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Compact hyperbolic universe and singularities
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Recently many people have discussed the possibility that the universe is hyperbolic and was in an inflation-
ary phase at an early stage. Under these assumptions, it is shown that the universe cannot have compact
hyperbolic time slices. Though the universal covering space of the universe has a past Cauchy horizon and can
be extended analytically beyond it, the extended region has densely many points which correspond to singu-
larities of the compact universe. The result is essentially attributed to the ergodicity of the geodesic flow on a
compact negatively curved manifold. The relationship withthe strong cosmic censorship conjecturealso is
discussed.@S0556-2821~96!01524-X#
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I. INTRODUCTION

Recent observations of the density parameterV0'0.1 @1#
suggest that the spatial curvature of the universe is nega
In this paper we call such a universe with a negative cur
ture a hyperbolic universe rather than a conventional o
universe because anopenuniverse is meant to be noncom
pact while we shall consider acompactnegative curvature
space.

On the other hand, it is believed that inflation occurred
an early stage of the universe because the inflationary
nario is, so far, the only viable theory which can solve su
cosmological problems as the flatness, horizon, and mo
pole problems@2# without appealing to fine tuning. It is
therefore, of great interest to investigate hyperbolic inflatio
ary universe scenarios.

During the inflation epoch, the universe is well appro
mated by a de Sitter space-time. Then, we notice that a
perbolic universe has no curvature singularity as long as
in the inflationary phase, even though its spatial volume
proaches zero. The initial singularity is just a coordinate s
gularity. According to the scenarios of the birth of spac
time by quantum tunneling from ‘‘nothing’’@3#, we consider
that the~Lorentzian! space-time is nucleated in the de Sitt
phase at its minimal radius in the whole chart. A hyperbo
inflationary universe is expected to be realized by tak
hyperbolic time slices on a portion of the de Sitter spa
time. In this context, any space-time which contains a hyp
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bolic inflationary universe has a past~Cauchy! horizon1 and
continues further to the past because a hyperbolic chart
not cover the whole de Sitter space-time. This also is app
to the case of the one-bubble inflationary model@5#.

Observations normally give us only local informatio
such as the local spatial curvature of our universe, beca
local information is, in general, independent of global pro
erties such as the topology of the universe. Some obse
tional effects are, however, expected, if the periodicities d
to the nontrivial topology are shorter than the horizon sca
Such possibilities have been studied in theoretical and ob
vational cosmologies@6#.

Compactness of the universe seems to be an accep
and appealing notion, especially in the context of the cano
cal treatments of the universe~or quantum gravity!. Com-
pactness provides a finite value of the action integral a
gives the natural boundary conditions for the matter a
gravitational fields in the universe.

The notion of compactness of a given universe depe
on how to take its spatial sections. We concentrate our in
ests on the case that hyperbolic hypersurfaces are com
In particular, an intriguing question arises in the case tha
compact hyperbolic universe is in an inflationary phase.
naturally ask whether or not such a universe has the
horizon and continues further to the past as the noncom
case. If it does, we expect that a topology change takes p
and closed timelike curves appear, which is suggested by
work on the Lorentzian topology change of~211!-

1Otherwise such a universe must be born directly in the hyp
bolic inflationary phase by some mechanism. Recent work by C
nish et al. @4# is related to such a scenario, though the mechan
itself is not discussed in detail.
7303 © 1996 The American Physical Society
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dimensional compact black hole geometry by M. Siino@7#. If
it does not, we may find restriction to possible topologies
the universe.

In this paper, we will study the spatially compact hype
bolic inflationary universe. We will find that the latter
indeed the case. Namely, we will show that a compact
perbolic universe cannot be extended beyond the past h
zon. Since a hyperbolic inflationary universe has a past
rizon as is mentioned above, our result means that if
universe is hyperbolic and was in an inflationary phase in
early stage, the universe is not spatially compact.

