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Adaptive mesh and geodesically sliced Schwarzschild spacetime ig-3 dimensions
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We present the first results obtained with3-1)-dimensional adaptive mesh code in numerical general
relativity. The adaptive mesh is used in conjunction with a standard ADM code for the evolution of a dynami-
cally sliced Schwarzschild spacetirfgeodesic slicing We argue that the adaptive mesh is particularly natural
in the context of general relativity, where apart from adaptive mesh refinement for numerical efficiency one
may want to use the built in flexibility to do numerical relativity on coordinate patches.
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I. INTRODUCTION the solution of elliptic problems in any number of dimen-
sions[4]. For hyperbolic systems the basic reference is the
One of the stepping stones towards unrestrig@tl1)-  work by Berger and Oliger on adaptive mesh refinenibht
dimensional numerical general relativity is the study ofln the context of general relativity, adaptive mesh refinement
Schwarzschild spacetime. Spacetime singularities are one bls been made famous by Choptuik’s pioneering work on the
the two characteristic features of vacuum general relativitycollapse of a spherically symmetric scalar fi¢d7]. In or-
the other being gravitational waves. We certainly have tader to resolve all the details of the Choptuik effect i 1L
learn how to deal with a single, static black hole numericallydimensions, a refinement by a factor on the order dfd@r
if we want to treat astrophysically more interesting scenarioghe initial resolution is required. Clearly, if one were to re-
such as the collision of two black holes, the final stage ofyeat these calculations for more than one spatial variable, the
which is again a single static black hole. efficiency of adaptive mesh becomes essential.

Sta_tic, spherically symmetric Schwarzschild space-time Perhaps it is appropriate to ask at this point why adaptive
tums into a rather qhallenglng_ test case for _stan(aaﬁdl)— mesh, which is such an obvious and simple idea, is not in
dimensional numerical evolution schemes if one does no

. . > . “widespread use in general relativity. There are two main rea-
make use of the spherical symmetry other than in the mma‘sv p 9 y

data, if one uses Cartesian coordinates, and if one uses tﬁ(e)ns'(AS of 1996, we feel it is no longer justified to list
f : " P limited computer resources as a main reason.
freedom in the 3-1 decomposition to define hypersurfaces ) .
on which the metric components evolve in time. This is what, First, one dogs have' to be. able to solve the equations of
we implement here, following closely the work of Anninos interest on a uniform grl_d._ This turns out to be a rather hard
et al.on 3+1[1], which in turn is based on Bernsteit al. problem in general relativity, where only a handful qf _co_des
on 141 [2] (by n+1 we denote the use of one time and N 3+1 has been developg[d%] d_ue to _g_eneral relatlwst_lc
space variables problems rele_lted to spacetime singularities and the choice of
“Adaptive mesh” refers to a general technique for nu- lapse and shift.
merical evolution problems based on discrete grids, the basic Second, programming an adaptive mesh is rather compli-
idea being that one puts the points where one needs them féated, and it is of a different nature than other programming
a given numerical accuracy. While traditionally the domaintasks in numerical relativity because it involves dynamically
of numerical computation is taken to be a single, fixed rectchanging data structures.
angular grid(with several field variables per pojnthe sug- In this paper we address both these problems. Based on
gestion is to monitor the numerical errors, and wherever angrior experience with dynamical data structut&sdynami-
whenever the error becomes too large, an additional finetal triangulations for Monte Carlo simulations in four-
grid is introduced. Similarly, if the error is small enough, the dimensional Euclidean quantum gravjty6]), it was not too
grids are adjusted and possibly removed altogether. Since thtfficult to implement an adaptive mesh code in two and
error is changing dynamically, this results in a dynamicallythree spatial dimensions. The code was tested as an empty
changing structure of several levels of nested grids. adaptive mesh for a given error function and for the scalar
Of course, the idea of adapting the resolution to the obwave equation in flat space.
served numerical error has a long history, and is now com- As a concrete test case in general relativity, we settled on
monplace in many areas of numerical computation. For solva 3+1 Schwarzschild spacetime in geodesic slicing. Let us
ing initial value problems for ordinary differential equations emphasize that this is not a showcase for the capabilities of
there are Runge-Kutta methods with adaptive step-size comur adaptive mesh code, as only up to three nested grids are
trol or the Bulirsch-Stoer algorithrf3]. Adaptive multigrid  involved. But having a general adaptive mesh package avail-
methods were promoted already in the 1970s by Brandt foable allowed us to automatically use a coarse grid in the
outer regions and finer grids near the interior of the black
hole. The gain in efficiency in turn allowed us to perform
*Electronic address: bruegman@aei-potsdam.mpg.de computations on a small workstation that compare well with
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those that the NCSA group performed on various supercom- 2M

puters[1]. ds’=— ( 1-—
Let us spell out briefly what constitutes the core of our

test runs. Given appropriate initial data for the SchwarzschildyhareM is the mass; the radius, andQ? the standard line

spacetime at the moment of time symmetry in spatially iS0|ement on the unit two-sphere. We define spatially isotropic

tropic, Cartes,lan coordlr_lates y, andz, the evolu'glon N coordinates by introducing a new radial coordinaesuch
time t is computed using the standard Arnownt-Deser—that

Misner (ADM) equations and an explicit finite difference

dt?+

2M\ 1t
1—7) dr2+r2dQ?, (1)

schemegdouble leapfroy where we choose lapgse=1 and M\ 2

shift 82=0, which induces geodesic slicing. A point starting r=761+ 2—4} , 2
at initial Schwarzschil_d radius=2M reaches the singularity r

atr=0 after proper timer= M, whereM is the mass of A= — a(N2dE2+ p(X(dTP+TZd0?), 3)

the black hole. We also evolve the data up to aboatM
by using the apparent horizon as the inner boundaj.

