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In a number of papers it has been claimed that the

time machine is quantum unstable, which manifests itself

in the divergence of the vacuum expectation value of the stress-energy t@nsoear the Cauchy horizon.

The expression fofT) was found in these papers on

the basis of some specific approach. We show that this

approach is untenable in that the above expression, first, is not derived from some more fundamental and
undeniable premises, as is claimed, but rather postulated, and second, contains undefined terms, so that one can

neither use nor check it. From this we conclude that

at the moment there is not a grain of evidence to suggest

that the time machine must be unstable. As an illustration we cite a few cademalimensiongl spacetimes
containing time machines witir) bounded near the Cauchy horiz¢80556-282(96)01822-X

PACS numbd(s): 04.20.Gz, 04.62:-v

I. INTRODUCTION

whereo is half the square of the geodesic distance between

X and X', andu,v are some smooth functions. We might

Since the wormhole-based time machine was proposethink thus that

[3] much effort has been directed towards finding a mecha
nism that could “protect causality[4] and destroy such a
time machine. One of the most popular idésse[1,2,4—8)

is that the creation of the time machine might be prevented

by quantum effects since as it is claimed 2} “at any event
in spacetime, which can be joined to itself by a closed null
geodesic, the vacuum fluctuations of a massless scalar fie

should produce a divergent renormalized stress-energy ten-

sor.” The considerations leading to such a claim | shall call
hereafter the “Frolov-Kim-Thorn¢FKT) approach.”

In essence, the FKT approach amounts to the followin
[1,2]. The vacuum expectation value of the stress-energy te
sor(T,,) of the field ¢ in the (multiply connectedl space-
time M containing a time machine is found by applying
some differential operatdd ,, to the Hadamard function

GHXX)=({(X),p(X")}). 1)
To find G, it is proposed to use the formula
GH(XX)=G*=3 GH(X,y"X"). )
n

Here G is the Hadamard function ob in the spacetime
M, which is the universal covering space fir, and Y"X
e M is thenth inverse image oK e M [y°X is identified in
Eg. (2) with X]. The advantage of the use of B@) is that
G® is supposed to have the Hadamard form

GY(X,X')=To 1+7In|o|+ nonsingular terms  (3)

*Electronic address: redish@pulkovo.spb.su
This approach is essentialy an application of what is sometime
called “the method of images’(see[7], for example to the

<T,uV r’\ﬁn:<T,uV>5n+ 2 Ilm D/.Lvé(l)(x!ynx,)
n#0 X' X

Id (T, )5 >  lm D, (TUo, *+vIn|oy)).
n#0 w_x
X— horizon

(4)

ﬁjere,anzo(x, ¥"X"), and the superscript “ren{renormal-

ized) has appeared because renormalizatioT9f; and of
(T)m requires subtraction of the same terms. The last series
in Eq. (4) diverges(since o,—0, whenX approaches the
horizon), so the conclusion is made that the appearance of a
closed timelike curve must be prevenieahless some effects

of quantum gravity remedy the situatjohy the infinite in-
crease of the energy denstty.

The goal of the present paper is to show that there is
actuallyno reason to expect that the energy density diverges
at the Cauchy horizon in the general case.

Section Il is an extensive discussion of two relevant
points. We argue the following.

(1) The divergency of the last series in Eg) does not
imply the divergency in the vacuum stress-energy tensor
since the following is true.

(@) The value of the tern{T,,,)=" in Eq. (4) depends on

which vacuum inM we consider. Choosing different vacua
we can change the value of the right-hand side of @.
almost arbitrarily. In particular, we can make it finite or in-
finite at will. Note that, as long as E@2) holds, none of
these vacua is better than any otk@s inM itself, they are

s °This effect differs from what can be called “classical instability”
[8]. The latter arises frormfinite returning of a blueshifted particle

wormhole-based time machine. So the bulk of this paper concernim some compact region, while in E¢4) eachterm gives the di-

this method too.
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vergent contribution.
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auxiliaries without any pronounced physical meamiro, £, (2) holds: (2) the functionG® corresponding t40) has
we come to the conclusion that the right-hand-side of(Ep. q.(“) @) . ) P g. ¢ >”(1)
is not fully defined. the “Hadamard form” (3); (3) G'* determines G

(b) The transition from Eq(2) to Eq. (4) includes a few uniquely. _ _ _ _
lacunas important from the mathematical point of view. So, The validity of assumption 1 is almost obvious in the
it is not clear whether in the general case Et).is valid for ~ Simplest casetsee below, but it was not proven in the gen-
any vacuum at all. eral case[One can meet the referenceqd @9 in this connec-

