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We present a numerical classification of the spherically symmetric, static solutions to the Einstein-Yang-
Mills equations with a cosmological constaht We find three qualitatively different classes of configurations,
where the solutions in each class are characterized by the valdearfd the number of nodes, of the
Yang-Mills amplitude. For sufficiently small, positive values of the cosmological constaatA .(n), the
solutions generalize the Bartnik-McKinnon solitons, which are now surrounded by a cosmological horizon and
approach the de Sitter geometry in the asymptotic region. For a discrete set of daly@s> A .(n), the
solutions are topologically three-spheres, the ground statel( being the Einstein universe. In the interme-
diate region, that is, fo ;(nN) <A <A n), there exists a discrete family of global solutions with an horizon
and “finite size.” [S0556-282(196)06422-3

PACS numbd(s): 98.80.Hw, 04.70.Bw

. INTRODUCTION A, (N)<A<An), where the extremal sphere now lies
side the horizon. An interesting phenomenon occurs when
The interplay of gravity and nonlinear field theoretical A reaches the upper limitn), for which the singularity
matter models leads to a wealth of new and surprising pheapproaches the horizon. Fok=A(n) an everywhere
nomena. In particular, there has been increasing interest iregular, spatially compacsolution exists for alln. In the
both the structure and the stability of black hole solutionsspecial case where=1 this is precisely the Einstein uni-
“with hair.” (See, e.g.1] and[2] for some key references. verse with a constant energy density of the Yang-Mills field
Moreover, self-gravitating field theories have also becomen S°. This particular solution has repeatedly been rediscov-
very popular in cosmology in connection with various infla- ered in the pag#]. For higher node numbers, the spatial part
tionary scenarios, the formation of topological defects in cosof the manifold is a “squashed” three-sphere, and the solu-
mological phase transitions, etc. tions can only be constructed numerically.
In this paper we present and discuss some new solutions AS iS the case for the BK family, it would be valuable to
with various global properties of the Einstein-Yang-Mills have an existence proof for the compact solutions, probably

(EYM) system with cosmological constant For a limited along similar lines as presented[#,6]. We would also like

range of the “bifurcation parameterA we find a class of to mention Ref[7] on EYM solutions with cosmological

solutions which can be viewed as a continuation of the reg:onstant, which contains some partial results of the present

markable discrete family of particlelike solutions discovered”2Pe"

. . o S A crucial issue is the question of stability of the solutions
by Bartnik and McKinnor(BK) for A =0 [3]. In the vicinity presented in this paper. However, it turned out that this is a

of the origin, these solutions resemble the BK solitons. How-, uite involved and subtle problem, mainly for topological
ever, the solutions are surrounded by a cosmological horizop,a5ons. We shall therefore present this part of our investi-
and approach de Sitter spacetime in the asymptotic regio@ation in an accompanying pagé].
For each node numben, these asymptotically de Sitter so- = Thjs article is organized as follows: In the second and
lutions exist only for sufficiently small cosmological con- hirg sections we derive the basic equations and present some
stants, G<A<Aq(n), where we determina () numeri-  gpecial solutions which can be given in closed form. The
cally. _ _ fourth and fifth sections are devoted to the asymptotically de
When A exceedsA;(n), we obtain a different class of gitter solutions and their analytic extensions, respectively.
solutions, for which the two-sphergise., orbits belonging to  The pag of gold configurations are described in the sixth

the assumed SO(3) symmefrgach their maximal sizeut-  gection. Finally, in the last section, we discuss the globally
sidethe cosmological horizon. The position of the maximal regular, compact solutions.

sphereS2,.,, moves inwards ad increases and approaches
the h.orizozn whem tends to some special valug(n), say. Il. BASIC EQUATIONS
Outside S;,,,, a true singularity develops. This region re-
sembles the interior of a black hole solution, whose singu- We consider an EYM model with cosmological constant
larity is also shielded by a horizon. For obvious reasons, we\ and action
call these solutionbag of goldconfigurations.