In the next section, we construct models of a comp
hyperbolic inflationary universe. In Sec. III, we examine t
extendibility of the universe. Section IV is for conclusion
and discussions.

II. A COMPACT HYPERBOLIC INFLATIONARY
UNIVERSE

A. Construction of a compact universe

In this section, we treat homogeneous isotropic model
a hyperbolic universe in an inflationary phase. Such a mo
is described by a hyperbolic chart on four-dimensional
Sitter space-time. In the hyperbolic chart, homogeneous
tropic spacelike hypersurface is a manifoldH3 of constant
negative curvature with isometry group SO~3,1!. This uni-
verse has a past Cauchy horizon, and in the extended re
a homogeneous hypersurface becomes three-dimension
Sitter hypersurface dS3, which is an orbit of SO~3,1!.

We construct the compact universe model by identify
points of the space-time. A compact hyperbolic hypersurf
is given as the quotient space ofH3 by the discrete subgrou
G of its isometry group SO~3,1!. One of the simplest three
dimensional compact hyperbolic manifolds is known as
Seifert-Weber manifold@16#, whose construction is show
explicitly in Appendix A.

In general, the action of a groupG on a manifoldM must
be properly discontinuous so that the quotient spaceM /G be
a Hausdorff manifold. We call an action ofG onM properly
discontinuousif it satisfies the following conditions@8,9#: ~1!
each point qPM has a neighborhoodU such that
g(U)ùU5B for eachgPG which is not the identity ele-
ment, and~2! if q,rPM are such that there is nogPG with
g(q)5r , then there are neighborhoodsU andU8 of q and
r , respectively, such that there is noḡPG with ḡ(U)ùU8
ÞB. Condition~1! implies that the quotientM /G is a mani-
fold, and condition~2! implies that it is Hausdorff.

It is worth noting that, for a Riemannian manifol
(M ,g), everydiscontinuousgroupG of Isom(M ,g) is prop-
erly discontinuous@9#. Here the action ofG on a Riemannian
manifold is called discontinuous if for everypPM and ev-
ery sequence$g i% of elements ofG, where allg i are mutu-
ally distinct, the sequence$g i(p)% does not converge to
point inM @9#. We can obtain the compact hyperbolic infl
tionary universe because the homogeneous hypersurfacH3

is a Riemannian manifold.

B. The Misner universe

As the simplest example of a compact universe and
extension, let us see the construction of the Misner unive
which is given as a quotient manifold in~111! dimensions.
f
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The Misner universe (M ,gM) is a space-time diffeomor
phic toS13R. Its metric is given by

gM52t21dt21tdc2, tPR,0<c<2p. ~2.1!

The universal covering manifold is the region (I ,h̃) in Fig.
1, which is a part of two-dimensional Minkowski space-tim
(M̃ ,h̃). The isometry group of (M̃ ,h̃) is the Lorentz group
SO~1,1!, whose orbits are the hyperbolas (X0)2

2(X1)25:s5constant. The covering transformation grou
G of the Misner universe is a discrete subgroup of the L
entz group consisting ofgm, wherem is an integer andg
maps (X0,X1)PM̃ to

S X08

X18D 5S coshp sinhp

sinhp coshp D S X0

X1D . ~2.2!

This subgroupG acts on the region (I ,h̃) properly discon-
tinuously. However, if we extend maximally the Misner un
verse, for any pointr on the null lineX01X150, the se-
quence$gm(r )% has an accumulation pointo:5(0,0) on
(M̃ ,h̃). Hence the condition~1! of properly discontinuous is
not satisfied and the quotientM̃ /G fails to be a manifold.
We, therefore, must remove the accumulation pointo from
the whole Minkowski space-time (M̃ ,h̃) so that we obtain
the maximally extended Misner universe as a manif
(M̃ \$o%)/G, which is illustrated in Fig. 1. Since the action o
G on M̃ \$o% does not satisfy the condition~2!, (M̃ \$o%)/G is
a non-Hausdorff manifold.

