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This paper studies the one-loop effective action for Euclidean Maxwell theory about flat four-space bounded
by one three-sphere, or two concentric three-spheres. The analysis relies on the Faddeev-Popov formalism and
{-function regularization, and the Lorentz gauge-averaging term is used with magnetic boundary conditions.
The contributions of transverse, longitudinal, and normal modes of the electromagnetic potential, jointly with
ghost modes, are derived in detail. The most difficult part of the analysis consists in the eigenvalue condition
given by the determinant of aX22 or a 4x4 matrix for longitudinal and normal modes. It is shown that the
former splits into a sum of Dirichlet and Robin contributions, plus a simpler term. This is the quantum-
cosmological case. In the latter case, however, when magnetic boundary conditions are imposed on two
bounding three-spheres, the determinant is more involved. Nevertheless, it is evaluated explicitly as well. The
whole analysis provides the building block for studying the one-loop effective action in covariant gauges, on
manifolds with boundary. The final result differs from the value obtained when only transverse modes are
guantized, or when noncovariant gauges are Us&b56-282(96)04924-7

PACS numbd(s): 04.20.Gz, 98.80.Hw

I. INTRODUCTION Rouet-Stora-Tyutin(BRST) invariance. For example, one
may consider Euclidean Maxwell theofwhich is the object
Over the last few years, a considerable effort has beenf our investigation In the classical theory, one may begin
produced in the literature to study the problem of boundaryy fixing at the boundary the tangential componeisof
conditions in Euclidean quantum gravity and quantum costhe electromagnetic potential. Such a boundary condition is
mology [1-10]. This is motivated by the need to obtain a invariant under infinitesimal gauge transformations,
well-defined path-integral representation of foaifin) am- A=A+ di&, if and only if, £ itself vanishes at the bound-
plitudes and of the quantum state of the Universe, and lies &'y- In the semiclassical approximation of quantum theory,
the very heart of any attempt to understand the basic featuré¥ie expands about a vanishing background valuéfgrso
of a theory of the quantized gravitational field. In particular, that the electromagnetic potential reduces to say, pure per-
within the framework of the semiclassical approximation forturbations.A, . Moreover, if one follows the Faddeev-Popov
the wave function of the Universe, this analysis has led to théhethod, one adds a gauge-averaging terma(/® (A) ] to
first calculation of one-loop divergences for massless spinthe original Lagrangian, jointly with a ghost term which is
1 fields[11—16, Euclidean Maxwell theory17—20, super- Necessary to ensure gauge invariance of the quantum theory.
gravity modelg21], and Euclidean quantum gravifg—10]  The first set of boundary conditions are now
in the presence of boundaries. Focusing on massless models,
flat Euclidean backgrounds bounded by a three-sphere have [Adim=0, 1.9)
been studied in detail for fields of various spins, with local or
nonlocal boundary conditions, and in covariant as well as [#lam=0. 1.2

noncovariant gauges for gauge theories and gravitatiopere, is a complex-valued ghost zero form, corresponding

[6—21]. For these fields the bou_ndary conditions are mixed in[0 two independent, reaghost fields[22], which are both
thatdsqme con:jpohnents of the field obey ane Eet of boﬁndargubject to homogeneous Dirichlet conditions at the bound-
conditions, and the remaining components obey another S‘?ﬁy. At this stage, the only choice of boundary conditions on
of boundary conditions. This is indeed necessary to ensu

"fhe normal componently, whose i i i i

. . " 0 gauge invariance is again
Invariance of the whole set Of boundary condltlo_ns unde.rguaranteed by the imposition of E(..2) on the ghost zero
infinitesimal gauge transformations, as well as their Becchi

form, is
[®(A)]m=0. 1.3
*Electronic address: esposito@napoli.infn.it
"Electronic address: grg@ibrae.msk.su If the Lorentz gauge-averaging functional is chosen, Egs.
*Electronic address: kirsten@tph100.physik.uni-leipzig.de (1.1 and(1.3) lead to Robin conditions oy, i.e.,
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240 a® o T(s+j+1)
[ ——+ AgTrIK N 0, (1.4) As(s)= B gR(zs)jgo X2 ) (1.10

whereK is the extrinsic-curvature tensor of the boundary. 3

The analysis of conformal anomalies and one-loop diver- 2s 3 F<S+J + 2
gences, however, is part of a more general program devoted  Az(s)=— F—gR(Zs+ 1)2 X3, T3
to the investigation of the one-loop effective action on mani- (s) =0 r|j+ _)
folds with boundary. As shown in Refi23-26, complete 2
results are by now available for scalar and spiiields. For (111