These bag of gold solutions continue to exist for S _ if

4

1 1
E*(R_ZA)—’_Z_QZU(F/\*F) , (1)

“On leave of absence from Thilisi Mathematical Institute, 380093whereG is Newton’s constant angl denotes the gauge cou-
Thilisi, Georgia. pling constant. Since we restrict ourselves to configurations
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with spherical symmetry, the spacetime manifoM,) has - V(w)
(locally) the structure of a warped produdt) =M X zS?, 87g°Tpp= SIN-preval (13

with metric
IS with V(w) = (1—w?)2.
9=g+R"g. 2 With respect to the parametrizatiéd) of the metricg, the

~ - ) ~ ) _ static field equations assume the form
Here,g andg denote the metrics ohl andS*, respectively,

andR is a function onM. Throughout this paper, quantities b m e —2b 2
referring to M,g) are endowed with a tilde and those for —e Tptpl(p-al=b)]=ke P rmr, (14
(S%,0) with a hat. The Einstein tensor for warped product
manifolds becomefl] V(w)
_2_672b[,LL”+,M,(2,LL,+a,_b,)]:K — +A
> s 1 R 2R
Gap=5[GasR~VaVoR]+ mrGapl (ARIAR) ~ 1], (3) (19
1 —2bp 41 i ’ i 12 V(W)
Gan=0, @) mte al+tal(@ —b)-u =g, (19
. |1~ ~
Gas=R%a5 §DR—%R}, (5 and
1
~ ~ —(a+b) r_
whereR denotes the Ricci scalar of,g). [Small and capi- € (e*Pw’) 4R2V"”’ (17)

tal Latin letters are used for indices oM (g) and (S%,0),
respectively;a,b,c=0,1 andA,B,C=2,3.] With respect to where we have introducesl'=R and where Eqs14), (15),

the diagonal parametrization of the mefgc and (16) are the 3(00+11), 3(00-11), and
(00— 11—22—33) components of the Einstein equations.
9= —e?tr)dt2 4 e20(tr)gp?, (6) We also note that thédimension-ful) coupling constant

«k=G/2g? can be absorbed by introducing the dimensionless
which we shall often use in this paper, the d’Alembertian ofquantitiesR/ 'k, p/v/k, andA . (We shall often sek=2 in

a functionR, say, and the Ricci scalar oM(g) are this paper, that is, we measure length, time and mass in units
of [Gg?c™ %], [GY%gc ™3], and[g2G 1], respectively; see
OR=e @a*b[ (g3 PR)’ — (P~2R)"] @ [9])
We shall use two gauges in this paper, depending on
and whether or notR has a local maximum. Considering solu-
tions for whichR has no critical point, we can use Schwarzs-
R=—2e (@+b[(ga~bg’) —(gb—ap), (g)  child coordinates, that is, we are allowed to choose the gauge
respectively. R(p)=p=r. (18)
For SU2), the spherically symmetric gauge potential has . , )
the general form Itis then glso convenient to introduce the functidt(s) and
o(r), defined by

A=ar,+w[Tydd+ T sindde]

i : N=(dr|dr)=e %, o=-g=e"". (19)
+(w—1)[7,d0—7ysindde], 9

In terms of this parametrization, the static equatigh4),
wherea= aodt+ aldp, andao, ag, w, andm are functions  (15), and(17) become

on M. Here 7,=n 712, To= d97,, T,=0d,7,/sind, and
n'= (sindcosp, S|n85|n<p cosy), Wherer are the Pauli matri- . w'?
ces. In the static, purely magnetic case the choice g =Kk T (20)

a=w =0 is compatible with the field equations. The gauge

potential(9) now reduces to P V(w)
. . m’:E[NW,2+ > > }, (21)
A=(w—1)[7,d9—Tssindde]. (10) r
- w'|2m 2 \ V,
In terms ofw, the stress-energy tensor has the components NW -+ = §Ar2— 52| = 4_r\g 22)

1 _ (1 V(w)

