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Charge scaling and universality in critical collapse
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Consider any one-parameter family of initial data such that data with a parametepvajuge form black
holes, and data with<p, do not. Asp—p, from above(“critical collapse”), the black hole mass scales as
M~(p—p4)?, where the critical exponent is the same for all such families of initial data. So far critical
collapse has been investigated only for initial data with zero charge and zero angular momentum. Here, we
allow for U(1) charge. In scalar electrodynamics coupled to gravity, with adRer|(9+iqA) ¢|?>+F?, we
consider initial data with spherical symmetry and a nonvanishing charge. From dimensional analysis and a
previous calculation of Lyapunov exponents, we predict that in critical collapse the black hole mass scales as
M~ (p—p,)?, and the black hole charge g~ (p—p, )?, with y=0.374+0.001(as for the real scalar field
and §=0.883+0.007. We conjecture that, where there is no mass gap, this behavior generalizes to other
charged matter models, with=2vy. We suggest the existence of universality classes with respect to param-
eters such ag. [S0556-282(196)03924-(

PACS numbgs): 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw
I. INTRODUCTION Il. SCALAR ELECTRODYNAMICS

. . L As a matter model with 1) charge, we choose scalar
Cons@gr any one-parameter family of initial data for gen'electrodynamics coupled to gravity. This has the advantage
eral relativity such that data with a parameter vafp,  f peing a simple field theory, and of allowing arbitrary and
form black holes, and data with<p, do not. Recently, it jyqependent initial distributions of energy momentum and
has been discovered that ps-p, from above(“critical  charge. Furthermore, it is a generalization of two other mod-
collapse’), and unless there is a mass gap, the black hol@|s in which critical collapse has already been studied,
mass scales abl~(p—p,)”, where the critical exponent namely, the real and complex massless scalar figlitaout

yis the same for all s.uch f_amilies of initial data. ~ electromagnetisin The action, in units where=27G=1,
This behavior was first discovered for a real scalar field injg

spherical symmetry1], has been observed in a variety of

other matter model2—-5], and is strongly expected to occur 1 1

in two larger classekb,7], all in spherical symmetry. Critical SZJ \/a[gR— Egab(va-i-iQAa)(ﬁ(Vb—iQAb)d)*

phenomena were also found in axisymmetric pure gravity

[8]. Historically, this being the second case to be discovered, 1 e

it has so far remained alone in going beyond spherical sym- —29°9 Fachd} (1)

metry, and in being vacuum. No counter-examples have been

found, except that when the field equations allow for a metay o e F ,=V.A,— V,A,. We restrict to spherical symme-

stable static solution this solution creates a mass gap fafy. For the metric we choose

certain initial data regimesbs].
The critical scaling of the mass can now be considered as ds?= — a(r,t)2dt2+a(r,t)2dr2+r2d0? @)

understood 2,9,1Q in terms of general relativity as a dy-

namical system, and of Lyapunov exponents, at least iyt remaining gauge condition=1 and regularity condi-
spherical symmetry. For reasons of space we assume hefg, o1 (ora,=0) at the originr =0 (before a singularity

that the reader is already familiar with these arguments. OUfy g therg, For the electromagnetic field we choose the
notation here is compatible witiL0]. An introductory re- gaugeA, =0, andA,=0 atr=0.

view is [11]. , In order to use dimensional analysis and scaling argu-
Black holes are characterized by mads U(1) charge  yents |ater, we need the field equations in first-order and

Q, and angular momentuin, but so far critical collapse has  gimensionless form. For this purpose we introduce the di-
been investigated only for initial data with zero charge and,ansionless fields

zero angular momentunjLinear perturbations of extremal
charged black holesg=M) were studied if12].] Here, as r r
a first step towards the generic situation, we allow for charge ~ X=—-¢,, Y=—(¢+igAid), X.=X=Y,
in the initial data and hence in the resulting black hole. We a @

keep the restriction to spherical symmetignd, therefore, .

exclude angular momentym A=A, F=—A,, g

Q| o

)

