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Charge scaling and universality in critical collapse

Carsten Gundlach* and Jose´ M. Martı́n-Garcı´a
Laboratorio de Astrofı´sica Espacial y Fı´sica Fundamental, Apartado 50727, 28080 Madrid, Spain

~Received 26 June 1996!

Consider any one-parameter family of initial data such that data with a parameter valuep.p* form black
holes, and data withp,p* do not. Asp→p* from above~‘‘critical collapse’’!, the black hole mass scales as
M;(p2p* )

g, where the critical exponentg is the same for all such families of initial data. So far critical
collapse has been investigated only for initial data with zero charge and zero angular momentum. Here, we
allow for U~1! charge. In scalar electrodynamics coupled to gravity, with actionR1u(]1 iqA)fu21F2, we
consider initial data with spherical symmetry and a nonvanishing charge. From dimensional analysis and a
previous calculation of Lyapunov exponents, we predict that in critical collapse the black hole mass scales as
M;(p2p* )

g, and the black hole charge asQ;(p2p* )
d, with g50.37460.001~as for the real scalar field!

and d50.88360.007. We conjecture that, where there is no mass gap, this behavior generalizes to other
charged matter models, withd>2g. We suggest the existence of universality classes with respect to param-
eters such asq. @S0556-2821~96!03924-0#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

Consider any one-parameter family of initial data for ge
eral relativity such that data with a parameter valuep.p*
form black holes, and data withp,p* do not. Recently, it
has been discovered that asp→p* from above~‘‘critical
collapse’’!, and unless there is a mass gap, the black h
mass scales asM;(p2p* )

g, where the critical exponen
g is the same for all such families of initial data.

This behavior was first discovered for a real scalar field
spherical symmetry@1#, has been observed in a variety
other matter models@2–5#, and is strongly expected to occu
in two larger classes@6,7#, all in spherical symmetry. Critica
phenomena were also found in axisymmetric pure gra
@8#. Historically, this being the second case to be discove
it has so far remained alone in going beyond spherical s
metry, and in being vacuum. No counter-examples have b
found, except that when the field equations allow for a me
stable static solution this solution creates a mass gap
certain initial data regimes@5#.

The critical scaling of the mass can now be considered
understood@2,9,10# in terms of general relativity as a dy
namical system, and of Lyapunov exponents, at leas
spherical symmetry. For reasons of space we assume
that the reader is already familiar with these arguments.
notation here is compatible with@10#. An introductory re-
view is @11#.

Black holes are characterized by massM , U~1! charge
Q, and angular momentumL, but so far critical collapse ha
been investigated only for initial data with zero charge a
zero angular momentum.@Linear perturbations of extrema
charged black holes (Q5M ) were studied in@12#.# Here, as
a first step towards the generic situation, we allow for cha
in the initial data and hence in the resulting black hole. W
keep the restriction to spherical symmetry~and, therefore,
exclude angular momentum!.

*Present address: Max-Planck-Institut fu¨r Gravitationsphysik,
Schlaatzweg 1, 14473 Potsdam, Germany.
540556-2821/96/54~12!/7353~8!/$10.00
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II. SCALAR ELECTRODYNAMICS

As a matter model with U~1! charge, we choose scala
electrodynamics coupled to gravity. This has the advant
of being a simple field theory, and of allowing arbitrary an
independent initial distributions of energy momentum a
charge. Furthermore, it is a generalization of two other m
els in which critical collapse has already been studi
namely, the real and complex massless scalar fields~without
electromagnetism!. The action, in units wherec52pG51,
is

S5E AgF18R2
1

2
gab~¹a1 iqAa!f~¹b2 iqAb!f*

2
1

4
gabgcdFacFbdG , ~1!

whereFab[¹aAb2¹bAa . We restrict to spherical symme
try. For the metric we choose

ds252a~r ,t !2dt21a~r ,t !2dr21r 2dV2 ~2!

with remaining gauge conditiona51 and regularity condi-
tion a51 ~or a,r50) at the originr50 ~before a singularity
forms there!. For the electromagnetic field we choose t
gaugeAr[0, andAt50 at r50.

In order to use dimensional analysis and scaling ar
ments later, we need the field equations in first-order a
dimensionless form. For this purpose we introduce the
mensionless fields

X[
r

a
f ,r , Y[

r

a
~f ,t1 iqAtf!, X6[X6Y,

A[At , F[
r

aa
At,r , g[

a

a
. ~3!

