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Cosmological analogues of the Bartnik-McKinnon solutions

M. S. Volkov, N. Straumann, G. Lavrelashvili,* M. Heusler, and O. Brodbeck
Institut für Theoretische Physik, Universita¨t Zürich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 17 May 1996!

We present a numerical classification of the spherically symmetric, static solutions to the Einstein-Yang-
Mills equations with a cosmological constantL. We find three qualitatively different classes of configurations,
where the solutions in each class are characterized by the value ofL and the number of nodes,n, of the
Yang-Mills amplitude. For sufficiently small, positive values of the cosmological constant,L,Lcrit(n), the
solutions generalize the Bartnik-McKinnon solitons, which are now surrounded by a cosmological horizon and
approach the de Sitter geometry in the asymptotic region. For a discrete set of valuesL reg(n).Lcrit(n), the
solutions are topologically three-spheres, the ground state (n51) being the Einstein universe. In the interme-
diate region, that is, forLcrit(n),L,L reg(n), there exists a discrete family of global solutions with an horizon
and ‘‘finite size.’’ @S0556-2821~96!06422-3#

PACS number~s!: 98.80.Hw, 04.70.Bw
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I. INTRODUCTION

The interplay of gravity and nonlinear field theoretic
matter models leads to a wealth of new and surprising p
nomena. In particular, there has been increasing intere
both the structure and the stability of black hole solutio
‘‘with hair.’’ ~See, e.g.,@1# and@2# for some key references.!
Moreover, self-gravitating field theories have also beco
very popular in cosmology in connection with various infl
tionary scenarios, the formation of topological defects in c
mological phase transitions, etc.

In this paper we present and discuss some new solut
with various global properties of the Einstein-Yang-Mil
~EYM! system with cosmological constantL. For a limited
range of the ‘‘bifurcation parameter’’L we find a class of
solutions which can be viewed as a continuation of the
markable discrete family of particlelike solutions discover
by Bartnik and McKinnon~BK! for L50 @3#. In the vicinity
of the origin, these solutions resemble the BK solitons. Ho
ever, the solutions are surrounded by a cosmological hor
and approach de Sitter spacetime in the asymptotic reg
For each node number,n, these asymptotically de Sitter so
lutions exist only for sufficiently small cosmological con
stants, 0,L<Lcrit(n), where we determineLcrit(n) numeri-
cally.

WhenL exceedsLcrit(n), we obtain a different class o
solutions, for which the two-spheres@i.e., orbits belonging to
the assumed SO(3) symmetry# reach their maximal sizeout-
side the cosmological horizon. The position of the maxim
sphere,Smax

2 , moves inwards asL increases and approach
the horizon whenL tends to some special valueL!(n), say.
OutsideSmax

2 a true singularity develops. This region r
sembles the interior of a black hole solution, whose sin
larity is also shielded by a horizon. For obvious reasons,
call these solutionsbag of goldconfigurations.

These bag of gold solutions continue to exist f

*On leave of absence from Tbilisi Mathematical Institute, 3800
Tbilisi, Georgia.
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L!(n),L,L reg(n), where the extremal sphere now liesin-
side the horizon. An interesting phenomenon occurs wh
L reaches the upper limitL reg(n), for which the singularity
approaches the horizon. ForL5L reg(n) an everywhere
regular, spatially compactsolution exists for alln. In the
special case wheren51 this is precisely the Einstein uni
verse with a constant energy density of the Yang-Mills fie
onS3. This particular solution has repeatedly been redisc
ered in the past@4#. For higher node numbers, the spatial p
of the manifold is a ‘‘squashed’’ three-sphere, and the so
tions can only be constructed numerically.

As is the case for the BK family, it would be valuable
have an existence proof for the compact solutions, proba
along similar lines as presented in@5,6#. We would also like
to mention Ref.@7# on EYM solutions with cosmologica
constant, which contains some partial results of the pres
paper.

A crucial issue is the question of stability of the solutio
presented in this paper. However, it turned out that this
quite involved and subtle problem, mainly for topologic
reasons. We shall therefore present this part of our inve
gation in an accompanying paper@8#.

This article is organized as follows: In the second a
third sections we derive the basic equations and present s
special solutions which can be given in closed form. T
fourth and fifth sections are devoted to the asymptotically
Sitter solutions and their analytic extensions, respectiv
The bag of gold configurations are described in the si
section. Finally, in the last section, we discuss the globa
regular, compact solutions.

