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Compact hyperbolic universe and singularities
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Recently many people have discussed the possibility that the universe is hyperbolic and was in an inflation-
ary phase at an early stage. Under these assumptions, it is shown that the universe cannot have compact
hyperbolic time slices. Though the universal covering space of the universe has a past Cauchy horizon and can
be extended analytically beyond it, the extended region has densely many points which correspond to singu-
larities of the compact universe. The result is essentially attributed to the ergodicity of the geodesic flow on a
compact negatively curved manifold. The relationship wite strong cosmic censorship conjectaiso is
discussed[S0556-2820196)01524-X]

PACS numbe(s): 04.20.Dw, 98.80.Hw

I. INTRODUCTION bolic inflationary universe has a pa&auchy horizort and
continues further to the past because a hyperbolic chart can-
Recent observations of the density paramé&tge=0.1[1]  not cover the whole de Sitter space-time. This also is applied
suggest that the spatial curvature of the universe is negativéo the case of the one-bubble inflationary moids|
In this paper we call such a universe with a negative curva- Observations normally give us only local information
ture a hyperbolic universe rather than a conventional opefuch as the local spatial curvature of our universe, because
universe because aspenuniverse is meant to be noncom- local information is, in general, independent of global prop-
pact while we shall consider @mpactnegative curvature erties such as the topology of the universe. Some observa-
space. tional effects are, however, expected, if the periodicities due
On the other hand, it is believed that inflation occurred into the nontrivial topology are shorter than the horizon scale.
an ear|y stage of the universe because the inﬂationary sc@.UCh possibilities have been studied in theoretical and obser-
nario is, so far, the only viable theory which can solve suchvational cosmologief6].
cosmological problems as the flatness, horizon, and mono- Compactness of the universe seems to be an acceptable
pole problems[2] without appealing to fine tuning. It is, and appealing notion, especially in the context of the canoni-
therefore, of great interest to investigate hyperbolic inflationcal treatments of the univerger quantum gravity Com-
ary universe scenarios. pactness provides a finite value of the action integral and
During the inflation epoch, the universe is well approxi- 9ives the natural boundary conditions for the matter and
mated by a de Sitter space-time. Then, we notice that a hygravitational fields in the universe.
perbolic universe has no curvature singularity as long as itis The notion of compactness of a given universe depends
in the inflationary phase, even though its spatial volume apon how to take its spatial sections. We concentrate our inter-
proaches zero. The initial singularity is just a coordinate sin€sts on the case that hyperbolic hypersurfaces are compact.
gularity. According to the scenarios of the birth of space-In particular, an intriguing question arises in the case that a
time by quantum tunne”ng from “nothing[’g], we consider compact hyperbolic universe is in an inflationary phase. We
that the(Lorentzian space-time is nucleated in the de Sitter haturally ask whether or not such a universe has the past
phase at its minimal radius in the whole chart. A hyperbolichorizon and continues further to the past as the noncompact
inflationary universe is expected to be realized by takingcase. If it does, we expect that a topology change takes place
hyperbolic time slices on a portion of the de Sitter spaceand closed timelike curves appear, which is suggested by the
time. In this context, any space-time which contains a hyperwork on the Lorentzian topology change of2+1)-

*Electronic address: akihiro@th.phys.titech.ac.jp 10therwise such a universe must be born directly in the hyper-
"Electronic address: koike@rk.phys.keio.ac.jp bolic inflationary phase by some mechanism. Recent work by Cor-
*Electronic address: msiino@tap.scphys.kyoto-u.ac.jp nish et al. [4] is related to such a scenario, though the mechanism
SElectronic address: sadayosi@is.titech.ac.jp itself is not discussed in detail.
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dimensional compact black hole geometry by M. Siidp If 0
it does not, we may find restriction to possible topologies of
the universe.

In this paper, we will study the spatially compact hyper-
bolic inflationary universe. We will find that the latter is
indeed the case. Namely, we will show that a compact hy- . ceq timelike curves

/4

,

perbolic universe cannot be extended beyond the past hori- appear v f x’

zon. Since a hyperbolic inflationary universe has a past ho- m + | Closed timelike curves
rizon as is mentioned above, our result means that if the appear
universe is hyperbolic and was in an inflationary phase in the {

early stage, the universe is not spatially compact. ///j\\

In the next section, we construct models of a compact .oy horizon v Chronolosy horizon
hyperbolic inflationary universe. In Sec. lll, we examine the onology horizol
extendibility of the universe. Section IV is for conclusions

and discussions FIG. 1. The maximally extended Misner universe is illustrated.