*Present address: Max-Planck-Institutr fGravitationsphysik, ~ With the notationZ={X, ,X_,¢,a,0,A,F}, we can write
Schlaatzweg 1, 14473 Potsdam, Germany. the field equations formally as
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E(rZ,,rZ,,Z,qr)=0, 4 t
(r rallt qr) () TEln(r_)' §E|n(;)—§0(7'), (5)

where the vectoE of equations is polynomial in its argu- 0

r_nents.(The matter stress-energy tensor an_d the matter equ@herer o is an arbitrary fixed scale, ang(7) is a periodic
tions of motions are manifestly polynomial because theynction with periodA. This choice of coordinates is adapted
have been derived from a polynomial matter Lagrangianyg the self-similar solution we shall be looking ft0]. In

The components of the Ricci tensor can be brought intGhese coordinates, discrete self-similarity corresponds to all
polynomial form after multiplication by certain metric coef- fia|ds being periodic in. (As a degenerate case, continuous

ficients) Furthermore, it is linear in the first two arguments, ge|f.similarity corresponds to all fields being independent of
because the field equations are now first order. 7)

The arguments oE form a complete set of independent Rewriting the arguments d in Eq. (4), we obtain
dimensionless quantities. To make dimensionless quantities
out of g and the derivatives, we have combined them with E{z,g,eﬁ&o[zyr_(lju gé)zyg],z,qroe”“%}:O. (6)
r, taking advantage of the spherical symmetihe Ricci
scalarR has dimensioh. ~2 and thereforef ,,F2° must have By shifting the origin ofr, one may set,=q~?! to simplify
the same dimension. This means thgtis dimensionless. As the notation, but we want to stress here thats always
the minimal coupling of matter to electromagnetism is viaaccompanied by’ in the field equations, and vice versa.

V.—V.+igA,, q has dimensioh. "1 This will be crucial later on.
Before giving the equations explicitly, we introduce new The complete field equations in these fields and coordi-
dimensionless coordinates nates, written out explicitly, are

[3(1-a%) —a’|X:[*+a’F?]X. — X e " gX. +iqree’(gAX. +aF¢)]

Ko = 1+ (1+¢y)eltéog ’ 0
g,.=(1-a?+2a’F?)g, (8)
1
a,gzia[l—a2+a2(|x+|2+|x,|2+2F2)], 9
o =aX, (10)
, 1

Ff—F+|qroef+f+foa§(¢v*—¢>*Y), (12)
A =g 'a%F, (12

*(£+§)1 34—1 2 2 ’ 1 2 2 2 2 2
a.=e “>ag (X 7= X )+(1+§o)§a[l—a +a(| X[+ |X_[*+2F9)], (13

H T 711 * * ’ H T+ {+§& 1 * *

F ,=igroe’ag §(¢X —¢*X)+(1+&))| —F+igree 0a§(¢Y —d*Y) ]|, (14
¢ =al(1+E)X+g e  ErY]—iqree’Ad, (15)

where ¢y=d&,/dr. The last three equations, which contain critical solution acts as an attractor within the hypersurface
only 7 derivatives, can be considered as constraiatson-  Which separates black hole data from non-black-hole data

stant{) which are propagated it by the first six equations. (the “critical surface”). It thus funnels all initial configura-
tions on either side of the surface into two unique channels;

IIl. CRITICAL SOLUTION one side goes to a l_)lack hole, and th_e_other to dispersion.
This explains the universality of the critical exponent. The
Critical collapse as we know it is dominated by a “critical power-law behavior of the black hole mass follows from the
solution” with two crucial properties: it is an attractor of self-similarity of the critical solution.
co-dimension one, thus serving as an intermediate asymp- Finding a critical solution is a two-step process: one has
totic, and it is self-similar, thus linking the large scale of theto find a self-similar solution, and then check explicitly the
initial data with the small scale of the final black hole. The number of its unstable perturbations.
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A. Asymptotically self-similar solutions while A, vanishesA, is the electromagnetic field created by