(2) It was implicitly assumed so far that it is the behavior tion. Note, however, that the functioks: which stand there
of the vacuumexpectation(T) that is conclusive for whether in the analogue of our formule), are actually not definéd
or not a time machine is quantum stable. However, trying tdn our case, i.e., whefl'|=.]
create a time machine, one need not restrict oneself just to Assumption 2 seems still more arbitrary. The validity of
the vacuum. It is one’s right to choose the most appropriat&d- (3) was proven not forany state, but only for some
quantum statécf. [4]). And it turns out that the energy den- specific class of statesee[10], Sec. 2¢, and there is no
sity may remain bounded for some nonvacuum states evereason to believe that ol ) belongs just to this class. Note

when it diverges for the vacuum. that even if one accounts the staf@5 violating Eq.(3) to be

In Sec. Ill we construct a few two-dimensional examples..nphysical” [10] this does not allow one to rule them out
Of course, the two- and four-dimensional cases differ iNgince it is|0) which should be “physical.”

many respectéfor example, the wave equation on the two-  agsymption 3 is definitely untrue. In the following section
dimensional cylinder has no solutions, except for constant, e construct as an examole a class of akﬁl ch that
continuous at the Cauchy horizorSo, we do not intend to w u xamp = valdlig su

prove anything peculiar to the four-dimensional one by thes&d: (2) is satisfied for anyf while Gy differ for different f.

examples. In particular, the time machines from Sec. Iil in! NiS nonuniqueness is far from harmless. As we argue below

no way disprove Hawking’s “chronology protection conjec- it makes, in fact, expressiaid) meaningless.

ture” though the energy density is bounded in their causal

regions. The only intention of Sec. Ill is to provide illustra- B. The expression for the stress-energy tensor

tions to corresponding statements from Sec. Il. For example, Expression(4) is the main result of the FKT approach. It

we state in Sec. Il that the neglecting of the regular part ofs gq.(4) that accomplishes changing to the universal cover-

G® is unsound. So, in Sec. Ill the situation is adduced whening, and Eq.(2) is needed only to justify it. So, let us state

this neglection leads to an absurd result. first that Eq.(4) does not follow(or, at least, does not follow
Also, two-dimensional time machines can be a useful toyimmediately from Eq. (2), since the following is true.

model. The energy density can be easily found for them, (1) To write limD ,,SG®"=3IlimD ,,G without a spe-

while for four-dimensional ones, not in a single case it hascial proof, one muﬂst be sure thag the serB&® and

been found so far without use of the “method of images. EDWE(” converge uniformly, while it is clear that they do

not [at least as long as E€B) holds|.
Il. ANALYSIS I would Ii.ke to stress _that this is not a matter of pedantry.
This nonuniformity manifests itself, in particular, in the fact
Our main purpose in this section is to prove that the bethat, in general, one cannot drop the nonsingular terms in
havior of the last series in E¢4) has nothing to do with the G(1)_ |5 Sec. 11l B we shall show that the last series in ’.
behavior of the vacuum energy density. So, it would havesan divergeoff the Cauchy horizon even though E¢) and
sufficed to restrict the consideration to say Sec. Il B. But2) hold andG(Dren (and(T)"™") are smooth there. The mat-
with an eye to other possible applications of the ideas Citeéer is that the representation of a function by a nonuniformly
above[quantum field theory on multiply-connected spdces convergent series deceives our intuiti@ne cannot judge a
we fry to give a detailed analysis of the FKT approach.  fynction from asymptotic behavior of terms of such a series.
(2) Even when/0) belongs to the above-mentioned class,
A. Going to the universal covering Eq. (3) is proven not forany X X', but only for X" lying in
the “sufficiently small” neighborhood oK. It is necessary,
in particular, thato(X,X") would be defined uniquely. To
Srovide this, in Ref[10], for example X andX' are required

Formula(2), combined with some implicit assumptions,
serves as a basis for the overall FKT approach since on

cannot use Eq(3) in multiply connected spacetimes, where : . .
o is not defined. To discuss ER) and to reveal these as- not to lie, respectively, near poinis andy connected by a

sumptions, let us first state the simple fact that most propelnu_II geod_e_sic with a point co/njugate xd)_e'forey. To violate
ties of the Hadamard functioimcluding the validity of Eq.  thiS condition for the pointX" and yX', it suffices to sepa-
(3), depend on the choice of the vacuum appearing in defirate the mouths of the wormhole widely enlough and to fill
nition (1). So, formulas such as E€@) are meaningless until the space between them with the conventional mater