II. BASIC EQUATIONS

We consider an EYM model with cosmological consta
L and action

S52
1

4pE F 1

4G * ~R22L!1
1

2g2
tr~F`*F !G , ~1!

whereG is Newton’s constant andg denotes the gauge cou
pling constant. Since we restrict ourselves to configurati
3

7243 © 1996 The American Physical Society



s
or
c

o

a

ic
ge

nt

s.

ess

nits

on
-
s-
uge

7244 54M. S. VOLKOV et al.
with spherical symmetry, the spacetime manifold (M ,g… has
~locally! the structure of a warped product,M5M̃3RS

2,
with metric

g5g̃1R2ĝ. ~2!

Here,g̃ and ĝ denote the metrics onM̃ andS2, respectively,
andR is a function onM̃ . Throughout this paper, quantitie
referring to (M̃ ,g̃) are endowed with a tilde and those f
(S2,ĝ) with a hat. The Einstein tensor for warped produ
manifolds becomes@1#

Gab5
2

R
@ g̃abR2¹̃a¹̃bR#1

1

R2 g̃ab@~dRudR!21#, ~3!

GAb50, ~4!

GAB5R2ĝABF 1Rh̃R2 1
2 R̃G , ~5!

whereR̃ denotes the Ricci scalar of (M̃ ,g̃). @Small and capi-
tal Latin letters are used for indices on (M̃ ,g̃) and (S2,ĝ),
respectively;a,b,c50,1 andA,B,C52,3.# With respect to
the diagonal parametrization of the metricg̃,

g̃52e2a~ t,r!dt21e2b~ t,r!dr2, ~6!

which we shall often use in this paper, the d’Alembertian
a functionR, say, and the Ricci scalar on (M̃ ,g̃) are

h̃R5e2~a1b!@~ea2bR8!82~eb2aṘ!–# ~7!

and

R̃522 e2~a1b!@~ea2ba8!82~eb2aḃ!–#, ~8!

respectively.
For SU~2!, the spherically symmetric gauge potential h

the general form

A5at̂r1Ã@t̂qdq1 t̂wsinqdw#

1~w21!@ t̂wdq2 t̂qsinqdw#, ~9!

wherea5a0dt1a1dr, anda0, a1, w, andÃ are functions
on M̃ . Here t̂r5nit i /2, t̂q5]qt̂r , t̂w5]wt̂r /sinq, and
ni5(sinqcosw,sinqsinw,cosq), wheret i are the Pauli matri-
ces. In the static, purely magnetic case the cho
a5Ã50 is compatible with the field equations. The gau
potential~9! now reduces to

A5~w21!@ t̂wdq2 t̂qsinqdw#. ~10!

In terms ofw, the stress-energy tensor has the compone

8pg2Tab5
1

R2 Fw,aw,b2g̃abS 12 ~dwudw!1
V~w!

4R2 D G ,
~11!

8pg2TAb50, ~12!
t

f

s

e

s

8pg2TAB5ĝAB
V~w!

4R2 , ~13!

with V(w)5(12w2)2.
With respect to the parametrization~6! of the metricg̃, the

static field equations assume the form

2e22b@m91m8~m82a82b8!#5ke22b
w82

R2 , ~14!

1

R2 2e22b@m91m8~2m81a82b8!#5k
V~w!

2R4 1L,

~15!

1

R2 1e22b@a91a8~a82b8!2m82#5k
V~w!

R4 , ~16!

and

e2~a1b!~ea2bw8!85
1

4R2V,w , ~17!

where we have introducedem[R and where Eqs.~14!, ~15!,
and ~16! are the 1

2(00111), 1
2(00211), and

1
2(00211222233) components of the Einstein equation
We also note that the~dimension-full! coupling constant
k5G/2g2 can be absorbed by introducing the dimensionl
quantitiesR/Ak, r/Ak, andLk. ~We shall often setk52 in
this paper, that is, we measure length, time and mass in u
of @Gg2c24#, @G1/2gc23#, and @g2G21#, respectively; see
@9#.!

We shall use two gauges in this paper, depending
whether or notR has a local maximum. Considering solu
tions for whichR has no critical point, we can use Schwarz
child coordinates, that is, we are allowed to choose the ga

R~r!5r[r . ~18!

