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One-loop effective action for Euclidean Maxwell theory on manifolds with a boundary

Giampiero Esposito*

Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra d’Oltremare Padiglione 20, 80125 Napoli, Italy
and Dipartimento di Scienze Fisiche, Mostra d’Oltremare Padiglione 19, 80125 Napoli, Italy

Alexander Yu. Kamenshchik†

Nuclear Safety Institute, Russian Academy of Sciences, 52 Bolshaya Tulskaya, Moscow 113191, Russia

Klaus Kirsten‡

Universität Leipzig, Institut fu¨r Theoretische Physik, Augustusplatz 10, 04109 Leipzig, Germany
~Received 20 June 1996!

This paper studies the one-loop effective action for Euclidean Maxwell theory about flat four-space bounded
by one three-sphere, or two concentric three-spheres. The analysis relies on the Faddeev-Popov formalism and
z-function regularization, and the Lorentz gauge-averaging term is used with magnetic boundary conditions.
The contributions of transverse, longitudinal, and normal modes of the electromagnetic potential, jointly with
ghost modes, are derived in detail. The most difficult part of the analysis consists in the eigenvalue condition
given by the determinant of a 232 or a 434 matrix for longitudinal and normal modes. It is shown that the
former splits into a sum of Dirichlet and Robin contributions, plus a simpler term. This is the quantum-
cosmological case. In the latter case, however, when magnetic boundary conditions are imposed on two
bounding three-spheres, the determinant is more involved. Nevertheless, it is evaluated explicitly as well. The
whole analysis provides the building block for studying the one-loop effective action in covariant gauges, on
manifolds with boundary. The final result differs from the value obtained when only transverse modes are
quantized, or when noncovariant gauges are used.@S0556-2821~96!04924-7#

PACS number~s!: 04.20.Gz, 98.80.Hw
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I. INTRODUCTION

Over the last few years, a considerable effort has b
produced in the literature to study the problem of bound
conditions in Euclidean quantum gravity and quantum c
mology @1–10#. This is motivated by the need to obtain
well-defined path-integral representation of the^outu in& am-
plitudes and of the quantum state of the Universe, and lie
the very heart of any attempt to understand the basic feat
of a theory of the quantized gravitational field. In particul
within the framework of the semiclassical approximation
the wave function of the Universe, this analysis has led to
first calculation of one-loop divergences for massless s
1
2 fields @11–16#, Euclidean Maxwell theory@17–20#, super-
gravity models@21#, and Euclidean quantum gravity@6–10#
in the presence of boundaries. Focusing on massless mo
flat Euclidean backgrounds bounded by a three-sphere
been studied in detail for fields of various spins, with local
nonlocal boundary conditions, and in covariant as well
noncovariant gauges for gauge theories and gravita
@6–21#. For these fields the boundary conditions are mixed
that some components of the field obey one set of bound
conditions, and the remaining components obey anothe
of boundary conditions. This is indeed necessary to ens
invariance of the whole set of boundary conditions un
infinitesimal gauge transformations, as well as their Becc
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Rouet-Stora-Tyutin~BRST! invariance. For example, on
may consider Euclidean Maxwell theory~which is the object
of our investigation!. In the classical theory, one may beg
by fixing at the boundary the tangential componentsAk of
the electromagnetic potential. Such a boundary conditio
invariant under infinitesimal gauge transformation
jAk5Ak1]kj, if and only if, j itself vanishes at the bound
ary. In the semiclassical approximation of quantum theo
one expands about a vanishing background value forAk , so
that the electromagnetic potential reduces to say, pure
turbationsAk . Moreover, if one follows the Faddeev-Popo
method, one adds a gauge-averaging term (1/2a)@F(A)#2 to
the original Lagrangian, jointly with a ghost term which
necessary to ensure gauge invariance of the quantum the
The first set of boundary conditions are now

@Ak#]M50, ~1.1!

@w#]M50, ~1.2!

wherew is a complex-valued ghost zero form, correspond
to two independent, realghost fields@22#, which are both
subject to homogeneous Dirichlet conditions at the bou
ary. At this stage, the only choice of boundary conditions
the normal componentA0, whose gauge invariance is aga
guaranteed by the imposition of Eq.~1.2! on the ghost zero
form, is

@F~A!#]M50. ~1.3!

If the Lorentz gauge-averaging functional is chosen, E
~1.1! and ~1.3! lead to Robin conditions onA0, i.e.,
7328 © 1996 The American Physical Society
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F]A0

]t
1A0TrK G

]M

50, ~1.4!

whereK is the extrinsic-curvature tensor of the boundary
The analysis of conformal anomalies and one-loop div

gences, however, is part of a more general program dev
to the investigation of the one-loop effective action on ma
folds with boundary. As shown in Refs.@23–26#, complete
results are by now available for scalar and spin-1

2 fields. For
Euclidean Maxwell theory, the contribution of transver
modes was obtained in Refs.@25,26#, and the contribution of
all perturbative modes in a noncovariant gauge was first
tained in Ref.@27#. For supergravity and quantum gravit
the contribution of transverse-traceless modes only has b
obtained in Refs.@25,26#. It has been, therefore, our aim t
present a detailed calculation of one-loop effective action
a covariant gauge including all perturbative modes of
problem in the presence of boundaries. This is neces
both for the sake of completeness, and to check whethe
contributions of longitudinal, normal, and ghost modes c
cel one another exactly on such bounded regions. No s
cancellation was indeed found to occur in the analysis
conformal anomalies in Refs.@18–20#.