With the notationZ[$X1 ,X2 ,f,a,g,A,F%, we can write
the field equations formally as
7353 © 1996 The American Physical Society
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E~rZ ,r ,rZ ,t ,Z,qr !50, ~4!

where the vectorE of equations is polynomial in its argu
ments.~The matter stress-energy tensor and the matter e
tions of motions are manifestly polynomial because th
have been derived from a polynomial matter Lagrangi
The components of the Ricci tensor can be brought i
polynomial form after multiplication by certain metric coe
ficients.! Furthermore, it is linear in the first two argumen
because the field equations are now first order.

The arguments ofE form a complete set of independe
dimensionless quantities. To make dimensionless quant
out of q and the derivatives, we have combined them w
r , taking advantage of the spherical symmetry.~The Ricci
scalarR has dimensionL22 and therefore,FabF

abmust have
the same dimension. This means thatAa is dimensionless. As
the minimal coupling of matter to electromagnetism is v
¹a→¹a1 iqAa , q has dimensionL21.!

Before giving the equations explicitly, we introduce ne
dimensionless coordinates
in

.

al
f
m
he
he
a-
y
.
o

es

t[ lnS tr 0D , z[ lnS rt D2j0~t!, ~5!

wherer 0 is an arbitrary fixed scale, andj0(t) is a periodic
function with periodD. This choice of coordinates is adapte
to the self-similar solution we shall be looking for@10#. In
these coordinates, discrete self-similarity corresponds to
fields being periodic int. ~As a degenerate case, continuo
self-similarity corresponds to all fields being independent
t.!

Rewriting the arguments ofE in Eq. ~4!, we obtain

E$Z,z ,e
z1j0@Z,t2~11j08!Z,z#,Z,qr0e

t1z1j0%50. ~6!

By shifting the origin oft, one may setr 05q21 to simplify
the notation, but we want to stress here thatq is always
accompanied byet in the field equations, and vice vers
This will be crucial later on.

The complete field equations in these fields and coo
nates, written out explicitly, are
X6,z5
@ 1
2 ~12a2!2a2uX7u21a2F2#X62X76ez1j0@gX6,t1 iqr 0e

t~gAX61aFf!#

16~11j08!ez1j0g
, ~7!

g,z5~12a212a2F2!g, ~8!

a,z5
1

2
a@12a21a2~ uX1u21uX2u212F2!#, ~9!

f ,z5aX, ~10!

F ,z52F1 iqr 0e
t1z1j0a

1

2
~fY*2f*Y!, ~11!

A,z5g21a2F, ~12!

a,t5e2~z1j0!
1

2
a3g21~ uX1u22uX2u2!1~11j08!

1

2
a@12a21a2~ uX1u21uX2u212F2!#, ~13!

F ,t5 iqr 0e
tag21

1

2
~fX*2f*X!1~11j08!F2F1 iqr 0e

t1z1j0a
1

2
~fY*2f*Y!G , ~14!

f ,t5a@~11j08!X1g21e2~z1j0!Y#2 iqr 0e
tAf , ~15!
ce
ata

els;
ion.
he
he

as
e

wherej08[dj0 /dt. The last three equations, which conta
only t derivatives, can be considered as constraints~at con-
stantz) which are propagated inz by the first six equations

III. CRITICAL SOLUTION

Critical collapse as we know it is dominated by a ‘‘critic
solution’’ with two crucial properties: it is an attractor o
co-dimension one, thus serving as an intermediate asy
totic, and it is self-similar, thus linking the large scale of t
initial data with the small scale of the final black hole. T
p-

critical solution acts as an attractor within the hypersurfa
which separates black hole data from non-black-hole d
~the ‘‘critical surface’’!. It thus funnels all initial configura-
tions on either side of the surface into two unique chann
one side goes to a black hole, and the other to dispers
This explains the universality of the critical exponent. T
power-law behavior of the black hole mass follows from t
self-similarity of the critical solution.

Finding a critical solution is a two-step process: one h
to find a self-similar solution, and then check explicitly th
number of its unstable perturbations.
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A. Asymptotically self-similar solutions

Self-similarity corresponds to periodicity of the solutio
in the coordinatet, while the field equations contain explic
factors ofet. Therefore, no self-similar solution exists. Th
physical reason is that the coupling to electromagnetism
troduces the scaleq21 into the action and field equations
thus excluding scale-invariant solutions.