: ~. . ~ . Proposition 4.4.3.
we specify the vacug0) and|0) in M andM, respchngy. Thus, we see that E¢d) must be regarded as an indepen-
We come thus to the problem of great importance in oury '

; . _ : ent assumption. We can, however, neither use nor check it
consideration: how, giveh0), one could determine corre-

sponding|5>? The above-mentioned assumptions concerpr———
just this problem. They must be like ﬂle followingt) For 8 am grateful to Dr. G. Parfyonov, who explained this issue to
any vacuum orM there exists a vacuuf®) on M such that me.
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in view of the aforementioned ambiguity. Indeed, in com-
mon with the Hadamard functiogT,,) =" depends on which
vacuum we choose, while from the FKT standpoint all vacua

|0) satisfying Eq/(2) are equivalent. This equivalence is of a A POssible choice ol for the nontwisted field is
fundamerEaI natlire, the only physical object is the spacetime - |4Tm|—1/2627riH’1<nx—|n\r> N 142 @
M, while M and|0) are some auxiliary matters, and as long ' R
as Eq.(2) holds we cannot apply any extraneous criteria toThe vacuum|0)c defined by Eq.(7) (the “conformal”
d|st|ngU|sh|0> So, we have no way of determining what to vacuum is espeC|aIIy attracnve as the expressions for the

substitute in Eq(4) aS<T/w>M . In Sec. Il B we shall see Hadamard funcUonGc and for the stress-energy tensor
that choosing different0) (even whenM is a part of the (T)c are already obtainefsee[12], the neighborhood of

formula (6.211)]:
Minkowski plang, one can, at will, makéTM,)~ finite or ula (6.219)]

GD(X,X")= > up(X)u¥(X')+ complex conjugate.
n

infinite at the horizon. me 1 [Chuw 3C.2
Let me note in passing that there is no point in using Eq. (Tww)c"™=~ 1212 %an|"Cc 2 ¢z | WEUwv,
(4) unless we decide th&®) is among the very “good” and (8)

convenient vacua. For an arbitrd§), it is not a bit easier to

find (T}En than(T)\".

(Tu)S=(T,)&"=—RC/(96m).

Here,e=—1/2 or 1 depending on whethe¥ is twisted or
C. Interpretation untwisted, andR is the curvature oM. Though the absence
of a solution corresponding to=0 in Eq. (7) may seem
artificial, it is, in fact, an inherent feature ()., which is to
describe the vacuum ap as a massless limit of the “natu-
Yal” vacuum of a massive fielfef. [12], below(4.220]. One
could start, however, from another vacuum for the massive
f|eld and arrive at another theofgee below with the basis

Suppose tha{W|T| V)" for some|¥) does diverge at
the Cauchy horizon. Suppose further that it(F)};" that
stands in the right-hand side of the Einstein equation
(though it is not obvious, sdd 2] for the literature and dis-
cussion. Does this really mean that owing to the quantum
effects the time machin® cannot be created? | think that
the answer is negative. It well may be tHdt| T|®)\;" does
not diverge for some other stai®). Roughly speaking, the U'=UUuy=(2H) Y4 Fr+ilF),
infinite positive energy of infinitely blueshifted particles can
cancel out the infinite negative energy of vacudior ex- where the real constaiit is a free parameter. Choosing dif-
amples see the end of Sec. 11).ASo why must we restrict ferentF, we obtain different vacuf)r and Hadamard func-
ourselves to the staté)? To prove that the Einstein equa- tions G(l) It is easy to see that
tions and QFT are incompatible M (by M here is meant F2
the manifold plus its causal structiyene must have proven 1) _ ~1) /
that there is no self-consistent solutions Mnat all, or, at Ge=Gc 't " +const. ©
least, that there is no solutions satisfying some reasonable
physical conditiongsay, stability. A. Two-dimensional time machines

in the conformal vacuum state

IIl. EXAMPLES . . . .
As a first example, let us consider the Misner spacetime,

Let us find the expectation value of the stress-energy tenwhich is the quadran&<<0, >0 of the Minkowski plane
sor in a few specific cases. We restrict our consideration tas’>=dadg with points identified by the rule
the two-dimensional cylindeM obtained from the plane (agB0) ~ (AagBo/A). The coordinate transformation

7,x) by identifying y~» ¥+ H and endowed with the metric
(mx) by Wingx-x u=-—W1nWal|, v=Wlin(wpg)

=C(—dm?+dy?)= . : . . :
ds’=C(-dr*+dy*)=Cdudy ® delivers the isometry between Misner space bhavith
Here,u=y—r,u=x+; C is a smooth function oM. To C=e2WT  H=WlnA.
find in the ordinary wayT) for the free real scalar field '
b, W here is an arbitrary parameter with dimension of mass.