Self-similarity corresponds to periodicity of the solution %o, @nd¢; is the reaction of to that electromagnetic field,
in the coordinater, while the field equations contain explicit @nd so on. In particular, the equation 04 is obtained by
factors ofe”. Therefore, no self-similar solution exists. The Writing Z, for Z in the field equations while setting all ap-
physical reason is that the coupling to electromagnetism inpearances off equal to zero. In effectZ, obeys the field
troduces the scalg™?! into the action and field equations, equations for a complex scalar field coupled only to gravity,
thus excluding scale-invariant solutions. but not to electromagnetism, which, as we anticipated, is a
Does the absence of an exactly self-similar solution rulesimpler problem. Exactly two self-similar solutions of that
out critical phenomena? No, as we really only need a soluproblem, or candidates fat,, are known.
tion which approaches a self-similar spacetime as the latter (1) The critical solution found by ChoptuiKi, 13,10 has
approaches its singularity, that is in the limit of small spaceno charge, because the scalar field is feglto the remain-
time scale(Any spherical self-similar spacetime has a cur-ijng U(1) gauge freedomp—e'°¢ with ¢ a constarit This
vature singularity, wittR~e~27.) This leads us to the ansatz means that all th&, for n=1 have vanishing source terms
o and, therefore, vanish, or in other words that the Choptuik
2(¢,7)= E e"Z.(£,7), (16) solutiqn is already a solution of the full proble_rliStrictI_y
n=0 speaking, we have to complete the real Choptuik solution by
a vanishingA andF and a reakp calculated from Eq(15).
where eactZ,(¢,7) is periodic in7. As — —, Z is domi- ¢ is periodic because in the Choptuik soluti§randY have
nated byZ,, which is by assumption periodic in. There- vanishing mean values. This is essential, but was not auto-
fore, the form(16) guarantees that the solutighis asymp-  matically guaranteed.

totically self-similar asr— —«. Like a self-similar solution, (2) The continuously self-similar, charged solution found
it has a singularity, att&0,r=0), which corresponds to by Hirschmann and Eardlej14] does have charge. This
7=—x for any{. means that it gives rise to a soluti@of the full problem,

Now we argue that there are solutions of this form at leasincluding electromagnetism, only when all the terfjsare
up to some distance from the singularity. We obtain equaadded up.
tions for theZ,, by substituting the ansatz into the field equa-
tions and separating powers ef. Z, obeys an equation
independent of the other,,, while all the otherZ, are B. Perturbation spectrum
coupled toZ,,_; and lower. This allows us to determine the

Z, recursively, starting witlZ,. Therefore, solutiong of the Now, we come to the second criterion for a solution to be

full problem are mapped one to one to the solutiZg®f the a critical solution, namely, the presence of exactly one-linear

zeroth order problem, which we shall see is simpler. perturbation mode that is growing as- —c. Anticipating
We know from the study of self-similar solutions that the next section, we note that the general linear perturbations

Z, is locally uniquely given by a nonlinear eigenvalue prob-%Z of Z (i labels the independent modesave a similar
lem, arising from the boundary conditions @f periodicity ~ Series form to the background critical solutidritself. As for
in 7 and (ii) regularity at(a) r=0 (for t#0, before the sin- the background expansiofwhere Z is completely deter-
gularity formg and (b) the past light cone of the singularity. mined byZ,), 5Z is specified by giving its leading term
By analogy, it is plausible thaZ, exists and is uniquely &joZ. This obeys an equation whef@ once more, the terms
determined by the source teifiy and similar boundary con- with g have been set equal to zero, and whimethe back-
ditions, and so on for all th&,,. ground dependence is only through. This meanss;Z on
Does the sum converge? Tixg are periodic in7. As its own is a complete perturbation, in the theory without
{— —oo, which corresponds to—0 (for t#0), theZ, are  electromagnetism, oZ,, which is itself a complete back-
bounded by the regularity conditions we impoge- cor-  ground solution of that theory.
responds td—0 (for r#0) and is only a coordinate singu-  The spectrum of the perturbations is determined, in a lin-
larity. The two examples foZ, discussed below have been ear eigenvalue problem, together with thgZ (and is not
continued, by a change of coordinates, up to the future lighinfluenced by the highe$;,Z). In consequence, the spectrum
cone, and have been verified explicitly to be bounded. As thés the same in the presence of the coupling to electromagne-
higher Z,, obey equations similar in type t6,, we assume tism, or in its absence. We can, therefore, recycle earlier
that all Z,({,7) are bounded. As for the growth of tt#,  work, where the perturbation spectra of the Choptuik and
with n, it seems very likely that it is bounded as Hirschmann and Eardley solutions were determined in the
Z,<Ae ™" for somery, so that the solution converges for theory without electromagnetism: their spectrum in scalar
7<7. The fact that it does not converge for allis not  electrodynamics is just the same. As, in particular, the num-
crucial to its usefulness. Even when the critical solution isber of unstable modes is the same, we immediately conclude
exactly self-similar and, therefore, known to exist for all  that the Choptuik solution is an attractor of co-dimension one
an actual collapse spacetime is not even approximately self10], that is a genuine critical solution, even in the full theory
similar outside a bounded spacetime region. with electromagnetism, while the complex solution based on
What is the meaning of the expansi@tb) in powers of  (but not identical with the Hirschmann and Eardley solution
e’? Ase” always appears together within the field equa- has three unstable modgs5]. (To state it once more, its
tions, it is also an expansion in powers @f that is in the perturbation mode functions are different in the full theory,
coupling of the matter to electromagnetism. For examplebut their Lyapunov exponents are the sgme.
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C. Uniqueness of the critical solution the “real” perturbations. The general perturbation of this