2 —_ _ — -
87g Tav=gz| WraWop gab(z (dw|dw)+ 7= ” where a prime denotes the derivative with respect tidere
(11)  we have already used E€RO) in the second and the third

equations, in order to eliminate the metric function The

8mg°TAp=0, (120  functionm(r) is defined by the relation
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2m(r) A 1+J1-2kA
N(r)El_T_grz- (23 RZ(P)ZT, w(p)=0,
When considering solutions for whidR develops a local
extremum, we use the gauget+b=0, that is, we param- 1/« )
etrize the static metric by the two functiorR(p) and Q(P)_ﬁi rz2 1]+ Ap+B. (32)
Q(p), where
Q(p)=e*=e 2, (24)  In the limit of vanishingA the solution with the lower sign

reduces to the magnetic Robinson-Bertotti unive(ath
The static field equation€l4), (16), and (17) then assume R?=1ix).

the form Finally, there exists a solution for which the components
2 of the stress-energy tensor assume constant values without
R'= — KW_ (25) w(p) being a constant. This is possible only for the special
R’ value A =3/(2«). In fact,
o 2Q( R’)Z 2 2V(w) 26
R(p)=+/ksinl —=|, w(p)=cod —|, )=1
(p NP (p NP Q(p
Vo (32
QW) =723, (27)

describes the static Einstein universe.

The above examples indicate that the qualitative behavior
of the static solutions to Eq§14)—(17) crucially depends on
the value of the cosmological constant. In the following, we
+1-ARZ (29) shall present a classification of these solutions in terms of

A and the node number @¥.

where nowQ’=dQ/dp, etc. Using Eq(25), the remaining
Eq. (15) becomes a first integral,

(QR)'R'=K(Qw'2— e

It is clear that this coordinate system is also suited to discuss

solutions for whichR has no critical points. However, for IV. ASYMPTOTICALLY DE SITTER SOLUTIONS
obvious reasons, we prefer to use the familiar parametriza- o o o
tion (18) and(19) in those cases. We start our numerical investigation by considering small

values ofA. For A=0 the regular, asymptotically flat solu-
IIl. SPECIAL SOLUTIONS tions_ of th_e EYM equation_s were found by Bartnik and
McKinnon in 1988[3] and, since then, have been subject to
Before we present a classification of the static configuranumerous studiesee, e.g.1,2,5,§ and references thergin
tions, we consider some special solutions which can be giveRach solution has a typical sifg, wheren is the number of

in closed form. nodes of the YM amplitudev. In the regionR>R,, the en-
First, forR(p) = p and constant Yang-Mills amplitude, we ergy density of the Yang-Mills field decays rapidly, and the
find from Eqgs.(25)—(28) above metric approaches the vacuum Schwarzschild metric.
For small values of the cosmological constant,
R(p)=p, W(p)=0,*£1, A<1/R?, the contributionA R? to the energy density is neg-
ligible. For R<R,, one therefore expects that the solutions

Qp)=1— ﬂﬂ(M_ ﬁpz (29) do not considerably deviate from the BK solutions. In the
p 2p° 307 regionr >R, however, the effect oA becomes significant,
which suggests that the metric approaches the de Sitter met-
with M being a constant of integration. Far=0 (V=1) rjc. Hence—for sufficiently small values of the cosmological
this solution corresponds to the Reissner-Nordstd® Sitter  constant—the solutions are expected to resemble the regular
universe with unit magnetic charge, whereas we obtain thgk solitons, which are surrounded by a cosmological hori-

Schwarzschild-de Sitter solution far=+1 (V=0). zon atR~1/\/A and approach the de Sitter geometry in the
Next, we consider solutions for which bofR(p) and  asymptotic region.
w(p) are constants. For(w)=0 one easily finds The numerical analysis of Eq&0)—(22) confirms these

expectations. We are interested in smooth, globally regular
solutions, such that the curvature is everywhere bounded.
These conditions imply that all quantities in E20)—(22)