Since the building block of our investigation is the stu
of real, massless, scalar fields on the four-ball, subjec
Dirichlet conditions, we find it helpful to present here a ve
brief outline of such a calculation. As shown in Re
@23,28#, the starting point is the integral representation of
z function of a self-adjoint, positive-definite elliptic operat
by means of the Cauchy formula, which makes it possible
expressz(s) of the Laplace operator in four dimensions
the sum

z~s!5(
l51

`

l 2Zl~s!1 (
i521

3

Ai~s!. ~1.5!

By using the notation in Appendix for the uniform asym
totic expansions of Bessel functions, one has, in Eq.~1.5!,

Zl~s!5
sin~ps!

p E
0

`

dz~zl/a!22s
]

]z S lnI l~ lz!2 lh

1 ln@A2p l ~11z2!1/4#2 (
k51

3
Dk~ t !

l k D , ~1.6!

A21~s!5
1

4Ap

a2s

G~s!

GS s2
1

2D
s

zR~2s23!, ~1.7!

A0~s!52
1

4
a2szR~2s22!, ~1.8!

A1~s!52
a2s

G~s!
zR~2s21!(

j50

1

x1,j

GS s1 j1
1

2D
GS j1 1

2D
,

~1.9!
r-
ed
-

b-

en

n
e
ry
he
-
ch
f
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e

o

A2~s!52
a2s

G~s!
zR~2s!(

j50

2

x2,j
G~s1 j11!

G~ j11!
, ~1.10!

A3~s!52
a2s

G~s!
zR~2s11!(

j50

3

x3,j

GS s1 j1
3

2D
GS j1 3

2D
,

~1.11!

wherea is the radius of the three-sphere boundary. Thus,
algorithms described in Refs.@23,27# lead to the following
result for the one-loop effective action:

G~1!52
1

2
z8~0!2

1

2
z~0!ln~m2!

5
1

360
ln~m2a2!2

1

180
ln~2!

2
173

60480
2
1

6
zR8 ~23!1

1

4
zR8 ~22!2

1

12
zR8 ~21!.

~1.12!

Section II evaluates the one-loop effective action for E
clidean Maxwell theory in a background motivated by qua
tum cosmology, i.e., flat Euclidean four-space bounded b
three-sphere. This results from the analysis of the wave fu
tion of the Universe in the limit of small three-geometri
@29#. Magnetic boundary conditions in the Lorentz gaug
i.e., Eqs.~1.1!, ~1.2!, and~1.4!, are imposed. Section III stud
ies instead the occurrence of two concentric three-sph
boundaries. This case is more relevant for quantum fi
theory. Section IV presents some independent derivatio
based on the technique developed by Barvinsky, Kamen
chik, Karmazin, and Mishakov@14#. Results and open prob
lems are discussed in Sec. V, and relevant details are g
in Appendix.

II. ONE-BOUNDARY PROBLEM

In this section we study a background four-geome
given by flat Euclidean four-space bounded by a thr
sphere. Since the boundary three-geometry isS3, this ensures
that the tangential components of the electromagnetic pe
bations consist of a transverse partAk

T and a longitudinal part
Ak
L only @30#. These are expanded on a family of thre

spheres centered on the origin as@31#

Ak
T~x,t!5 (

n52

`

f n~t!Sk
~n!~x!, ~2.1!

Ak
L~x,t!5 (

n52

`

gn~t!Pk
~n!~x!, ~2.2!

wheret is a radial coordinateP@0,a#, x are local coordi-
nates onS3, andSk

(n) andPk
(n) are transverse and longitudina

vector harmonics on the three-sphere, respectively@32#.
Moreover, the occurrence of the boundary with normal v
tor nm makes it possible to define the normal component
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Am(x,t) asA0(x,t)[nmAm(x,t). Its expansion on the sam
family of three-spheres reads@31#

A0~x,t!5 (
n51

`

Rn~t!Q~n!~x!, ~2.3!

whereQ(n) are scalar harmonics onS3 @32#. We are actually
facing a crucial point in our analysis, since the singularity
the origin of our background four-manifold calls into que
tion the validity of the 311 split, Eqs.~2.1!–~2.3!, inside
the bounding three-sphere of radiusa @18–20#. In the
analytic approach, one requires that the expansi
~2.1!–~2.3! should match the boundary value
Ak
T(x,a),Ak

L(x,a),A0(x,a), and be regular;tP@0,a#. This
should pick out a unique smooth solution@17#. In the geo-
metric analysis it seems that, as long as the operator ac
onAm reduces to2gmnh in flat four-space, the analysis o
the problem remains well defined at any stage, since it d
not contain any~explicit! reference to ill-defined objects o
noncovariant elements~e.g., TrK terms in the differential
operators!. Indeed, in covariant gauges, the operator onAm is

2gmnh1Rmn1S 12
1

a D¹m¹n ,

and this reduces to the desired2gmnh in flat four-space,
provided that one makes the Feynman choice for thea pa-
rameter:aF51.