Euclidean Maxwell theory, the contribution of transverse . .
modes was obtained in Ref&5,26], and the contribution of wherea is the radius of the three-sphere boundary. Thus, the

all perturbative modes in a noncovariant gauge was first ob@lgorithms described in Ref§23,27 lead to the following

tained in Ref.[27]. For supergravity and quantum gravity, result for the one-loop effective action:
the contribution of transverse-traceless modes only has been 1 1

obtained in Refs[25,26. It has been, therefore, our aimto  TW=—=/(0)— = £(0)In(u?)
present a detailed calculation of one-loop effective action in 2 2

a covariant gauge including all perturbative modes of the 1

problem in the presence of boundaries. This is necessary = —In(u2a?— In(2)

both for the sake of completeness, and to check whether the 360 180

contributions of longitudinal, normal, and ghost modes can- 173 1 1 1

cel one another exactly on such bounded regions. No such ~ 50480 gg’;{(—3)+ Zg’ﬁ(—Z)— Eg,;(—l).
cancellation was indeed found to occur in the analysis of

conformal anomalies in Ref§18-2Q. 1.12

Since the building block of our investigation is the study ) ) .
of real, massless, scalar fields on the four-ball, subject to Section Il evaluates the one-loop effective action for Eu-
Dirichlet conditions, we find it helpful to present here a very clidean Maxwell theory in a background motivated by quan-
brief outline of such a calculation. As shown in Refs. tum cosmology, i.e., flat Euclidean four-space bounded by a
[23,28, the starting point is the integral representation of thethree-sphere. This results from the analysis of the wave func-
£ function of a self-adjoint, positive-definite elliptic operator tion of the Universe in the limit of small three-geometries
by means of the Cauchy formula, which makes it possible t¢29]. Magnetic boundary conditions in the Lorentz gauge,

express{(s) of the Laplace operator in four dimensions asi-€-» Egs(1.1), (1.2, and(1.4), are imposed. Section IIl stud-
the sum ies instead the occurrence of two concentric three-sphere

boundaries. This case is more relevant for quantum field

] 3 theory. Section IV presents some independent derivations,

Us)=2 122/(s)+ 2, A(s). (1.5) based on the technique developed by Barvinsky, Kamensh-
=1 i=-1 chik, Karmazin, and Mishakol14]. Results and open prob-

lems are discussed in Sec. V, and relevant details are given
By using the notation in Appendix for the uniform asymp- in Appendix.

totic expansions of Bessel functions, one has, in Ed),

) Il. ONE-BOUNDARY PROBLEM
sin(ws)

Z(s) -

* J
f dz(zl/a)zsﬁ(lnl,(lz)—ln In this section we study a background four-geometry
0 given by flat Euclidean four-space bounded by a three-
3 D(t) sphere. Since the boundary three-geomet?jghis ensures
—k—) , (1.6) that the tangential components of the electromagnetic pertur-
I bations consist of a transverse pdit and a longitudinal part
A{; only [30]. These are expanded on a family of three-
, I‘(s— E) spheres centered on the origin[84]
S

{r(2s—-3), (1.7 ”
afzT(s) s °F A= 2 (1S, 2.1

+|n[Jﬁ(1+z2)1’4]—k

=1

A_y(s)=

1
A = — — 2s 2 —2 y 1.8 -
o(s) yia {r(25—2) (1.8 AL(x,7) = z—z 9n(P P (x), (2.2

where 7 is a radial coordinate=[0,a], x are local coordi-
nates ors®, andS{" andP{" are transverse and longitudinal
1) vector harmonics on the three-sphere, respectiy&].

2 Moreover, the occurrence of the boundary with normal vec-
(1.9  tor n* makes it possible to define the normal component of

22 1 I's+j+=
AL(S) =~ gy érl2s— 1)20 X1
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A, (x,7) asAq(x,7)=n*A(X,7). Its expansion on the same I,—1(Ma)
family of three-spheres read31] Ih+1(Ma) 2W+In,2(Ma)+ln(Ma)
- - (n+1) Ih+1(Ma)
AO(X’T):nZl R(7)QM(x), (2.3 + m%—l('\/'a) ZW"‘M(M&)
whereQ(™ are scalar harmonics @& [32]. We are actually +1,42(Ma) |=0. (2.6)

