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Quantum stability of the time machine

S. V. Krasnikov*
The Central Astronomical Observatory at Pulkovo, St. Petersburg, 196140, Russia

~Received 6 October 1995!

In a number of papers it has been claimed that the time machine is quantum unstable, which manifests itself
in the divergence of the vacuum expectation value of the stress-energy tensor^T& near the Cauchy horizon.
The expression for̂T& was found in these papers on the basis of some specific approach. We show that this
approach is untenable in that the above expression, first, is not derived from some more fundamental and
undeniable premises, as is claimed, but rather postulated, and second, contains undefined terms, so that one can
neither use nor check it. From this we conclude that at the moment there is not a grain of evidence to suggest
that the time machine must be unstable. As an illustration we cite a few cases of~two-dimensional! spacetimes
containing time machines witĥT& bounded near the Cauchy horizon.@S0556-2821~96!01822-X#

PACS number~s!: 04.20.Gz, 04.62.1v
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I. INTRODUCTION

Since the wormhole-based time machine was propo
@3# much effort has been directed towards finding a mec
nism that could ‘‘protect causality’’@4# and destroy such a
time machine. One of the most popular ideas~see@1,2,4–6#!
is that the creation of the time machine might be preven
by quantum effects since as it is claimed in@2# ‘‘at any event
in spacetime, which can be joined to itself by a closed n
geodesic, the vacuum fluctuations of a massless scalar
should produce a divergent renormalized stress-energy
sor.’’ The considerations leading to such a claim I shall c
hereafter the ‘‘Frolov-Kim-Thorne~FKT! approach.’’1

In essence, the FKT approach amounts to the follow
@1,2#. The vacuum expectation value of the stress-energy
sor ^Tmn& of the fieldf in the ~multiply connected! space-
time M containing a time machine is found by applyin
some differential operatorDmn to the Hadamard function

G~1!~X,X8![^$f~X!,f~X8!%&. ~1!

To findG(1), it is proposed to use the formula

G~1!~X,X8!5GS[(
n

G̃~1!~X,gnX8!. ~2!

Here G̃(1) is the Hadamard function off in the spacetime
M̃ , which is the universal covering space forM , andgnX
PM̃ is thenth inverse image ofXPM @g0X is identified in
Eq. ~2! with X#. The advantage of the use of Eq.~2! is that
G̃(1) is supposed to have the Hadamard form

G̃~1!~X,X8!5ũs211 ṽ lnusu1nonsingular terms ~3!

*Electronic address: redish@pulkovo.spb.su
1This approach is essentialy an application of what is someti

called ‘‘the method of images’’~see @7#, for example! to the
wormhole-based time machine. So the bulk of this paper conc
this method too.
540556-2821/96/54~12!/7322~6!/$10.00
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wheres is half the square of the geodesic distance betw
X andX8, and ũ,ṽ are some smooth functions. We mig
think thus that

^Tmn&M
ren5^Tmn&M̃

ren
1 (

nÞ0
lim
X8→X

DmnG̃
~1!~X,gnX8!

→^Tmn&M̃
ren

1 (
nÞ0

lim
X8→X

X→ horizon

Dmn~ ũsn
211 ṽ lnusnu!.

~4!

Here,sn[s(X,gnX8), and the superscript ‘‘ren’’~renormal-
ized! has appeared because renormalization of^T&M̃ and of
^T&M requires subtraction of the same terms. The last se
in Eq. ~4! diverges~sincesn→0, whenX approaches the
horizon!, so the conclusion is made that the appearance
closed timelike curve must be prevented~unless some effects
of quantum gravity remedy the situation! by the infinite in-
crease of the energy density.2

The goal of the present paper is to show that there
actuallyno reason to expect that the energy density diver
at the Cauchy horizon in the general case.

Section II is an extensive discussion of two releva
points. We argue the following.

~1! The divergency of the last series in Eq.~4! does not
imply the divergency in the vacuum stress-energy ten
since the following is true.

