tensopples. So we propose them in the form

theories was also presentgil]. In what follows we gener-

alize the method described [12] for Egs. (9), (10), and a’
(12). In generalized BD cases it was shown that the change X=3g1(9), (20
of variables
d
X=a2, 14 v=[ ater . @y
20(¢)+3de : : -
Yzf —3 (15  wherej and @ ought to be selected in order to maintain the
¢ form of (17-18-19 and have to reduced to their particular
together with the introduction of the conformal time definedVvalues for BD theoriesj=1 anda= y2w(¢)+3/3) when
by the differential relation G=1/¢. So, computing all the necessary terms of the trans-
formed system we obtain two constraint equatiome shall
dt=adzp, (16) show them in the vacuum case

1da 1 1dG 1 dj

«dd $ Gdg ] de
_[do/d¢— ol $*—(1/G)(dG/d¢)(w! ¢) — (6/G*)(dG/d )+ (3/G®)(dG/d¢)(d°G/d¢?)]
B [2w/p+ (3IG3)(dG/d¢)?] '

(22)
2 2 .\ 2 . : . v
-2(3d_6) _ z) . m) _2dG1dj| .jaldi|l 2 o4 -
“Nede) 1o "\Tde) Gagiag) %aTde)” 3%
|
which allow for a solution to be found in the form tion (25). That was also the case in BD theor[@®] where

o must be greater thar 3/2. The final expression of the
system is then

=1 (24)

(X")2+4kX?—(Y'X)2=4MX(XG) 432 (26)
2(dG\? 2 'Y = — . a2t 4G
“Z\/(g) (ﬂ) +306¢. (25) (VX)7=~M(@=39) S (XSG g d (2D

X"+ 4kX=3(2— y)M(XG)4~ 3772, (29

So, defining the variableX andY as in Egs.(20) and(21)
and the conformal time as in E@l6) the system of field
equations simplifies to a form analogous to the generalized In this section we sketch how to analytically obtain cos-
BD cases. As a matter of fact, the functiasfp) becomes mological solutions for different perfect fluid universes. We
the same as in Eq15) for G(¢)=1/¢. In the general hy- follow, using the exact reproduction of the form of the field
perextended scalar-tensor formalism it is necessary to ask f@guations obtained in the previous section, the workLaf,

the positivity of the term under the square root in the defini-which may be seen for further details.

V. COSMOLOGICAL SOLUTIONS
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A. Vacuum solutions (X")2+4kX?—(Y'X)?>=4MX, (3D

Let us first consider the simplest case. In a vacuum model, (Y'X)'=0 (32
the right-hand sides of Eq$26)—(28) are equal to zero. '
Now, we use the fact that the new equations have the samgote that the second equation retains its form from the
form as the generalized BD ones. So, the work mad&2h  vacuum case and this implies again tNaX=c. Using this
i.e., the solutions of the system, is completely applicablen Eq. (31) it is possible to integrate for the variableand
here, except for the different meaning of the variables. Fronthen obtain as above the functibfz). Once again, due to
Eq. (27) we haveY’X=c, constant, and so the solutions for the exact reproduction of the form of the equations, we have
X may be obtained using E426). They are given by Eq. the same solutions as in the BD case but in the new vari-
(3.20 of [12]. Note X(#) is independent of the particular ables, Eq.(3.70 of [12]. It can be seen in this case that at

form of @ and of G. As Y'X=c, this implies that early times all solutions approach the vacuum ones. Thus,
definingG(¢) andw(¢) we can follow again the same logi-
$\%(dG\? 2 do c cal steps to obtaim? and ¢ as functions ofy.
v-] \/(6) () ~5ueeg = [ xanin
(29) C. Nonvacuum solutions: Stiff matter fluid

Let us finally consider case in whicp=2. That election

We can compute this integral because of our knowledge Ofgpresents a barotropic equation of state givepby. The
the dependence of over 5. So, given the function&(¢) field equation becomes in this case,

and w(¢), we can computeéY(¢) and invert it using our

knowledge of the right side of E¢29) to obtain¢(#). To- (X')2+ 4kX2—(Y’X)2:ﬂ, (33)
gether witha?=XG, this yields the solution of the problem. G