The contribution of transverse modesf n(t) in Eq. ~2.1! is
independent of any choice of gauge-averaging term in
Faddeev-Popov Euclidean action, since such modes are
coupled from longitudinal modes (gn) and from normal
modes (Rn). Thus, relying on thezT8(0) value obtained in
Refs.@25,26#, one finds

GT
~1!5

77

360
ln~m2a2!1

29

90
ln~2!1

1

2
ln~p!1

6127

30240

2
1

3
zR8 ~23!1

1

2
zR8 ~22!1

5

6
zR8 ~21!. ~2.4!

It is also straightforward to obtain the contribution
ghost modes. Bearing in mind that they behave as fermio
modes~if the gauge field is bosonic, as in our case!, and
imposing the boundary condition~1.2!, one has simply to
multiply by 22 the scalar-field result~1.12!. This leads to

Gghost
~1! 52

1

180
ln~m2a2!1

1

90
ln~2!1

173

30240
1
1

3
zR8 ~23!

2
1

2
zR8 ~22!1

1

6
zR8 ~21!. ~2.5!

The only technical difficulties consist in the analysis
coupled longitudinal and normal modes. As shown in R
@19#, the boundary conditions~1.1! and ~1.4! lead to an ei-
genvalue condition for such modes given by the vanishing
the determinant of a 232 matrix. With the notation of Ref
@19#, in the Lorentz gauge this equation reads (;n>2)
t

s

ng

es

e
de-

ic

f.

f

I n11~Ma!S 2I n21~Ma!

~Ma/2!
1I n22~Ma!1I n~Ma! D

1
~n11!

~n21!
I n21~Ma!S 2I n11~Ma!

~Ma/2!
1I n~Ma!

1I n12~Ma! D50. ~2.6!

Thus, the first step is to reexpressI n22 , I n21 , I n11, and
I n12 in terms of I n and I n8 only. By virtue of Eqs.~A16!–
~A19! of Appendix, and settingMa5zn, Eq. ~2.6!, is found
to involve the following function ofz,I n , andI n8 :

F5
1

z
I n~zn!@ I n~zn!1znIn8~zn!#, ~2.7!

where proportionality parameters have been omitted, si
they do not affect the calculation ofz8(0). The function
~2.7! should be inserted into the integral representation of
z function for longitudinal (L) and normal (N) modes, i.e.,

zLN~s!5
sin~ps!

p (
n52

`

n2E
0

`

dz~zn/a!22s
]

]z
ln@z22n11F#,

~2.8!

wheren2 is the degeneracy of such modes. Remarkably,
ter reexpressing the infinite sum in Eq.~2.8! as an infinite
sum from 1 tò , minus the contribution ofn51, one finds,
by virtue of Eq. ~2.7!, that the resulting contribution to
z8(0) is the sum of three contributions: thez8(0) value for a
real scalar field subject to Dirichlet conditions onS3; the
z8(0) value for a real scalar field subject to Robin conditio
onS3, with u parameter equal to 1; thez8(0) value resulting
from n51. The first is given in Ref.@23# and is encoded in
the one-loop effective action~1.12!. The second is evaluate
in Ref. @33# as

zRobin,u518 ~0!52
41

864
2

7

45
ln~2!2

1

2
ln~p!2

31

90
ln~a!

1
1

3
zR8 ~23!1

1

2
zR8 ~22!2

11

6
zR8 ~21!.

~2.9!

The third is obtained from@see Eqs.~2.7! and ~2.8!#

z̃~s![2
sin~ps!

p E
0

`

dz~z/a!22s

3
]

]z
ln$z22I 1~z!@ I 1~z!1zI18~z!#%. ~2.10!

This yields~see Appendix!

z̃8~0!5 ln~pa2!. ~2.11!

By virtue of Eqs.~1.12!, ~2.9!, and~2.11!, one finds
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zLN8 ~0!52
631

15120
2
13

90
ln~2!1

1

2
ln~p!1

37

45
ln~a2!

1
2

3
zR8 ~23!2

5

3
zR8 ~21!. ~2.12!

Bearing in mind that@19# zLN(0)5
37
45, which is indeed en-

coded in Eq.~2.12!, one obtains

GLN
~1!52

37

90
ln~m2a2!1

13

180
ln~2!2

1

4
ln~p!1

631

30240

2
1

3
zR8 ~23!1

5

6
zR8 ~21!. ~2.13!

Last, the contribution of the decoupled normal modeR1
should be considered. In the Lorentz gauge,R1 takes the
form @19#

R1~t!5
1

t
I 2~Mt!, ~2.14!

up to an unessential multiplicative constant, and henc
contributes~see Appendix!

GR1
~1!5

3

8
ln~m2a2!2

1

4
ln~2!1

1

4
ln~p!. ~2.15!