~a! The value of the term̂Tmn&M̃
ren

in Eq. ~4! depends on

which vacuum inM̃ we consider. Choosing different vacu
we can change the value of the right-hand side of Eq.~4!
almost arbitrarily. In particular, we can make it finite or in
finite at will. Note that, as long as Eq.~2! holds, none of
these vacua is better than any other~as inM̃ itself, they are

s

ns

2This effect differs from what can be called ‘‘classical instability
@8#. The latter arises frominfinite returning of a blueshifted particle
in some compact region, while in Eq.~4! each term gives the di-
vergent contribution.
7322 © 1996 The American Physical Society
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54 7323QUANTUM STABILITY OF THE TIME MACHINE
auxiliaries without any pronounced physical meaning!. So,
we come to the conclusion that the right-hand-side of Eq.~4!
is not fully defined.

~b! The transition from Eq.~2! to Eq. ~4! includes a few
lacunas important from the mathematical point of view. S
it is not clear whether in the general case Eq.~4! is valid for
any vacuum at all.

~2! It was implicitly assumed so far that it is the behavi
of thevacuumexpectation̂ T& that is conclusive for whethe
or not a time machine is quantum stable. However, trying
create a time machine, one need not restrict oneself jus
the vacuum. It is one’s right to choose the most appropr
quantum state~cf. @4#!. And it turns out that the energy den
sity may remain bounded for some nonvacuum states e
when it diverges for the vacuum.

In Sec. III we construct a few two-dimensional exampl
Of course, the two- and four-dimensional cases differ
many respects~for example, the wave equation on the tw
dimensional cylinder has no solutions, except for const
continuous at the Cauchy horizon!. So, we do not intend to
prove anything peculiar to the four-dimensional one by th
examples. In particular, the time machines from Sec. III
no way disprove Hawking’s ‘‘chronology protection conje
ture’’ though the energy density is bounded in their cau
regions. The only intention of Sec. III is to provide illustr
tions to corresponding statements from Sec. II. For exam
we state in Sec. II that the neglecting of the regular par
G̃(1) is unsound. So, in Sec. III the situation is adduced wh
this neglection leads to an absurd result.

Also, two-dimensional time machines can be a useful
model. The energy density can be easily found for the
while for four-dimensional ones, not in a single case it h
been found so far without use of the ‘‘method of images

II. ANALYSIS

Our main purpose in this section is to prove that the
havior of the last series in Eq.~4! has nothing to do with the
behavior of the vacuum energy density. So, it would ha
sufficed to restrict the consideration to say Sec. II B. B
with an eye to other possible applications of the ideas c
above@quantum field theory on multiply-connected spac#
we try to give a detailed analysis of the FKT approach.

A. Going to the universal covering

Formula ~2!, combined with some implicit assumption
serves as a basis for the overall FKT approach since
cannot use Eq.~3! in multiply connected spacetimes, whe
s is not defined. To discuss Eq.~2! and to reveal these as
sumptions, let us first state the simple fact that most prop
ties of the Hadamard function,including the validity of Eq.
~3!, depend on the choice of the vacuum appearing in d
nition ~1!. So, formulas such as Eq.~2! are meaningless unti

we specify the vacuau0& andu 0̃ & in M andM̃ , respectively.
We come thus to the problem of great importance in
consideration: how, givenu0&, one could determine corre

sponding u 0̃ &? The above-mentioned assumptions conc
just this problem. They must be like the following:~1! For

any vacuum onM there exists a vacuumu 0̃& on M̃ such that
,
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Eq. ~2! holds;~2! the functionG̃(1) corresponding tou 0̃& has

the ‘‘Hadamard form’’ ~3!; ~3! G(1) determines G̃(1)

uniquely.
The validity of assumption 1 is almost obvious in th

simplest cases~see below!, but it was not proven in the gen
eral case.@One can meet the references to@9# in this connec-
tion. Note, however, that the functionsKC which stand there
in the analogue of our formula~2!, are actually not defined3

in our case, i.e., whenuGu5`.#
Assumption 2 seems still more arbitrary. The validity

Eq. ~3! was proven not forany state, but only for some
specific class of states~see@10#, Sec. 2c!, and there is no

reason to believe that ouru 0̃ & belongs just to this class. Not
that even if one accounts the statesu 0̃& violating Eq.~3! to be
‘‘unphysical’’ @10# this does not allow one to rule them ou
since it isu0& which should be ‘‘physical.’’