Does the absence of an exactly self-similar solution r
out critical phenomena? No, as we really only need a so
tion which approaches a self-similar spacetime as the la
approaches its singularity, that is in the limit of small spa
time scale.~Any spherical self-similar spacetime has a cu
vature singularity, withR;e22t.! This leads us to the ansa

Z~z,t!5 (
n50

`

entZn~z,t!, ~16!

where eachZn(z,t) is periodic int. As t→2`, Z is domi-
nated byZ0, which is by assumption periodic int. There-
fore, the form~16! guarantees that the solutionZ is asymp-
totically self-similar ast→2`. Like a self-similar solution,
it has a singularity, at (t50,r50), which corresponds to
t52` for any z.

Now we argue that there are solutions of this form at le
up to some distance from the singularity. We obtain eq
tions for theZn by substituting the ansatz into the field equ
tions and separating powers ofet. Z0 obeys an equation
independent of the otherZn , while all the otherZn are
coupled toZn21 and lower. This allows us to determine th
Zn recursively, starting withZ0. Therefore, solutionsZ of the
full problem are mapped one to one to the solutionsZ0 of the
zeroth order problem, which we shall see is simpler.

We know from the study of self-similar solutions th
Z0 is locally uniquely given by a nonlinear eigenvalue pro
lem, arising from the boundary conditions of~i! periodicity
in t and ~ii ! regularity at~a! r50 ~for tÞ0, before the sin-
gularity forms! and~b! the past light cone of the singularity
By analogy, it is plausible thatZ1 exists and is uniquely
determined by the source termZ0 and similar boundary con
ditions, and so on for all theZn .

Does the sum converge? TheZn are periodic int. As
z→2`, which corresponds tor→0 ~for tÞ0), theZn are
bounded by the regularity conditions we impose.z→` cor-
responds tot→0 ~for rÞ0) and is only a coordinate singu
larity. The two examples forZ0 discussed below have bee
continued, by a change of coordinates, up to the future l
cone, and have been verified explicitly to be bounded. As
higherZn obey equations similar in type toZ0, we assume
that all Zn(z,t) are bounded. As for the growth of theZn
with n, it seems very likely that it is bounded a
Zn,Ae2t1n for somet1, so that the solution converges fo
t,t1. The fact that it does not converge for allt is not
crucial to its usefulness. Even when the critical solution
exactly self-similar and, therefore, known to exist for allt,
an actual collapse spacetime is not even approximately
similar outside a bounded spacetime region.

What is the meaning of the expansion~16! in powers of
et? As et always appears together withq in the field equa-
tions, it is also an expansion in powers ofq, that is in the
coupling of the matter to electromagnetism. For examp
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while A0 vanishes,A1 is the electromagnetic field created b
f0, andf2 is the reaction off to that electromagnetic field
and so on. In particular, the equation forZ0 is obtained by
writing Z0 for Z in the field equations while setting all ap
pearances ofq equal to zero. In effect,Z0 obeys the field
equations for a complex scalar field coupled only to grav
but not to electromagnetism, which, as we anticipated, i
simpler problem. Exactly two self-similar solutions of th
problem, or candidates forZ0, are known.

~1! The critical solution found by Choptuik@1,13,10# has
no charge, because the scalar field is real@up to the remain-
ing U~1! gauge freedomf→eicf with c a constant#. This
means that all theZn for n>1 have vanishing source term
and, therefore, vanish, or in other words that the Chopt
solution is already a solution of the full problem.@Strictly
speaking, we have to complete the real Choptuik solution
a vanishingA andF and a realf calculated from Eq.~15!.
f is periodic because in the Choptuik solutionX andY have
vanishing mean values. This is essential, but was not a
matically guaranteed.#

~2! The continuously self-similar, charged solution foun
by Hirschmann and Eardley@14# does have charge. Thi
means that it gives rise to a solutionZ of the full problem,
including electromagnetism, only when all the termsZn are
added up.

B. Perturbation spectrum

Now, we come to the second criterion for a solution to
a critical solution, namely, the presence of exactly one-lin
perturbation mode that is growing ast→2`. Anticipating
the next section, we note that the general linear perturbat
d iZ of Z ( i labels the independent modes! have a similar
series form to the background critical solutionZ itself. As for
the background expansion~where Z is completely deter-
mined byZ0), d iZ is specified by giving its leading term
d i0Z. This obeys an equation where~a! once more, the terms
with q have been set equal to zero, and where~b! the back-
ground dependence is only throughZ0. This meansd i0Z on
its own is a complete perturbation, in the theory witho
electromagnetism, ofZ0, which is itself a complete back
ground solution of that theory.