Because of removing the pointo from (M̃ ,h̃), all causal
curves towardo are incomplete. We define a singularity a
an incomplete causal curve according to Hawking and E
@8#. Thus, the maximally extended Misner universe has
singularity. This indicates that the existence of the accum
lation points of action ofG causes singularities of the quo
tient space-time. In this paper, we call an accumulation po
a topological singularity. The null boundaries of the origina

FIG. 1. The maximally extended Misner universe is illustrate
The coordinate origino is an accumulation point of a sequenc
$gm(r )%. The regionI is the original Misner universe region. Unde
the action ofG, pointss on thes-constant surface are equivalen
similar for points r , points q, and pointst, respectively. In the
extended regionsII , III , closed timelike curves appear.
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54 7305COMPACT HYPERBOLIC UNIVERSE AND SINGULARITIES
region I and the extended regionsII , III are compact
Cauchy horizons, which are generated by closed null geo
sics.

III. ANOMALOUS OCCURRENCE OF SINGULARITIES

In the case of the compact hyperbolic inflationary u
verse model, the discrete subgroupG of SO~3,1! does not act
on hypersurface dS3 in the extended region properly disco
tinuously. Moreover, in contrast with the Misner univers
we will observe that topological singularities appear dens
on the hypersurfaces dS3 and the extended region is n
longer a space-time manifold. Our main result is the follo
ing proposition.

Proposition.Suppose there exists an analytic extension
the universal cover of (n11)-dimensional compact hyper
bolic universe, wheren>2. Then, for every neighborhoo
Oc of an arbitrary pointc in the dSn, there existgPG and
point sPdSn such that an accumulation pointc8 of the infi-
nite sequence$gm(s)% is contained inOc .

Under the assumption of the analyticity, we naturally o
serve that there exists a neighborhood which contain
Cauchy horizon in the hyperbolic inflationary universe a
that in a Milne universe which are analytically diffeomorph
to each other. Here the Milne universe is the Minkows
space-timeEn,1 with the hyperbolic chart. Thus it is conve
nient to examine the Milne universe instead of the hyperb
inflationary universe.

Since the argument is the same for (n11)-dimensional
universe withn>2, we first present our argument in th
n52 case and comment on thenÞ3 cases later.

Let us investigate what the action ofG is like in the ex-
tended region of the (211)-dimensional compact hyperboli
inflationary universe. As mentioned above, this is done in
three-dimensional Milne universe. LetE2,1 be a three-
dimensional Minkowski space-time with the metric

h52~dX0!21~dX1!21~dX2!2. ~3.1!

In the model the hyperbolic hypersurface is a two-hyperbo
spaceH2, which is embedded inE2,1 as

2~X0!21~X1!21~X2!252 l 2, ~3.2!

by embeddingf :H2→E2,1, where l is the curvature radius
The induced metric is given bygH :5 f *h and whose isom-
etry group is SO~2,1!.

In the extended region of the Milne universe the orbit
SO~2,1! is dS2, which is a surface

2~X0!21~X1!21~X2!25 l 2, ~3.3!

in E2,1. Each element of the subgroupG must contain one of
the boosts because otherwise the element consisted of
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space-rotations would have fixed points.2 We consider the
action of the elementg0PG on dS2, whereg0 is represented
in the coordinate system (X0,X1,X2) by the matrix

g0~z!:5S coshz 0 sinhz

0 1 0

sinhz 0 coshz
D , z5const. ~3.4!

g0 has three eigenvectors:

a0 :5S 1

0

21
D , b0 :5S 10

1
D , c0 :5 lS 01

0
D . ~3.5!

The two eigenvectorsa0 andb0 are lying on the light cone,

2~X0!21~X1!21~X2!250, ~3.6!