facing a crucial point in our analysis, since the singularity at
the origin of our background four-manifold calls into ques- i .
tion the validity of the 3.1 split, Egs.(2.1—-(2.3), nside  Thus, the first step is to reexprebs. , In-1, Inys, and
the bounding three-sphere of radies [18—20. In the |'n+2 in terms ofl, andl, only. By virtue of Eqs.(A16)—
analytic approach, one requires that the expansion€ 19 Of Appendix, and settingla=zn, Eq.(2;6), is found
(2.)—(2.3 should match the boundary values to involve the following function ot,1,, andl:
Ap(x,a),Ax(x,a),Ao(x,a), and be regula¥ 7e[0,a]. This
should pick out a unique smooth solutiph7]. In the geo-
metric analysis it seems that, as long as the operator acting
on A* reduces to—g,,] in flat four-space, the analysis of
the problem remains well defined at any stage, since it doewhere proportionality parameters have been omitted, since
not contain anyexplicit) reference to ill-defined objects or they do not affect the calculation af' (0). The function
noncovariant elementée.g., TK terms in the differential (2.7) should be inserted into the integral representation of the
operators Indeed, in covariant gauges, the operatorddnis ¢ function for longitudinal ) and normal N) modes, i.e.,

j::%|n(zn)[ln(zn)+znlr’1(zn)], 2.7

1 Sin(7S) < oc P
_ng—i-R#,,-F(l—Z)VMVV, gLN(S): n(ﬂ- )E n2f dZ(ZNa)—ZSEm[Z—Zn-Flﬂ'
n=2 0

o
(2.8

and this reduces to the desiredg,,,[] in flat four-space,
provided that one makes the Feynman choice ford¢hga-  wheren? is the degeneracy of such modes. Remarkably, af-
rameteriag=1. ter reexpressing the infinite sum in E@.8) as an infinite

The contribution of transverse modgg7) in EQ.(2.1)is  sum from 1 to, minus the contribution ofi=1, one finds,
independent of any choice of gauge-averaging term in thgy virtue of Eq.(2.7), that the resulting contribution to
Faddeev-Popov Euclidean action, since such modes are dg+(0) is the sum of three contributions: tj&(0) value for a
coupled from longitudinal modesgf) and from normal  real scalar field subject to Dirichlet conditions &; the
modes R;). Thus, relying on the/7(0) value obtained in  ;’(0) value for a real scalar field subject to Robin conditions

Refs.[25,26, one finds on S, with u parameter equal to 1; thg(0) value resulting
from n=1. The first is given in Ref[23] and is encoded in
o 77 in( u2a? 29I ) 1I 6127 the one-loop effective actiofi.12). The second is evaluated
T _ﬁ)n('u‘ a)+9_0n( )+§n(77)+30240 in Ref.[33] as
1, 1, 5, 41 7 1 31
—3R(=IF5LR(=2) T glr(—-1). (24 Lrotinu-1(0) =~ gz~ 2M(2) — 5In(7) - g5in(a)

It is also straightforward to obtain the contribution of
ghost modes. Bearing in mind that they behave as fermionic
modes(if the gauge field is bosonic, as in our casand
imposing the boundary conditiofL.2), one has simply to
multiply by —2 the scalar-field resultl.12). This leads to

1, 1, 11
+§§R(_3)+E§R(_2)_€§R(_l)'
(2.9

The third is obtained fronisee Eqs(2.7) and(2.8)]

1 1 173 1 .
1) _ _ = - = Tty —_ ©
Pghost= ~ 7gM(1°8%) + ggIN(2)+ 35550% 36R(—3) l(s)=- Sm(:S) f , d2H7
ey -2 +1 (-1 2 J
EgR( ) ggR( ) ( 5) XE”’I{Z_Zl1(Z)[|1(Z)+Z|i(z)]}- (21@

The only technical difficulties consist in the analysis of _ = . )
coupled longitudinal and normal modes. As shown in Ref.TNiS yields(see Appendix
[19], the boundary conditionél.1) and (1.4) lead to an ei- -
genvalue condition for such modes given by the vanishing of '(0)=In(ma?). (211
the determinant of a 22 matrix. With the notation of Ref.
[19], in the Lorentz gauge this equation rean&2) By virtue of Egs.(1.12, (2.9, and(2.11), one finds
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631 13 1 37 ous modes in Eq$2.1)—(2.3) become linear combinations of
{In0)=— 15120 go M@+ 5In(m)+ 5'”(32) both 1, andK, (modified Bessel functions. We begin with
the most difficult part of the calculation, i.e., the determinant
, , of the 4X4 matrix which yields implicitly the eigenvalues
+ §§R(_3)_ §§R(_1)‘ 212 g5, longitudinal and normal modes. Such a matrix, given in
Eq.(3.13 of Ref.[19], is obtained by imposing the boundary
Bearing in mind thaf19] £, \(0)= %, which is indeed en- conditions(1.1) and (1.4) at the three-sphere boundaries of
coded in Eq(2.12, one obtains radii r_ andr, (hereafterr,>r_). Again, one has to ex-
press Bessel functions of various orders in terms of