The coordinate origiro is an accumulation point of a sequence

II. A COMPACT HYPERBOLIC INFLATIONARY {y"‘(r)}. The regiori is the original Misner universe region. Under
UNIVERSE the action ofl’, pointss on the o-constant surface are equivalent;
similar for pointsr, points g, and pointst, respectively. In the
A. Construction of a compact universe extended region#, 111, closed timelike curves appear.

In this section, we treat homogeneous isotropic models of
a hyperbolic universe in an inflationary phase. Such a model The Misner universeNl,gy) is a space-time diffeomor-
is described by a hyperbolic chart on four-dimensional dephic to S'xR. Its metric is given by
Sitter space-time. In the hyperbolic chart, homogeneous iso- g ’
tropic spacelike hypersurface is a manifétf of constant gu=—t "dt*+tdy, teR0sy=<2m. (2.7)
negative curvature with isometry group &X). This uni-
verse has a past Cauchy horizon, and in the extended regigthe universal covering manifold is the regioh) in Fig.
a homogeneous hypersurface becomes three-dimensional ge\yhich is a part of two-dimensional Minkowski space-time
Sitter hypersurface d which is an orbit of S@8,1). (M, 7). The isometry group ofNl, %) is the Lorentz group

X0’
xt'

We construct the compact universe model_ by identifyingso(lil), whose orbits are the hyperbolas X%2
points of the space-ime. A comgact hyperbolic hypersurface—(xl)zz:<r=constant. The covering transformation group
IS given as the quotient spaceldf by the dlsc_rete subgroup I' of the Misner universe is a discrete subgroup of the Lor-
F. of Its isometry group S@.1). One Of the s_|mp|est three- entz group consisting of™, wherem is an integer andy
dimensional compact hyperbolic manifolds is known as the 0 wiy

Seifert-Weber manifold16], whose construction is shown maps K°,X7) M to

explicitly in Appendix A.

In general, the action of a grodpon a manifoldM must coshr  sinh | [ yo
be properly discontinuous so that the quotient spd¢E be = .

a Hausdorff manifold. We call an action bfon M properly ( ( sinha COSh”) ( Xl) ) @32
discontinuousf it satisfies the following conditiong8,9]: (1)

each point geM has a neighborhoodU such that -

y(U)NU= for eachyeT which is not the identity ele- This subgroupl’ acts on the regionl(#) properly discon-
ment, and2) if g,r e M are such that there is npe I' with tinuously. However, if we extend maximally the Misner uni-
—y(q):r, then there are neighborhoodsandu’ of q and verse, for any pOint on the null IineXO+ Xl=0, the se-
r, respectively, such that there is ne=I' with (U)nU’  quence{y™(r)} has an accumulation poird:=(0,0) on

# (. Condition(1) implies that the quotier/T is a mani- (M, 7). Hence the conditiofil) of properly discontinuous is
fold, and condition(2) implies that it is Hausdorff. not satisfied and the quotieM/I" fails to be a manifold.

It is worth noting that, for a Riemannian manifold We, therefore, must remove the -accumulation pairftom
(M,g), everydiscontinuouggroupI” of Isom(M,g) is prop-  the whole Minkowski space-timeM,7) so that we obtain
erly discontinuou$9]. Here the action of on a Riemannian  the maximally extended Misner universe as a manifold
manifold is called discontinuous if for evegye M and ev-  (\\(o})/T", which is illustrated in Fig. 1. Since the action of
ery se_qgencéyi} of elements ofl", where ally; are mutu- o M\{o} does not satisfy the conditia®), (M\{o})/T" is
ally distinct, the sequencgy;(p)} does not converge to a a non-Hausdorff manifold.
point in M [9]. We can obtain the compact hyperbolic infla- f ina th iot from (M 7). all causal
tionary universe because the homogeneous hypersurface Because o removing the poio 715 ¢ )
is a Riemannian manifold. curves towardb are incomplete. We_ define a smgularlty as

an incomplete causal curve according to Hawking and Ellis
[8]. Thus, the maximally extended Misner universe has a
singularity. This indicates that the existence of the accumu-
As the simplest example of a compact universe and itdation points of action of” causes singularities of the quo-
extension, let us see the construction of the Misner universdient space-time. In this paper, we call an accumulation point
which is given as a quotient manifold {i+1) dimensions. a topological singularity The null boundaries of the original

B. The Misner universe
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region | and the extended regiond, Il are compact
Cauchy horizons, which are generated by closed null geode-
sics.