One can now combine Eqs.~2.4!, ~2.5!, ~2.13!, and~2.15! to
find the full one-loop effective action in the Lorentz gauge

G~1!5
31

180
ln~m2a2!1

7

45
ln~2!1

1

2
ln~p!1

6931

30240

2
1

3
zR8 ~23!1

11

6
zR8 ~21!. ~2.16!

Interestingly, this differs both from the result~2.4!, which
only involves transverse modes, and from the result
G (1) obtained in Ref. @27# in the noncovariant gaug

¹mAm2 2
3A0TrK:

GNC
~1!5

77

360
ln~m2a2!2

8

45
ln~2!1

1

4
ln~p!1

1991

6048

2
1

3
zR8 ~23!1

5

6
zR8 ~21!. ~2.17!

III. TWO-BOUNDARY PROBLEM

Section II has studied a background with boundary wh
is more relevant for quantum cosmology~at least in the
Hartle-Hawking program!, where one boundary three-surfa
shrinks to zero@1,2#. The standard quantum field theoretic
framework, however, deals with boundary data ontwo
boundary three-surfaces, which are necessary to spe
completely the path-integral representation of the propa
tion amplitude@34#. Hence, we here focus on the one-lo
analysis of Euclidean Maxwell theory in the presence of t
concentric three-sphere boundaries@19#.

Since the singularity at the origin (t50) is avoided in
this boundary-value problem, the basis functions for the v
it

s

r

h

l

ify
a-

o

i-

ous modes in Eqs.~2.1!–~2.3! become linear combinations o
both I n andKn ~modified! Bessel functions. We begin with
the most difficult part of the calculation, i.e., the determina
of the 434 matrix which yields implicitly the eigenvalue
for longitudinal and normal modes. Such a matrix, given
Eq. ~3.13! of Ref. @19#, is obtained by imposing the boundar
conditions~1.1! and ~1.4! at the three-sphere boundaries
radii r2 and r1 ~hereafter,r1.r2). Again, one has to ex-
press Bessel functions of various orders in terms
I n ,I n8 ,Kn ,Kn8 only, wheren>2. After a lengthy calculation,
such a determinant is found to take the form

D5
16n2

~n21!2M2r2r1
@ I n~Mr2!Kn~Mr1!

2I n~Mr1!Kn~Mr2!#$M2r1r2@ I n8~Mr1!Kn8~Mr2!

2I n8~Mr2!Kn8~Mr1!#1Mr2@ I n~Mr1!Kn8~Mr2!

2I n8~Mr2!Kn~Mr1!#1Mr1@ I n8~Mr1!Kn~Mr2!

2I n~Mr2!Kn8~Mr1!#1@ I n~Mr1!Kn~Mr2!

2I n~Mr2!Kn~Mr1!#%. ~3.1!

Thus, one has first to multiply Eq.~3.1! by M2 to get rid of
fake roots@35#. By virtue of the uniform asymptotic expan
sions ~A1!–~A4!, only the effects of Kn(Mr2) and
I n(Mr1) survive at largeM @19#. Thus, after setting
Mr15zn ~cf. Sec. II!, which implies that
Mr25znr2 /r1 , the contributions of theAi functions to
z8(0) @see Eq.~1.5!# can be obtained by studying

lnD; ln@z2nI n~zn!#1 ln@znKn~znr2 /r1!#1 ln@ I n~zn!

1znIn8~zn!#1 lnFKn~znr2 /r1!

1zn
r2

r1
Kn8~znr2 /r1!G . ~3.2!

This means that the asymptotic terms are a sum of Diric
contributions for the inner and outer space, and Robin c
tributions for the inner and outer space withu51. Looking
at the asymptotics ofKn andKn8 the relation between inne
space and outer space is immediate: (A21) I52(A21)K ,
(A0) I5(A0)K , (Ai) I5(21)i(Ai)K @see Eqs.~A12!–~A15!#.
The resulting asymptotics of Eq.~3.2! reads

A21~s!5
~r1

2s2r2
2s!

2Ap

GS s2
1

2D
G~s11!

zH~2s23;2!, ~3.3!

A0~s!50, ~3.4!
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Ai~s!52
1

G~s!
~r1

2s2r2
2s!zH~2s1 i22;2!

3(
l50

i

~xi ,l1zi ,l !

GS s1 l1
i

2D
GS l1 i

2D
, i51,3, ~3.5!

A2~s!52
1

G~s!
~r1

2s1r2
2s!zH~2s;2!

3(
l50

2

~x2,l1z2,l !
G~s1 l11!

G~ l11!
. ~3.6!

Note that the second argument of the Hurwitzz function is 2,
to take into account that the infinite sums definingAi start
from n52 in our problem. Moreover, thexi ,l andzi ,l are the
coefficients of the polynomialsDi ~Dirichlet case! andMi

~Robin case!, respectively@see Eqs.~A6!–~A11!#. In Eqs.
~3.3!–~3.6! one has now to pick out the coefficients of th
terms linear ins, since these are the only ones which co
tribute toz8(0). Hence, one finds

A218 ~0!5
119

60
ln~r1 /r2!, ~3.7!

A08~0!5A18~0!50, ~3.8!

A28~0!52
3

2
, ~3.9!