It is then also convenient to introduce the functionsN(r ) and
s(r ), defined by

N[~drudr !5e22b, s[A2g̃5ea1b. ~19!

In terms of this parametrization, the static equations~14!,
~15!, and~17! become

s85k
w82

r
s, ~20!

m85
k

2 FNw821
V~w!

2r 2 G , ~21!

Nw91
w8

r F2mr 2
2

3
Lr 22k

V

2r 2G5
V,w
4r 2

, ~22!

where a prime denotes the derivative with respect tor . Here
we have already used Eq.~20! in the second and the third
equations, in order to eliminate the metric functions. The
functionm(r ) is defined by the relation
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N~r ![12
2m~r !

r
2

L

3
r 2. ~23!

When considering solutions for whichR develops a local
extremum, we use the gaugea1b50, that is, we param-
etrize the static metric by the two functionsR(r) and
Q(r), where

Q~r![e2a5e22b. ~24!

The static field equations~14!, ~16!, and ~17! then assume
the form

R952k
w82

R
, ~25!

Q952QSR8

R D 22 2

R2 1k
2V~w!

R4 , ~26!

~Qw8!85
V,w
4R2 , ~27!

where nowQ8[dQ/dr, etc. Using Eq.~25!, the remaining
Eq. ~15! becomes a first integral,

~QR!8R85kSQw822
V~w!

2R2 D112LR2. ~28!

It is clear that this coordinate system is also suited to disc
solutions for whichR has no critical points. However, fo
obvious reasons, we prefer to use the familiar parametr
tion ~18! and ~19! in those cases.

III. SPECIAL SOLUTIONS

Before we present a classification of the static configu
tions, we consider some special solutions which can be g
in closed form.

First, forR(r)5r and constant Yang-Mills amplitude, w
find from Eqs.~25!–~28! above

R~r!5r, w~r!50,61,

Q~r!512
2M

r
1k

V~w!

2r2
2

L

3
r2, ~29!

with M being a constant of integration. Forw50 (V51)
this solution corresponds to the Reissner-Nordstro¨m-de Sitter
universe with unit magnetic charge, whereas we obtain
Schwarzschild-de Sitter solution forw561 (V50).

Next, we consider solutions for which bothR(r) and
w(r) are constants. ForV(w)50 one easily finds

R~r!5
1

AL
, w~r!561, Q~r!52Lr21Ar1B,

~30!

which corresponds to theH23S2 Nariai solution@10#. ~Here
A andB are constants of integration.! If w50, we find, for
sufficiently small values of the cosmological consta
L<(2k)21,
ss

a-

-
n

e

,

R2~r!5
16A122kL

2L
, w~r!50,

Q~r!5
1

R2 S k

R2 21D r21Ar1B. ~31!

In the limit of vanishingL the solution with the lower sign
reduces to the magnetic Robinson-Bertotti universe~with
R25 1

2k).
Finally, there exists a solution for which the componen

of the stress-energy tensor assume constant values wit
w(r) being a constant. This is possible only for the spec
valueL53/(2k). In fact,

R~r!5AksinS r

Ak
D , w~r!5cosS r

Ak
D , Q~r!51

~32!

describes the static Einstein universe.
The above examples indicate that the qualitative beha

of the static solutions to Eqs.~14!–~17! crucially depends on
the value of the cosmological constant. In the following, w
shall present a classification of these solutions in terms
L and the node number ofw.

IV. ASYMPTOTICALLY DE SITTER SOLUTIONS

We start our numerical investigation by considering sm
values ofL. ForL50 the regular, asymptotically flat solu
tions of the EYM equations were found by Bartnik an
McKinnon in 1988@3# and, since then, have been subject
numerous studies~see, e.g.,@1,2,5,6# and references therein!.
Each solution has a typical sizeRn wheren is the number of
nodes of the YM amplitudew. In the regionR.Rn the en-
ergy density of the Yang-Mills field decays rapidly, and t
metric approaches the vacuum Schwarzschild metric.

For small values of the cosmological consta
L!1/Rn

2 , the contributionLR2 to the energy density is neg
ligible. ForR,Rn , one therefore expects that the solutio
do not considerably deviate from the BK solutions. In t
regionr.Rn , however, the effect ofL becomes significant
which suggests that the metric approaches the de Sitter
ric. Hence—for sufficiently small values of the cosmologic
constant—the solutions are expected to resemble the reg
BK solitons, which are surrounded by a cosmological ho
zon atR;1/AL and approach the de Sitter geometry in t
asymptotic region.