IIl. ANOMALOUS OCCURRENCE OF SINGULARITIES

In the case of the compact hyperbolic inflationary uni-
verse model, the discrete subgrdupf SO(3,1) does not act
on hypersurface d&in the extended region properly discon-
tinuously. Moreover, in contrast with the Misner universe,
we will observe that topological singularities appear densely
on the hypersurfaces dSand the extended region is no
longer a space-time manifold. Our main result is the follow-
ing proposition.

Proposition.Suppose there exists an analytic extension of
the universal cover ofr(+1)-dimensional compact hyper-
bolic universe, wheren=2. Then, for every neighborhood
O, of an arbitrary point in the dS, there existyeI" and
point se dS such that an accumulation poiat of the infi-
nite sequencé¢y™(s)} is contained inO,.

FIG. 2. Orbits ofy,™(p),p e dS are schematically depicted.

space-rotations would have fixed poiftsVe consider the
action of the elemeny, e I" on dS?, wherevy, is represented
in the coordinate systenX, X!, X?) by the matrix

Under the assumption of the analyticity, we naturally ob- cosit 0 sinky
serve that there exists a neighborhood which contains a
Cauchy horizon in the hyperbolic inflationary universe and vo(&):= 0 1 0 , {=const. (3.9
that in a Milne universe which are analytically diffeomorphic sinhg 0 cosi

to each other. Here the Milne universe is the Minkowski
space-timeE™! with the hyperbolic chart. Thus it is conve-
nient to examine the Milne universe instead of the hyperboli
inflationary universe. 1 1

Since the argument is the same far+1)-dimensional
universe withn=2, we first present our argument in the ag:=| O [, bo:=| 0], co:=I|1]. (359
n=2 case and comment on thet 3 cases later. -1 1

Let us investigate what the action bfis like in the ex-
tended region of the (2 1)-dimensional compact hyperbolic The two eigenvectoray andb, are lying on the light cone,
inflationary universe. As mentioned above, this is done in the
three-dimensional Milne universe. LeE>! be a three- — (X924 (XhZ+(X?)?=0, (3.6
dimensional Minkowski space-time with the metric

Yo has three eigenvectors:

and the point, is in the d$ described by Eq(3.3). Here-
after we use the same symbol to denote eigenvectors and the
7= —(dX%)2+ (dX) 2+ (dX?)2. (3.2 endpoints of the arrows of the eigenvectors. As in the maxi-
mally extended Misner universe, we observe that any point
s on the null lines in the d3through the point, converges
In the model the hyperbolic hypersurface is a two-hyperbolido Co by the action ofy,™ as illustrated in Fig. 2. That is, the
spaceH?, which is embedded iE?! as point ¢, is the accumulation point of the infinite sequence
{vo™(s)}. For any y(#yy) el', y(cy) is one of the
eigenvectors ofyey,ey tel and so the pointy(cg) in
— (X924 (XH2+(X?H2=—12, (3.2 the d$ is also the accumulation point of the sequence
{(yoyeey H)™(¥(s))}. Thus, there exist many, countably in-
finite, accumulation points of the sequende&'(s)} in the
by embeddingf:H?—E?*, wherel is the curvature radius. dS?, if we consider allyeT .
The induced metric is given by, : = f* » and whose isom-
etry group is S@,1).
In the extended region of the Milne universe the orbit of 2This implies thatl’ comprises only hyperbolic elements. In the
SO(2,1) is dS?, which is a surface case thafl’ contains parabolic elements, the quotient speéd’
has a finite area while it is noncompact with cusps. Sudh ia
called geometrically finit¢10]. It is known that for the geometri-
—(X92+ (XH)2+(X?)2=1?, (3.3) cally finite groupl’, the geodesic flow on the unit tangent bundle of
H2IT is ergodic[11]. This fact ensures our arguments below hold-
ing for the case thal' contains parabolic elements. Hereafter, for
in E2%, Each element of the subgrolipmust contain one of simplicity, we only discuss the case tHatdoes not contain para-
the boosts because otherwise the element consisted of orthylic elements anéi"/T" is compact.
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FIG. 3. Projectionm:E?'-Dy . TheH? andD are identified
by 7rof.