Collapse simulationgl6] suggest that the Choptuik solu- kind is of the form

tion is, in fact, theonly critical solution, and a global inter- %

mediate attractor, for the free complex scalar figldt 87 ea £, 7) = E CieNT8Z(¢,7), (17
coupled to electromagnetism. This type of evidence can i=1

never be complete, because the entire phase space can N&yRl o eaclhs;Z is periodic inT with periodA, and where the
pe probed. It only suggests_ that any other other critical solu—Ci are free parameters. Th8Z were already calculated
tions _haye rathef small basm_s of attraction. As we have seelyiin the real scalar field model iL0]. In particular, there
self-similar solutions and their perturbations are mapped ong precisely one eigenvalue with Re\<0 in the spectrum
to one between the free complex scalar field and the theo%\i}, namely,\ ;= —2.674.

with electromagnetism. This means that critical solutions ar€ Tne Jinearized equations for the remaining, not purely
mapped one to one between the theories. Their basins %ah perturbations are of the form

attractions, however, could be very different in size, so that

the counterpart of a hypothetical critical solution for the free 0Z ;/=A6Z+BdZ ,,+e"CéL, (18
complex scalar, with a basin of attraction so small that it

would have been overlooked so far, could play an importanfVnere the dimensionless coefficieris B, andC are peri-
role in scalar electrodynamics. odic in 7. The “real” perturbations obey the same equations,

. ¢ .
We must also consider the possibility of critical solutions PUt the term proportional te” (or, as always, proportional to

not of the form(16). Two such possibilities have occurred to q) vanishes for the real perturbations because they do not

us, but can be definitely ruled out carry charge. Its presence means thatdhx cannot be pe-
Any critical solution of the form(16) describes a situation riodic in 7. Instead, we have

where charge becomes less and less important in the final o

black hole as one fine tunes along some one-parameter fam- 5Zimaginan(§,r)=z D;e*"82(¢,7), (19

ily of initial data with the aim of making black holes of ever =1

smaller_ mass(This does not ex_cludmltlal data with an where each independent modg is now expanded as

appreciable charge-to-mass radius, but most of that charge

must be radiated away along with most of the ma$he *

other possibility for the charge allowed by the lin(t<M 6Z(L )= Z e""5nZ(¢,7), (20

for black holes is thatQ/M approaches a constant as n=0

M—0 in the process of fine tuning. This is excluded: Theyhere only thes,,z are periodic inr. This expansion is

black hole charge for a given scalar field evolution must eyactly analogous to that of the asymptotically self-similar

change sign when changes sign. Ag always appears in  packground solution, with the difference that, due to the lin-

the company ofe”, Q must be suppressed with respect t0ggayity, the ansattl9), (20) is generic, while Eq(16) is not.
M by at least one power oé” as small scales are ap- The 5.7 obey the coupled equations

proached.
A second possibilitfsuggested by5]) is that of another 6i0Z,;=(A+ uiB)6ioZ+B6oZ ., (21
critical solution which is not self-similar but static, giving
rise to a mass gap in the one-parameter families of déta. OinZ ;= (A+ uiB+nB)6inZ+BopnZ .+ Cdin_1Z, n=1
come back to this possibility below, when we consider other (22
matter models with chargeBut massless scalar electrody- . . . .
ge y The equation fors;pZ describes purely imaginary perturba-

namics has no static solutions, even unstable. “Charged bQ[_ t th lar field. not led 1o the elect i
son stars” exist only if one adds a mass temmi¢? to the lons Of the scalar lield, not coupled 1o the electromagnetic

action, with 4rGm?>q? [17]. field or the metric. It is homogeneous #,Z, and is comple-