The numerical analysis of Eqs.~20!–~22! confirms these
expectations. We are interested in smooth, globally reg
solutions, such that the curvature is everywhere bound
These conditions imply that all quantities in Eqs.~20!–~22!
have to be regular for finite values ofr . In order to find
numerical solutions, we need the formal power series exp
sions of the Eqs.~21! and ~22! in the vicinity of the origin,
r50, the cosmological horizon, r5r h defined by
N(r h)50, and for r→`. In the vicinity of the origin, the
regular solutions behave as follows (k52):
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7246 54M. S. VOLKOV et al.
w512br21O~r 4!, N512S 4b21 L

3 D r 21O~r 4!.

~33!

Near the horizon we find, withx5r2r h ,

w5wh1wh8x1O~x2!, N5Nh8x1O~x2!, ~34!

where

Nh85
1

r h
S 12

V~wh!

r h
2 2Lr h

2D ,0 and wh85
V,w~wh!

4r h
2Nh8

~35!

~one hasNh8,0 for a certain range of the parameters!. Fi-
nally, in the asymptotic regime,r→`, we have

w5w`1
a

r
2
3V,w~w`!

8L

1

r 2
1OS 1r 3D ,

N512
2M

r
2

L

3
r 21FV~w`!2

2

3
La2G 1r 2 1OS 1r 3D .

~36!

Here,b, r h , wh , w` , M , anda are six ‘‘shooting’’ param-
eters.

In order to obtain numerical solutions to the static eq
tions the procedure is as follows. We start the integrat
with the expansions~33! and~34! and try to match the func
tionsw, w8, andN at some intermediate point between t
origin and the horizon. The three matching conditions can
general be fulfilled only for a discrete set of values of t
three parametersb, r h, andwh appearing in Eqs.~33! and
~34!. In this way, for each fixed value ofL!1, we recover a
family of solutions in the interval 0<r<r h which corre-

FIG. 1. Asymptotically de Sitter solution withL5331024 and
n53. For this solution one findsb50.6998, r h598.99,
wh520.505, w`520.774, M5m(`)50.994, a5237,
s(0)5231023, s(r h)50.999 99.
-
n

n

spond to theL50 BK solitons. Each solution is characte
ized by the value ofL and the number,n, of nodes ofw
inside the cosmological horizon.

The next step is to extend these solutions into the reg
r.r h . Since the values ofwh5wh(L,n) and r h5r h(L,n)
are already known, we start with the expansion~34! and
integrate outwards from the horizon. The resulting solutio
have the following common features:N(r ) is negative for
r.r h and decreases rapidly with growingr , whereasw(r )
stays bounded and tends asymptotically to a constant v
w` . As r→`, each solution meets a member of the asym
totic family ~36!. Since Eq.~36! contains three arbitrary pa
rameters,M , w` , anda, one can always adjust their value
in order to fulfill the three matching conditions forw, w8,
and N at somer.r h . In this sense, the behavior of th
solutions in the outer region imposes no furth
restrictions—any solution obtained on the interval 0<r<r h
can be extended beyond the horizon.

Notice that, sincew`Þ61, the YM field gives rise to the
magnetic charge

P5@2tr~P•P!#1/25w`
221, where P5

1

4p R
S2
F,

~37!

and where the integration is performed over the two-sph
at spatial infinity. Here we have used Eq.~10! and
F5dA1A`A to obtain F5(w221)t̂rdV1(w21)21dw
`A. ~It is worthwhile recalling that the solutions with
L50 have vanishing magnetic charge.! The metric asymp-
totically approaches the Reissner-Nordstro¨m-de Sitter metric
with effective charge@see Eq.~36!#

Peff2 5P22
2

3
La2. ~38!

Finally, the remaining metric functions is obtained from
Eq. ~20!, wheres behaves like

s5s~0!1O~r 2!, s5s~r h!1O~r2r h!,

TABLE I. Parameters for then51 asymptotically de Sitter so
lutions.

L b rh wh M w` Peff2

0 0.453 716 2 2 0.8286 21 0
0.001 0.453 584 53.924720.9835 0.827921.000 0120.0005
0.01 0.452 344 16.431220.9478 0.8219 21.0015 20.0048
0.1 0.435 822 4.441720.8593 0.7599 21.0291 20.0158

TABLE II. Parameters for then52 asymptotically de Sitter
solutions.