The resulting dynamical evolution of, for example, the six a(ﬁ=(1— i}/ 1+ i} (4)
metric coefficients can be directly compared to the analytic 2r 2r)’
solution.
The adaptive mesh code can, to a certain extent, be —
thought of as a black box. The user has to supply just one g(r)=1+ or ®

external input, a routine that evolves data on a uniform grid
with a given boundary. While the outer boundary can beThis allows us to introduce the Cartesian spatial coordinates
incorporated easily into this routine, for the case of an apthat we use in the numerical computations:
parent horizon boundary condition it was simpler to custom- L
ize the adaptive mesh itself, i.e., to incorporate grids with dx?+dy?+dz2=dr 2+r1 2dQ2?, r=(x’+y?+2?)12
“holes.” (6)

The author is aware of two other adaptive mesh refine- ] ] ] ] )
ment packages that are currently under development and thahe spatially isotropic c_oordw;ates_posseSSﬁn isometry at the
are planned to be applied tord numerical relativitypagH  throat atr=M/2 forr—r"=M</(4r), e.g.,r(r)=r(r’) and
of the American Grand Challenge Collaboratid8] and a  @(r)=—a(r’). The isotropic coordinates fare[M/2,»]
code by Wild[19]. It is interesting to note that the problem- andr e[M/2,0] cover the same range of the Schwarzschild
independent design abaGH does not include grids with radius,re[2M,=]. 3 o
holes, but for reasons similar to ours that are specific to N the standard 81 decomposition of the Einstein equa-
general relativity, this feature will be added. tions(e.g.,[20]), the line element can be written in general as

Finally, we want to draw attention to how naturally adap- B 2 a 2 aib
tive mesh fits into general relativity. While the numerical ds*=—(a®~ B°B,)dt+ 2B, tdx" + gapddx”, (1)

point of view leads us to drive the adaptivity of the adaptivewherea i the lapse functiong? the shift vector, and,,, the

mesh technique by the numerical errors, general relativ“¥hree-metric. The Einstein equations decompose into the

gives us a phy§|cal reason to split the domain of computatiogy o mitonian and diffeomorphism constraint equations, and
into several grids, namely, simply that one of the main char

. S . . .the evolution equations for t and their canonically con-
acteristics of general relativity is that spacetime is a mani q B y

) : jugate momenta, the extrinsic curvatugg,,:
fold, which generically can only be covered by several chartd"9 B

and which can be covered by charts in which the metric is 9:9ap=— 2K ap+ DaBy+DpfBas 8
almost flat. This leads us to discuss “numerical relativity on

patches” below. In fact, some of the features that make geo- 0K ap=— D aDpa+ a(Rap+ KapKC— 2K 1K)
desic slicing unattractive for numerical relativity may lose

their impact when combined with adaptive mesh. To under- +B°DKapt KacDpB+KepDaBC, €)

score our point of view we deviate from common terminol-

ogy and use the term “adaptive mesh” as opposed to the lesén€re Ry, is the three-Ricci tensor, anid, the covariant
general “adaptive mesh refinement.” derivative defined for the three-metric.

The paper is organized as follows. In Sec. II, we introduce The generic evolution problem is, given some initial data
various coordinate systems for the Schwarzschild spacetim@ 9an @nd Kap, (solving constraints a prescription fora
and the standard-81 decomposition. In Sec. Ill, we describe @nd3, and boundary conditions, construct the spacetime. We
our uniform ADM code. In Sec. IV, we discuss some issuegnake the following choices. For coordinates, y, andz,
related to adaptive mesh in general, while in Sec. Vv, weve define the initial three-metric &=0 by
resent our particular implementation. In Sec. VI, we discuss —~
Eesults obtaiaed for adapiive mesh and Schwarzschild space- Dds’=y(N*(dx’+dy*+d2), (10)

time in geodesic slicing. We conclude with Sec. VII. where the conformal factaf is defined in Eq(5). The initial

data for the extrinsic curvature are determined by making
t=0 the moment of time symmetr¥,,=0. These initial
data are a solution to the constraints.