We come to the surprising conclusion that the Choptuik'mantgdbby perIiOQic boug'd.ary coEditio(witg p_eriodA) Im
solution is a critical solution in scalar electrodynamics, and,” @nd by regularity conditions gt=—< and{=0. A solu-

as far as we can see, the only one, even though it has ntg)n exist_s only for discrete values of. Fro_m this e_quation

charge itself(In particular, the Hirschmann and Eardley so- °"® 9bt?"”5 the spectrufii} of pertur_batlons. This equa-

lution, although charged, is not a critical solutipn. tion is, in fact, that for the pert_urbatlons, arpund the real
Ongoing work of C.G. shows that the critical solution for solutlon_, of the complex scalar field mode_l without e[ectro-

spherical S(2) Einstein-Yang-Mills collapsé5] is of the magnetism. They have already been considergdGh with

form (16), with all the termsZ,, nonvanishing. This indicates the result that Re;>0 for all i. ,

that if they vanish fon>0 in scalar electrodynamics, thisis 1 he t€rmsj,Z for n=1 are determined both by bound-

accidental. Details will be published elsewhere. ary conditions and by the source terd\§_,Z. As the value
of u; has already been fixed as an eigenvalue in the equation

for 6,0Z, the boundary conditions admit no homogeneous
solution forn=1, and the solution fon=1 is proportional

We now consider the real critical solution of Choptuik to the source ternd;,_,Z. The electromagnetic field comes
and its linear perturbations. Because the background is reah to ordere”, that isq, because the purely imaginary per-
these split naturally into two kinds. The first are perturba-turbation §;o¢ of the real background scalar fielfl, gives
tions 6Z with 8¢ purely real. In the following we call these rise to a charge distribution and, therefore, generates an elec-

IV. LINEAR PERTURBATIONS



54 CHARGE SCALING AND UNIVERSALITY IN CRITICAL ... 7357

tromagnetic field. This charge distribution is ultimately re-  K(p) is small, even compared tg if e™ is sufficiently
sponsible for the charge of the final black hole. To ordersmall, that is, if p—p, ) is sufficiently small. We, therefore,

e””, or g%, the scalar field perturbations acquire a real partreat the terms proportional #(p) as a linear perturbation
and in consequence couple to metric perturbations, thus alsfiroughout.

creating a gravitational field. Nevertheless, we shall refer to Byt now we consider the exact, nonlinear evolution of the
these perturbations as the “imaginary” perturbations, bedataz, +e48,Z, without treatinge$;Z as a perturbation any
cause to leading order they are purely imaginary perturbapnger. This is necessary because its presence makes a quali-

tions of the scalar field. tative difference at late times. If it has one sign, a black hole
is formed. If it has the other, the matter disperses. Because
V. MASS SCALING the solution at late times is no longer even approximately

. . . self-similar, we go back to the coordinatesndt.
.For the generic solution close to the real self-similar so- The dataZ, +e5,Z are purely real, and evolve to a
lution Z,, we now have the form purely real solution, with vanishing electromagnetic field.
. Consequently, the equations determining the solution do not
Z(L,7)=Z,(L,7)+ 2 Ci(p)eN"8Z(L,7) contain the terngr, and are scale invariant. Therefore, the
i=1 entire solution depends arn in the simple way

= - o -t
+_21 Di(p)e“'TZO e"6n2(L,7), (23 Z(r,)="f(r.t, 7o), wherer=— and tEr—p,
i= n= P

28
where the first term is the critical solution, and the second 29
and third terms its “real” and “imaginary” perturbations, as where the(irrelevany shift in t is t,=r,e™. f obeys the
discussed above. The amplitud@sandD; of the perturba- equation
tions depend on the initial data in general and hence on the —
parametep of a given one-parameter family of initial data in E(rf —rf.f,0)=0, (29
particular.