and the pointc0 is in the dS2 described by Eq.~3.3!. Here-
after we use the same symbol to denote eigenvectors an
endpoints of the arrows of the eigenvectors. As in the ma
mally extended Misner universe, we observe that any po
s on the null lines in the dS2 through the pointc0 converges
to c0 by the action ofg0

m as illustrated in Fig. 2. That is, the
point c0 is the accumulation point of the infinite sequen
$g0

m(s)%. For any g(Þg0)PG, g(c0) is one of the
eigenvectors ofg+g0+g21PG and so the pointg(c0) in
the dS2 is also the accumulation point of the sequen
$(g+g0+g21)m„g(s)…%. Thus, there exist many, countably in
finite, accumulation points of the sequences$gm(s)% in the
dS2, if we consider allgPG.

2This implies thatG comprises only hyperbolic elements. In th
case thatG contains parabolic elements, the quotient spaceH2/G
has a finite area while it is noncompact with cusps. Such aG is
called geometrically finite@10#. It is known that for the geometri-
cally finite groupG, the geodesic flow on the unit tangent bundle
H2/G is ergodic@11#. This fact ensures our arguments below ho
ing for the case thatG contains parabolic elements. Hereafter, f
simplicity, we only discuss the case thatG does not contain para
bolic elements andHn/G is compact.

FIG. 2. Orbits ofg0
m(p),pPdS2 are schematically depicted.
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Now we demonstrate that the accumulation points, t
are topological singularities, occur densely in dS2.

First, for every pointc in the dS2, there exists an elemen
gcPSO(2,1) such thatc is one of the eigenvectors ofgc . If
gcPG, there existssPdS2 such thatc is the accumulation
point of $gc

m(s)%.
In the case thatgc¹G, the other two eigenvectors,a and

b, of gc are lying on the light cone@Eq. ~3.6!#. These two
vectors determine uniquely a geodesic in theH2, as depicted
in Fig. 3. In fact, these two eigenvectors span a planeP and
the intersectionPùH2 is a geodesic curvel in theH2. The
geodesicl is projected to a straight linelK :5PùDK on
the Klein Disk DK :5$(X0,X1,X2)uX051,(X1)21(X2)2

,1%. The projectionp:E2,1{(X0,X1,X2)°(k1 ,k2)PDK is
defined as

ki :5
Xi

X0 ~ i51,2!. ~3.7!

The induced metric takes the form

gK5
1

~12k2!2
@~12k2

2!dk1
21~12k1

2!dk2
2

12k1k2dk1dk2#, ~3.8!

wherek:5Ak121k2
2. We can identify theH2 andDK by the

diffeomorphismp+ f . This projectionp maps a geodesic
curve of theH2, which is a hyperbola in theE2,1 to a straight
line in theE2,1. We also can identify the action ofG on the
H2 and the action ofGK on DK , where

gK :5p+g+p21, GK :5$gKugPG%. ~3.9!

We can see that the straight line fromb to a on
D̄K :5DKø]DK is the geodesic lK , where ]DK :
5$(X0,X1,X2)uX051,(X1)21(X2)251%.

As long as considering the case thatgcK¹GK , the geo-
desiclK is not closed onDK /GK .

It can be observed thatJ:5]DK3]DK\D]DK
has one-to-

one correspondence with the set of all geodesics onDK ,
whereD]DK

:5$(p,p)upP]DK%. Namely, a pair (a,b)PJ

can be identified with the geodesic onDK which has end-
pointsa,bP]DK .