37 1 631 .
I''R=——In(u?a?+ In(2) Z/n(m+ Ih.15,Kq, K}, only, wheren=2. After a lengthy calculation,
90 180 30240 such a determinant is found to take the form
l ! 5 !
_§§R(_3)+E§R(_1)- 213
B 16n2
Last, the contribution of the decoupled normal mdrie b= (n—1)°M?r_r, [In(Mr)Ka(Mr)
should be considered. In the Lorentz gaufg, takes the ) ) )
form [19] —1o(Mr )K(Mr ) {M2rr_[1(Mr)KA(Mr )
1 —1(MrO)KA(Mr )]+ Mr_[1,(Mr)K/(Mr_)
Ry(m)=—15(M7), (2.14

= 1(Mr O)K(Mr )]+ Mr  [13(Mr )KL (Mr_)

up to an unessential multiplicative constant, and hence it —LAMEKAME DT (M DKM
contributes(see Appendix (M7 -)Kn( ARatLl JKa(Mr-)
—1a(Mr)Kn(Mr )T (3.0

r<1>— In(,uzaz)—%ln(Z)Jr%In(w). (2.19

. Thus, one has first to multiply E¢3.1) by M2 to get rid of
One can now combine Eqe2.4), (2.9), (2.13, and(2.15 to fake roots[35]. By virtue of the uniform asymptotic expan-

find the full one-loop effective action in the Lorentz gauge asSlons (A)—(A4), only the effects of Kn(Mr_) and

6931 I,(Mr,) survive at largeM [19]. Thus, after setting
30240 Mr,.=zn (cf. Sec. I), which implies that
Mr_=znr_/r,, the contributions of the\; functions to
{'(0) [see Eq(1.5] can be obtained by studying

r= 31 —In( a2)+7ln(2)+lln(w)+
180 M

1 11
_§§R(_3)+€§R(_1)- (2.16

Interestingly, this differs both from the resuf.4), which IND~In[z "l ,(zn) ]+ IN[2"K(znr_ /r .)]+In[1,(zn)
only involves transverse modes, and from the result for
I'® obtained in Ref.[27] in the noncovariant gauge

+znl'(zn)]+In
VEA,— 5 AGTIK: (2]

Kn(znr_/r,)

77 8 1 1991 T
v__"° 2.2y 2 - +zn—K/(znr_/r.)|. (3.2
I'yé 360In(,u a‘) 45In(2)+ In(7)+ —— 6048 r,n
- §§§(—3)+ gfé(—l)- (217 This means that the asymptotic terms are a sum of Dirichlet

contributions for the inner and outer space, and Robin con-

tributions for the inner and outer space witk- 1. Looking

at the asymptotics ok, andK/, the relation between inner
Section Il has studied a background with boundary whichspace and outer space is immediat&_{),=—(A_)k,

is more relevant for quantum cosmologgt least in the (Ag);=(Ag)k, (A)i=(—1)'(A)k [see Eqs(Al2)—(A15)].

Hartle-Hawking program where one boundary three-surface The resulting asymptotics of E(3.2) reads

shrinks to zerd1,2]. The standard quantum field theoretical

framework, however, deals with boundary data two

Ill. TWO-BOUNDARY PROBLEM

boundary three-surfaces, which are necessary to specify 1
completely the path-integral representation of the propaga- (r&—r2) F(S_ 5)
tion amplitude[34]. Hence, we here focus on the one-loop A_i(s)= {u(2s—-3;2), B3
analysis of Euclidean Maxwell theory in the presence of two ym  T(s+1)

concentric three-sphere boundarjé$].
Since the singularity at the originr&0) is avoided in
this boundary-value problem, the basis functions for the vari- Aq(s)=0, (3.4
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Ai(s)= F(S)(r25 r2)¢y(2s+i—2;2)
i F(s+|+i—)
XD (X, +zi)—————, i=13, (3.5
=0 1+~
2
1 2s 2s .
AZ(S):_m(r++r—)§H(ZS:2)
2 T(s+1+1)
><|:20 (X2’|+ZZ'I)§—‘(|—+1)- (36)

Note that the second argument of the Hurwitiunction is 2,
to take into account that the infinite sums definiagstart
from n=2 in our problem. Moreover, the | andz | are the
coefficients of the polynomial®; (Dirichlet cas¢ and M;

(Robin casg respectively[see Egs.(A6)—(Al11)]. In Egs.