(300 have to be regular for finite values of In order to find

numerical solutions, we need the formal power series expan-

which corresponds to thd?x S? Nariai solution[10]. (Here  sions of the Eqgs(21) and (22) in the vicinity of the origin,
A andB are constants of integratiorif w=0, we find, for r=0, the cosmological horizon,r=ry, defined by
sufficiently small values of the cosmological constant,N(r,)=0, and forr—c. In the vicinity of the origin, the
A<(2k)71, regular solutions behave as follows=2):

1
R(p)=-—=, W(p)==1, Q(p)=—Ap°+Ap+B,

X
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FIG. 1. Asymptotically de Sitter solution with =3x10"* and
n=3. For this solution one findsb=0.6998, r,=98.99,
wp=-0.505, w,=-0.774, M=m(x)=0.994, a=-37,
o(0)=2x10"3, o(r,,)=0.999 99.

w=1-br2+0(r%), N=1—(4b2+%)r2+0(r4).
(33

Near the horizon we find, witk=r—r,,,

N=N/x+O(x?),

W= W+ WX+ O(x?), (39)

where

1 V(wy) V, (W
N{]:E(l_ (2h —Arﬁ)<0 andw{,zﬁ

(39

Mh

(one hasN; <0 for a certain range of the paramejersi-
nally, in the asymptotic regime,—«, we have

a 3V, (w,) 1 +o( 1>’

WEWt T 2 PO
N=1 M A2+V 2/\21+Ol
B - R e P

(36)

Here,b, ry,, w,, w,, M, anda are six “shooting” param-
eters.

TABLE |. Parameters for the=1 asymptotically de Sitter so-
lutions.

A b M W, M W.. Py

0 0.453716 - - 0.8286 -1 0

0.001 0.453 584 53.92470.9835 0.8279—1.000 01 —0.0005
0.01 0.452 344 16.4312-0.9478 0.8219 —1.0015 —0.0048
0.1 0.435822 4.4417-0.8593 0.7599 —1.0291 —0.0158

spond to theA =0 BK solitons. Each solution is character-
ized by the value ofA and the numbem, of nodes ofw
inside the cosmological horizon.

The next step is to extend these solutions into the region
r>ry,. Since the values ofv,=w,(A,n) andry=ry(A,n)
are already known, we start with the expansi@4¥) and
integrate outwards from the horizon. The resulting solutions
have the following common featureBt(r) is negative for
r>r, and decreases rapidly with growimg whereasw(r)
stays bounded and tends asymptotically to a constant value
W, . Asr—oo, each solution meets a member of the asymp-
totic family (36). Since Eq.(36) contains three arbitrary pa-
rametersM, w,,, anda, one can always adjust their values
in order to fulfill the three matching conditions far, w’,
and N at somer>ry. In this sense, the behavior of the
solutions in the outer region imposes no further
restrictions—any solution obtained on the intervat O<r,
can be extended beyond the horizon.

Notice that, sincev,.# =1, the YM field gives rise to the
magnetic charge

1
where P=— F,
A Jg?
(37)

and where the integration is performed over the two-sphere
at spatial infinity. Here we have used E@l10) and
F=dA+A/\A to obtain F=(w?-1)7,dQ+(w—1) ‘dw

AA. (It is worthwhile recalling that the solutions with

A =0 have vanishing magnetic charg&he metric asymp-
totically approaches the Reissner-Nordstrde Sitter metric
with effective charggsee Eq.(36)]

P=[2tr(P-P)]¥?=w?2 -1,

2
pgﬁ:p2_ _Aaz.