The line element for a single static black hole in  There are several methods to fix the freedom in the defi-
Schwarzschild coordinates is given by nition of the 3+1 decomposition, and making a good choice

Il. SCHWARZSCHILD SPACETIME
AND GEODESIC SLICING
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is essential because otherwise the evolution will break dowtime are called Novikov coordinat¢®2,23. These are the
due to physical or coordinate singularities after a short timecomoving coordinates in which radially moving freely fall-

In particular, a lot of work has been carried out oning test particles are at rest and the time coordinate measures
singularity-avoiding slicing conditionge.g., [1] and refer-  proper time. Starting from Schwarzschild coordinates, there
ences therein Here we choose geodesic sliciag=1 and are several natural coordinate transformations. One can find
82=0, so that points with constant spatial coordinates fol-2 transformation to spatially isotropic coordinates, to unit
low geodesics antibecomes the proper time. The initial data ll9ht cones(Kruska), or to proper time, but of course not
correspond to observers or test particles that are initially at¢imultaneously to proper time and spatial isotropy.

rest and then start falling towards the singulafity singu- In Schwarzschild coordinates, a radial geodesic starts at
larity avoidancg For a discussion of problems related to F =0 and performs a cycloidal motion out to some maximal
geodesic slicing, see Sec. IV. To test our code we alsé@diustma, and back tor=0. The Schwarzschild geometry
checked that choosing vanishing shift and the lapse of thé" Novikov coordinates is given in terms of a new radial
quasi-isotropic coordinates, E(), the configuration does coordinateR* by

not changgwhich considering Eq9) is a nontrivial numeri-

cal problend. x| Fmax_ 1) vz 1D
We now have to specify the boundary conditions. As the 1 2M '

outer boundary we consider the limit in which-. In gen-

eral, there does not exist something like a “purely outgoing R*24+1/ gr \2

wave condition” at finite radius for nonlinear equations such ds?=—dr?+ =T W) dR*?+r2dQ?, (12

as the Einstein equations, because in general purely outgoing
waves are not an exact soluti¢here always is backscatter- o . )
ing). Some approximation is usually the simplest way to pro-Wherer=r(7,R*) is implicitly given by the following rela-
ceed, and in our case, similar [tb], it is sufficient to set all  tion obtained from integrating the geodesic equation:

fields equal to their initial value at the outer boundary, as

_ 2\ 1/2
long as it is located at sufficiently large. More elaborate T (p*2 r_[r2M)] *2, 11312
i i . i ; L =1 +)| s = + +
procedures are certainly possible, but in conjunction with 2M (R D 2M R*“+1 (R D
adaptive mesh not necessary for our problem, since adaptive 12
mesh allows us to go out to sufficiently large values of xarcco% r/(2m) } (13)
. . . — . * 2 '
We define an inner boundary for intermediatby either R*“+1

using the isometry at the throat= M/2 [1], or by cutting off

the spacetime at the horizon=2M [17,21]. In the former  To actually compute(7,R*) we have to invert a relation of

case, the isometry defines a simple coordinate transformatidhe typey=x+sin(x), which can only be done numerically,

from which one can compute the values of the fields forbut in a very simple mannde.g., by bisection

r<M/2 once the fields are known far>M/2. Note that An important property of Gaussian normal coordinates is

r=M/2 refers to an unchanging location in our coordinatesthat the geodesics that define the coordinates remain or-

butr=2M defines a curve =r () for the location of the thogonal to all constant time hypersurfaces. Therefore, the

(apparenthorizon. The apparent horizon boundary conditioncoordinate transformation betweerandR* obtained by in-

derives from the fact that the horizon is a null surface, so thaserting Eq.(2) into Eq. (11) is time independent. On the

the exterior is causally disconnected from the interior. other hand, since is a function of time, the data do not
As in[1], to reduce the computational effort by a factor of remain isotropic.

8, most computations are carried out on the octant of positive To explicitly compute interesting quantities such as the

X, ¥, z only, and the reflection symmetry of spherical sym-metric coefficients foM=1, R*>0, and7>0, we find it

metry at thex=0, y=0, andz=0 planes is used to derive convenient to use the maximal Schwarzschild radial coordi-

boundary values via a simple coordinate transformation. Waater o, for which

did check the code also on the full grid, and it seems quite

unlikely that enforcing symmetry only on these planes suf- ) (1+2r)?

fices to ensure spherical symmetry everywhere. Fma= 2(R* S+ 1) = ——, (14)
Given the precise evolution problem just stated, what do

we know about the resulting spacetime? A convenient fea- ; PRRET: ; 32 Y

ture of geodesic slicing is that the result can be directly com- = rma{_( 1— j” 2<_ax arcco%( X) }

pared to the analytic solution. It is somewhat amusing to note 2 m 2 Mma

that the two previous numerical papers on the topic do not (15

make use of the well-known analytic solution, but[#] on o o

1+1 the validity of the numerical results is established@nd. by implicit differentiation,

mostly from internal consistendiapart from the crash test

and[1] on 3+1 check their results againg]. Of course, in or _ E_ r § Fmax 1] arcco ro\
general it is much more useful to be able to check a code  drp. 2 2rmax 2 I ma '
without having the analytical solution available, but since it (16)

happens to be available in this case, we use it here. o
Unit lapse and vanishing shift define Gaussian normal coFor example, transforming frorR* to r leads to a simple
ordinates, which in the context of the Schwarzschild spaceformula for the radial metric component,
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history of the Schwarzschild spacetime in Gaussian normal
i coordinates, we now discuss the actual implementation of
our code.

Ill. ADM CODE FOR UNIFORM GRIDS

The evolution equationé) and (9) for g,, andK,, are
rather elegant and concise, but since the indices run from 1
to 3, writing out each term explicitly leads to a problem of a
size that makes the use of computer algebra highly recom-
mended, if not essential for the added flexibility. We wrote a
simple MATHEMATICA script that takes Eq48) and (9) di-
rectly as input, together with formulas for lapse and shift,
and also some control quantities such as the constraints,
translates the derivatives into finite differences, and outputs
C code for the basic routine that evolves data on a uniform
grid. A typical implementation leads to about 1520 summa-
tions, 969 multiplications, and 322 divisions for 18 basic
fields.