ISHIBASHI, KOIKE, SIINO, AND KOJIMA

FIG. 4. Neighborhoods of points,be 4Dy, andce d<.

Now we demonstrate that the accumulation points, that The eigenvectors, b, andc are related to each other as

are topological singularities, occur densely in’dS

follows. Choosing an appropriate coordinate system and a

First, for every point in the d<, there exists an element constant, the eigenvectoc can be represented as

v.€ SO(2,1) such that is one of the eigenvectors of; . If
y.eT, there existsse dS’ such thatc is the accumulation
point of {y'(s)}.

In the case thay. ¢ I', the other two eigenvectora,and
b, of y. are lying on the light con¢Eg. (3.6)]. These two
vectors determine uniquely a geodesic in Hte as depicted
in Fig. 3. In fact, these two eigenvectors span a plEnand
the intersectiodlNH? is a geodesic curvk in theH?. The
geodesich is projected to a straight linkg :=IINDg on
the Klein Disk D:={(X%X!X?)|X=1,(Xx})2+(X?)?
<1}. The projectionm:E?!s (X% X%, X?)—(k; ,k,) € Dg is
defined as

X
ki:= X0 (i=1,2. (3.7
The induced metric takes the form
1 2 2 2 2
ok =Tl (1 kDdk +(1-ki)dk,
+ 2k, kodk;dk,], (3.8

wherek: = Vk; 2+ k,2. We can identify tha42 andD by the
diffeomorphism mof. This projection7 maps a geodesic
curve of theH?, which is a hyperbola in thE?* to a straight
line in the E>%. We also can identify the action &f on the
H? and the action of'x on D, where

yei=moyen b, Tyi={y|yel}. 3.9
__We can see that the straight line frolm to a on
Dy:=DkUdDy is the geodesic A, where dDy:
={(X% X1, X?)[X0=1,(X")2+(X?)2=1}.

As long as considering the case thal ¢ ', the geo-
desicA is not closed oDy /T’ .

It can be observed th&: = dDy X aDK\A&DK has one-to-
one correspondence with the set of all geodesicDgn
where Ajp, : ={(p,p)|pe dDg}. Namely, a pair §,b) e &
can be identified with the geodesic @y which has end-
pointsa,be dD .

sinha
c=I| coshx (3.10
0
Then, the other two are determined uniquely as
coshy coshy
a=| sinha |, b=| sinha |, (3.11
-1 1

except for the freedoms of the norms. Accordingly, for any
point ce dS, a geodesia. on theH? (or a point inE) is
determined uniquely.

Second, choose a Riemannian metrg=(dX°%)?
+(dXY)2+(dX?)2 on E?L Take an open ballB(4):
={xe E?Y||x—c|¢< &}, of radius § with respect toe and
define a neighborhood o€ in the dS as O.(6,dS):
=B,(8)NdS. Similarly, define neighborhoods af andb,
respectively, in thelDy as0,(8,dDk):=B,(8)NdDk and
0,(8,dDg):=By(8)NdDy corresponding toO.(4,dS)
(see Fig. 4 Then, for any point’ € O,(8,dS), there exist
a’'€0,4(68,0Dg), b’ €0,(65,0Dg), and y., € SO(2,1) such
thata’, b’, andc’ are the eigenvectors of..

Now, what we want to show is reduced to the following
lemma;

Lemma.For any @,b)e=E and 6>0, there exista’
€0,(6,0Dy), b’ € 0y(6,0Dy), vkel'k, andpeDg such
that

lim y'(p)=a’ € O4(8,dD),

n—oo

lim Y2(p)=b’ € Oy(5,dDy).

n——

3If the pointc is constrained on the paf(X° X*,x?)| X°>0}
U {(X°,X1,X?3)|X%=0, (X1)2+(X?)?=1, X*>0} U {(0,0,1)} of
the d<, the pointc has one-to-one correspondence with a point in

=
—_—
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: Nonclosed geodesic x

: Aline w

r—= p — g —r :Closed curve

FIG. 5. A compact hyperbolic manifolD /T"x with genus 2 is
illustrated. A\ is a nonclosed geodesic and is a line segment

which connects two pointg andr on the\y . Then, one can see a
closed curve (—p—q—r) composed of the line segment

(r—p—q) of the geodesia y and the line segmeni (g—r).