FIG. 3. Projectionp:E2,1→DK . TheH
2 andDK are identified

by p+ f .
t The eigenvectorsa, b, andc are related to each other a
follows. Choosing an appropriate coordinate system an
constanta, the eigenvectorc can be represented as

c5 lS sinha

cosha

0
D . ~3.10!

Then, the other two are determined uniquely as

a5S coshasinha

21
D , b5S coshasinha

1
D , ~3.11!

except for the freedoms of the norms. Accordingly, for a
point cPdS2, a geodesicl on theH2 ~or a point inJ) is
determined uniquely.3

Second, choose a Riemannian metrice:5(dX0)2

1(dX1)21(dX2)2 on E2,1. Take an open ball,Bc(d):
5$xPE2,1uix2cie,d%, of radiusd with respect toe and
define a neighborhood ofc in the dS2 as Oc(d,dS

2):
5Bc(d)ùdS2. Similarly, define neighborhoods ofa andb,
respectively, in the]DK asOa(d,]DK):5Ba(d)ù]DK and
Ob(d,]DK):5Bb(d)ù]DK corresponding toOc(d,dS

2)
~see Fig. 4!. Then, for any pointc8POc(d,dS

2), there exist
a8POa(d,]DK), b8POb(d,]DK), and gc8PSO(2,1) such
thata8, b8, andc8 are the eigenvectors ofgc8.

Now, what we want to show is reduced to the followin
lemma;

Lemma.For any (a,b)PJ and d.0, there exista8
POa(d,]DK), b8POb(d,]DK), gKPGK , andpPDK such
that

lim
n→`

gK
m~p!5a8POa~d,]DK!,

lim
n→2`

gK
m~p!5b8POb~d,]DK!.

3If the point c is constrained on the part$(X0,X1,X2)u X0.0%
ø $(X0,X1,X2)uX050, (X1)21(X2)251, X1.0% ø $(0,0,1)% of
the dS2, the pointc has one-to-one correspondence with a point
J.

FIG. 4. Neighborhoods of pointsa,bP]DK , andcPdS2.
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54 7307COMPACT HYPERBOLIC UNIVERSE AND SINGULARITIES
Proof. We show that on the compact hyperbolic manifo
DK /GK there exists a closed curve whose lift has endpo
a8POa(d,]DK), b8POb(d,]DK) in ]DK . We can make
such a closed curve by using a nonclosed geod
lK(v):5PùDK affinely parametrized byv and ergodicity
of geodesic flow on a compact manifold with negative c
vature~see Appendix B!.

Let p be a point onlK atv50 and take an arbitrary sma
open neighborhoodOp

K(e,DK /GK):5$xPDK /GKudK(x,p)
,e% of p, where dK is the distance naturally defined b
gK . From the ergodicity of geodesiclK , for any large
N.0, there existv1.N, v2,2N such thatq:5lK(v1)
POp

K andr :5lK(v2)POp
K and the tangent vectors oflK at

these pointsr , p, q are sufficiently parallel to each other a
depicted in Fig. 5. Connecting the pointsr andq by a suit-
able line segment m, we obtain a closed curve
(r→p→q→r ) on theDK /GK . Corresponding to this close
curve, there exists an elementgKPGK .

Let us fix a componentÕp
K of the lift of Op

K onDK , which
is diffeomorphic toOp

K . Accordingly, p̃, q̃, r̃ , lKùÕp
K , and

m̃ denote the corresponding lifts. Any component of the
of Op

K is given bygK
m(Õp

K). These are illustrated in Fig. 6
For anyN.0 there existm1 ,m2.N, v1.0, andv2,0 such
that lK(v1)PgK

m1(Õp
K) andlK(v2)PgK

m2(Õp
K).

Let gE denote the Euclidean metric onD̄K induced bye.
Then the radius ofgK

m(Õp
K) measured bygE becomes smalle

FIG. 5. A compact hyperbolic manifoldDK /GK with genus 2 is
illustrated.lK is a nonclosed geodesic andm is a line segment
which connects two pointsq andr on thelK . Then, one can see
closed curve (r→p→q→r ) composed of the line segmen
(r→p→q) of the geodesiclK and the line segmentm (q→r ).