Even without solving these equations for particular values 11 1 dG
of G(¢) and w(¢) it is possible to obtain some general (Y’X)’=—2ME§@@¢, (34
conclusions about the nature of the singularity in these
vacuum models. WheX—0 and (X'/X)?—, it can be X"+4kX=0. (35

seen thalX'/X— = Y'. Using the definition of the variables

o The last equation is identical to the corresponding vacuum
it is easy to show that q p g

equations and s¥( %) is given by the same expressions as in

1 1 ¢ dG}X’ the vacuum case. In addition, we have a useful relation:
a—5|15— = |- (30) M
2l aGdgiX YIX=x\A-ag (39

and the initial singularity, which is produced whan- + ) : _ . .

can only be avoided in these cases when-0 or with A a constant of integration. This requires that
(dG/d¢)?>(2w/3)(G3/ ¢). Note that in the generalized BD A_1

cases only the first condition is obtaingt]. M~ G (37)

It can be seen that only fte= — 1 couldA be negative. This
means thaG is a negative function. In this case an extra

With y=4/3 the equation of state becomes that of a rasolution forX(#) arise in addition to the vacuum ones. From
diation fluid. The two first field equations read, in this case a€q. (36) it can be shown that defining

B. Nonvacuum solutions: Radiation

_ f)z(d_G)z . S
2(9) J\/<G do +3wG¢¢ A-4(M/G) _de" (39
and
$\%(dG\? 2 ¢ \?[dGu|® 2 M|1
\/(6) (w) F30ee” \/<G) ( dé +§wvachac¢[A‘46 c 39

the vacuum solutions fomw,,. and G,,. carry with the general theory and as we have two generic functions instead
y=2 solutions fore andG. The behavior of the scale factor of one in the leading Lagrangian we can put all the depen-
and of the scalar field in the stiff matter universe with dence on¢ in only one vacuum function if convenient.
coupling w and gravitational constant Gare the same of Then, proceeding as previously done, we can obiry)
those of the vacuum universe with,,. and G,,.. In this  anda(7)>2.
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VI. CONCLUSIONS lence classes of scalar-tensor gravitation, that may, in prin-

We have shown how to extend the recently presented proq'ple’ be formed by an infinite set of members. In addition,

cedure by Mimoso and Wand42] to obtain the solutions all members of a given class will predlpt the same resu!ts for
: : . . . all observable quantities that are functionsgodndX. So, if
for a generic coupling simultaneously with a generic depen-

dence of thegravitational constanbn the field¢, reducing we were able to prove that fOF agien sei,}é(_) or equiva-
. . , lently (»,G), a correct behavior in the gravity tests is ob-
the whole problem to the solution of a single integral over

the field like in[10-12. This can be done for all curvatures tained, we were proving that not qnly 1S there_not a unique
. s . . theory of gravity with equal predictive observational verified
in vacuum, radiation and stiff matter universes. L

. . . . . power but an infinite set of them.

The particular case in which the leading Lagrangian den” Let us finally comment on the overall feeling that one has
sity of the theory is Eq(3) may be exploited in this general fter the d Iy f the th ng h hi
formalism defininge($)=— /2 for all the G(¢)'s that after the development of the theory concerning how much it

is like generalized BD cases. It can be seen that, for instance,

still retain the positivity of the expression under thg S9UaT%, the vacuum cases the solutions behave as a whole like in
root in @. That case seems to be clearly important since onl

XD theory with respect to the initial singularity provided
for particular choices ofG(¢) an analytical solution is 2 . I~ " o
known [22]. Examples of the kind of results that may be G(¢) satisfies mildly restrictive conditions. In the radiation

obtained in that wav. together with other counlinas. will becase, the solutions behave like in vacuum in exactly the same
. Y, 109 plings, way as in BD. And finally, we have also shown that the
presented in a forthcoming work.

: S Lo : solutions for a stiff matter universe are contained in those of
A crucial point is to note that in this formalism, to equal

X ' . vacuum through a convenient choice of the functions. We
@ [Eq. (25)] correspond eque}l solution -for the fiedel Th.'s believe that the correct way of thinking in these similarities
point actually means that if a solution for a particular

() in a BD-like theory(say wgp) is known, and we have is to understand that generalized Brans-Dicke theories stand

as a particular case of the formalism presented in this paper
as result thep and a®> dependences o, we can use the b P bap

; and so, the cualitative behavior must be expected as similar.
¢(7) as a solution for a class of hyperextended scalar-tensor

theories, i.e., those which have
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