Proof. We show that on the compact hyperbolic manifold
Dy /T k there exists a closed curve whose lift has endpoint

a’' €0,(8,0Dk), b’ € 0y(8,dDk) in dDx. We can make

such a closed curve by using a nonclosed geodesig

Mk(v):=IINDg affinely parametrized by and ergodicity

of geodesic flow on a compact manifold with negative cur-

vature(see Appendix B

Let p be a point o\ atv =0 and take an arbitrary small

open neighborhoodf(e,Dy /T):={x e Dy /T'|dk(x,p)
<e} of p, wheredy
gk - From the ergodicity of geodesiky, for any large
N>0, there existv;>N, v,<—N such thatq:=x(v;)
e Oy andr:=\g(v,) € Oy and the tangent vectors af at

these points, p, q are sufficiently parallel to each other as

depicted in Fig. 5. Connecting the pointandq by a suit-
able line segment w,

7307
and sma]ler as m—=*wo, We, therefore, ~have
limp . 7i(0p)COa(8,0Dx)  and  limy,_ .. 7(Op)

COy(6,0Dg). As a result, we obtain

a’:= lim y(p) € 04(8,0Dy),
m— o
b’:= lim yg(p)e Oy(8,dDk).

m——

O

Proof of the PropositionFrom the Lemma we have im-
mediately the two eigenvectoes andb’ of yeI'. Then we
obtain the third eigenvector’ of vy so that the point’,
which is the accumulation point dfy™(s)}, is contained in
0.(6,dS). This is the proof oh=2 case.

In (3+1)-dimensional case, the discrete subgroup of
SQO(3,1)=Isom(H?) has four eigenvectors. Two of them are
null vectors corresponding ta andb in the (2+1) case.

TThe other two corresponding toare spacelike and direct to

oints in the hypersurface dSIn addition, we also can ob-
erve the ergodicity of geodesic flows on three compact hy-
perbolic Riemannian manifold®/T" [15] (see Appendix B

We obtain immediately the same result as the
(2+1)-dimensional case; topological singularities occur
densely in the d&

The assertion is proven in a similar manner in the higher-

is the distance naturally defined by dimensional cases 0

IV. CONCLUSIONS AND DISCUSSION

We have demonstrated that if a space-time with spatially
compact hyperbolic hypersurfaces is extended analytically

we obtain a closed curve by extending both the universal cover and the action of

(r—p—qg—r) on theDy /T'k . Corresponding to this closed I'C Isom(M) thereof, the topological singularities appear

curve, there exists an elemept e I'k .
Letus fix a componerﬁ)g of the lift of Og onDy, which
is diffeomorphic toO}; . Accordingly,p, G, T, A\¢N O}, and

u denote the corresponding lifts. Any component of the lif
of Of is given by y{(OF). These are illustrated in Fig. 6.

For anyN>0 there exism;,m;>N, v;>0, andv,<0 such
that A (v4) € ¥, (Op) and A (v,) € v 2(Op)-
Let g denote the Euclidean metric @y induced bye.

densely in the extended region and it is no longer a manifold.
We conclude that the spatially compact hyperbolic inflation-
ary universe cannot be extended beyond the Cauchy horizon

tof its universal cover. It follows that the universe cannot be

compact, if the universe is hyperbolic and was in an infla-
tionary phase. From observations, it is difficult to determine
global properties of the universe. It is full of interest that our
result answers theoretically to some global properties, for
example, to the simple, but fascinating question whether our

Then the radius ow(Gg) measured bge becomes smaller universe is spreading infinitely or compact.

bb  0,5,dD)

i a\

0,5, dD,)
k o

i

FIG. 6. A lift 6E and its images;/w(a';) on Dy.