FIG. 6. A lift Õp
K and its imagesgK

m(Õp
K) on D̃K .
ts

ic

-

t

and smaller as m→6`. We, therefore, have
limm→`gK

m(Õp
K),Oa(d,]DK) and limm→2`gK

m(Õp
K)

,Ob(d,]DK). As a result, we obtain

a8:5 lim
m→`

gK
m~p!POa~d,]DK!,

b8:5 lim
m→2`

gK
m~p!POb~d,]DK!.

h
Proof of the Proposition.From the Lemma we have im

mediately the two eigenvectorsa8 andb8 of gPG. Then we
obtain the third eigenvectorc8 of g so that the pointc8,
which is the accumulation point of$gm(s)%, is contained in
Oc(d,dS

2). This is the proof ofn52 case.
In (311)-dimensional case, the discrete subgroup

SO~3,1!>Isom(H3) has four eigenvectors. Two of them a
null vectors corresponding toa and b in the (211) case.
The other two corresponding toc are spacelike and direct t
points in the hypersurface dS3. In addition, we also can ob
serve the ergodicity of geodesic flows on three compact
perbolic Riemannian manifoldH3/G @15# ~see Appendix B!.
We obtain immediately the same result as t
(211)-dimensional case; topological singularities occ
densely in the dS3.

The assertion is proven in a similar manner in the high
dimensional cases. h

IV. CONCLUSIONS AND DISCUSSION

We have demonstrated that if a space-time with spati
compact hyperbolic hypersurfaces is extended analytic
by extending both the universal cover and the action
G, Isom(M ) thereof, the topological singularities appe
densely in the extended region and it is no longer a manifo
We conclude that the spatially compact hyperbolic inflatio
ary universe cannot be extended beyond the Cauchy hor
of its universal cover. It follows that the universe cannot
compact, if the universe is hyperbolic and was in an infl
tionary phase. From observations, it is difficult to determ
global properties of the universe. It is full of interest that o
result answers theoretically to some global properties,
example, to the simple, but fascinating question whether
universe is spreading infinitely or compact.

Our result that the universe cannot be extended ana
cally across the Cauchy horizon obviously holds in the c
that the spatial sections areR3H2/G, which is noncompact,
or its quotient manifoldS13H2/G. It is remarkable that this
is true even if the metric isinhomogeneousalong theR ~or
S1) factor. Consequently, the universe with such a topolo
does not have a Cauchy horizon.

As the scenario for a birth of hyperbolic universe, on
bubble inflationary universe scenario is an appealing o
However, it cannot be a universal covering manifold of
compact hyperbolic inflationary universe, because suc
model has a past Cauchy horizon inside the bubble. Th
one-bubble inflationary universe scenario is incompati
with a compact hyperbolic universe model. In other words
the one-bubble inflationary scenario is verified by obser
tions, our hyperbolic Friedmann-Robertson-Walker~FRW!
universe is not compact. In general, any scenario which
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7308 54ISHIBASHI, KOIKE, SIINO, AND KOJIMA
alizes the hyperbolic inflationary universe by inducing a h
perbolic chart on a portion of de Sitter space-time ha
Cauchy horizon for the hyperbolic hypersurfaces and, he
it cannot be a universal cover of a compact hyperbolic in
tionary universe.

As we show explicitly, our result holds for the~211!-
dimensional case and anti-de Sitter space-time, com
three-dimensional black hole geometry does not rea
Lorentzian topology change@7#.