We choose to perform an unconstrained evolution using
explicit finite difference schemes. The schemes tested are
Lax-Wendroff, double leapfrog, and Brailovskaya, with and
without artificial dissipation(see[2] for a comparison of
schemeps As far as data storage is concerned, only the
double leapfrog scheme really requires two and not one level

(17)  of preceding data, that is, the same field at two earlier times.

Although this is an additional complication for the adaptive

where as beforgr7—depends on time through which is  mesh code, we implemented it in order not to introduce a
given implicitly by Eq.(15) asr(7,rmae. Considering that |imitation. Most production runs are performed with the
the (time-independentconformal factory(r)=1+M/(2r)  double leapfrog scheméCompare with 1] where a particu-
diverges at =0, it is natural to computg,y/* to focus on  lar version of staggered leapfrog with extrapolation for the
the dynamical features in the metric rather than on the statihhomogeneous terms is use&econd order spatial deriva-
1/r singularity, as is done ifil] and as we often do below. tives are differenced symmetrically with centered differ-
Equation(17) justifies this approach. ences, which seems to maintain spherical symmetry rather

Figure 1 shows a plot of lines of constanbased on Eq. well, although from experience with the Laplace operator
(13) to depict the Schwarzschild geometry in Novikov coor- and elliptic equations one might expect that some asymmet-
dinates(compare with the qualitative picture [23]). Note ric differencing is a better choicg.g.,[24]).
that from Eq.(13) we have for the horizorn/2M ~R* 3 for In [1], it was observed that for a stable evolution it was
large 7, as opposed to Kruskal coordinates in which the ho<crucial to perform differencing of the scaled metric
rizon is a unit light cone. The horizontal lines show the lo-g,,/#*, which Anninoset al. called conformal differencing.
cation of grids with and without apparent horizon boundaryWe also had to apply this technique. Since one might argue
conditions. that the generality of the evolution scheme is compromised

An initial grid at 7=0 covering M =<r=<r or, equiva- by building in knowledge about the initial dateecall that at
lently, 0<SR*<R*, or M/2<r=<r,, moves upwards until leasty does not change with timelet us add a few com-
the innermost point that started on the horizon reaches theents. Clearly, approximating the limitingriiependence
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FIG. 1. Novikov coordinates for the Schwarzschild geometry.
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r=0 singularity after time with finite differences, i.e., essentially with polynomials, is
problematic. But as a matter of principle, there always is the
Terasi= M. (18 issue whether an approximation method works in a given

function space. To reduce the problem dependence of con-
In numerical “crash tests’'{1,2] one indeed finds for this formal differencing, we tested a somewhat more generic
scenario that,s= (3.1£0.2)M [1], and our 3-1 code re- method, where a given type of test function, e.g., a rational
produces this result. One can also track how the radial metrifunction, is fitted to the data. The result of the fit is used as a
componentg;+{7,r) (constructed frong,,) diverges with  basis for “scaled” differencing. For a perfect fit, one is left
time with an exploding peak developing at the throat atwith finite differencing a constant. For the problem at hand,
r=M/2[1,2]. Indeed, from the analytic solution we find for however, the simple conformal rescaling was quite sufficient.
7=3M that at the throag;7=20.486 compared to 20.2 in As already discussed, at the inner boundary we imposed
1+1 and 23.4 in 3-1[1]. either the isometry condition or the apparent horizon bound-

As a test of our numerical code and in order to presenary condition[21]. Not only the field values near the bound-

some novel data, we plat+(7,r,{7)), i.e., how the radial ary that are needed for the finite difference molecules, but all
metric component develops with time, in Sec. VI. Having points in the interior can be obtained by the isometry map
summarized the analytic aspects and some of the numerickibm the data that was evolved outside. Since interior points
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are in general mapped to points falling between the outer A
grid points, a polynomial interpolation is performed, taking
due care near the border that no data are accessed before they
are available.

For the apparent horizon condition we have postponed the
implementation of a general+3l apparent horizon finder,
and simply define a surface by the equatien2M leading X

tor=r (7). Following[21] on 1+1, we evolve everywhere
outsider 4(7) minus some small buffer zone. At various
times the innermost points are obtained by second or third
order polynomial(or rational function extrapolation. The

basic algorithm can deal with a convex surface which is suf-
ficiently flat on the scale of the grid points. With some fine-
tuning, the inner boundary remains stable with a buffer zone i
of about 2.8 grid spacings. [f21] a minimal size of 5 and
recommended size of 20 grid spacings are reported.