Assumption 3 is definitely untrue. In the following sectio

we construct as an example a class of vacuau 0̃ & f such that
Eq. ~2! is satisfied for anyf while G̃f differ for different f .
This nonuniqueness is far from harmless. As we argue be
it makes, in fact, expression~4! meaningless.

B. The expression for the stress-energy tensor

Expression~4! is the main result of the FKT approach.
is Eq.~4! that accomplishes changing to the universal cov
ing, and Eq.~2! is needed only to justify it. So, let us sta
first that Eq.~4! does not follow~or, at least, does not follow
immediately! from Eq. ~2!, since the following is true.

~1! To write limDmn(G̃(1)5( limDmnG̃
(1) without a spe-

cial proof, one must be sure that the series(G̃(1) and
(DmnG̃

(1) converge uniformly, while it is clear that they d
not @at least as long as Eq.~3! holds#.

I would like to stress that this is not a matter of pedant
This nonuniformity manifests itself, in particular, in the fa
that, in general, one cannot drop the nonsingular terms
G̃(1). In Sec. III B we shall show that the last series in Eq.~4!
can divergeoff the Cauchy horizon even though Eqs.~3! and
~2! hold andG(1)ren ~and^T& ren) are smooth there. The ma
ter is that the representation of a function by a nonuniform
convergent series deceives our intuition.One cannot judge a
function from asymptotic behavior of terms of such a ser

~2! Even whenu 0̃& belongs to the above-mentioned clas
Eq. ~3! is proven not forany X,X8, but only forX8 lying in
the ‘‘sufficiently small’’ neighborhood ofX. It is necessary,
in particular, thats(X,X8) would be defined uniquely. To
provide this, in Ref.@10#, for example,X andX8 are required
not to lie, respectively, near pointsx andy connected by a
null geodesic with a point conjugate tox beforey. To violate
this condition for the pointsX8 andgX8, it suffices to sepa-
rate the mouths of the wormhole widely enough and to
the space between them with the conventional matter@11,
Proposition 4.4.5.#.

Thus, we see that Eq.~4! must be regarded as an indepe
dent assumption. We can, however, neither use nor che

3I am grateful to Dr. G. Parfyonov, who explained this issue
me.
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in view of the aforementioned ambiguity. Indeed, in co
mon with the Hadamard function,^Tmn&M̃

ren
depends on which

vacuum we choose, while from the FKT standpoint all vac

u 0̃& satisfying Eq.~2! are equivalent. This equivalence is of
fundamental nature, the only physical object is the spacet

M , while M̃ andu 0̃& are some auxiliary matters, and as lo
as Eq.~2! holds we cannot apply any extraneous criteria
distinguishu 0̃&. So, we have no way of determining what
substitute in Eq.~4! as ^Tmn&M̃

ren
. In Sec. III B we shall see

that choosing differentu 0̃& ~even whenM̃ is a part of the
Minkowski plane!, one can, at will, makêTmn&M̃

ren
finite or

infinite at the horizon.
Let me note in passing that there is no point in using E

~4! unless we decide thatu 0̃& is among the very ‘‘good’’ and
convenient vacua. For an arbitraryu 0̃&, it is not a bit easier to
find ^T&M̃

ren
than ^T&M

ren.

C. Interpretation

Suppose that̂CuTuC&M
ren for someuC& does diverge at

the Cauchy horizon. Suppose further that it is^T&M
ren that

stands in the right-hand side of the Einstein equati
~though it is not obvious, see@12# for the literature and dis-
cussion!. Does this really mean that owing to the quantu
effects the time machineM cannot be created? I think tha
the answer is negative. It well may be that^FuTuF&M

ren does
not diverge for some other stateuF&. Roughly speaking, the
infinite positive energy of infinitely blueshifted particles ca
cancel out the infinite negative energy of vacuum~for ex-
amples see the end of Sec. III A!. So why must we restric
ourselves to the stateuC&? To prove that the Einstein equa
tions and QFT are incompatible inM ~by M here is meant
the manifold plus its causal structure!, one must have proven
that there is no self-consistent solutions onM at all, or, at
least, that there is no solutions satisfying some reason
physical conditions~say, stability!.