As 7— —o, we can neglect all perturbations but the oneWith initial data

growing mode, associated witty. As we are interested in I _ _
the asymptotic behavior of the charge, however, we also f(r,t=0,70)=Z,(Inr, 7o) + €&,Z(Inr, 70). (30)

keep the most slowly decaying of the imaginary perturba- .
tions (which alone carry charge associated with,. By In particular, we know that the mass of the black hole that

definition we obtain the precisely critical solution for forrr|1$ in this s?lution must be a multiple of the underlying
p=p,, and so we must haveC,(p,)=0. Expanding Scalery, namely,
C,(p) andD;(p) to leading order, we obtain

M=r e#(70), (31
ﬁCl( p*) A : : : .
Z(Ln)=Z, (L) +H(p—py ) ————eMT5,Z(L,7) whereu(7) is a function that we do not know, but which is
Ip periodic with periodA in 7. The black hole mass as a func-
% tion of the family of initial data and the parameter vajués
+D (P, )€ €"81,Z(4,7). (24 then
n=0
p—p.| MM
To keep the notation compact, we define, follow[rg], M(p)=r0( ) exp{r1+v[7, (p)+ 7]}, (32
T (p)=— im p—p*)’ T=— im 6—1‘9_(:1(‘)*)}, where v(7)=u(7)+ &(7) is a universal wiggle superim-
A P A dinp posed on the basic power-law behavior, and the constant
(defined abovedepends on the initial data family.
To=T1F 7% (P), (25)
wheree is an arbitrary small constafindependent op). If VI. CHARGE SCALING
we now fix 7= in the approximate solutiof24), we ob- So far we have only repeatédi0] (which itself is a gen-
tain ap-dependent family of Cauchy data: namely, eralization of{9]). Now we consider the effect of the pertur-
bation proportional toK(p) in the initial data forf. This
Z.(N=2Z({,70)=2 (InL |+ es.7 InL T ) linear perturbation, sayf, obeys the linearization of E¢4),
P e BT P 0 which is of the form
- r -
KpS e“foélnz(lnr—,fo), 26 r 5t ;=Arsf  +Bsf+qrCof. (33)
n=0 _ N
P Rewriting this in terms ofr andt, we obtain[using the
where definition (27) of r ]

rp=roe %™ K(p)=D,(p,)er1™. (27 T8f {=Arsf +Bsf+qroeT  0Crsf, (34
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where the dimensionless coefficiets B, andC are func- model in spherical symmetry where the matter is coupled to

tions only ofr andt (as well as of the parametep charac-  electromagnetism only via the ()-covariant derivative

terizing the background solutioh). To obtain a solution for D,=V,+iqA,. Then it follows from dimensional analysis

all small values of the parametefo at once, we expand in that whenever one casts the field equations in first-order,

powers of it. For the critical solution plus linear perturbation dimensionless form, they must be of the fofd). Z would

we then have stand for another set of fields, aidneed not be a polyno-
mial. The argument showing that the electromagnetic inter-

I - . I action can be neglected asymptotically in the strong field or
Zp(r,)="1(r,t, 7o) + K(p)n}::o e"05,f(r,t,70). (35  small-scale regime of the critical solution would go through

as before, even if the critical solution itself carries charge.

The expansion coefficients,f obey the equations (Strictly speaking, we require that a polynomial form of the
L o field equations exists for our arguments to apply directly, but
r6of T=Ar6of 7= Bdyf, (36)  we hope that this technical requirement can be relaxéolv

we need to consider three cases separately:
T8,f T=Ard,f ++B8,f+qreef0Crs, ,f,n=1, (1) The critical solution does not carry charge, only its

(37 perturbations do, which brings in Lyapunov exponents. Let
N, be the one eigenvalue with Re&l0: (a) The unstable
mode itself carries no charge. This case is similar to scalar

~ — electrodynamics. Lejt, be the eigenvalue associated with
Onf (1 1=0.70)= d1nZ (NN, 70). 38) charge zvhich has tIrL]%a smallestgreal part. We must have
The perturbationsf gives rise to a perturbation of the Reu1>0, because the critical solution, by definition, has
black hole mas#/, but we ignore this here as a subdominantonly ~one unstable mode. Fromy=-1/x; and
effect. We are, however, interested in the black hole chargé= — (x1+2)/\; we then find the relatiod>2y. (b) The

Q, which only comes in throughsf. We do not need to unstable mode itself carries charge. In this case, we obtain

calculatesf to see howQ scales. It is sufficient to note that the charge, as well as the mass, from the nonlinear evolution

the charge-to-mass ratio is dimensionless and must be odd fff the dataZ, +€6,Z, neglectingall the other perturbations.

go as simple form(28), due to the presence gfr in the Eq.(4).