3 (38

Finally, the remaining metric functioor is obtained from
Eq. (20), whereo behaves like

o=0(0)+0(r?), o=0o(r,)+0(r—ry),

In order to obtain numerical solutions to the static equa- ABLE Il. Parameters for thev=2 asymptotically de Sitter
tions the procedure is as follows. We start the integratiorisomt'ons'
with the expansion$33) and(34) and try to match the func-
tionsw, w’, andN at some intermediate point between the
origin and the horizon. The three matching conditions can ing 0.651725 — - 09713 1 0
general be fulfilled only for a discrete set of values of thep.001 0.653571 53.7756 0.8374 0.9696 0.98130.0481
three parameterb, r,, andw, appearing in Egs(33) and  0.01 0.661881 16.2718 0.5602 0.9600 0.85470.1906
(34). In this way, for each fixed value df<1, we recovera 01 0635993 4.2246 0.3321 0.8956 0.77320.2553
family of solutions in the interval &r=<r, which corre-

b My Wh M We, Ptzef'f
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FIG. 3. The typical spacetime diagraniU,V) for asymptoti-
cally de Sitter solutiongspecifically, theA =3Xx10 4, n=2 solu-

FIG. 2. The functions ({) andF({) for the asymptotically de  tjon has been usg@dThe spacetime manifold is qualitatively similar
Sitter solution withA =3X10"%, n=2. For this solution one has o the de Sitter spacetinithe black regions should not be confused
F(0)=6x10"" and{..=0.24. with the spacetime singularities

o=1+0

1 1
r—4), (39 X:—ﬂln|r—rh|+c+0(r—rh), Ir—ru<1, (42

in the vicinity of the origin, the horizon and infinity, respec- anq requiring that the consta@thas the same value in both
tively. Some further details about the solutions describe¢sses Here we have also introduced the quanity

above are presented in Fig. 1, Table I, and Table II.
ﬂ:_%UN,|r:rh>ou (43
V. ANALYTIC EXTENSIONS

In this section we construct the analytic extension for aWhich does not vanish for a regular horizon. With respect to

generic metric of the above type. Our first goal is to write theX: e metric now assumes the desired fd#@) which, in a
metric § in conformally flat form, such that the spacetime M€ighborhood of the horizon, becomes
metric becomes g=*+20(ry) ne 27X[1+0(e 27)](—d?+dx?) +r?dQ?,

g=02N(—dt2+dy?) +r2dQ?2, (40) (44)

In order to do so, we need the following essential propertie¥’here the plus and minus signs refer to the regions;, and
of the solutions discussed above: Bdthand o are smooth ' = F'n. respectively. _

functions, whereo(r) is bounded and everywhere positive. ~ N€xt, we note that(r), defined by

The metric functionN(r) is subject to the boundary condi-

tions N(0)=1 and N(—>)—czr2 éls r—oo, Moreover,)/N(r) f(ry=—e 20, r<ry, and{(n=e ", >y,
changes sign exactly once, namely at the horizon, (49
N(rp)=0. By virtue of these properties, the new radial co-

_ is a monotonically increasing function ofr with
ordinatey,

2(0)=-1, {(ry)=0, and {—exp(27x.)>0 as r—oo.
Hence, the inverse function({) is well defined and the

X(f)ZJrUd—IL, r<rp, function F(¢),
0
1
=dr F(O)=——a*(r(OIN(r(0), (46)
and X(r):Xoc_J N0 T (41) 77

is therefore smooth and everywhere positive. As usual, one
increases from zero to infinity asruns from zero ta,,, and  finally passes from the coordinatetsX) to the new coordi-
then decreases from infinity tg., asr grows fromr, to  nates U,V), where
infinity. The constaniy., is fixed by considering the expan-
sion of the above integrals in the vicinity of the horizon, U=e” Msinhpt, V=e” Xcoshyt, r<ry,
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U=e "Xcoshyt, V=e "sinhpt, r>r,. (47 10

The analytically extended metric eventually becomes L

g=F()(dU?—dV?) —r?({)dQ?, (48) 8l A B ¢ =

where {=¢(U,V)=U?-V2, The two functionsF(¢) and 1
r({) can be determined numericaljgee Fig. 2 For the de - .
Sitter solution one easily finds 6 8 | > | 7
F =3 3 ) 7