Our result that the universe cannot be extended analyti-
cally across the Cauchy horizon obviously holds in the case
that the spatial sections aRx H?/T", which is noncompact,
or its quotient manifoldS* X H?/T'. It is remarkable that this
is true even if the metric imhomogeneoualong theR (or
S factor. Consequently, the universe with such a topology
does not have a Cauchy horizon.

As the scenario for a birth of hyperbolic universe, one-
bubble inflationary universe scenario is an appealing one.
However, it cannot be a universal covering manifold of a
compact hyperbolic inflationary universe, because such a
model has a past Cauchy horizon inside the bubble. Thus,
one-bubble inflationary universe scenario is incompatible
with a compact hyperbolic universe model. In other words, if
the one-bubble inflationary scenario is verified by observa-
tions, our hyperbolic Friedmann-Robertson-WalkERW)
universe is not compact. In general, any scenario which re-
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alizes the hyperbolic inflationary universe by inducing a hy- —(X9)2+ (X124 (X?)2+ (X3)?=—1,

perbolic chart on a portion of de Sitter space-time has a

Cauchy horizon for the hyperbolic hypersurfaces and, hencayhere the curvature radius is normalized to unity. Taking the
it cannot be a universal cover of a compact hyperbolic infla-chart,

tionary universe.

As we show explicitly, our result holds for th@+1)- X%=cosl¥,
dimensional case and anti-de Sitter space-time, compact
three-dimensional black hole geometry does not realize X1=sinhtcod,
Lorentzian topology change].
One may say that this anomaly is due to the high degrees X2=sinh¢sindcosy,
of space-time symmetry. However we also can discuss the
case that there is no symmetry. The result is essentially at- X3=sinh¢sindsiny, (A1)

tributed to the ergodicity of geodesic flow on a compact
manifold with negative curvatufd5]. When we consider an the induced metric takes the form

inhomogeneous universe as a hyperbolic inflationary FRW

universe model with perturbations on it, we can take a hy- gy =d&2+sinfP&(d 6+ sirfad ?). (A2)
persurface whose sectional curvature is everywhere negative

by taking a time-slice of sufficiently small scale factor,lor Isom(H?) is SQ3,1).

in Eq. (3.2 and Eq.(3.3), near the past Cauchy horizon of  The simply connected Riemannian manifd#f can be

the background universe. If inhomogeneity due to fluctuacompactified by quotienting by the subgrolipof its isom-
tions of matter fields is large enough, energy density of theetry SQ3,1). It is known thatH? is tessellated by hyperbolic
matter fields dominates the universe and it is out of the condodecahedra. This means that the fundamental region of
text of inflationary universe. In such a case, an initial curva-H3/T is a hyperbolic dodecahedrg®6]. Then the concrete
ture singularity appears instead of the past Cauchy horizomepresentations of the generatorsIbfare given as the fol-
Thus, even in the case that the considering universe model iswing six matrices {T;_;_¢} under the coordinates
inhomogeneous, we expect that if the Cauchy horizon existex® Xt x2 x3) of E3L

in its universal cover, there exists a neighborhood of the
Cauchy horizon such that the hypersurfaces contained in it
are everywhere negatively curved. The Cauchy horizon in
the universal cover is considered a limit surface of a se-
guence of negatively curved time-slices. This would give
restrictions on the possible shapes of the Cauchy horizon in
the universal cover. Then if we observe that the neighbor-
hood of the Cauchy horizon in the universal cover is homeo-
morphic to the neighborhood of the Cauchy horizon in the
Milne universe, as considered in the previous section, we can
obtain the same result of the Proposition even in the inho-
mogeneous case. The rigorous study of the above discussion
is future work.