One may say that this anomaly is due to the high degr
of space-time symmetry. However we also can discuss
case that there is no symmetry. The result is essentially
tributed to the ergodicity of geodesic flow on a compa
manifold with negative curvature@15#. When we consider an
inhomogeneous universe as a hyperbolic inflationary FR
universe model with perturbations on it, we can take a
persurface whose sectional curvature is everywhere neg
by taking a time-slice of sufficiently small scale factor, ol
in Eq. ~3.2! and Eq.~3.3!, near the past Cauchy horizon o
the background universe. If inhomogeneity due to fluct
tions of matter fields is large enough, energy density of
matter fields dominates the universe and it is out of the c
text of inflationary universe. In such a case, an initial cur
ture singularity appears instead of the past Cauchy horiz
Thus, even in the case that the considering universe mod
inhomogeneous, we expect that if the Cauchy horizon ex
in its universal cover, there exists a neighborhood of
Cauchy horizon such that the hypersurfaces contained
are everywhere negatively curved. The Cauchy horizon
the universal cover is considered a limit surface of a
quence of negatively curved time-slices. This would g
restrictions on the possible shapes of the Cauchy horizo
the universal cover. Then if we observe that the neighb
hood of the Cauchy horizon in the universal cover is hom
morphic to the neighborhood of the Cauchy horizon in
Milne universe, as considered in the previous section, we
obtain the same result of the Proposition even in the in
mogeneous case. The rigorous study of the above discus
is future work.

Our result that a compact hyperbolic universe does
admit a Cauchy horizon is closely related tothe strong cos-
mic censorship conjecture, which states that physically rea
istic space-time is globally hyperbolic@12,13#. The case of
spatially compact, locally homogeneous vacuum models
been investigated extensively by P. T. Chrus´ciel and A. D.
Rendall@14#. Our result is not restricted to the vacuum ca
and our approach would be useful to resolve the issue in
case of inhomogeneous universe.
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APPENDIX A: CONSTRUCTION OF A THREE-COMPACT
HYPERBOLIC MANIFOLD

The three-dimensional hyperbolic spaceH3 can be em-
bedded in a four-dimensional Minkowski space-timeE3,1 as
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2~X0!21~X1!21~X2!21~X3!2521,

where the curvature radius is normalized to unity. Taking
chart,

X05coshj,

X15sinhjcosu,

X25sinhjsinucosc,

X35sinhjsinusinc, ~A1!

the induced metric takes the form

gH5dj21sinh2j~du21sin2udc2!. ~A2!

Isom(H3) is SO~3,1!.
The simply connected Riemannian manifoldH3 can be

compactified by quotienting by the subgroupG of its isom-
etry SO~3,1!. It is known thatH3 is tessellated by hyperbolic
dodecahedra. This means that the fundamental region
H3/G is a hyperbolic dodecahedron@16#. Then the concrete
representations of the generators ofG are given as the fol-
lowing six matrices $Ti51;6% under the coordinates
(X0,X1,X2,X3) of E3,1:

FIG. 7. Gray parts of surfaces of dodecahedra are dihe
pieces with dihedral angle 2p/5 . The front surfaces of a hyperboli
dodecahedron are marked with the boldfaced lettersA–L . The sur-
faces marked with the letters A–L are behind. The dark gray tri
gular parts of the front surfaces are identified to the light g
triangular parts of the opposite side. Five dihedral pieces meet
sistently at the identified edge.
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T1 :5B023~a!+R3S 35p D , ~A3!

T2 :5R2~2c!+T1+R2~22c!, ~A4!

T3 :5R3S 25p D +T2+R3S 2
2

5
p D , ~A5!

T4 :5R3S 45p D +T2+R3S 2
4

5
p D , ~A6!

T5 :5R3S 2
4

5
p D +T2+R3S 45p D , ~A7!

T6 :5R3S 2
2

5
p D +T2+R3S 25p D , ~A8!

where

B023~a!:5S cosha 0 0 sinha

0 1 0 0

0 0 1 0

sinha 0 0 cosha
D , ~A9!

R2~2c!:5S 1 0 0 0

0 cos2c 0 sin2c

0 0 1 0

0 2sin2c 0 cos2c
D , ~A10!

R3~g!:5S 1 0 0 0

0 cosg 2sing 0

0 sing cosg 0

0 0 0 1
D , ~A11!

tanh
a

2
:5

A40A5275

5
, tan2c:52. ~A12!