Substituting this in Eq(8), we immediately find
U¢=0, o¢(x+H,7)

¢(x,7) for the nontwisted field, 6 (Tww )&= —\W?
| —#(x,m) forthe twisted field, ®

€T N 1 s
12IrPA * 487) VW

The coordinates,v are handy in evaluatingT)"", but there
we must first of all specify the vacuum we consider. That is,is a coordinate singularity near the horizon. By contrast, in
we must choose a linear space of solutions of Bgand an  the coordinatesy, 8 the metric is “good” (smooth, nonde-
“orthonormal” basis[12] U={u,} in it. In particular, this generatg near the Cauchy horizong=0 or 8=0. So, the
will define the Hadamard function: proper basis of an observer approaching one of them with a
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finite acceleration is related to the bafls={d,,ds} by a T=—1/(487)] takes place iM though(in the case of Mis-
finite Lorentz transformation. Thus, the quantities we are tgygr spac}am is merely a part of the Minkowski plane. This
examine are, in fact, the components(df¢" in the basis  suggests that for the time machine too, the divergence of the
D, which are stress-energy tensor is a consequence not of its causal or
topological structure but rather of the unfortunate choice of
the quantum state.
ren._ ren._ (2) The twisted field aiA=e"?" has the boundedT)E"
<TaB>C _<T,8a>C =0, (cf. [6]).

(3) Let us consider nonvacuum states n@ee Sec. || €
The first example is a two-particle stafe,1 ) with the
particles corresponding to theth and —nth modes of Eqg.

Now, let us use the above simple method to f{figi"®" for (7). (115 T|151- )" is readily found using[12], Eg.
two more time machinetsee alsd13]). Consider first the (2.44:
cylinder S obtained from the strip <17n1n|-|-yy|1n17n>ren:-|-/,y—z,

<Taa>rCen:Ta,72’ <Tﬁﬁ>rcen:TB72!

T=-

TE 1
12IPA T 287)"

d?=W 2¢ 4(—dp?+dé)=¢ 2dadB, (10
" g (ALl Tl 1) o= (T, )"

where a=(&—9)/W,B=(é+9)IW;, ne(—x»,©), ¢§ o _

e[1A] by gluing points »=17,é=1 with the points WithT =T+2mnH 2, andy=a,B. Thus, we see thatthe_re

n=Any,E=A. This spacetime was considered in detail in@re states with the bounded energy density of the untwisted

[1] where it was called the “standard model.” A simple field.

investigation shows that the Cauchy horizoas-0 and Yet another example is the equilibrium state at a nonzero
B=0 divideS into three regions. Causality holds in the “in- temperaturet). Expressior(4.27) of [12] gives
ner” region S:a,3>0 and violates inl =(S). Introducing w
new coordinatesl,v: (] T D= (Ty) ™ 77 2 sinh2 mm
wWwi| ww/ C 2H2m=1 kBtH .

u=Wtna, v=wWlng,
_ ~ ] o _ So, for any H there exists such temperature that
we find thatS, as well as the Misner spatds isometric to (t|T,,|t)™" does not diverge at the horizon.
M. This time i

C=cosh2Wr. H=W-lnA B. Another vacuum
, ) The conformal vacuum is not suited for verifying or ex-
which yield emplifying most of statements made in Sec. Il, since the
ren_ o -2 ren_ T p—2 Hadamard function does not exist in this state. So, consider
(Taa)c'=Ta ™% (Tpp)c"=TH % @D ow the new vacuurtD); on the plane £, ) defined by the
- modes
(Tap)&=(Tpa)&"=(U12m)(a+B) 2
1

Consider lastly, the spacetime obtained by changing
& 2=~ 2in Eq. (10). This spacetime is similar to the stan- 2Jrw
dard model, but has a somewhat more curious causal struc- Up=
ture; there are two causally nonconnected regions separated

——ePX(f lcoswr—iw Msinwr), <3,

by the time machingT)¢" differs from that in Eq.(11) by 2\m
the off-diagonal(bounded terms (12
(Tap) =T pa)&"=— (L/127)(a—B) 2. wherew=|p|, & is an arbitrary positive constant<1, and