L b rh wh M w` Peff2

0 0.651 725 2 2 0.9713 1 0
0.001 0.653 571 53.7756 0.8374 0.9696 0.981320.0481
0.01 0.661 881 16.2718 0.5602 0.9600 0.854720.1906
0.1 0.635 993 4.2246 0.3321 0.8956 0.773220.2553
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s511OS 1r 4D , ~39!

in the vicinity of the origin, the horizon and infinity, respec
tively. Some further details about the solutions describ
above are presented in Fig. 1, Table I, and Table II.

V. ANALYTIC EXTENSIONS

In this section we construct the analytic extension for
generic metric of the above type. Our first goal is to write t
metric g̃ in conformally flat form, such that the spacetim
metric becomes

g5s2N~2dt21dx2!1r 2dV2. ~40!

In order to do so, we need the following essential propert
of the solutions discussed above: BothN ands are smooth
functions, wheres(r ) is bounded and everywhere positive
The metric functionN(r ) is subject to the boundary condi
tions N(0)51 andN→2c2r 2 as r→`. Moreover,N(r )
changes sign exactly once, namely at the horizo
N(r h)50. By virtue of these properties, the new radial c
ordinatex,

x~r !5E
0

r dr̄

sN
, r,r h ,

and x~r !5x`2E
r

` dr̄

sN
, r.r h ~41!

increases from zero to infinity asr runs from zero tor h , and
then decreases from infinity tox` as r grows from r h to
infinity. The constantx` is fixed by considering the expan
sion of the above integrals in the vicinity of the horizon,

FIG. 2. The functionsr (z) andF(z) for the asymptotically de
Sitter solution withL5331024, n52. For this solution one has
F(0)5631024 andz`50.24.
d

a
e

s

,
-

x52
1

2h
lnur2r hu1C1O~r2r h!, ur2r hu!1, ~42!

and requiring that the constantC has the same value in bot
cases. Here we have also introduced the quantityh,

h52 1
2sN8ur5r h

.0, ~43!

which does not vanish for a regular horizon. With respec
x, the metric now assumes the desired form~40! which, in a
neighborhood of the horizon, becomes

g562s~r h!he
22hx@11O~e22hx!#~2dt21dx2!1r 2dV2,

~44!

where the plus and minus signs refer to the regionsr,r h and
r.r h , respectively.

Next, we note thatz(r ), defined by

z~r !52e22hx~r !, r,r h , and z~r !5e22hx~r !, r.r h ,
~45!

is a monotonically increasing function ofr with
z(0)521, z(r h)50, and z→exp(22hx`).0 as r→`.
Hence, the inverse functionr (z) is well defined and the
functionF(z),

F~z!52
1

h2z
s2
„r ~z!…N„r ~z!…, ~46!

is therefore smooth and everywhere positive. As usual,
finally passes from the coordinates (t,x) to the new coordi-
nates (U,V), where

U5e2hxsinhht, V5e2hxcoshht, r,r h ,

FIG. 3. The typical spacetime diagramr (U,V) for asymptoti-
cally de Sitter solutions~specifically, theL5331024, n52 solu-
tion has been used!. The spacetime manifold is qualitatively simila
to the de Sitter spacetime~the black regions should not be confuse
with the spacetime singularities!.
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U5e2hxcoshht, V5e2hxsinhht, r.r h . ~47!

The analytically extended metric eventually becomes

g5F~z!~dU22dV2!2r 2~z!dV2, ~48!

where z5z(U,V)5U22V2. The two functionsF(z) and
r (z) can be determined numerically~see Fig. 2!. For the de
Sitter solution one easily finds

F~z!5
4

~12z!2
, r ~z!5

11z

12z
, zP@21,1#. ~49!

The spacetime diagram in coordinates (U,V) is displayed
in Fig. 3. The spacetime manifold corresponds to the reg
U22V2P@21,z`#. The qualitative features of the diagra
are identical with those of the de Sitter solution. One sho
stress that this diagram describes aglobally regular space-
time manifold. One can think of this manifold as the de Sit
hyperboloid sightly deformed by the masses oftwo BK par-
ticles placed at the opposite sides of the spatial sec
~curvesr50 in the diagram!.