(3.9—(3.6) one has now to pick out the coefficients of the
terms linear ins, since these are the only ones which con-Z'(0)=

tribute to £’ (0). Hence, one finds

119
A" 1(O)— In(r Iro), (3.7
Ay(0)=A1(0)=0, (3.8

3

AY(0)=—3, (39

61
A3(0)=— gggn(ry /o), (3.10

which imply

2 A/ (0)= —§+ 45|n(r Ir_). (3.11)

The contribution oZ(s)==7_,n?Z,(s) to ¢’ (0) [cf. Eq.
(1.6)] involves the logarithm of the Bessel terms in E8.1),

and a further contribution resulting from the uniform asymp-
totics of such Bessel functions. Hence, it regsise Appen-

dix for detailg
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z'(O)z—g2 n2| In[ —1,(Mr_)K,(Mr_)

+la(Mr O)Ky(Mr )]+ In{l ,(Mr . )K,(Mr_)
—1n(Mr)Kn(Mro)+Mr_[1,(Mr K (Mr_)
=1 (MrO)Kp(Mr )]+ Mr [1(Mr)Ky(Mr_)
—1n(Mr_)Ky(Mr )]

+M?r r _[1/(Mr K/ (Mr_)

— 1, (MFO)KA(ME )T} —2n[ (M)

1
—n(Mr_>]+p , (3.12

where all Bessel functions should be studied in the limit as
M—0 [23]. One can thus use Eg820) and (A21) which
express the limiting behavior of Bessel functions in such a
case. Many terms are then found to cancel each other ex-
actly, leading to

—}_}2 nz[ZIn[l—(r/u)Z”]Jrln 1—%)+ 2
(3.13

where one hap27]
—nzz n? |n(l— +F =§_|n(77)- (3.19

Equations(3.11), (3.13), and(3.14) imply that

74
LIn(0)= 4—5In(r+ Ir_)—=In(m)

—222 n2n[1—(r_/r,)2"].  (3.19

Let us now study the decoupled normal mdgle In our
two-boundary problem, it takes the form

B2

R1(7)=ﬂ—I2(MT)+—K2(Mr) (3.19

whereB,; and 3, are some constants. By virtue of the bound-
ary condition(1.4), one should set to zero at the three-sphere
boundaries the linear combinatiahR, /d7+ (3/7)R;. The
resulting eigenvalue condition has no fake roots, and hence
one finds(see Sec. IY

(1) 1 ) 1
FR1= - Zln(,u ror_)+ Eln(u/r_)

1
+§In[1—(r_/r+)2]. (3.17
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Last, we study the determinants of thex2 matrices

which yield implicitly the eigenvalues for transverse and

ghost modes. In both cases, the eigenvalue condition is

(M1 O)Knp(Mr ) =1,(Mr)K(Mr_)=0, (3.18
where for ghost modes the integeris =1 and the degen-
eracy is—2n? [19], and for transverse modes the integds
=2, with degeneracy 2¢—1) [31]. Bearing in mind the
ghost degeneracy and Eq$.7)—(1.11), the asymptotic con-
tribution for ghosts is expressed by

1
r s——)

AY(s)=— —= = [P 1%]r(25-3),

\/— I'(s+1)
(3.19
1
AZ'(s)= 5[5+ r¥]¢r(25-2), (3.20
h | 2s _
Af(s)= 1ﬂ(s)[r S+(—1)'r]Lr(2s+i—2)
r s+|+2
XZ Xi)— (3.21)
i+ 2)
while for transverse modes one finds
3
Atl’ — 1 1—‘ S—E 2s 2 3
8= S = Terp [T 2 R(25-3)
—{r(2s—-1)], (3.22
tr 1 2s 2s
Ao(S)=—§[r++r_][§R(23—2)—§R(28)]. (3.23
A-"(S)z—i[rzsnL —1)'r®][{r(25+i-2)
i F(S) + - R
i s+|+i
§R<2s+|>12 Xi.| (3.24
I+ >

The most convenient way to proceed is now to add up the

contributions(3.19—(3.21) and (3.22—(3.24). This yields

F(s— 1)
2 2s 2s
A—l(s):_ \/— F(S+1) [r -r ]gR(ZS 1)
(3.25
Ao(s)= —[r23+ r2¢r(2s), (3.26

ONE-LOOP EFFECTIVE ACTION FOR EUCLIDEAN ...
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A(S)= s )[r (D) R(2sH)
i F(s+|+ IZ)
XE Xi) —— 3.27)
1+

As in the previous cases, the contributionst¢0) of Egs.
(3.25—(3.27) are obtained by considering their expansion in
the neighborhood of=0, and adding the coefficients of all
terms linear ins. This yields

3 1 1
> Ai’(0)=—§In(r+/r,)—§In(4Tr2r+r,). (3.28
i=—1

Moreover, the form ofZ’(0) for ghost and transverse
modes is considerably simplified because the full degeneracy
is —2. This leads tqcf. Egs.(3.12 and(3.13]

zg"'t“(0)=2§_)1 {In[—1,(Mr_)K,(Mr )
(M1 )Ky(Mr ) ]=n[7(Mr )= n(Mr _)]