The spectrum of the perturbations is determined, in a
ear eigenvalue problem, together with thed i0Z ~and is not
influenced by the higherd inZ). In consequence, the spectru
is the same in the presence of the coupling to electromag
tism, or in its absence. We can, therefore, recycle ear
work, where the perturbation spectra of the Choptuik a
Hirschmann and Eardley solutions were determined in
theory without electromagnetism: their spectrum in sca
electrodynamics is just the same. As, in particular, the nu
ber of unstable modes is the same, we immediately conc
that the Choptuik solution is an attractor of co-dimension o
@10#, that is a genuine critical solution, even in the full theo
with electromagnetism, while the complex solution based
~but not identical with! the Hirschmann and Eardley solutio
has three unstable modes@15#. ~To state it once more, its
perturbation mode functions are different in the full theo
but their Lyapunov exponents are the same.!
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C. Uniqueness of the critical solution

Collapse simulations@16# suggest that the Choptuik solu
tion is, in fact, theonly critical solution, and a global inter
mediate attractor, for the free complex scalar fieldnot
coupled to electromagnetism. This type of evidence
never be complete, because the entire phase space can
be probed. It only suggests that any other other critical so
tions have rather small basins of attraction. As we have s
self-similar solutions and their perturbations are mapped
to one between the free complex scalar field and the the
with electromagnetism. This means that critical solutions
mapped one to one between the theories. Their basin
attractions, however, could be very different in size, so t
the counterpart of a hypothetical critical solution for the fr
complex scalar, with a basin of attraction so small tha
would have been overlooked so far, could play an import
role in scalar electrodynamics.

We must also consider the possibility of critical solutio
not of the form~16!. Two such possibilities have occurred
us, but can be definitely ruled out.

Any critical solution of the form~16! describes a situation
where charge becomes less and less important in the
black hole as one fine tunes along some one-parameter
ily of initial data with the aim of making black holes of eve
smaller mass.~This does not excludeinitial data with an
appreciable charge-to-mass radius, but most of that ch
must be radiated away along with most of the mass.! The
other possibility for the charge allowed by the limitQ,M
for black holes is thatQ/M approaches a constant a
M→0 in the process of fine tuning. This is excluded: T
black hole chargeQ for a given scalar field evolution mus
change sign whenq changes sign. Asq always appears in
the company ofet, Q must be suppressed with respect
M by at least one power ofet as small scales are ap
proached.

A second possibility~suggested by@5#! is that of another
critical solution which is not self-similar but static, givin
rise to a mass gap in the one-parameter families of data.~We
come back to this possibility below, when we consider ot
matter models with charge.! But massless scalar electrod
namics has no static solutions, even unstable. ‘‘Charged
son stars’’ exist only if one adds a mass termm2f2 to the
action, with 4pGm2.q2 @17#.

We come to the surprising conclusion that the Chopt
solution is a critical solution in scalar electrodynamics, a
as far as we can see, the only one, even though it ha
charge itself.~In particular, the Hirschmann and Eardley s
lution, although charged, is not a critical solution.!

Ongoing work of C.G. shows that the critical solution f
spherical SU~2! Einstein-Yang-Mills collapse@5# is of the
form ~16!, with all the termsZn nonvanishing. This indicate
that if they vanish forn.0 in scalar electrodynamics, this
accidental. Details will be published elsewhere.

IV. LINEAR PERTURBATIONS

We now consider the real critical solution of Choptu
and its linear perturbations. Because the background is
these split naturally into two kinds. The first are perturb
tionsdZ with df purely real. In the following we call thes
n
ever
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the ‘‘real’’ perturbations. The general perturbation of th
kind is of the form

dZreal~z,t!5(
i51

`

Cie
l itd iZ~z,t!, ~17!

where eachd iZ is periodic int with periodD, and where the
Ci are free parameters. Thed iZ were already calculated
within the real scalar field model in@10#. In particular, there
is precisely one eigenvaluel with Rel,0 in the spectrum
$l i%, namely,l1.22.674.