A38~0!52
61

180
ln~r1 /r2!, ~3.10!

which imply

(
i521

3

Ai8~0!52
3

2
1
74

45
ln~r1 /r2!. ~3.11!

The contribution ofZ(s)[(n52
` n2Zn(s) to z8(0) @cf. Eq.

~1.6!# involves the logarithm of the Bessel terms in Eq.~3.1!,
and a further contribution resulting from the uniform asym
totics of such Bessel functions. Hence, it reads~see Appen-
dix for details!
-

-

Z8~0!52 (
n52

`

n2S ln@2I n~Mr2!Kn~Mr1!

1I n~Mr1!Kn~Mr2!#1 ln$I n~Mr1!Kn~Mr2!

2I n~Mr2!Kn~Mr1!1Mr2@ I n~Mr1!Kn8~Mr2!

2I n8~Mr2!Kn~Mr1!#1Mr1@ I n8~Mr1!Kn~Mr2!

2I n~Mr2!Kn8~Mr1!#

1M2r1r2@ I n8~Mr1!Kn8~Mr2!

2I n8~Mr2!Kn8~Mr1!#%22n@h~Mr1!

2h~Mr2!#1
1

n2D , ~3.12!

where all Bessel functions should be studied in the limit
M→0 @23#. One can thus use Eqs.~A20! and ~A21! which
express the limiting behavior of Bessel functions in such
case. Many terms are then found to cancel each other
actly, leading to

Z8~0!52 (
n52

`

n2H 2ln@12~r2 /r1!2n#1 lnS 12
1

n2D1
1

n2 J ,
~3.13!

where one has@27#

2 (
n52

`

n2F lnS 12
1

n2D1
1

n2G5
3

2
2 ln~p!. ~3.14!

Equations~3.11!, ~3.13!, and~3.14! imply that

zLN8 ~0!5
74

45
ln~r1 /r2!2 ln~p!

22(
n52

`

n2ln@12~r2 /r1!2n#. ~3.15!

Let us now study the decoupled normal modeR1. In our
two-boundary problem, it takes the form

R1~t!5
b1

t
I 2~Mt!1

b2

t
K2~Mt!, ~3.16!

whereb1 andb2 are some constants. By virtue of the boun
ary condition~1.4!, one should set to zero at the three-sph
boundaries the linear combinationdR1 /dt1(3/t)R1. The
resulting eigenvalue condition has no fake roots, and he
one finds~see Sec. IV!

GR1
~1!52

1

4
ln~m2r1r2!1

1

2
ln~r1 /r2!

1
1

2
ln@12~r2 /r1!2#. ~3.17!
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Last, we study the determinants of the 232 matrices
which yield implicitly the eigenvalues for transverse a
ghost modes. In both cases, the eigenvalue condition is

I n~Mr2!Kn~Mr1!2I n~Mr1!Kn~Mr2!50, ~3.18!

where for ghost modes the integern is >1 and the degen
eracy is22n2 @19#, and for transverse modes the integern is
>2, with degeneracy 2(n221) @31#. Bearing in mind the
ghost degeneracy and Eqs.~1.7!–~1.11!, the asymptotic con-
tribution for ghosts is expressed by

A21
gh ~s!52

1

2Ap

GS s2
1

2D
G~s11!

@r1
2s2r2

2s#zR~2s23!,

~3.19!

A0
gh~s!5

1

2
@r1

2s1r2
2s#zR~2s22!, ~3.20!

Ai
gh~s!5

2

G~s!
@r1

2s1~21! i r2
2s#zR~2s1 i22!

3(
l50

i

xi ,l

GS s1 l1
i

2D
GS l1 i

2D
, ~3.21!

while for transverse modes one finds

A21
tr ~s!5

1

2Ap

GS s2
1

2D
G~s11!

@r1
2s2r2

2s#@zR~2s23!

2zR~2s21!#, ~3.22!

A0
tr~s!52

1

2
@r1

2s1r2
2s#@zR~2s22!2zR~2s!#, ~3.23!

Ai
tr~s!52

2

G~s!
@r1

2s1~21! i r2
2s#@zR~2s1 i22!

2zR~2s1 i !#(
l50

i

xi ,l

GS s1 l1
i

2D
GS l1 i

2D
. ~3.24!

The most convenient way to proceed is now to add up
contributions~3.19!–~3.21! and ~3.22!–~3.24!. This yields

A21~s!52
1

2Ap

GS s2
1

2D
G~s11!

@r1
2s2r2

2s#zR~2s21!,

~3.25!

A0~s!5
1

2
@r1

2s1r2
2s#zR~2s!, ~3.26!
e

Ai~s!5
2

G~s!
@r1

2s1~21! i r2
2s#zR~2s1 i !

3(
l50

i

xi ,l

GS s1 l1
i

2D
GS l1 i

2D
. ~3.27!

As in the previous cases, the contributions toz8(0) of Eqs.
~3.25!–~3.27! are obtained by considering their expansion
the neighborhood ofs50, and adding the coefficients of a
terms linear ins. This yields

(
i521

3

Ai8~0!52
1

3
ln~r1 /r2!2

1

2
ln~4p2r1r2!. ~3.28!