VI. BAG OF GOLD SOLUTIONS

The asymptotically de Sitter solutions described abo
exist only for sufficiently small values of the cosmologic
constant: For each fixed value of the node parametern, there
exists a maximal valueLcrit(n), say, beyond which the nu
merical analysis breaks down.

Solutions which belong to larger values ofL exhibit a
local extremum ofR and cannot be obtained in Schwarz
child coordinates. We therefore pass to a parametrizatio
the metric for whichR(r) is a dynamical function and
choose the gaugee2a5e22b[Q(r); see Eq.~24!.

Equations~25!–~28! yield the formal power series at th
origin (k52),

w512br21O~r4!, R5r1O~r5!,

Q511S 4b22 L

3 D r21O~r4!, ~50!

whereb is the only free parameter. The numerical integ
tion shows thatQ(r) develops a zero at somer5rh(b,L),
indicating the presence of a horizon. Requiring that all c
vature invariants remain finite at the horizon yields

limr→rh
AQw850. ~51!

As a consequence of this condition we obtain a family
solutions between the origin and the horizon, which are
rametrized by a discrete set of valuesbn(L), wheren is the
number of nodes. The parameterswh , Rh , andRh8 entering
the power series at the horizon,

w5wh1wh8x1O~x2!, Q5Qh8x1O~x2!,

R5Rh1Rh8x1O~x2!, ~52!

are therefore fixed, oncebn(L) is known. Here,x5r2rh ,
andQh8 andwh8 are given in terms ofwh , Rh, andRh8 :
n

d

r

n

e

of

-

-

f
-

Qh85
1

RhRh8
S 12

V~wh!

Rh
2 2LRh

2D , wh85
V,w~wh!

4Rh
2Qh8

.

~53!

Finally, we use this expansions to extend the solution bey
the horizon. The advantage of this procedure is that it ess
tially uses onlyone shooting parameter,b; the remaining
parameters are then iteratively determined.

The numerical analysis reveals the following picture: F
each value of the node number, the horizon radiusRh de-
creases monotonically with increasing values ofL, where
Rh→` for L→0 andRh→0 for L→L reg(n) ~see Fig. 4!.
The limiting valueL reg(n), for which the horizon shrinks to
zero, decreases with growing node numbern, where
L reg(1)53/4 andL reg(`)51/4.

Depending on the position of the maximum ofR, one
finds three qualitatively different classes of solutions, cor
sponding to the following subdivision of the interva
„0,L reg(n)… ~see Fig. 4!.

~A! 0,L,Lcrit(n). These are the de Sitter like solution
discussed earlier. The functionR(r) has no critical points for
finite values ofr. In the asymptotic regime,R8(r) behaves
like

R8~r!5R8̀ 1OS 1r D as r→`, ~54!

where the constantR8̀ decreases with growing values ofL
and vanishes forLcrit(n). Thus, forL→Lcrit(n), R(r) de-
velops an ‘‘extremum at infinity.’’ The numerical analys
~see Fig. 5! suggests that forL5Lcrit(n), R(r) asymptoti-
cally approaches a constant value,R(`)51/ALcrit(n),
whereasw(r) tends to61; such that forr→` the solutions
coincide with the Nariai solution~30!. The topology of the
solutions therefore changes forL5Lcrit(n) @for the solution
with one node one hasLcrit(1)50.3305#.

FIG. 4. The horizon radiusRh vs the cosmological constantL
for then51 EYM solutions.
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~B! Lcrit(n),L,L!(n). For these values ofL the func-
tion R(r) develops a maximum for a finite valuere outside
the horizon,rh,re,`. SinceR9<0 @see Eq.~25!#, R(r)
decreases forr.re and becomes zero at some finite val
rsing, say. In fact, the metric functionQ diverges as
r→rsing, indicating that the geometry becomes singul
@For the solution with one node one findsL!(1)50.334.#

~C! L!(n),L,L reg(n). The behavior is similar to cas
~B!. However, nowR reaches the maximal valueinside the
horizon, re,rh . SinceL reg(n) is the maximal value for
which the solutions exhibit a horizon,R vanishes still outside
the horizon, that is,rsing>rh . Again, Q is unbounded for
r5rsing ~see Fig. 6!.

We call the solutions which exhibit a horizon and f
which R develops a second zero outside the horizon bag
gold solutions.