The linearized equations for the remaining, not pure
real, perturbations are of the form

dZ,z5AdZ1BdZ,t ,1etCdZ, ~18!

where the dimensionless coefficientsA, B, andC are peri-
odic in t. The ‘‘real’’ perturbations obey the same equation
but the term proportional toet ~or, as always, proportional to
q) vanishes for the real perturbations because they do
carry charge. Its presence means that thed iZ cannot be pe-
riodic in t. Instead, we have

dZimaginary~z,t!5(
i51

`

Die
m itd iZ~z,t!, ~19!

where each independent moded iZ is now expanded as

d iZ~z,t!5 (
n50

`

entd inZ~z,t!, ~20!

where only thed inZ are periodic int. This expansion is
exactly analogous to that of the asymptotically self-simi
background solution, with the difference that, due to the l
earity, the ansatz~19!, ~20! is generic, while Eq.~16! is not.
The d inZ obey the coupled equations

d i0Z,z5~A1m iB!d i0Z1Bd i0Z,t , ~21!

d inZ,z5~A1m iB1nB!d inZ1Bd inZ,t1Cd in21Z, n>1.
~22!

The equation ford i0Z describes purely imaginary perturba
tions of the scalar field, not coupled to the electromagne
field or the metric. It is homogeneous ind i0Z, and is comple-
mented by periodic boundary conditions~with periodD) in
t, and by regularity conditions atz52` andz50. A solu-
tion exists only for discrete values ofm. From this equation
one obtains the spectrum$m i% of perturbations. This equa
tion is, in fact, that for the perturbations, around the re
solution, of the complex scalar field model without electr
magnetism. They have already been considered in@10#, with
the result that Rem i.0 for all i .

The termsd inZ for n>1 are determined both by bound
ary conditions and by the source termsd in21Z. As the value
of m i has already been fixed as an eigenvalue in the equa
for d i0Z, the boundary conditions admit no homogeneo
solution forn>1, and the solution forn>1 is proportional
to the source termd in21Z. The electromagnetic field come
in to orderet, that isq, because the purely imaginary pe
turbationd i0f of the real background scalar fieldf* gives
rise to a charge distribution and, therefore, generates an e
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tromagnetic field. This charge distribution is ultimately r
sponsible for the charge of the final black hole. To ord
e2t, or q2, the scalar field perturbations acquire a real p
and in consequence couple to metric perturbations, thus
creating a gravitational field. Nevertheless, we shall refe
these perturbations as the ‘‘imaginary’’ perturbations, b
cause to leading order they are purely imaginary pertur
tions of the scalar field.

V. MASS SCALING

For the generic solution close to the real self-similar
lution Z* , we now have the form

Z~z,t!.Z* ~z,t!1(
i51

`

Ci~p!el itd iZ~z,t!

1(
i51

`

Di~p!em it (
n50

`

entd inZ~z,t!, ~23!

where the first term is the critical solution, and the seco
and third terms its ‘‘real’’ and ‘‘imaginary’’ perturbations, a
discussed above. The amplitudesCi andDi of the perturba-
tions depend on the initial data in general and hence on
parameterp of a given one-parameter family of initial data
particular.

As t→2`, we can neglect all perturbations but the o
growing mode, associated withl1. As we are interested in
the asymptotic behavior of the charge, however, we a
keep the most slowly decaying of the imaginary pertur
tions ~which alone carry charge!, associated withm1. By
definition we obtain the precisely critical solution fo
p5p* , and so we must haveC1(p* )50. Expanding
C1(p) andD1(p) to leading order, we obtain

Z~z,t!.Z* ~z,t!1~p2p* !
]C1~p* !

]p
el1td1Z~z,t!

1D1~p* !em1t (
n50

`

entd1nZ~z,t!. ~24!

To keep the notation compact, we define, following@10#,

t* ~p![2
1

l1
lnS p2p*

p*
D , t1[2

1

l1
lnFe21

]C1

] lnp
~p* !G ,

t0[t11t* ~p!, ~25!

wheree is an arbitrary small constant~independent ofp). If
we now fix t5t0 in the approximate solution~24!, we ob-
tain ap-dependent family of Cauchy data: namely,

Zp~r ![Z~z,t0!5Z* S ln rr p ,t0D1ed1ZS ln rr p ,t0D
1K~p! (

n50

`

ent0d1nZS ln rr p ,t0D , ~26!

where

r p[r 0e
t01j0~t0!, K~p![D1~p* !em1t0. ~27!
r
rt
lso
o
-
a-

-

d

he

o
-

K(p) is small, even compared toe, if et0 is sufficiently
small, that is, if (p2p* ) is sufficiently small. We, therefore
treat the terms proportional toK(p) as a linear perturbation
throughout.