But we can obtain the solution for all sma}j by expanding

with initial data given by

Q (Q e . in gr,, using the fact thar=rqr,. The solution(28) is
v - Kp)je 0(m) (70) + €370 M) (70)+0O(€°70) |. now replaced by the more general
1 3
(39 o
Taking only the dominant term, and putting it all together, Z(fvt>=n§0 (qrp)"fu(r.t, 7). (42

we obtain

Q The massM is again proportional to,,, but this time only to
Q(p):M(p)K(p)eTO(M) (70)- (400 leading order ingr, (or e™). The charge-to-mass ratio is
1 now Q/M =(qrp)(Q/M)1(7-o)+O(qrp)3, without the pref-
actor K(p), so that the charge to leading order is simply
proportional tor2, or =27, with y=—1/\,.
p—p, | (K1t (2) Finally, the critical solution itself may carry charge.
) expl o+ w1+ 7. (P)]}, Then the higher terms in the expansitit) do not vanish
P (41) identically. This would have been the case for example for
the solution[14]. There the charge would have appeared to

where r,=(u,+2) 7, +InDy(p,) is a new family-dependent ordere” of the background expansiqi6). We ;hould still
constant, is the same family-dependent constant as beforefeed to consider the da#+ed,Z, where 6,Z is the one
and 7(7)=v(7) + In(Q/M)4(7) is a new universal wiggle. growing perturpatlor(charged or m)t in order tq determine
Numerical Va|ues for the Lyapunov exponents arerp, the $pacetlme Scale on Wh|Ch the Solutlpn .Ieavelslthe
\,=—2.674+0.009 [10] and u,=0.362+0.012. u; has |r_1termed|ate attractor. But the eIectromagneUc field giving
been calculated by the same metHdd] as \,, but con-  fise to the black hole ch.arg_e is now dominated by, (the
verges somewhat more slowly with decreasing step size, sePmponentA of Z;), which is once more down a factor of
that the estimated numerical errorn, and in consequence p from Zo, so thatQ is again proportional torj, or
in 8, is somewhat larger. We obtain critical exponentsd=27y.
y=—1/\;=0.374+0.001 for the mass and We must make one proviso, hamely, that a mass gap may
5=—(u1+2)/\,=0.883+0.007 for the charge. exist in critical collapse. Recent work on critical collapse of
the Einstein-Yang-Mills system has illustrated tf8g: If the
model admits a static or oscillating solution with precisely
one unstable modésuch as the Bartnik-McKinnon solution
Given that our arguments did not rely on the exact formin Einstein-Yang-Mills theory; this solution acts as an alter-
of the field equations, we can generalize them to any mattenative intermediate attractor. As this intermediate asymptotic

After regrouping terms, we obtain the final result

Q(p):ro(

VIl. OTHER CHARGED MATTER MODELS
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is not self-similar, but instead has a finite mass, it gives rise¢o very small scaleécompared to the scale of the initial data
to a mass gap in some region of initial data space. Our resulsnd the scalg™ 1), in contrast with critical phenomena in
then only hold for that part of initial data space where for-statistical mechanics, where they correspond to very large
mation of the static solution is avoided. For a mass gap tecales(compared to the scale of the microscopic physits
occur when a critical solution also exists, it is essential that ahe limit of small scales, the parametgrbecomes “irrel-
static or oscillating solution not only exists, but has exactlyevant,” to borrow another term from statistical mechanics.
one unstable mode. If it was unconditionally stable, there If there are two(or more parameters such am or q,
would be a third possible outcome in addition to black holeuniversality does not hold, as; /m, is a dimensionless pa-
formation or dispersion, namely the formation of a stihis  rameter, which generically has qualitative effects. In massive
is, of course, the situation in astrophysjcK.it had more  scalar electrodynamics, for example, the valuegifm de-
than one unstable mode, it would be a lesser attractor tha@rmines if static solutiong‘charged Boson stars)’ exist.
the critical solution and would be “missed” by almost all Universality may be recovered if the two scales are very
one-parameter families of initial data. different, that is form; /m,—0 orm,/m;—0, but this limit
need not be regular.