Note that for geodesic slicing all light cones are upright,
and so the Courant conditiofwhich requires the physical |54t circumvent the patch work character of general relativ-
domain of dependence to be contained in the numerical dq, e Jearns a lot about beautiful work where a single or a
main of dependen@ereduces o the _condmon that th? angle few coordinate patches are constructed in an ingenious man-
between the physical characteristics and theoordinate o 5 cover all the interesting regions of spacetifae].
lines is not too large. At large, the light cones approach the Typically this involves using special symmetries of the
unit cone (45° forr=1), and it is simple to see that near the ;o4el. What is perhaps more relevant for genéie 1)-
horizon the light cones become narrower in the radial direCy;mensional numerical relativity without symmetries, for

tion but wider in the constant radius d|rect|20rg;ﬂ(: —1, simple initial data the original coordinate system stays good
gr7_increases, and for the polar anglegy,=r- decreasds o 4t least some time close to the initial hypersurface, and so
The numerical domain of dependence is related to thggain one might try to make do with one coordinate system
physical one by the factor by which the temporal grid spacysiner than changing coordinates.
ing is smaller than the spatial grid spacing. For the finite  Nymerical relativity has been traditionally built upon one
difference schemes considered, a relative factor of 0.25 wag; 5 few handcrafted grids, mostly fixed for the whole evo-
used, although a factor of 0.1 _made the evolution slightlyj,tion. There are very well-known examples for problems
more accurat¢but slowej. We did not encounter the prob- agsociated with rigid boxes, to name just one, the steep gra-
lem that the light cones become too narrow or too wide.  gients in the metric developing for maximal slicing of the
Schwarzschild spacetinid], with a promising solution be-
IV. NUMERICAL RELATIVITY ON PATCHES ing the _apparent horizon boundgry condit_ion wher_e the_ grid
adapts itself to the apparent horizon and is not strictly fixed.
Before getting into the details of the adaptive mesh code, What we want to suggest is that the adaptive mesh tech-
we would like to discuss a few issues related to numericahique encompasses the necessary flexibility to actually
relativity and adaptive mesh in general. As explained in themplement numerical relativity on patches. Namely, it may
Introduction, the basic idea is to put points where they arde possible to drive the automatic distribution of grids not
needed for a given accuracy, but in the general relativistionly by numerical error estimates, but also by some physical
setting a more general viewpoint is possible. measure. For example, such that the new grids correspond to
A typical textbook introduction to general relativity may coordinate patches in which the metric is nearly flat or has
proceed as follows. First one learns that gravitational physicsome other convenient property such as minimal distortion.
is really about a manifold with a metric. In the neighborhood Let us emphasize that to us this suggestion appears to be
of any point the manifold looks lik&R*, but in the generic of the type nobody would object to, as long as one can pro-
case one needs an atlas of coordinate patches to cover tdace a concrete and useful implementation. This is not done
manifold. Furthermore, there always exist coordinates near bhere, except perhaps for one aspect discussed below. But we
point in which the metric is close to the flat Minkowski want to develop the idea a little bit further in an illustrative
metric. To borrow a picture from Einstein’s discussion of thethought experiment for the ADM formalism and for geodesic
principle of general covariancg23], consider the gravita- slicing.
tional field of the Earth. Everywhere around the Earth we can The main idea is displayed in Fig. 2. Suppose we are
construct freely falling frames of reference which approxi-given initial data that are well represented according to some
mate Minkowski spacetime, but no single set of coordinatesriterion such as local flatness of the metric. For a brief time,
exists in which space time is everywhere flat. So the spacthis criterion does not lead us to regrid, and the data evolve
time structure with its locally flat patches is a key feature ofin the rectangular spacetime patches that are drawn near the
general relativity, and let us emphasize that, apart from glox axis in Fig. 2. Now suppose that Fig. 2 corresponds in a
bal (topologica) issues, it is also a key feature in a practicalrough sense to a black hole in that in the course of evolution
sense if we look for coordinates in which the metric is lo-the light cones are tilted inwards toward thaxis and that
cally flat. freely falling observers follow an inward curving path. The
Ironically, the next step is to completely ignore or, atflatness criterion could lead at later times to the second row