But now we consider the exact, nonlinear evolution of t
dataZ*1ed1Z, without treatinged1Z as a perturbation any
longer. This is necessary because its presence makes a q
tative difference at late times. If it has one sign, a black h
is formed. If it has the other, the matter disperses. Beca
the solution at late times is no longer even approximat
self-similar, we go back to the coordinatesr and t.

The dataZ*1ed1Z are purely real, and evolve to
purely real solution, with vanishing electromagnetic fie
Consequently, the equations determining the solution do
contain the termqr, and are scale invariant. Therefore, th
entire solution depends onr p in the simple way

Z~r ,t !5 f ~ r̄ , t̄,t0!, where r̄[
r

r p
and t̄[

t2tp
r p

,

~28!

where the~irrelevant! shift in t is tp[r 0e
t0. f obeys the

equation

E~ r̄ f̄ , r̄ , r̄ f̄ , t̄ , f ,0!50, ~29!

with initial data

f ~ r̄ , t̄50,t0!5Z* ~ lnr̄ ,t0!1ed1Z~ lnr̄ ,t0!. ~30!

In particular, we know that the mass of the black hole th
forms in this solution must be a multiple of the underlyin
scaler p , namely,

M5r pe
m~t0!, ~31!

wherem(t) is a function that we do not know, but which i
periodic with periodD in t. The black hole mass as a func
tion of the family of initial data and the parameter valuep is
then

M ~p!5r 0S p2p*
p*

D 21/l1

exp$t11n[ t* ~p!1t1] %, ~32!

where n(t)[m(t)1j0(t) is a universal wiggle superim
posed on the basic power-law behavior, and the constant1
~defined above! depends on the initial data family.

VI. CHARGE SCALING

So far we have only repeated@10# ~which itself is a gen-
eralization of@9#!. Now we consider the effect of the pertu
bation proportional toK(p) in the initial data for f . This
linear perturbation, sayd f , obeys the linearization of Eq.~4!,
which is of the form

rd f ,t5Ard f ,r1Bd f1qrCd f . ~33!

Rewriting this in terms ofr̄ and t̄, we obtain @using the
definition ~27! of r p#

r̄d f , t̄ 5Ar̄d f , r̄ 1Bd f1qr0e
t01j0~t0!Cr̄d f , ~34!
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where the dimensionless coefficientsA, B, andC are func-
tions only of r̄ and t̄ ~as well as of the parametert0 charac-
terizing the background solutionf ). To obtain a solution for
all small values of the parameteret0 at once, we expand in
powers of it. For the critical solution plus linear perturbati
we then have

Zp~r ,t !5 f ~ r̄ , t̄,t0!1K~p! (
n50

`

ent0dnf ~ r̄ , t̄,t0!. ~35!

The expansion coefficientsdnf obey the equations

r̄d0f , t̄ 5Ar̄d0f , r̄ 1Bd0f , ~36!

r̄dnf , t̄ 5Ar̄dnf , r̄ 1Bdnf1qr0e
j0~t0!Cr̄dn21f ,n>1,

~37!

with initial data given by

dnf ~ r̄ , t̄50,t0!5d1nZ~ lnr̄ ,t0!. ~38!

The perturbationd f gives rise to a perturbation of th
black hole massM , but we ignore this here as a subdomina
effect. We are, however, interested in the black hole cha
Q, which only comes in throughd f . We do not need to
calculated f to see howQ scales. It is sufficient to note tha
the charge-to-mass ratio is dimensionless and must be od
the coupling constantq, and henceet0 and, therefore, mus
go as

Q

M
5K~p!Fet0S QM D

1

~t0!1e3t0S QM D
3

~t0!1O~e5t0!G .
~39!

Taking only the dominant term, and putting it all togeth
we obtain

Q~p!5M ~p!K~p!et0S QM D
1

~t0!. ~40!

After regrouping terms, we obtain the final result

Q~p!5r 0S p2p*
p*

D 2~m112!/l1

exp$t21p[ t11t* ~p!] %,

~41!

wheret2[(m112)t11 lnD1(p* ) is a new family-dependen
constant,t1 is the same family-dependent constant as befo
andp(t)[n(t)1 ln(Q/M)1(t) is a new universal wiggle.