The compact hypersurfacesH3/G are constructed by the
identifications;

Xa ↔
identify

X8b5~Ti !
a
bX

b. ~A13!

The value of the boost anglea is determined such that th
H3/G is a regular compact manifold. Each of theTi trans-
forms each surface of a dodecahedron to an opposite
after rotating by 3p/5. The rotations are necessary so th
five dodecahedra with dihedral angle 2p/5 meet consistently
at the identified edge and add up to 2p as depicted in Fig. 7

APPENDIX B: ERGODIC THEORY

A triplet (M ,m,f t) is calledan abstract dynamical sys
tem, where (M ,m) is a measure space andf t :M→M is a
one-parameter group of transformations which preserve m
surem.
ide
t

a-

Let f be a function onM . The time-average f* (x) of f at
xPM is defined as

f * ~x!:5 lim
T→1`

1

TE0
T

f „f t~x!…dt,

which exists for almost everyx @15#. The space-average fīs
defined as

f̄ :5
1

m~M !
E
M
f ~x!dm.

A dynamical system (M ,m,f t) is ergodic if almost ev-
erywheref * (x)5 f̄ , for any f which is integrable with re-
spect tom @i.e., fPL1(M ,m)#.

Let us derive a geometrical property implied by ergod
ity. Let (M ,m,f t) be an ergodic abstract dynamical syste
on a compact, connected Riemannian manifoldM . Let A be
an open subset ofM . Define a functionf A as

f A~x!:5H 1, xPA,

0, x¹A.

Then, there exists a time-average

f A* ~x!5 lim
T→`

I A~T!

T
~B1!

for almost everyx, whereI A(T) is a total length oft of the
intersections of$f t(x)u0<t<T% andA. The space-averag
is given by

f̄ A5
m~A!

m~M !
. ~B2!

The ergodicity impliesf A* (x)5 f̄ A for anyA and almost ev-
ery x. From these observations, we have the followi
lemma.

Lemma.Let (M ,m,f t) be an ergodic dynamical system
For anyT0.0, and for almost everyx and any open neigh
borhoodA of x, there existT.T0 such thatfT(x)PA.

Proof. Suppose there does not existT.T0 such that
fT(x)PA, for almost everyx. It follows from Eq.~B1! that
f A* (x)50 for almost everyx. On the other hand, Eq.~B2!

implies that f̄ A.0. Thus we havef A*Þ f̄ A for almost every
x, which contradicts the ergodicity. h

Let us consider a geodesic flow on a Riemannian ma
fold. Let (M ,g) be a compact, connected Riemannian ma
fold, andT1M be its unit tangent bundle. There is a natu
Riemannian metricĝ on T1M induced byg and a natural
measurem onT1M induced byĝ. Consider a geodesiclx on
M parametrized by lengtht and, which determined by
x5(p,v)PT1M by the conditionlx(0)5pPM , l̇x(0)5v
PT1pM . Eachlx has a unique lift onT1M . Considering all
geodesics we can define ageodesic flowft on T1M by
ft(x):5„lx(t),l̇x(t)….

We essentially used the following theorem in the proof
the main proposition of this paper.
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Theorem. ~Lobatchewsky-Hadamard-Anosov@15#! Let
M be a compact, connected Riemannian manifold with
negative curvature andT1M be a unit tangent bundle ofM ,
then the geodesic flow onT1M is ergodic. From the Theo
rem and the Lemma above, we have the following, which
actually used in our proof.
e

o-
n

,
6

a

s

Proposition.Let M be a compact, connected Riemanni
manifold with a negative curvature and letlx be a geodesic
defined above. For anyT0.0, and for almost every
x5(p,v) and any open neighborhoodO of p in M , there
existsT.T0 such thatlx(T)PO and the~unit! tangent vec-
tor l̇x(T) is arbitrarily close tol̇x(0).
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