FIG. 2. Schematic example for numerical relativity on patches.
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of patches, where the initial boxes have been adapted to the
inward tilt.
Several comments are in order. Note that the original
work by Berger and Oligef5] already contains the concept
of rotating boxes(to track shock fronfs although only in
spatial directions. Here the suggestion is to construct boosted
data by similar interpolation techniques. b
Also note that the data structures are often based on a
strict nesting property. Here boxes of equal refinement are
allowed to overlap, a feature which one also needs if areas of
refinement are to be covered by several small b¢%gs FIG. 3. Geodesic focusing.
A technical problem that arises is that in general one has
to define the coordinates for each box in an intrinsic mannedetermine by some means, e.g., by evaluating curvature sca-
since there might not exist a single top level parent grid fromlars, whether one approaches a physical or a coordinate sin-
which all child grids can derive their coordinates. If the gularity. If there is a physical singularity, then the adaptive
spacetime is too warped to be adequately covered by a singteesh can insert finer and finer grids and avoid the singular-
grid, several overlapping top level grids are requifedm- ity, if we decide that this is the feature we want to resolve
pare Fig. 2. A concrete way to implement such parentlessrather than, for example, to impose an apparent horizon
grids is to define transition functions between them that musboundary condition(if a horizon covers the singularity
exist since we are dealing with a manifold. Adaptive mesh, of course, cannot change the underlying
Finally note that no adaptive mesh refinement might bephysics. If there is a coordinate singularity—and this is the
involved at all; i.e., all grids could have the same grid spac{athological feature of Gaussian normal coordinates we want
ing, although one needs a coordinate-independent measuretofaddress—then quantities such as curvature scalars will ap-
the grid spacing to make this statement meaningful. pear more and more constant as we approach the intersection
In terms of the standard43L decomposition of Einstein’s of geodesics. The adaptive mesh solution is to regrid, that is,
equations, the above example amounts to a particular choide redistribute points on a coarser grid on a different hyper-
of both lapse and shift. Introducing a shift vector so that allsurface because the finer resolution is not needed since there
light cones are upright is the subject of what is called causabk no physics to resolve.
differencing[17] or causal reconnectidr25]. The difference We do not seriously want to suggest that geodesic slicing
is that for the particular patches just introduced, the causallys a universally good choice. For example, having a nonva-
correct differencing is discrete on the scale of the grid sizesishing shift vector might be crucial. But, given a guiding
and not on the scale of the grid spacing. In Sec. Ill, wephysical principle, adaptive mesh offers the possibility of
discussed that even when the light cones are upright, one stilesolving the problems of geodesic slicing with its built-in
has to adjust lapse and/or temporal and spatial grid spacingsapability to add in points where needed when others fell
In three spatial dimensions, upright light cones intersect thénto a physical singularity and to remove points that other-
hypersurfaces in a nonspherical manner, and on the patchegse would lead to a coordinate singularity. Put the other
one might want to define coordinates such that the crosway around, while on a fixed grid geodesic slicing is cer-
sections approximate spheres. tainly problematic, on adaptive meshes these problems are
To complement this qualitative discussion of numericalnot unavoidable.
relativity on patches, let us conclude the section with a few The numerical work of this paper can also be considered
comments on how the transition from a single, fixed domairas a step towards a demonstration that adaptive mesh can fill
of computation to varying patches might be of help for thein points for grids that move and stretch towards a singular-
two main problems that are associated with geodesic slicingty. As the horizon moves outwards, the innermost grid ex-
Gaussian normal coordinates have the intrinsic problem thgiands to cover the outer regions where points are missing to
freely falling observers tend to fall into physical singularities achieve the given accuracy.
and that coordinate singularities develop due to geodesic fo-

cusing. . V. IMPLEMENTING ADAPTIVE MESH REFINEMENT
Suppose we had some stable method to stop computing at |\ 7\wo AND THREE SPATIAL DIMENSIONS

points where the data become infinite. If all one is given is a
fixed finite grid, the grid may have to be unfeasibly large if  All current implementations of adaptive mesh in general
one wants to cover a given period of time before all pointsrelativity derive from Berger and Oligd], and are moti-
have hit the singularity. But, considering the Schwarzschildvated and influenced by Choptuig]. We refer to these pa-
spacetime in Fig. 1, even if the outermost points are fapers for more technical information, but comment on impor-
enough outside to only move a negligible distance in theant features of our code. We should mention that there is at
time of interest, the innermost points fall in, leading to gridleast one nonstandard approach, by Schutz and V&,
stretching near the horizon. Adaptive mesh is helpful in thiswhere the units of refinement are not grids but single points.
regard since it has the built-in capability to introduce newOur main focus is on 31, but some features are tested in
points near the horizon. 2+1 for simplicity. For a visual impression of how the in-
For a schematic picture of geodesic focussing, considetuitive idea of adaptive mesh translates into various evolving
Fig. 3. Schwarzschild spacetime is special since all radiagrids that follow some data, see Fig. 4, which is discussed
geodesics meet at=0. The crucial point is that one has to below.
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time 2.750, levels 0-3 time 4.000, levels 0-3

FIG. 4. Empty adaptive mesh
displaying various possible regrid-
time 4.500, levels 0-4 time 5.500, levels 0-3 dings.

-1 -0.5 0 0.5 1

The central design issue is how to organize the dynamicaboxes of equal refinement merge and split, and finer boxes
data structures. While the basic idea of structuring the gridare inserted and removed.
based on some given error estimate is very simple, it turns One part of the adaptive mesh code is to find appropriate
out to be a rather complicated matter to have access to all tHmxes around volumes where the error is beyond a certain
necessary information at all times. We use linked listx of threshold or, equivalently, to find the bounding box for
structures describing rectangular grids which are referencefagged points among unflagged points. To find rectangular
by c pointers. This description still leaves a lot of freedom bounding boxes, we start with a seed and let each of its faces
whether one maintains pointers to all or none of the parenmove outwards in turn as long as there are flagged points on
grids, the child grids, neighboring gridsve work in three it, and since the volume grows, we have to repeatedly con-
spatial dimensions equal level grids, and so forth. Depend- sider each surface. The optimal performance is obtained for
ing on the actual physics problem, it becomes a trade-of§ets of flagged points which form solid boxes, since starting
between the cost to maintain all these pointers versus gain iwith any seed, it is a linear process to walk out to the surface,
overall speed. For simplicity, we settled on one choice with-and in order to decide that the final surface does not contain
out worrying about optimization, and for+3L numerical flagged pointsQ(N?) operations are required for a box of
relativity, most time is spent during uniform evolution. volume N3, Actually, even if we had to look at each single

A very helpful idea for testing turned out to be the con- point inside the final box a few times, the time spent on
cept of an empty adaptive mesh. Instead of considering afinding boxes would be negligible compared to on the order
evolution based on a differential equation, one could conof 1000N? floating point operations carried out per point
sider some fake evolution, for which one also specifies a fakeuring evolution. Note that this algorithm will group discon-
error function. But all that the adaptive mesh is adapting to isected regions when appropriate.g., nonconvex regions
the error function, and so we are considering empty adaptiveshose bounding boxes overlgpvhich is a big advantage
meshes which track the evolution of some predeterminedver certain flood-fill algorithms.
error function without reference to any data. Note also that putting an upper limit on the volume to