. f is an arbitrary smooth, positive functiof(w= 8)= \w.
~So, we see that in all three cases the vacuum energy defthe modeg12) are obtained from that defining the confor-
sity (associated with the conformal vacuum statees grow  mal vacuum on the plane by a Bogoliubov transformation of
infinitely as one approaches the Cauchy horizon. A few comthe |ow-frequency modes so as to avoid the infrared diver-

ments are necessary, however. _gence without affecting the ultraviolet behavior (df). The

(1) The divergence in dIS_CUS.SIOH is not at all Someth_'ngasymptotic form ofG{Y does not depend oft
peculiar to the time machine: the passage to the limit
A—x shows that precisely the same divergeriogth vf ’@1): — 1/(27)In|AuAv|

+smooth, bounded function.  (13)
“In spite of their apparent similarity, these spaces are significantly . _ .

distinct. For example, the Misner spacetime is geodesically incomlf we retain only the first term, we obtaiin the flat casg
plete [11], while the standard model is nt4]. This may be of _
importance if one would like to separaté and X' “widely lim D,,GY(X,y"X")=In?(A)a” 2A""n"2,
enough” (see item 2 in Sec. II B X' =X
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So, the last series in E¢4) diverges not only at the horizon, G(). One can easily construct, for example, such a vacuum

but everywhere oM (cf. Sec. II B. that GM)(y,x’) will not be invariant under translations
(T)s can be found from Eq(9) (see[12], Sec. 6.4 For x.x'—x+H,x'+H andGX(x,x'), as a consequence, will
any C we have not even be symmetric.
11 W2 o Remark 2For all G{*) with the samef(0) the Hadamard
(Tww ;e”:—[ - —+f (f 2w+ f2—w)dw|, functionsG* are the same. This proves our statement from
8w 6 Jo Sec. Il A.
e e To find (T)g, note that it differs from(T)¢ only by the
(Tu)t =(Tuw)c - term arising from the second summand in E9. [cf. [12],

Having taken an appropriatf w), one can makeT ., )" Egs.(4.20 and(6.139;

infinite or zero at the horizon, as we have stated in Sec. Il B. F2
To illustrate some more statements from Sec. Il, let us A<TWW/>re”=ﬁ(T.W7,W/—1/277WW/ POT T, o).
first find G*. To this end note that it has the form
- That is
G>=), f h(p)e"Pdp+c.c. (14) ,
v L LA
with WW/F T gH 12IrPA 487’
eipAX*iwAT >1/2 <TUU ;:en:<TUU ;:en:<TUU gn'
— w=
4 ' ' . . . .
T So, for all three time machines considered here, there exists a

h= 1 . . i -

= eiPAX(f~2c0mm rcosn + o2 2sinw rsine '), vacuum, such that _the expectation \(alue of the stress-energy

A tensor is bounded in the causal region.

w<l1/2.

IV. CONCLUSION
The function h(p) can be written as a sum:

h=(h—hg)+ h,, where Thus, we have seen that one cannot obtain any informa-
tion about the energy density near the Cauchy horizon em-
1 . — ploying the FKT approach. Of course, it may well be that the
ho= g/PAxg V1P AT vacuum fluctuations do make the time machine unstable, but
4m\1+p* nothing at present suggests this. All we have is a few simple

examples. In some of them the energy density diverges at the
horizon and in some does not. So, the time machine perhaps
is stable and perhaps is not. This seems to be the most strong
assertion we can make now.
|h0|$c|x|fllze\(AX7Ar)y|_ Note addedA gen_eral approach _different from FKT was
developed recently ii16]. It was rigorously shown there
Hence[15], we can apply the Poisson formula to HG4) that if some postulate holds in the acausal region, ¢ien
and obtain must have singularity on the Cauchy horizon provided it is
compactly generated. The character of this singularity is not
specified though. Our examples show that it may well be that
the energy behaves well up to the horizon. It is possible to
suppose then that the singularity arises from the improper
We see thus tha> is indeed the Hadamard function, and it calculation of the vacuum polarization in the acausal region.
corresponds to the vacuuf@)r with F=f(0). In other words, it seems not unlikely that the result§ 18]
Remark 1This does not mean, however, tf@at will be suggest violation of the above-mentioned postulate rather
a Hadamard function of some reasonable state &y  than the impossibility of time machine creation.

The first summand is a smooth function falling off at infinity
like p~2, and the second summantyj is a holomorphic
(but for p= =i) function admitting the estimate

G*=27H 1> h(2#H n)+c.c.
n
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