Moreover, the form ofZ8(0) for ghost and transvers
modes is considerably simplified because the full degene
is 22. This leads to@cf. Eqs.~3.12! and ~3.13!#

Zgh,tr8~0!52(
n51

`

$ ln@2I n~Mr2!Kn~Mr1!

1I n~Mr1!Kn~Mr2!#2n@h~Mr1!2h~Mr2!#

1 ln~22n!%52(
n51

`

ln@12~r2 /r1!2n#. ~3.29!

Last, since ghost modes yield a vanishing contribution
z(0), while transverse modes contribute2 1

2, one finds

Ggh,tr
~1! 5

1

4
ln~m2r1r2!2 (

n51

`

ln@12~r2 /r1!2n#

1
1

6
ln~r1 /r2!1

1

2
ln~2p!. ~3.30!

The results~3.15!, ~3.17!, and ~3.30! lead to the following
value of the one-loop effective action in the two-bounda
problem:

G~1!52
7

45
ln~r1 /r2!1

1

2
ln~2!1 ln~p!

2
1

2
ln@12~r2 /r1!2#

1 (
n51

`

~n221!ln@12~r2 /r1!2n#. ~3.31!

IV. GENERAL STRUCTURE OF THE z FUNCTION

When a series of difficult calculations is performed, it
appropriate to have an independent check of the final res
For this purpose, we here outline the application of the te
nique described in Refs.@14,15,35#. Let f n be the function
occurring in the equation obeyed by the eigenvalues by
tue of boundary conditions, and letd(n) be the degeneracy
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of such eigenvalues labeled by the integern. One then de-
fines the function

I ~M2,s![ (
n5n0

`

d~n!n22slnf n~M
2!, ~4.1!

whereM2 is related to the eigenvalues through the relat
M252ln , and fake roots~e.g.,M50 for Bessel functions!
have been taken out whenf n is written down. The function
~4.1! admits an analytic continuation to the complex-s plane
as a meromorphic function with a simple pole ats50; i.e.,

‘ ‘ I ~M2,s!’ ’ 5
I pole~M

2!

s
1I R~M2!1O~s!. ~4.2!

The functions occurring on the right-hand side of Eq.~4.2!
make it possible to evaluatez(0) andz8(0) in quantum field
theory as

z~0!5I ln1I pole~M
25`!2I pole~M

250!, ~4.3!

z8~0!5I R~M25`!2I R~M250!

2E
0

`

ln~M2!
dIpole~M

2!

dM2 dM2, ~4.4!

where I ln is the coefficient of ln(M) in the uniform asymp-
totic expansion ofI (M2,s), after taking out fake roots. In
quantum mechanics, as well as for decoupled modes
quantum field,z(0) reduces toI ln , and z8(0) reduces to
I R(`)2I R(0).

In Eq. ~3.16!, the decoupled mode gives rise to the eige
value condition

05S I 28~Mr1!12
I 2~Mr1!

Mr1
D SK28~Mr2!12

K2~Mr2!

Mr2
D

2S I 28~Mr2!12
I 2~Mr2!

Mr2
D SK28~Mr1!12

K2~Mr1!

Mr1
D .

~4.5!

Thus, Eqs.~4.1!, ~4.2!, and~A1!–~A4! lead to

I R~`!52 ln~2!2
1

2
ln~r1r2!. ~4.6!

Moreover, I R(0) is obtained from the limiting behavior o
Bessel functions asM→0 @see Eqs.~A20! and ~A21!#, and
one finds

I R~0!52 ln~2!1 ln~r1 /r2!1 ln@12~r2 /r1!2#.
~4.7!

The result~3.17! is obtained if one bears in mind that th
decoupled mode provides an example of a nontrivial eig
function obeying the boundary conditions and belonging
the zero eigenvalue. Hence, one deals with a o
dimensional null space whose dimension should be adde

I ln to obtain the correctz(0) value forR1 asz(0)5 1
2 @19#.

It is also instructive to outline the ghost calculation in t
two-boundary problem. The function of Eq.~4.1! then takes
the form
n

a

-

-
o
e-
to

I ~M2,s!52(
n51

`

n222sln@ I n~nMr1!Kn~nMr2!

2I n~nMr2!Kn~nMr1!#. ~4.8!

As M→`, only Kn(nMr2) and I n(nMr1) contribute to
z8(0), and theuniform asymptotic expansions~A1! and~A3!
imply that

I R~`!50, ~4.9!

sincezR(22)50. To evaluateI R(0) one needs instead th
limiting behavior of Bessel functions asM→0. Thus, the
expansions~A20! and ~A21! lead to

I R~0!522(
n51

`

n2ln~n!1
1

60
ln~r1 /r2!

12(
n51

`

n2ln@12~r2 /r1!2n#. ~4.10!

Last, the third term on the right-hand side of Eq.~4.4! is
found to be

2E
0

`

ln~M2!
dIpole
dM2 dM

252
1

180
ln~r1 /r2!. ~4.11!