+|n(—2n)}=221 In[1—(r_/r.)?]. (3.29

Last, since ghost modes yield a vanishing contribution to
£(0), while transverse modes contribute3, one finds

ghtr——ln(,ur r_ )—E In[1—(r_/r )"

1 1
+gln(r+/r_)vL Eln(Zw). (3.30

The results(3.15, (3.17), and (3.30 lead to the following
value of the one-loop effective action in the two-boundary
problem:

r= 7| / +1| 2)+1

1 2
—Eln[l—(r_/r+) 1

+ 21 (N2=1)In[1—(r_/r,)®]. (3.3

IV. GENERAL STRUCTURE OF THE ¢ FUNCTION

When a series of difficult calculations is performed, it is
appropriate to have an independent check of the final result.
For this purpose, we here outline the application of the tech-
nigue described in Ref$14,15,39. Let f, be the function
occurring in the equation obeyed by the eigenvalues by vir-
tue of boundary conditions, and ld{n) be the degeneracy
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of such eigenvalues labeled by the integerOne then de-
fines the function

[(M2,s)= >, d(n)n~%Inf,(M?),

n=ng

4.0

ESPOSITO, KAMENSHCHIK, AND KIRSTEN

|(M2,s)=221 n2=29In[1,(nMr . )K,(nMr_)

—l,(nMr_)K,(nMr)]. (4.8

As M—o, only K,(nMr_) and I,(nMr,) contribute to

whereM? is related to the eigenvalues through the relations’(0), and theuniform asymptotic expansiori&1) and(A3)

M2=—\,, and fake rootge.g.,M =0 for Bessel functions
have been taken out whdn is written down. The function
(4.1) admits an analytic continuation to the compkepiane
as a meromorphic function with a simple polesat0; i.e.,

I pole( M 2)
s

“I(M?s)” = ——+IR(M?)+0(s). (4.2

The functions occurring on the right-hand side of E42)
make it possible to evaluat€0) and{’(0) in quantum field
theory as

§(0)=||n+|po|e(|\/|2=00)—|p0|e(|\/|2=0), 4.3
£'(0)=1”R(M?=00)-I¥(M?=0)
o dl o M2
—fo In(MZ)%Z)dMZ, (4.49)

wherel, is the coefficient of In{) in the uniform asymp-
totic expansion ofl (M?2,s), after taking out fake roots. In

imply that

IR(x)=0, (4.9
since Zr(—2)=0. To evaluatd ?(0) one needs instead the
limiting behavior of Bessel functions dd—0. Thus, the
expansiongA20) and(A21) lead to

= 1
— 2 _
IR0)= 2n§=)l n?In(n)+ ggn(r /r-)

+221 n2In[1—(r_/r,)2"]. (4.10

Last, the third term on the right-hand side of Eg.4) is
found to be

- di
—f In(M2)——222d M2 =
0

W In(r . /r_).

~ 180 (4.11

guantum mechanics, as well as for decoupled modes of Bquations(4.9—(4.11) yield

quantum field,£(0) reduces td,, and ¢’(0) reduces to
IR() —1R(0).

In Eq. (3.16), the decoupled mode gives rise to the eigen-

value condition

L(Mr

! +) !
0=(I2(Mr+)+22M—r+>(K2(Mr)+2

Kz(Mr))
Mr _

—(Ié(Mr)+2%)(K§(Mr+)+2%).

(4.5
Thus, Eqgs(4.1), (4.2), and(Al)—(A4) lead to

|R(oo)=—|n(2)—1|n(r r_) (4.6)
Sin(rero). .

Moreover, IR(0) is obtained from the limiting behavior of
Bessel functions aM —0 [see Eqs(A20) and (A21)], and
one finds

IR(O)=—=In(2)+In(r, /r_)+In[1—(r_/r})?].

The result(3.17) is obtained if one bears in mind that the
decoupled mode provides an example of a nontrivial eigen-

1 o]
{'(0)gn=— Zgn(r /r,)—2n§=)1 n2n[1—(r_/r,)?"]

—2{r(—2), (4.12
and this should be multiplied by 1, since the ghost contri-
bution has fermionic nature for a bosonic field.

For transverse modes, an analogous procedure yields

16 1 -
'(0)y=— 4—5In(r+/r,)— zln(ur,)—zzl (n?—1)

XIN[1—(r_/r )2 =In(2m)—2¢H(—2).
(4.13

Equations4.12 and(4.13 yield a result in complete agree-
ment with Eq.(3.30.

Last, to evaluate the contribution of longitudinal and nor-
mal modes one starts from the determinghil), which im-
plies

function obeying the boundary conditions and belonging to

the zero eigenvalue. Hence, one deals with a one- .
dimensional null space whose dimension should be added to |7(0)= >

I, to obtain the correct(0) value forR, as(0)= 3 [19].