VIII. UNIVERSALITY CLASSES
AND THE RENORMALIZATION GROUP IX. CONCLUSIONS

Finally, we note a consequence of our work that does not We predict that in critical collapse of massless scalar elec-
concern charge. By exactly the same argument which showsodynamics in spherical symmetry, the black hole mass
that in the critical solution with charge electromagnetism carscales asM~(p—p,)?, and the black hole charge as
be neglected asymptotically, one can show that the mas®~ (p—p,)° each overlaid with a universal wiggle, with
term can be neglected asymptotically for the massive scalap=0.374-0.001 (as for the real scalar field and
field. (One only has to replacgr by mr in Eq. (4) and the §=0.883+0.007.
following equations derived from jtAs the critical exponent We have gone beyond the restriction to uncharged initial
for the black hole mass is unchanged by the coupling talata(and hence black holgsbut have kept the restriction to
electromagnetism, so it is, by the same argument, when @anishing angular momentum. We predict the appearance of
mass term or a more general polynomial scalar field selfa new critical exponend, and give its numerical value. Veri-
interaction is added to the actiofThis was already known fication of our predictions in numerical collapse simulations
[18].) should be straightforward.

Our argument generalizes this any parametem of di- Furthermore, we predict that in spherical critical collapse
mension (length)! in geometrical unit&S=c=1 appearing of matter models with minimal coupling —V+igA to
in a polynomial form of the field equationd\ote that as we electromagnetism, both mass and charge scale as universal
insist on the equations being polynomial in the fieland  power laws(times a universal wiggle with §=2v, so that
parametem, we implicitly also allow parameters of dimen- the black hole charge always disappears faster than the black
sion (length) ", but only for positive integen.] hole mass. Depending on the mattaot in massless scalar

In the language of critical phenomena, theories with dif-electrodynamicsthis behavior may hold only for parts of the
ferent values of such a dimensionful parameter form “uni-initial data space, with a mass gap in other parts.
versality classesT11]. The analogy with critical phenomena  We also find that adding terms with a parameterof
in statistical mechanics seems good enough to use this terdimension (length)! in units c=G=1 (such as a scalar
deliberately. field mass, or the electromagnetic coupling in the present

The renormalization group in statistical mechanics acts opapey, in a form of the field equations which is polynomial
the phase space by blocking degrees of freedom, and ia the fieldsZ and parametem, does not change the critical
change of scale. If one demands that the partition functiomxponent for the black hole mass. In this sense models with
remain invariant, this induces an equivalent action(tre  different values of such a parameter form universality
parameters 9fthe Hamiltonian19]. The equivalents of the classes.
spins and their Hamiltonian in statistical mechanics are the Note added After this paper had been submitted, our
fieldsZ(r) and their equations of motion in critical collapse. value of the critical exponent for the charge was confirmed in
The renormalization group in critical collapse acts on thenumerical collapse situations by Hod and Pifa]. Univer-
phase space by a time evoluti@in t) followed by change of sality classes in critical collapse were independently de-
scale(in r), asZ(r,t)—Z(e “r,e t). (One can combine scribed by Hara, Koike, and Adacf21].
the time evolution and rescaling into a time evolutiorrjrat
constantZ, using the freedom of lapse and shift in general
relativity. The critical solution is by definition invariant un-
der this transformatiop.If one demands that the rescaled We thank Juan Rez-Mercader for a critical reading of
data evolve in the same way, this action induces an equivahe manuscript and suggestions. C.G. would like to thank
lent action on(the parameters pthe field equations. Piotr Bizon for discussions on Einstein-Yang-Mills theory,

In the case of scalar electrodynamics, this action is ratheand Geoff Simms and Nigel Goldenfeld for suggestions, es-
simple: In the field equationgy and r appear together as pecially for expanding Sec. VIIl. He was supported by the
qgr. If one changes the scale ms-e~“r, this has the same Ministry of Education and Sciend&pain. J.M.M. was sup-
effect asq—e~q. ported by the 1994 Plan de Formatide Personal Investi-

Critical phenomena in gravitational collapse correspondgador of the Comunidad Autema de Madrid.
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