Equations~4.9!–~4.11! yield

z8~0!gh52
1

45
ln~r1 /r2!22(

n51

`

n2ln@12~r2 /r1!2n#

22zR8 ~22!, ~4.12!

and this should be multiplied by21, since the ghost contri
bution has fermionic nature for a bosonic field.

For transverse modes, an analogous procedure yields

z8~0! tr52
16

45
ln~r1 /r2!2

1

2
ln~r1r2!22(

n51

`

~n221!

3 ln@12~r2 /r1!2n#2 ln~2p!22zR8 ~22!.

~4.13!

Equations~4.12! and~4.13! yield a result in complete agree
ment with Eq.~3.30!.

Last, to evaluate the contribution of longitudinal and no
mal modes one starts from the determinant~3.1!, which im-
plies

I R~`!5 (
n52

`

n2ln
n2

~n21!2r1r2
, ~4.14!

I R~0!5 (
n52

`
1

r1r2
@~r1 /r2!2n2~r2 /r1!2n#2

~n221!

~n21!2
.

~4.15!

Moreover, the third term on the right-hand side of Eq.~4.4!
contributes



ac
h
re
lt
u
or

f

e

n
ec

fte
n

o
he

s.

ti
ic

he
on

o-

f

th
t
th
m
e

ry
ho
e
ea
th
ia
re
a
t
to

eck
the
er-
uge

an
feel
at-

nce
c-
i,
d
-
e-
FFI
ject
-

al
e-

ithm
of
tic

54 7335ONE-LOOP EFFECTIVE ACTION FOR EUCLIDEAN . . .
2E
0

`

ln~M2!
dIpole
dM2 dM

252
61

180
ln~r1 /r2!. ~4.16!

The results~4.14!–~4.16!, jointly with Eq. ~3.14!, lead to
zLN8 (0) as in Eq.~3.15!.

V. RESULTS AND OPEN PROBLEMS

Our paper has studied in detail the one-loop effective
tion G (1) for Euclidean Maxwell theory on manifolds wit
boundary, in the case of flat four-space bounded by a th
sphere, or two concentric three-spheres. Our main resu
that, by using covariant gauges such as the Lorentz ga
within the framework of the Faddeev-Popov formalism f
semiclassical amplitudes,G (1) @see Eq.~2.16!# differs from
the contribution of transverse modes obtained in Re
@25,26# @see Eq.~2.4!#, and it also differs from the value
obtained in Ref. @27# in the noncovariant gaug

¹mAm2 2
3A0TrK @see Eq.~2.17!#. This is confirmed by the

two-boundary analysis of Sec. III@see Eq.~3.31!#. Our result
seems to add evidence in favor of longitudinal, normal, a
ghost modes not being able to cancel one another’s eff
exactly on manifolds with boundary@17–20#.

The extension to curved backgrounds~e.g.,S4 bounded
by S3) is of purely technical nature and can be obtained a
dealing properly with the asymptotics of Legendre functio
~instead of the Bessel functions occurring in the flat case!. At
least three outstanding problems, however, remain. First,
would like to evaluate the one-loop effective action for t
family of noncovariant gauges¹mAm2bA0TrK, first intro-
duced in Ref.@17#, and then studied extensively in Ref
@19,20#. These gauges have been criticized in Ref.@36#, but
they appear to be a necessary step to complete the quan
tion program in arbitrary gauges, at least in the semiclass
approximation.

Second, one would like to apply our algorithms to t
analysis of Euclidean quantum gravity. For this purpose,
can impose the boundary conditions in terms of~comple-
mentary! projectors proposed in Ref.@5#, or the boundary
conditions completely invariant under infinitesimal diffe
morphisms@4#, or the boundary conditions of Ref.@8#, which
are of Robin type onhi j and the ghost one-form, and o
Dirichlet type on normal componentsh00 andh0i of metric
perturbations. Yet another possibility is represented by
nonlocal boundary conditions of Ref.@9#. In such cases, i
would be interesting to investigate the asymptotics of
eigenvalue condition given by the vanishing of the deter
nant of an 838 matrix in the two-boundary problem for pur
gravity. More work can be done in this respect.

Last, but not the least, geometric formulas forz8(0) are
still lacking in arbitrary gauges on manifolds with bounda
What happens is that the usual Schwinger-DeWitt met
fails to hold for nonminimal operators resulting from th
choice of arbitrary gauge-averaging terms in the Euclid
action. More precisely, the factor which stands before
series int in the heat-kernel asymptotics is not a Gauss
but a complicated special function. This leads in turn to
lations for heat-kernel coefficients unbounded from below
well as from above, and hence these equations canno
solved recursively@37#. Nevertheless, if one were able
-
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generalize the technique developed in Refs.@38,39# to mani-
folds with boundary, one would obtain an independent ch
of the several analytic results which can be derived in
near future. This would lead in turn to a much deeper und
standing of heat-kernel asymptotics for quantized ga
fields and quantum gravity on manifolds with boundary.