It is also instructive to outline the ghost calculation in the

two-boundary problem. The function of E@L.1) then takes
the form

* 2
IR(OO):nEZ nzlnm, (4.14)
- n?-1
3 w[(u/r)z”—(r/u)z“]zh;.
(4.19

Moreover, the third term on the right-hand side of E4)
contributes
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o > dlpoe 61 generalize the technique developed in RE38,39 to mani-
—f IN(M%) gz AM*= = 3ggn(r+ /r-). (4.16  folds with boundary, one would obtain an independent check
0 dMm 18 X ) . .
of the several analytic results which can be derived in the
. ) near future. This would lead in turn to a much deeper under-
The results(4.14—(4.16), jointly with Eq. (3.14), lead to  gtanding of heat-kernel asymptotics for quantized gauge

{(n(0) as in Eq.(3.15. fields and quantum gravity on manifolds with boundary.
Such an investigation is regarded by the authors as an
V. RESULTS AND OPEN PROBLEMS important task for the years to come, and it makes us feel

that a new exciting age is in sight in the application of heat-
Our paper has studied in detail the one-loop effective ackernel methods to quantum field theory.

tion I'® for Euclidean Maxwell theory on manifolds with
boundary, in the case of flat four-space bounded by a three- ACKNOWLEDGMENTS
sphere, or two concentric three-spheres. Our main result is
that, by using covariant gauges such as the Lorentz gauge We are grateful to many colleagues for correspondence
within the framework of the Faddeev-Popov formalism for and/or scientific collaboration on the one-loop effective ac-
semiclassical amplitude$,(") [see Eq.(2.16)] differs from tiqn. In particular, we should mentiop_ Ivar_1 Avramidi,
the contribution of transverse modes obtained in RefsMichael Bordag, Stuart Dowker, Emilio Elizalde, and
[25,26] [see Eq.(2.4)], and it also differs from the value Giuseppe Pollifrone. The work of A.Y.K. was partially sup-
obtained in Ref. [27] in the noncovariant gauge ported by the Russian foundation for Fundamental Re-

VEA, - 2 4, TrK [see Eq(2.17)]. This is confirmed by the searches through Grant No. 96-02-16220-a, by the RFFI

. Grant No. 96-02-16287, and by the Russian Research Project
two-boundary analysis of Sec. [isee Eq/(3.31)]. Our result ‘Cosmomicrophysics.” K.K. gcknowledges financial supJ-

seems to add ewdence in favor of longitudinal, norr,nal, ami)ort from the DFG, Contract No. Bo 1112/4-1.
ghost modes not being able to cancel one another’s effects

exactly on manifolds with boundafil7-24.

The extension to curved backgroun@sg., S* bounded
by S°) is of purely technical nature and can be obtained after The uniform asymptotic expansions a@s—» of the
dealing properly with the asymptotics of Legendre functionsgessel functiond ,(pz),K,(p2), jointly with their first de-
(instead of the Bessel functions occurring in the flat ta&e  rivatives, are derived in detail in Ref40], and they play a
least three outstanding problems, however, remain. First, ongndamental role in the analytic investigation of conformal
would like to evaluate the one-loop effective action for theanomalies and one-loop effective action. In terms of the De-

family of noncovariant gauge®#.A,—bA,TrK, first intro-  pye polynomialsu,(t) anduv,(t) [41], they read
duced in Ref.[17], and then studied extensively in Refs.

[19,20. These gauges have been criticized in R86], but 1 eP” STHE))

they appear to be a necessary step to complete the quantiza- l,(p2)~ —=— A+ DT +2, —|, (Al
tion program in arbitrary gauges, at least in the semiclassical 2mp k=1 P
approximation.

APPENDIX

Second, one would like to apply our algorithms to the , 1 (1+25)Y o uk(h)
. . ) . I (pz)~ er” , (A2)

analysis of Euclidean quantum gravity. For this purpose, one P 2mp z =1
can impose the boundary conditions in terms(cdmple-
mentary projectors proposed in Ref5], or the boundary - e P o0 U(t)
conditions completely invariant under infinitesimal diffeo- K, (pD)~\5- 7oz 1+ (—1)k—k—}
morphismg4], or the boundary conditions of R¢8], which 2p(1+2°) k=1 p
are of Robin type orh;; and the ghost one-form, and of (A3)