III. EXAMPLES

Let us find the expectation value of the stress-energy
sor in a few specific cases. We restrict our consideration
the two-dimensional cylinderM obtained from the plane
(t,x) by identifyingx x1H and endowed with the metri

ds25C~2dt21dx2!5Cdudv. ~5!

Here,u[x2t,v[x1t; C is a smooth function onM . To
find in the ordinary waŷ T& for the free real scalar field
f,

hf50, f~x1H,t!

5H f~x,t! for the nontwisted field,

2f~x,t! for the twisted field,
~6!

we must first of all specify the vacuum we consider. That
we must choose a linear space of solutions of Eq.~6! and an
‘‘orthonormal’’ basis @12# U5$un% in it. In particular, this
will define the Hadamard function:
-

a

e

.

s

le

n-
to

,

G~1!~X,X8!5(
n

un~X!un* ~X8!1 complex conjugate.

A possible choice ofU for the nontwisted field is

un5u4pnu21/2e2p iH21~nx2unut!, n561,62, . . . . ~7!

The vacuumu0&C defined by Eq.~7! ~the ‘‘conformal’’
vacuum! is especially attractive as the expressions for
Hadamard functionGC

(1) and for the stress-energy tens
^T&C are already obtained@see @12#, the neighborhood of
formula ~6.211!#:

^Tww&C
ren52

pe

12H2 1
1

24p FC,wwC
2
3

2

C,w
2

C2 G , w5u,v,

~8!

^Tuv&C
ren5^Tvu&C

ren52RC/~96p!.

Here, e521/2 or 1 depending on whetherf is twisted or
untwisted, andR is the curvature ofM . Though the absence
of a solution corresponding ton50 in Eq. ~7! may seem
artificial, it is, in fact, an inherent feature ofu0&C , which is to
describe the vacuum off as a massless limit of the ‘‘natu
ral’’ vacuum of a massive field@cf. @12#, below~4.220!#. One
could start, however, from another vacuum for the mass
field and arrive at another theory~see below! with the basis
U8:

U85Uøu0[~2H !21/2~Ft1 i /F !,

where the real constantF is a free parameter. Choosing di
ferentF, we obtain different vacuau0&F and Hadamard func-
tionsGF

(1) . It is easy to see that

GF
~1!5GC

~1!1
F2

H
tt81const. ~9!

A. Two-dimensional time machines
in the conformal vacuum state

As a first example, let us consider the Misner spacetim
which is the quadranta,0, b.0 of the Minkowski plane
ds25dadb with points identified by the rule
(a0,b0)  (Aa0,b0 /A). The coordinate transformation

u52W21lnuWau, v5W21ln~Wb!

delivers the isometry between Misner space andM with

C5e2Wt, H5W21lnA.

W here is an arbitrary parameter with dimension of ma
Substituting this in Eq.~8!, we immediately find

^Tww8&C
ren52W2S ep

12ln2A
1

1

48p D dww8.

The coordinatesu,v are handy in evaluatinĝT& ren, but there
is a coordinate singularity near the horizon. By contrast,
the coordinatesa,b the metric is ‘‘good’’ ~smooth, nonde-
generate! near the Cauchy horizonsa50 or b50. So, the
proper basis of an observer approaching one of them wi
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54 7325QUANTUM STABILITY OF THE TIME MACHINE
finite acceleration is related to the basisD[$]a ,]b% by a
finite Lorentz transformation. Thus, the quantities we are
examine are, in fact, the components of^T&C

ren in the basis
D, which are

^Taa&C
ren5Ta22, ^Tbb&C

ren5Tb22,

^Tab&C
ren5^Tba&C

ren50,

T[2S pe

12ln2A
1

1

48p D .
Now, let us use the above simple method to find^T& ren for

two more time machines~see also@13#!. Consider first the
cylinderS obtained from the strip

ds25W22j22~2dh21dj2!5j22dadb, ~10!