Such an investigation is regarded by the authors as
important task for the years to come, and it makes us
that a new exciting age is in sight in the application of he
kernel methods to quantum field theory.
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APPENDIX

The uniform asymptotic expansions asr→` of the
Bessel functionsI r(rz),Kr(rz), jointly with their first de-
rivatives, are derived in detail in Ref.@40#, and they play a
fundamental role in the analytic investigation of conform
anomalies and one-loop effective action. In terms of the D
bye polynomialsuk(t) andvk(t) @41#, they read

I r~rz!;
1

A2pr

erh

~11z2!1/4F11 (
k51

`
uk~ t !

rk G , ~A1!

I r8~rz!;
1

A2pr
erh

~11z2!1/4

z F11 (
k51

`
vk~ t !

rk G , ~A2!

Kr~rz!;A p

2r

e2rh

~11z2!1/4F11 (
k51

`

~21!k
uk~ t !

rk G ,
~A3!

Kr8~rz!;2A p

2r
e2rh

~11z2!1/4

z F11 (
k51

`

~21!k
vk~ t !

rk G ,
~A4!

where t[1/A11z2, andh[A11z21 ln@z/(11A11z2)#. In
the one-loop analysis it is necessary to evaluate the logar
of the equation obeyed by the eigenvalues by virtue
boundary conditions. In particular, we need the asympto
expansion@27#

lnF11 (
k51

`
uk~ t !

rk G; (
p51

`
Dp~ t !

rp , ~A5!

where@27#

D1~ t !5
1

8
t2

5

24
t3, ~A6!
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D2~ t !5
1

16
t22

3

8
t41

5

16
t6, ~A7!

D3~ t !5
25

384
t32

531

640
t51

221

128
t72

1105

1152
t9. ~A8!

In the case of Robin boundary conditions, a linear combi
tion of I r andI r8 is set to zero at the boundary, and a dime
sionless parameteru occurs in the eigenvalue condition
Thus, the polynomials~A6!–~A8! are replaced by@27#

M1~ t,u!5S 2
3

8
1uD t1 7

24
t3, ~A9!

M2~ t,u!5S 2
3

16
1
1

2
u2

1

2
u2D t21S 582

1

2
uD t42 7

16
t6,

~A10!

M3~ t,u!5S 2
21

128
1
3

8
u2

1

2
u21

1

3
u3D t31S 869640

2
5

4
u

1
1

2
u2D t51S 2

315

128
1
7

8
uD t71 1463

1152
t9.

~A11!

When alsoKr functions occur in the calculation of func
tional determinants, one has polynomia
D̃ i(t)5(21)iDi(t), andM̃ i(t,u)5(21)iM i(t,u).

In the case of Dirichlet boundary conditions, the functio
~1.7!–~1.11! are infinite sums of the contributions@23,27,28#

A21
l 5

sin~ps!

p E
0

`

dz~zl/a!22s
]

]z
lnS z2 l

A2p l
elhD ,

~A12!

A0
l 5

sin~ps!

p E
0

`

dz~zl/a!22s
]

]z
ln~11z2!21/4, ~A13!

Ai
l5
sin~ps!

p E
0

`

dz~zl/a!22s
]

]zSDi~ t !

l i D . ~A14!

In the two-boundary problems, however, alsoK functions
and their first derivatives contribute. By virtue of Eqs.~A3!,
~A4!, ~A12!–~A14! one thus finds

~A21! I52~A21!K , ~A0! I5~A0!K , ~Ai ! I5

~21! i~Ai !K , ~A15!

for both Dirichlet and Robin boundary conditions. This lea
to Eqs.~3.3!–~3.6!.
-
-

s

s

The recurrence relations among Bessel functions use
the course of deriving Eq.~2.7! from Eq. ~2.6! are

I n22~z!5S 11
2n~n21!

z2 D I n~z!12
~n21!

z
I n8~z!,

~A16!

I n21~z!5I n8~z!1
n

z
I n~z!, ~A17!

I n11~z!5I n8~z!2
n

z
I n~z!, ~A18!

I n12~z!5S 11
2n~n11!

z2 D I n~z!22
~n11!

z
I n8~z!.

~A19!

The limiting behavior of Bessel functions asz→0, which
is necessary to deal properly with Eq.~3.12!, is

I n~z!;
~z/2!n

G~n11!
, ~A20!

Kn~z!;
1

2(k50

n21

~21!k
~n2k21!!

k! ~z/2!n22k . ~A21!

The contribution~2.15! to the one-loop effective action i
the contribution of the decoupled normal modeR1, and it is
best tackled in terms of the algorithm of Ref.@35#. The gen-
eral structure of z8(0) is then ~see Sec. IV!
z8(0)5I R(`)2I R(0), where

I R~`!52
1

2
ln~a!2

1

2
ln~2!2

1

2
ln~p!, ~A22!

I R~0!5 ln~a!2 ln~2!. ~A23!

Moreover,I ln52 3
4 @19#. Hence, one gets Eq.~2.15!.

Last, we should say that the term on the last line of E
~3.12! reads

s52 (
n52

` F22n@h~Mr1!2h~Mr2!#2
F2~1!

n2 G ,
~A24!

where

22n@h~Mr1!2h~Mr2!#; ln~r1 /r2!22n, ~A25!

while, with the notation of Eqs.~A6!–~A11!, one has

F2~1!52D2~1!12M2~1,1!521. ~A26!
.
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