VII. COMPACT REGULAR SOLUTIONS

Until now we have restricted our attention to solutio
which develop a horizon. A new and interesting type of s
lutions is obtained in the limitL→L reg(n), where the hori-
zon and the singularity merge,rh→rsing. In this limit, that is
for L5L reg(n), the geometry turns out to be everywhe
regular, in particular at both zeros ofR. Moreover, the points
whereR assumes its maximal value,re , lies precisely be-
tween these zeros and the spatial geometry is symmetric
respect tore . Since, in this case, the manifold has the top
ogy of IR3S3, the zeros ofR and the two-spherer5re will
be called the north pole, the south pole, and the equa
respectively.

For each node numbern, there exists precisely one valu
of the cosmological constant,L5L reg(n), for which one ob-
tains compactsolutions of the above kind. Forn51, the

FIG. 5. Change of the topology of the EYM solutions. Th
solution withL5L150.3304 is asymptotically de Sitter, where
the one withL5L350.3306 is of the bag of gold type. The valu
L5L250.3305 is very close toLcrit . The functionsQ(r) and
w(r) for the three solutions are almost identical.
.

of

-

ith
-

r,

solution is the static Einstein universe wit
L reg(1)53/(2k), already presented in the second section

R~r!5AksinS r

Ak
D , w~r!5cosS r

Ak
D , Q~r!51.

~55!

The regular solutions with higher node numbers are
tained in the limitL→L reg(n) from the corresponding bag
of gold solutions. An alternative method, which takes adv
tage of the reflection symmetry with respect to the equato
to integrate the field equations on the ‘‘northern hem
sphere,’’ say. In order to do so, one has to impose bound
conditions at the pole~i.e., the origin,r50) and the equator
(r5re). The solutions are then obtained by matching t
numerical integrations from the pole and the equator.

The formal power series at the origin involve one ‘‘shoo
ing’’ parameter,b, and were given in Eq.~50!. In order to
obtain the series expansions in the vicinity of the equator,
have to distinguish two cases: Depending on whether
gauge field amplitudew(r) is antisymmetric or symmetric
with respect tore , the regular compact solutions will b
called odd (we50) or even (we850), respectively.

~i! we50: For the odd configurations one finds, wi
x5r2re (k52),

R5Re1
1
2Re9x

21O~x4!, Q5Qe1
1
2Qe9x

21O~x4!,

w5we8x1O~x3!, ~56!

where the field equations~25!–~28! imply thatwe8, Re9 , and
Qe9 are given in terms ofRe andQe ,

w8e
25

1

2Qe
~Re

221LRe
221!, Re952

2

Re
w8e

2 ,

FIG. 6. The bag of gold solution withL50.4 andn51.



e

the
m-
rs

act
ng-

ted
ee-

-
-

it-

90
.1
.7

7250 54M. S. VOLKOV et al.
Qe95
2

Re
4 ~22Re

2!.

~ii ! we850: For solutions with even Yang-Mills amplitude w
have

R5Re1
1

4!
Re

~4!x41O~x6!, Q5Qe1
1
2Qe9x

21O~x4!,

w5we1
1
2we9x

21O~x4!. ~57!

As before, the only free parameters areRe andQe . In terms
of these,we is determined by Eq.~28!,

V~we!5Re
2~12LRe

2!,

andwe9 , Re
(4) , andQe9 are obtained from Eqs.~25!–~27!:

~we9!25
Qe

4Re
2V,w~we!, Re

~4!52
4

Re
~we9!2,

Qe95
2

Re
4 @2V~we!2Re

2#.

FIG. 7. Then53 compact solution.

TABLE III. Parameters for compact solutions.

n L b A2re /p Re /A2 we Qe

1 0.75 0.25 1 1 0 1
2 0.364 244 0.429 599 4.824 1.015020.5320 16.656
3 0.293 218 0.508 831 15.63 1.0757 0 88.3
4 0.270 328 0.540 489 39.64 1.0483 0.235 49 417
5 0.260 895 0.554 021 88.43 1.0485 0 1409
. . . . . . . . . . . . . . . . . . . . .
` 0.25 0.569 032 ` 1 - `
In both cases, the free parameters are the position of
equator,re , the cosmological constant, the shooting para
eter at the pole,b, and two independent shooting paramete
at the equator~for instanceRe andQe). The values of these
quantities are presented in Table III for the first five comp
solutions. The shape of the metric functions and the Ya
Mills amplitude is given in Fig. 7 for then53 solution.