where a[(j2h)/W,b[(j1h)/W; hP(2`,`), j
P@1,A# by gluing points h5h0 ,j51 with the points
h5Ah0 ,j5A. This spacetime was considered in detail
@1# where it was called the ‘‘standard model.’’ A simp
investigation shows that the Cauchy horizonsa50 and
b50 divideS into three regions. Causality holds in the ‘‘in
ner’’ region S̃:a,b.0 and violates inI6(S̃). Introducing
new coordinatesu,v:

u[W21lna, v[W21lnb,

we find thatS̃, as well as the Misner space,4 is isometric to
M . This time

C5cosh22Wt, H5W21lnA,

which yield

^Taa&C
ren5Ta22, ^Tbb&C

ren5Tb22, ~11!

^Tab&C
ren5^Tba&C

ren5~1/12p!~a1b!22.

Consider lastly, the spacetime obtained by chang
j22→h22 in Eq. ~10!. This spacetime is similar to the stan
dard model, but has a somewhat more curious causal s
ture; there are two causally nonconnected regions sepa
by the time machine.̂T&C

ren differs from that in Eq.~11! by
the off-diagonal~bounded! terms

^Tab&C
ren5^Tba&C

ren52~1/12p!~a2b!22.

So, we see that in all three cases the vacuum energy
sity ~associated with the conformal vacuum state! does grow
infinitely as one approaches the Cauchy horizon. A few co
ments are necessary, however.

~1! The divergence in discussion is not at all someth
peculiar to the time machine: the passage to the li
A→` shows that precisely the same divergence@with

4In spite of their apparent similarity, these spaces are significa
distinct. For example, the Misner spacetime is geodesically inc
plete @11#, while the standard model is not@14#. This may be of
importance if one would like to separateX and X8 ‘‘widely
enough’’ ~see item 2 in Sec. II B!.
o

g

c-
ted

n-

-

g
it

T521/(48p)# takes place inM̃ though~in the case of Mis-
ner space! M̃ is merely a part of the Minkowski plane. Thi
suggests that for the time machine too, the divergence of
stress-energy tensor is a consequence not of its caus
topological structure but rather of the unfortunate choice
the quantum state.

~2! The twisted field atA5eA2p has the bounded̂T&C
ren

~cf. @6#!.
~3! Let us consider nonvacuum states now~see Sec. II C!.

The first example is a two-particle stateu1n12n& with the
particles corresponding to thenth and2nth modes of Eq.
~7!. ^12n1nuTu1n12n&

ren is readily found using@12#, Eq.
~2.44!:

^12n1nuTggu1n12n&
ren5T8g22,

^12n1nuTabu1n12n&
ren5^Tab&C

ren

with T8[T12pnH22, andg[a,b. Thus, we see that ther
are states with the bounded energy density of the untwis
field.

Yet another example is the equilibrium state at a nonz
temperatureut&. Expression~4.27! of @12# gives

^tuTwwut& ren5^Tww&C
ren1

p

2H2 (
m51

`

sinh22
pm

kBtH
.

So, for any H there exists such temperaturet that
^tuTggut& ren does not diverge at the horizon.

B. Another vacuum

The conformal vacuum is not suited for verifying or e
emplifying most of statements made in Sec. II, since
Hadamard function does not exist in this state. So, cons
now the new vacuumu0& f on the plane (t,x) defined by the
modes

up8[5
1

2Apv
eipx2 ivt, v>d,

1

2Ap
eipx~ f21cosvt2 iv21fsinvt!, v,d,

~12!

wherev[upu, d is an arbitrary positive constant:d,1, and
f is an arbitrary smooth, positive function:f (v>d)5Av.
The modes~12! are obtained from that defining the confo
mal vacuum on the plane by a Bogoliubov transformation
the low-frequency modes so as to avoid the infrared div
gence without affecting the ultraviolet behavior of^T&. The
asymptotic form ofG̃f

(1) does not depend onf :

; f G̃f
~1!521/~2p!lnuDuDvu

1smooth, bounded function. ~13!