Figure 4 shows two regions of error circling each other inwhich a seed may grow offers a simple way to break up large
2+1 dimensions. This models the situation of a neutron staregions into several small boxes. We have not implemented
binary, for which we might also expect the error to be largethis yet, but this certainly is a good way to improve effi-
where the density is higfalthough this is not necessarily the ciency once storage for on the order of 100 reasonably sized
case. The color coding is normalized separately for eachboxes is availabléas opposed to a current limit of about 5 in
grid to set off the subgrids. The fine grids follow the peaks,3+1). For example, the black hole space time we consider
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FIG. 5. The metric componen—+—at the horizon.

poses the problem to cover a spherical shell, the region neaept for adaptive mesh somewhat by incorporating the appar-
the horizon, which contains far fewer points than the boundent horizon boundary condition as boxes with holes, even
ing box. Referring to Sec. IV, spatially nonuniform refine- though the apparent horizon is an outer boundary of the do-
ment can be useful, but since the refinement factor is commain of computation. Also recall that we have experimented
stant in each grid, one needs a larger number of boxes tonly with explicit difference schemes for an unconstrained
adequately break up large nonuniform regions. evolution. Whenever a nonlocal operation has to be per-

One aspect of adaptive mesh that is not testable in emptfiprmed, for example, in an implicit difference scheme or
adaptive mesh by its very definition is how the error esti-when solving an elliptic boundary value problem, it is still
mates are obtained. As usual, we compute the Richardsqmossible to evolve the coarse grid first for the region where
truncation error, which involves comparing data from thethe coarse data are valid. But the nonlocality might introduce
evolution on coarse and fine grids. a new source of noise into the system.

Another very important issue not adressed with empty Regridding noise is the one additional numerical problem
adaptive mesh is the question of how to obtain the boundarintroduced by adaptive mesh. Every time the grids change,
data for the interior subgrids. We refine the grid spacing forthere will be an unavoidable numerical error due to interpo-
both space and time by the same fadany integer larger lation and injection of data. In our examples, a sufficiently
than 1, and so there are time steps for which a grid is noffine grid spacing kept the regridding noise at small enough
covered by a coarser grid at equal time from which thelevels. Artificial dissipation reduces the noise, but was not
boundary could be interpolated. But evolving the coarseessential.
grids first, any subgrid is always sandwiched between two
coarser grids in time. The coarsest grid is only allowed to \;; ADAPTIVE MESH AND GEODESICALLY SLICED
have outer boundaries, which have to be treated by different SCHWARZSCHILD SPACETIME
means anyway. In our examples it has worked well to derive
the boundary for the finer grids by polynomial interpolation  In this section we present results of our B ADM adap-
of order no higher than 3 from the two coarser grids. Wetive mesh code for the Schwarzschild space time in geodesic
tested the interpolation first for a scalar field it 2and 3+1  slicing. In Fig. 5 we plot the unscaled metric component
dimensions(planar and spherical wavebefore proceeding g7 at time 7 on the horizon at radius,{7). The data is
to the black hole case. taken on the diagonal of the first octant. We Bkt 1 in this

It is not clear whether the interior boundaries introducedsection. Five different data sets are plotted. The solid smooth
by the adaptive mesh can be treated completely indeperine is the analytical result. At time @ ,,=3 andg;7=16
dently of the evolution scheme as we do it here with thelcompare Eqgs(5) and (10)]. Initially, there is a drop in
above interpolation scheme. As already mentioned in the Ing;7—as the horizon moves away from the Kingularity in
troduction, we found it useful to open up the black box con-the conformal factor, while at late times, 7% and also
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12, time 1.000, =z = 0.0333
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FIG. 6. Metric components at
levels 1 and 2 at time=1.0.
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T.nlarge enough so thak(r ) ~1, but note that at the right the data constant at the outer boundary.

edge of Fig. 5r,(7)=2.8 andy{r{(7)]*=1.9. The hori- In Figs. 6 and 7 we plot for the same run two-dimensional
cuts of gr7 0y, and gy, scaled byy* at 7=1.0 and

zon moves out, but so does the 0 singularity, and it just )
so happens that the horizon marks a value on the flank of the=5.5, respectively. The two finest levels are shown. Level

r=0 singularity in the radial metric that moves to infinity O does not extent further than level 1 and is just maintained
increasing linearly with the radial coordinate of the metric. for the truncation error estimate. The data inside the horizon
The main result of this paper is the line slightly above theminus buffer are arbitrarily set to zero since no evolution is
analytic curve. It is obtained on the finest level of a threecomputed there. Note that at=5.5 the horizon has almost
level adaptive mesh with grid spacings 0.07, 0.21, Gré3  reached the border of the level-2 grid. A small inaccuracy is
finement factor 3 The computations are performed in the visible at the boundary of the level-1 grid a&=5.5 due to
first octant with double leapfrog and conformal differencing,the constant outer boundary condition. There is a corre-
and without artificial dissipation. At the inner boundary ansponding deviation from zero in the Hamiltonian constraint,
apparent horizon boundary condition is used with threewhich propagates through the whole domain of integration

so thatgy+=r,,. These estimates are valid for buffer points, and the coarse grids reach far enough to hold
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gll/s, 12, time 5.500, =z = 0.0333

gqp/8, 11, time 5.500, =z = 0.1 g5/, 12, time 5.500, =z = 0.0333

FIG. 7. Metric components at
levels 1 and 2 at time=5.5.