The geometry of the compact solutions may be illustra
with the help of embedding diagrams. Consider the thr
dimensional Euclidean space in cylindrical coordinatesR,
Z, andw. A surfaceS of revolution in this space is charac
terized by a mappingr→„R(r),Z(r)…, and the induced met
ric on S is

FIG. 8. The embedding diagrams for then51,2,3 compact so-
lutions.

FIG. 9. The embedding diagrams for the asymptotically de S
ter solution withL50.3,n51, and for then51 bag of gold solu-
tions withL50.6 andL50.745.
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gS5~R821Z82!dr21R~r!2dw2. ~58!

On the other hand, the metric of a spacelike sectionS8 ~with
t5t0 and q5p/2) through the geometry of the compa
solutions is given by

gS85
1

Q~r!
dr21R~r!2dw2. ~59!

Hence, the two geometries coincide, provided that we cho
the functionZ(r) according to

Z~r!5Z~0!1E
0

r
A12Q~ r̄ !R82~ r̄ !

dr̄

AQ~ r̄ !
, ~60!

whererP@0,2re#.
The embedding diagrams„R(r),Z(r)… for the n51, the

n52, and then53 compact regular solutions are presen
in Fig. 8. For n51, we obtain the circle
„R(r),Z(r)…5Ak„sin(r/Ak),cos(r/Ak)…, reflecting the fact
that the manifold in this case is precisely IR3S3. The spatial
sections of the solutions with higher values ofn resemble
prolate ellipsoids~or ‘‘cigars’’ !.

It is also instructive to draw the embedding diagrams
the solutions with horizon. In this case, the domain of in
gration in Eq.~60! is rP@0,rh#, which yields half of the
diagram. At the horizon one hasQ50 and therefore
dR/dZ50. SinceR(rh)Þ0, the horizon corresponds to th
‘‘throat’’ of the geometry, which connects the two identic
patches of the manifold~see the conformal diagram in Fig
3!. The resulting diagrams for severaln51 solutions are
presented in Fig. 9. The diagrams show that the throat
comes narrower asL tends to the critical valueL reg, where
the manifold splits into two separate pieces.

VIII. CONCLUDING REMARKS

The features of the static, spherically symmetric solutio
to the EYM equations depend critically on the value of t
cosmological constantL. For every node numbern and any
L with 0,L,Lcrit(n) there exists a globally regular solu
tion for the BK soliton surrounded by a cosmological ho
od
se

d

r
-

e-

s

zon. After analytic continuation, such a solution can
thought of as describing the de Sitter hyperboloid with tw
BK solitons at the opposite sides. Fo
Lcrit(n),L,L reg(n), the configurations develop an equat
and exhibit a horizon, such that the equator isoutside the
horizon forLcrit,L,L! and it is inside for L!,L,Lcrit

~see Table IV!. Finally, there exists a globally regular, com
pact solution withL5L reg.

In this paper, we have restricted our attention to solutio
with a regular center. The extension to configurations w
an event horizon is expected to be straightforward. In fa
we have no reasons to doubt that one will find a simi
classification for these black hole solutions.

No globally regular solutions seem to exist fo
L.L reg(n). In this case, the metric functionQ(r) is every-
where positive and diverges asr→rsing, wherersing is the
position of the second zero ofR(r). Such solutions may
therefore be considered as bag of gold configurations with
horizon. WhenL is small and negative (uLu!1), the solu-
tions resemble again the BK solitons, however, they
proach the anti-de Sitter geometry in the asymptotic regi

We have also investigated the stability properties of
solutions presented in this paper. The stability analysis
these—asymptotically not flat—solutions is, however, rat
involved. In particular, the fact that the sizeR of the two-
spheres develops a local maximum gives rise to the follo
ing difficulty: Either the pulsation equations assume the fo
of a regular, formally self-adjoint system withunphysical
degrees of freedom, or one isolates the unphysical mo
and obtains asingular pulsation equation. The methods b
which these problems can be solved are presented in an
companying paper@8#, and here we merely mention the re
sult: all of the solutions described above are unstable.

TABLE IV. The special values ofL for the lowestn’s.

n Lcrit(n) L* (n) L reg(n)

1 0.330 0.334 0.75
2 0.239 0.250 0.364
3 0.237 0.247 0.293
th.
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