F 4 e 11. (49 I 2]z S
(g) m! r(g) 1_§! ge[ ’ ] 4-_ <E § <§ ]
The spacetime diagram in coordinatés, V) is displayed '
in Fig. 3. The spacetime manifold corresponds to the region | |
U%2-V2e[—1..]. The qualitative features of the diagram N |
are identical with those of the de Sitter solution. One should | _
stress that this diagram describeglabally regular space- B i
time manifold. One can think of this manifold as the de Sitter L -
hyperboloid sightly deformed by the masseswb BK par- P TR —
. X . . . 0 0.2 0.4 0.6 0.8
ticles placed at the opposite sides of the spatial section A

(curvesr =0 in the diagram
FIG. 4. The horizon radiu®;, vs the cosmological constant

VI. BAG OF GOLD SOLUTIONS for then=1 EYM solutions.
The asymptotically de Sitter solutions described above ,1 V(wy) ,  Viw(wy)
exist only for sufficiently small values of the cosmological Qn= | 1-——ARy|, W,=——.
RnRp Ri 4R;Qp

constant: For each fixed value of the node parametérere
exists a maximal valué .;(n), say, beyond which the nu-

merical analysis breaks down. Finally, we use this expansions to extend the solution beyond

Solutions which belong to larger values af exhibit & {he horizon. The advantage of this procedure is that it essen-
local extremum ofR and cannot be obtained in Schwarzs- tially uses onlyone shooting parametet: the remaining

child coordinates. We therefore pass to a parametrization Cgarameters are then iteratively determined.
the metric for whichR(p) is a dynamical function and

choose the gaugeza:e_zbEQ(P)? see Eq(24). each value of the node number, the horizon radysde-
'Equations(25)—(28) yield the formal power series at the reases monotonically with increasing values/Aaf where
origin (k=2), R,— for A—0 andR,—0 for A—A{n) (see Fig. 4
_ 2 4 _ 5 The limiting valueA ¢(n), for which the horizon shrinks to

W=1-Dbp"+0(p"), R=p+0O(p), zero, decreases wi%(h growing node number where

Ared(1)=3/4 andA () = 1/4,
p?+0(p?), (50 Depending on the position of the maximum Bf one

finds three qualitatively different classes of solutions, corre-

whereb is the only free parameter. The numerical integra-SPonding to the following subdivision of the interval
tion shows thaQ(p) develops a zero at some=pp(b,A),  (0:Aredn)) (see Fig. 4 o _
indicating the presence of a horizon. Requiring that all cur- (A) 0<A<Ay(n). These are the de Sitter like solutions
vature invariants remain finite at the horizon yields discussed earlier. The functidt(p) has no critical points for
finite values ofp. In the asymptotic regimeR’(p) behaves

lim,_, QW' =0. (51 like

(53

The numerical analysis reveals the following picture: For

4b%— A

Q=1+ 3

As a consequence of this condition we obtain a family of NP 1
. . . . R'(p)=R.+0
solutions between the origin and the horizon, which are pa- p
rametrized by a discrete set of valuggA), wheren is the . .
number of nodes. The parametevg, R,, andR/, entering  Where the constarR,, decreases with growing values Af

as p—o, (54

the power series at the horizon, and vanishes foA ;;(n). Thus, forA—Ai(n), R(p) de-
velops an “extremum at infinity.” The numerical analysis
w=wp+Wix+0(x?), Q=Q/x+0O(x?), (see Fig. % suggests that foA = A (n), R(p) asymptoti-
cally approaches a constant valu®(«)=1/JAi(n),
R=Ry+ R{x+0(x?), (520  whereasw(p) tends to*1; such that fop— oo the solutions
coincide with the Nariai solutiof30). The topology of the
are therefore fixed, onde,(A) is known. Herex=p—py,, solutions therefore changes far= A ;:(n) [for the solution

andQj, andw;, are given in terms ofv,, R,, andR}: with one node one has;;(1)=0.3303.
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T . e L S
L Q(p)/3 A=A
2+ _
- A:A2 4
- R(p)
L 5 i
X = A=A,
[*]
1 5 _
0
L w(p) _
-1
P [T S BN
0 2 4 8
In(1l+p)

FIG. 5. Change of the topology of the EYM solutions. The
solution with A =A,=0.3304 is asymptotically de Sitter, whereas
the one withA = A;=0.3306 is of the bag of gold type. The value
A=A,=0.3305 is very close to\.;. The functionsQ(p) and

w(p) for the three solutions are almost identical.