Our result that a compact hyperbolic universe does not
admit a Cauchy horizon is closely relatedth® strong cos-
mic censorship conjecturevhich states that physically real-
istic space-time is globally hyperbol{d2,13. The case of
spatially compact, locally homogeneous vacuum models has
been investigated extensively by P. T. Cluigsand A. D.
Rendall[14]. Our result is not restricted to the vacuum case
and our approach would be useful to resolve the issue in the
case of inhomogeneous universe.
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T13:Boa(a)°R3<§77). (A3)
T2:=Ra(2¢)°T1oRa(—2¢), (Ad)
2
T3 —R3 §7T °T2°R3 _577 y (AS)
4 4
T4 :R3 gﬂ' °T2°R3 _5’77 y (AG)
4 4
T5::R3 _§7T °T2°R3 §7T y (A?)
2 2
TG :R3 _§7T °T2°R3 §7T , (A8)
where
coshhe 0 0 sinhy
0 1 0 0
Bo_3(a):= 0 0 1 0 ) (A9)
sinhe 0 0O coslw
1 0 0 0
0 cos2y 0O sin2y
Ro(2¥):=l0o 0o 1 0 |. (A10
0 -—sin2¢ 0 cos2)
1 0 0 0
0 cosy —siny O
Rs(v):=| 0 siny cosy O] (A11)
0 0 0 1
« V40y5-75
tanhi: =— 5 tan2y; = 2. (A12)

The compact hypersurfacad®/I" are constructed by the
identifications;
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Let f be a function orM. The time-average*f(x) of f at
xe M is defined as

1T
f*(x):= lim TJ' f(py(x))dt,

T—+w 0

which exists for almost every [15]. The space-averagﬁfs
defined as

— 1

fi= Wfo(X)dM

A dynamical system N, u,¢;) is ergodicif almost ev-

erywheref* (x)=f, for any f which is integrable with re-
spect tou [i.e., feL(M,u)].

Let us derive a geometrical property implied by ergodic-
ity. Let (M,u, ;) be an ergodic abstract dynamical system
on a compact, connected Riemannian manifdidLet A be
an open subset dfl. Define a functionf , as

1, XeA,

fa(x):= 0. XeA

Then, there exists a time-average

IA(T)
T

fa(x)=lim

T—o

(B1)

for almost everyx, wherel ,(T) is a total length ot of the
intersections of ¢,(x)|0<t<T} and A. The space-average
is given by

_ KA
A (M)’

(B2)

The ergodicity impliesfx (x) =f_A for any A and almost ev-
ery Xx. From these observations, we have the following
lemma.

Lemma.Let (M,u, ;) be an ergodic dynamical system.
For anyT,>0, and for almost every and any open neigh-
borhoodA of x, there exisfT>T, such that$1(x) € A.

Proof. Suppose there does not exist>T, such that
d1(x) € A, for almost every. It follows from Eq.(B1) that

identify * =
X2 o X/b=(T))a, X, (A13) .A(x.) 0 for almost everyx. On trle other hand, EdB2)
implies thatf,>0. Thus we havd} # f 5 for almost every
The value of the boost angleis determined such that the X, which contradicts the ergodicity. O

H3/T is a regular compact manifold. Each of tfie trans-

Let us consider a geodesic flow on a Riemannian mani-

forms each surface of a dodecahedron to an opposite sideld. Let (M,g) be a compact, connected Riemannian mani-
after rotating by 3:/5. The rotations are necessary so thatfold, andT,;M be its unit tangent bundle. There is a natural

five dodecahedra with dihedral angler meet consistently
at the identified edge and add up ta 2s depicted in Fig. 7.

APPENDIX B: ERGODIC THEORY

A triplet (M, u, ;) is calledan abstract dynamical sys-
tem where M, u) is a measure space and:M—M is a

Riemannian metrig on T;M induced byg and a natural
measureu on T;M induced byg. Consider a geodeslig, on
M parametrized by lengthr and, which determined by
x=(p,v) e T;M by the condition\,(0)=peM, A,(0)=v
e T;,M. Eachi, has a unique lift orT; M. Considering all
geodesics we can define geodesic flow¢, on T{M by

¢, = (1) A(7)).

one-parameter group of transformations which preserve mea- We essentially used the following theorem in the proof of

sureu.

the main proposition of this paper.
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Theorem. (Lobatchewsky-Hadamard-Anosofl5]) Let Proposition.Let M be a compact, connected Riemannian
M be a compact, connected Riemannian manifold with ananifold with a negative curvature and bt be a geodesic
negative curvature anti; M be a unit tangent bundle &fi,  defined above. For anyl,>0, and for almost every
then the geodesic flow of;M is ergodic. From the Theo- X=(p,v) and any open neighborhodd of p in M, there
rem and the Lemma above, we have the following, which iseXistsT>Tg such thaik,(T) € O and the(unit) tangent vec-

actually used in our proof. tor A,(T) is arbitrarily close td\X(O).
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