If we retain only the first term, we obtain~in the flat case!

lim
X8→X

DaaG̃
~1!~X,gnX8!5 ln2~A!a22A2nn22.

ly
-
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7326 54S. V. KRASNIKOV
So, the last series in Eq.~4! diverges not only at the horizon
but everywhere onM ~cf. Sec. II B!.

^T& f can be found from Eq.~9! ~see@12#, Sec. 6.4!. For
anyC we have

^Tww& f
ren5

1

8p F2
W2

6
1E

0

d

~ f22v21 f 22v!dvG ,
^Tuv& f

ren5^Tuv&C
ren.

Having taken an appropriatef (v), one can makêTaa& f
ren

infinite or zero at the horizon, as we have stated in Sec. I
To illustrate some more statements from Sec. II, let

first findGS. To this end note that it has the form

GS5(
n
E

2`

`

h~p!einHpdp1c.c. ~14!

with

h[5
1

4pv
eipDx2 ivDt, v>1/2,

1

4p
eipDx~ f22cosvtcosvt81v22f 2sinvtsinvt8!,

v,1/2.

The function h(p) can be written as a sum
h5(h2h0)1h0, where

h0[
1

4pA11p2
eipDxe2 iA11p2Dt.

The first summand is a smooth function falling off at infini
like p22, and the second summand (h0) is a holomorphic
~but for p56 i ) function admitting the estimate

uh0u<Cuxu21/2eu~Dx2Dt!yu.

Hence@15#, we can apply the Poisson formula to Eq.~14!
and obtain

GS52pH21(
n

h~2pH21n!1c.c.

We see thus thatGS is indeed the Hadamard function, and
corresponds to the vacuumu0&F with F5 f (0).

Remark 1.This does not mean, however, thatGS will be
a Hadamard function of some reasonable state forany
tt
.
s

G̃(1). One can easily construct, for example, such a vacu
that G̃(1)(x,x8) will not be invariant under translation
x,x8°x1H,x81H andGS(x,x8), as a consequence, wi
not even be symmetric.

Remark 2.For allGf
(1) with the samef (0) the Hadamard

functionsGS are the same. This proves our statement fr
Sec. II A.

To find ^T&F , note that it differs from̂ T&C only by the
term arising from the second summand in Eq.~9! @cf. @12#,
Eqs.~4.20! and ~6.136!#:

D^Tww8&
ren5

F2

2H
~t,wt,w821/2hww8h

ldt,lt,d!.

That is

^Tww&F
ren5

F2

8H
2W2S ep

12ln2A
1

1

48p D ,
^Tuv&F

ren5^Tvu&F
ren5^Tuv&C

ren.

So, for all three time machines considered here, there exis
vacuum, such that the expectation value of the stress-en
tensor is bounded in the causal region.

IV. CONCLUSION

Thus, we have seen that one cannot obtain any infor
tion about the energy density near the Cauchy horizon
ploying the FKT approach. Of course, it may well be that t
vacuum fluctuations do make the time machine unstable,
nothing at present suggests this. All we have is a few sim
examples. In some of them the energy density diverges a
horizon and in some does not. So, the time machine perh
is stable and perhaps is not. This seems to be the most st
assertion we can make now.

Note added.A general approach different from FKT wa
developed recently in@16#. It was rigorously shown there
that if some postulate holds in the acausal region, then^T&
must have singularity on the Cauchy horizon provided it
compactly generated. The character of this singularity is
specified though. Our examples show that it may well be t
the energy behaves well up to the horizon. It is possible
suppose then that the singularity arises from the impro
calculation of the vacuum polarization in the acausal regi
In other words, it seems not unlikely that the results of@16#
suggest violation of the above-mentioned postulate ra
than the impossibility of time machine creation.
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