Numerical values for the Lyapunov exponents a
l1522.67460.009 @10# and m150.36260.012. m1 has
been calculated by the same method@10# as l1, but con-
verges somewhat more slowly with decreasing step size
that the estimated numerical error inm1, and in consequenc
in d, is somewhat larger. We obtain critical exponen
g521/l150.37460.001 for the mass and
d52(m112)/l150.88360.007 for the charge.

VII. OTHER CHARGED MATTER MODELS

Given that our arguments did not rely on the exact fo
of the field equations, we can generalize them to any ma
t
e

in

,

e,

so

er

model in spherical symmetry where the matter is coupled
electromagnetism only via the U~1!-covariant derivative
Da[¹a1 iqAa . Then it follows from dimensional analysi
that whenever one casts the field equations in first-ord
dimensionless form, they must be of the form~4!. Z would
stand for another set of fields, andE need not be a polyno
mial. The argument showing that the electromagnetic in
action can be neglected asymptotically in the strong field
small-scale regime of the critical solution would go throu
as before, even if the critical solution itself carries char
~Strictly speaking, we require that a polynomial form of th
field equations exists for our arguments to apply directly,
we hope that this technical requirement can be relaxed.! Now
we need to consider three cases separately:

~1! The critical solution does not carry charge, only
perturbations do, which brings in Lyapunov exponents.
l1 be the one eigenvalue with Rel,0: ~a! The unstable
mode itself carries no charge. This case is similar to sc
electrodynamics. Letm1 be the eigenvalue associated wi
charge which has the smallest real part. We must h
Rem1.0, because the critical solution, by definition, h
only one unstable mode. Fromg521/l1 and
d52(m112)/l1 we then find the relationd.2g. ~b! The
unstable mode itself carries charge. In this case, we ob
the charge, as well as the mass, from the nonlinear evolu
of the dataZ*1ed1Z, neglectingall the other perturbations
The solution arising from these data is no longer of t
simple form~28!, due to the presence ofqr in the Eq.~4!.
But we can obtain the solution for all smallr p by expanding
in qrp , using the fact thatqr5 r̄ qrp . The solution~28! is
now replaced by the more general

Z~r ,t !5 (
n50

`

~qrp!
nf n~ r̄ , t̄,t0!. ~42!

The massM is again proportional tor p , but this time only to
leading order inqrp ~or et0). The charge-to-mass ratio i
now Q/M5(qrp)(Q/M )1(t0)1O(qrp)

3, without the pref-
actor K(p), so that the charge to leading order is simp
proportional tor p

2 , or d52g, with g521/l1.
~2! Finally, the critical solution itself may carry charge

Then the higher terms in the expansion~16! do not vanish
identically. This would have been the case for example
the solution@14#. There the charge would have appeared
orderet of the background expansion~16!. We should still
need to consider the dataZ01ed1Z, whered1Z is the one
growing perturbation~charged or not!, in order to determine
r p , the spacetime scale on which the solution leaves
intermediate attractor. But the electromagnetic field givi
rise to the black hole chargeQ is now dominated byA1 ~the
componentA of Z1), which is once more down a factor o
r p from Z0, so thatQ is again proportional tor p

2 , or
d52g.

We must make one proviso, namely, that a mass gap
exist in critical collapse. Recent work on critical collapse
the Einstein-Yang-Mills system has illustrated this@5#: If the
model admits a static or oscillating solution with precise
one unstable mode~such as the Bartnik-McKinnon solutio
in Einstein-Yang-Mills theory!, this solution acts as an alter
native intermediate attractor. As this intermediate asympt
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is not self-similar, but instead has a finite mass, it gives
to a mass gap in some region of initial data space. Our res
then only hold for that part of initial data space where fo
mation of the static solution is avoided. For a mass gap
occur when a critical solution also exists, it is essential tha
static or oscillating solution not only exists, but has exac
one unstable mode. If it was unconditionally stable, th
would be a third possible outcome in addition to black h
formation or dispersion, namely the formation of a star.~This
is, of course, the situation in astrophysics.! If it had more
than one unstable mode, it would be a lesser attractor
the critical solution and would be ‘‘missed’’ by almost a
one-parameter families of initial data.