gyr/s, 11, time 5.500, =z = 0.1 dyyr/s, 12, time 5.500, =z = 0.0333

but remains small. Experience shows that it is far fromis twice as slow as double leapfrog and does not improve
simple to obtain a stable evolution for the gradients inaccuracy as opposed f2].
level-1 at 7=5.5. But this is one of the problems that is The key limiting factor of all these runs is computer
reduced by adaptive mesh, since as usual the data from tlmeemory. Typical runs involve one or two boxes with about
level-2 grid have been injected. 40° points on a 24 Mflop machindinpack.0 with 80MB
The curve that deviates wildly from the analytic solution RAM taking 10 h (compared to gigaflops, gigabytes, and
at late times in Fig. 5 belongs to a single level run under@bout the same time at NCA]). Having 40 points in any
identical conditions as defined above except that no coars@ne direction is ridiculously little compared to what is avail-
grids are introduced. There are two further runs plotted irable for lower dimensional problems. In conjunction with
Fig. 5, which fall just slightly below the analytic curve. They adaptive mesh it is clearly much more efficient to have 2
correspond to uniform grids with spacing 0.05 and analytidoxes of size 4drather than one box of 80for which the
data at the outer boundary. One of the runs was performetbtal number of points is about the same[11, for geodesic
with the Brailovskaya scheme, which in our implementationslicing a grid of size 128is used with grid spacing 0.05 to
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cover about the same range>f0-6 as in Figs. 6 and 7. namically evolving data, but manages to find coordinates in
Up to 206 was manageble ifl]. We find it surprising how which the metric becomes static, which unsurprisingly is
well one can do with so few points per direction and a gridpossible for the Schwarzschild spacetime. To find the final
spacing which by no means is “much smaller” than 1. static black hole is just what one needs for many problems;
The apparent horizon boundary condition is working well.on the other hand, our maximal proper timef6 is not

Even with only about three points as a buffer zone, datdoo bad for a genuinely dynamical slicing.

directly at the horizon are not significantly affected on this
scale, which is apparent in Fig. 5, and which we also
checked by comparing with runs for analytic inner boundary.

There are several reasons why the runs in Fig. 5 cannot b(%r;]r:nesigrt:;?e;gsl ti(/eesunl"isﬁogﬁgf?n Vf{’gg é):;e noefmSchlh)\;varzs-
continued to later times, all of them related to size limita- p

tions. The truncation errors that drive the adaptivity are\(/:vri]t"hdtﬁgaacr?;lnlﬁzall?s%(lelj)t(ijc?rflgrsgtcsmgf ':[ihrg ;Z;c;ic\)/de ‘ﬁ;gﬁT{:m
spherically distributed, and given the current resolution we y : P y

do not attempt to cover spheres by several grids; so all grid%qlgtszlt(lyhglne T;S%h){ﬁ:: Zgggdﬂs;ﬁii%i%e Zcfetuingz,abtlij\t/ef%;gﬁ
are concentric about=0. Hence, given some maximal vol- y P

ume such as 40the grid spacing determines the position of Was crucial for performing the computations on a small

the outer boundary. Referring to Fig. 1 for Schwarzschild inwmkiigogéng::o ebVeOI:;r?ir; dr%ﬂiot%uggi m;h@evit(;wrﬁg r:g]e of
Novikov coordinates, it is clear that at late times there is no" "’ : " P
?f an apparent horizon boundary condition. We argued that

room for the three-point buffer necessary for the apparen ; L X : .
horizon condition. Even before that, the steep increase in thgumer]cal relativity on patches is a natural idea for adapiive
’ @esh in general relativiy.

metric coefficients makes the evolution unstable. So in thes . . .
Apart from obvious extensions of this work to larger ma-

coordinates at this resolution we are squeezed out at around . . . .
=6 q chines, let us mention three directions for future work. The

In [1], evolution times of around=15-50 have been adaptive mesh can be generalized to cover some aspects of

obtained, which is the best one has achieved-irt alimen- numerical relativity on patches, e.g., to overlapping boxes

. . X . ; ; without parents. Having the ADM compiler available, one
sions, but for different coordinatésarious implementations ; : ; . X
) T . : : can experiment with the various hyperbolic formulations that
of maximal and algebraic slicing, horizon locking shifor have become available recentsee[27] for a review. Fi
the accurate extraction of gravitational waves, on the order . e BRI
B : DT .~ hally, as a simple example for nonvacuum general relativity,
t=1000 would be nice. Geodesic slicing is not well suited s '
for a code that is supposed to run forever, because the hof ¢ c&" study the collapse of a scalar field #l3o find out
. PP ! : .~ whether the Choptuik effect exists for nonspherical configu-
zon keeps moving outward and the radial metric coefficients_.. !
: o rations of the scalar field.
increase. For the same reason, geodesic slicing makes for an

interesting test case apart from the crash test, because one
can work on some aspects of moving horizons.

The one scheme without built-in time limitations is based
on horizon locking shift conditiong21]. One starts with dy-
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