(B) Agi(n)<A<A,(n). For these values of the func-
tion R(p) develops a maximum for a finite valyg outside
the horizon,p,<p.<w«. SinceR"<0 [see Eq.(25)], R(p)
decreases fop>p., and becomes zero at some finite value
Psing: Say. In fact, the metric functioQ diverges as
p— Psing, INdicating that the geometry becomes singular.
[For the solution with one node one finds (1)=0.334]

(©) A.(nN)<A<A4nN). The behavior is similar to case
(B). However, nowR reaches the maximal valueside the
horizon, pe<pj. Since A{n) is the maximal value for
which the solutions exhibit a horizoR, vanishes still outside
the horizon, that ispg,=pn. Again, Q is unbounded for

P = Psing (S€€ Fig. 6.

We call the solutions which exhibit a horizon and for
which R develops a second zero outside the horizon bag of

gold solutions.

VIl. COMPACT REGULAR SOLUTIONS
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FIG. 6. The bag of gold solution with =0.4 andn=1.

solution is the static Einstein universe with
Aef(1)=3/(2k), already presented in the second section:

R(p)= &sin( %) w<p)=cos( %) Q(p)=1(-55)

The regular solutions with higher node numbers are ob-
tained in the limitA — A (n) from the corresponding bag
of gold solutions. An alternative method, which takes advan-
tage of the reflection symmetry with respect to the equator, is
to integrate the field equations on the “northern hemi-
sphere,” say. In order to do so, one has to impose boundary
conditions at the polé.e., the origin,o=0) and the equator
(p=pe). The solutions are then obtained by matching the
numerical integrations from the pole and the equator.

f The formal power series at the origin involve one “shoot-
ing” parameter,b, and were given in Eq(50). In order to
obtain the series expansions in the vicinity of the equator, we
have to distinguish two cases: Depending on whether the
gauge field amplitudev(p) is antisymmetric or symmetric

Until now we have restricted our attention to solutionsWith respect tope, the regular compact solutions will be
which develop a horizon. A new and interesting type of so-called odd (v.=0) or even (,=0), respectively.

lutions is obtained in the limi\ — A (n), where the hori-
zon and the singularity merge,— psing- In this limit, that is
for A=A{n), the geometry turns out to be everywhere
regular, in particular at both zeros Bf Moreover, the points
whereR assumes its maximal valug,, lies precisely be-
tween these zeros and the spatial geometry is symmetric with
respect tgp,.. Since, in this case, the manifold has the topol-
ogy of IRX S, the zeros oR and the two-spherg=p,, will

be called the north pole, the south pole, and the equato

respectively.

For each node number, there exists precisely one value
of the cosmological constan, = A (n), for which one ob-
tains compactsolutions of the above kind. Far=1, the

(i) we=0: For the odd configurations one finds, with
X=p—pe (k=2),

R=R.+3RIX*+0(x%), Q=Qq+3QIx>+0(x%),

w=w/x+0(x3), (56)

where the field equation®5)—(28) imply thatw,, R, and

o are given in terms oR, andQg,

. 1
¢ 2Qe

!

W RII:_EW/Z
e

(R;Z+AR2-1), R W
e
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TABLE lll. Parameters for compact solutions.

n A b V2pelm ReIN2  wg Q.
1 0.75 0.25 1 1 0 1
2 0364244 0.429599 4.824 1.0156-0.5320 16.656
3 0.293218 0.508831 15.63 1.0757 0 88.390
4 0.270328 0.540489 39.64 1.0483 0.23549 417.12
5 0.260895 0.554021 88.43 1.0485 0 1409.7
o 0.25 0.569032 1 - 0

"_ 3 ( 2_ RZ)

=— .
e Re e

(i) wi=0: For solutions with even Yang-Mills amplitude we

have

1
R=Re+ 7 RUx*+0(x%),  Q=Qe+3Qex*+0(x%),

W=Wg+ sWox2+O(x%).