VIII. UNIVERSALITY CLASSES
AND THE RENORMALIZATION GROUP

Finally, we note a consequence of our work that does
concern charge. By exactly the same argument which sh
that in the critical solution with charge electromagnetism c
be neglected asymptotically, one can show that the m
term can be neglected asymptotically for the massive sc
field. ~One only has to replaceqr by mr in Eq. ~4! and the
following equations derived from it.! As the critical exponent
for the black hole mass is unchanged by the coupling
electromagnetism, so it is, by the same argument, whe
mass term or a more general polynomial scalar field s
interaction is added to the action.~This was already known
@18#.!

Our argument generalizes this toany parameterm of di-
mension (length)21 in geometrical unitsG5c51 appearing
in a polynomial form of the field equations.@Note that as we
insist on the equations being polynomial in the fieldsZ and
parameterm, we implicitly also allow parameters of dimen
sion (length)2n, but only for positive integern.#

In the language of critical phenomena, theories with d
ferent values of such a dimensionful parameter form ‘‘u
versality classes’’@11#. The analogy with critical phenomen
in statistical mechanics seems good enough to use this
deliberately.

The renormalization group in statistical mechanics acts
the phase space by blocking degrees of freedom, an
change of scale. If one demands that the partition func
remain invariant, this induces an equivalent action on~the
parameters of! the Hamiltonian@19#. The equivalents of the
spins and their Hamiltonian in statistical mechanics are
fieldsZ(r ) and their equations of motion in critical collaps
The renormalization group in critical collapse acts on
phase space by a time evolution~in t) followed by change of
scale~in r ), asZ(r ,t)→Z(e2Dr ,e2Dt). ~One can combine
the time evolution and rescaling into a time evolution int, at
constantz, using the freedom of lapse and shift in gene
relativity. The critical solution is by definition invariant un
der this transformation.! If one demands that the rescale
data evolve in the same way, this action induces an equ
lent action on~the parameters of! the field equations.

In the case of scalar electrodynamics, this action is ra
simple: In the field equations,q and r appear together a
qr. If one changes the scale asr→e2Dr , this has the same
effect asq→e2Dq.

Critical phenomena in gravitational collapse correspo
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to very small scales~compared to the scale of the initial da
and the scaleq21), in contrast with critical phenomena i
statistical mechanics, where they correspond to very la
scales~compared to the scale of the microscopic physics!. In
the limit of small scales, the parameterq becomes ‘‘irrel-
evant,’’ to borrow another term from statistical mechanic

If there are two~or more! parameters such asm or q,
universality does not hold, asm1 /m2 is a dimensionless pa
rameter, which generically has qualitative effects. In mass
scalar electrodynamics, for example, the value ofuqu/m de-
termines if static solutions~‘‘charged Boson stars’’! exist.
Universality may be recovered if the two scales are v
different, that is form1 /m2→0 orm2 /m1→0, but this limit
need not be regular.

IX. CONCLUSIONS

We predict that in critical collapse of massless scalar e
trodynamics in spherical symmetry, the black hole ma
scales asM;(p2p* )

g, and the black hole charge a
Q;(p2p* )

d, each overlaid with a universal wiggle, wit
g50.37460.001 ~as for the real scalar field! and
d50.88360.007.

We have gone beyond the restriction to uncharged ini
data~and hence black holes!, but have kept the restriction to
vanishing angular momentum. We predict the appearanc
a new critical exponentd, and give its numerical value. Veri
fication of our predictions in numerical collapse simulatio
should be straightforward.

Furthermore, we predict that in spherical critical collap
of matter models with minimal coupling¹→¹1 iqA to
electromagnetism, both mass and charge scale as univ
power laws~times a universal wiggle!, with d>2g, so that
the black hole charge always disappears faster than the b
hole mass. Depending on the matter~not in massless scala
electrodynamics! this behavior may hold only for parts of th
initial data space, with a mass gap in other parts.

We also find that adding terms with a parameterm of
dimension (length)21 in units c5G51 ~such as a scala
field mass, or the electromagnetic coupling in the pres
paper!, in a form of the field equations which is polynomia
in the fieldsZ and parameterm, does not change the critica
exponent for the black hole mass. In this sense models w
different values of such a parameter form universa
classes.

Note added. After this paper had been submitted, o
value of the critical exponent for the charge was confirmed
numerical collapse situations by Hod and Piran@20#. Univer-
sality classes in critical collapse were independently
scribed by Hara, Koike, and Adachi@21#.
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