Dirichlet type on normal componentsy, and hg; of metric 214 w
perturbations. Yet another possibility is represented by the K'(pz)~— lle_,m(l‘LZ ) {1+ 2 (_1)kvk(t)}
nonlocal boundary conditions of R€]. In such cases, it P 2p z k=1 _Pk_ '
would be interesting to investigate the asymptotics of the (A4)
eigenvalue condition given by the vanishing of the determi-
nant of an 8 8 matrix in the two-boundary problem for pure Wheret=1/y1+z%, and »=y1+2z°+In[Z/(1+y1+2%)]. In
gravity. More work can be done in this respect. the one-loop analysis it is necessary to evaluate the logarithm
Last, but not the least, geometric formulas {0¢0) are  Of the equation obeyed by the eigenvalues by virtue of
still lacking in arbitrary gauges on manifolds with boundary. boundary conditions. In particular, we need the asymptotic
What happens is that the usual Schwinger-DeWitt metho@Xpansior(27]
fails to hold for nonminimal operators resulting from the

choice of arbitrary gauge-averaging terms in the Euclidean u(t) Dyp(t)
_ : _ In| 1+ >, —=|~>, , (A5)
action. More precisely, the factor which stands before the k=1 p =1 opP
series int in the heat-kernel asymptotics is not a Gaussian
but a complicated special function. This leads in turn to rewhere[27]
lations for heat-kernel coefficients unbounded from below as
well as from above, and hence these equations cannot be D (t)=£t—£t3 (A6)
solved recursivel)y{37]. Nevertheless, if one were able to ! 8 24
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1, 3, 55 The recurrence relations among Bessel functions used in
Da)=75" gt + 16t (A7) the course of deriving E2.7) from Eq.(2.6) are
2n(n—1 n—1
Dy(t)= g3 24, 22 105, g ln-2(2)=| 1+ %) @)+ 2" . N,
$77 384 640 128 1152 ° (A16)

In the case of Robin boundary conditions, a linear combina- n

tion of I, andl, is set to zero at the boundary, and a dimen- lh_1(2)=1(2)+ =1,(2), (A17)
sionless parameten occurs in the eigenvalue condition. z

Thus, the polynomial$A6)—(A8) are replaced by27]

n
3 7 Ih+1(2)=13(2) = 5 1n(2), (A18)
= — — ]
Ml(t,u)—( 8+u t+ 24t , (A9)
2n(n+1) (n+1) |
3 1 1 5 1 7 lni2(D)=| 1 = |ln(2) = 27— 1n(2).
Mz(t,U):(—l—G‘l' Eu—zuz t2+(§—§U)t4— 1—6t6, (Alg)
(A10) The limiting behavior of Bessel functions as-0, which
21 3 1 1 869 5 is necessary to deal properly with E8.12), is
— | T T — T2 33
Ms(t,u) 128+8u 2u +3u t°+ 640 4u (22" o
In(2)~ =7 A20
1,\s [ 815 7\ _ 1463 " T(n+1)
+§U t°+ 1—28+§U t +—1152 . - k1
~Z _ 1)k :
(A11) Kn(2) 220( D G (A21)

When alsoK, functions occur in the calculation of func-
tional determinants, one has polynomials
Di()=(—1)'D;(t), andM;(t,u) =(—1)'M;(t,u). . best tackled in terms of the algorithm of RE25]. The gen-
In the case of Dirichlet boundary conditions, the functions , ;
o o eral structure of ¢’'(0) is then (see Sec. Y
(1.7—(1.12) are infinite sums of the contributioh3,27,2§ '(0)=1R(=) = IR(0), where

The contribution(2.15 to the one-loop effective action is
the contribution of the decoupled normal mddg and it is

sin(ms) [« J z! 1 1 1
A= J dz(zl/la) ?°—lIn e, Rioo)= — — _ _
1 s (zlla)"=— (ﬁ I%()= = SIn(a)— 5N(2) = 5In(m),  (A22)
(A12)
(s IR(0)=In(a)—In(2). (A23)
SIN(7S) (= J
I _ -2s 7 2\ —1/4
Ao= T Jo dz(zl/a) azln(1+z ) (ALY Moreover,l,=— 3 [19]. Hence, one gets E@2.15.
Last, we should say that the term on the last line of Eq.
sin(ms) (= d [ D;(t (3.12 reads
Al= nms) f dz(zua)—ZS—(—'(,—)). (A14)
o 0 Jz I o = (1)
2
In the two-boundary problems, however, alkofunctions 7" n=2 2n[n(Mr)=n(Mr-)] n® |’
and their first derivatives contribute. By virtue of E483), (A24)
(A4), (A12)—(A14) one thus finds H
where

(A)1=—(A_Dk, (A=A, (A)=

_ —=2n[p(Mr )= n(Mr_)]~In(r, /r_)~*", (A25)
(—=1)'(A)k, (A15)

while, with the notation of EqQ9A6)—(A11), one has
for both Dirichlet and Robin boundary conditions. This leads

to Egs.(3.3—(3.6). Fy(1)=2D,(1)+2My(1,)=—1. (A26)
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