(57)

As before, the only free parameters &gandQ.. In terms
of these,w, is determined by Eq28),

V(we) =R3(1—-ARY),

andw?, R, andQ! are obtained from Eqg25)—(27):

(W)=

Q
4_R62V:W(We)
e

a)_
l R(e)_

" 2 2
e:E[ZV(We) - Re]-
e

4 "2
R—e(We) :

Qp)/40

FIG. 7. Then=3 compact solution.
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FIG. 8. The embedding diagrams for the=-1,2,3 compact so-
lutions.

In both cases, the free parameters are the position of the
equator,p., the cosmological constant, the shooting param-
eter at the poleh, and two independent shooting parameters
at the equato(for instanceR, andQ.). The values of these
quantities are presented in Table Il for the first five compact
solutions. The shape of the metric functions and the Yang-
Mills amplitude is given in Fig. 7 for the@= 3 solution.

The geometry of the compact solutions may be illustrated
with the help of embedding diagrams. Consider the three-
dimensional Euclidean space in cylindrical coordinaies
Z, and ¢. A surfaceS of revolution in this space is charac-
terized by a mapping— (R(p),Z(p)), and the induced met-
riconSis

L L L L L L

horizon

N
L
by ey [

Q AF0.745 AF0.6

[
N
——
P I

R BTN SRR B SI BRI R R
) 1 -2 0 2 4 6
Z(p)

FIG. 9. The embedding diagrams for the asymptotically de Sit-
ter solution withA=0.3,n=1, and for then=1 bag of gold solu-
tions with A=0.6 andA =0.745.
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gs=(R’?2+2Z'?)dp2+R(p)?d¢2. (58 TABLE V. The special values o for the lowesin’s.
On the other hand, the metric of a spacelike sec8ofwith n Acrir(N) Ay (n) Aredn)
t=|tot_ and_i}=_7r/2)bthrough the geometry of the compact 1 0.330 0334 0.75
solutions 1S given by 2 0.239 0.250 0.364
1 3 0.237 0.247 0.293
/= ——dp?+R(p)2de? 59
95 = 50,y 9° (p)°de (59)
Hence, the two geometries coincide, provided that we choosgon. After analytic continuation, such a solution can be
the functionZ(p) according to thought of as describing the de Sitter hyperboloid with two
BK solitons at the opposite sides. For

p — dp Agit(n) <A <A ¢n), the configurations develop an equator
Z(p)=2(0)+ J;) V1-Q(p)R Z(P)m: (600 and exhibit a horizon, such that the equatooigsidethe
P horizon for A;#<A <A, and it isinsidefor A, <A <A

wherep e[0,20]. (see Table IV. Finally, there exists a globally regular, com-

The embedding diagram@®(p),Z(p)) for then=1, the  Pact solution withA = A .
n=2, and then=3 compact regular solutions are presented In this paper, we have restricted our attention to solutions
in Fig. 8 For n=1, we obtain the circle with a regular center. The extension to configurations with
(R(p),Z(p))= \/;(sin(p/\/E),cos@/\/;)), reflecting the fact an event horizon is expected to be straightforward. In fact,
that the manifold in this case is precisely/®. The spatial We have no reasons to doubt that one will find a similar
sections of the solutions with higher values rofresemble  classification for these black hole solutions.
prolate ellipsoidgor “cigars”). No globally regular solutions seem to exist for

It is also instructive to draw the embedding diagrams forA> A ¢((n). In this case, the metric functioc@(p) is every-
the solutions with horizon. In this case, the domain of inte-where positive and diverges @s- pging, Wherepging is the
gration in Eq.(60) is p[0,p,], which yields half of the position of the second zero d®(p). Such solutions may
diagram. At the horizon one ha®=0 and therefore therefore be considered as bag of gold configurations without
dR/dZ=0. SinceR(py,) #0, the horizon corresponds to the horizon. WhenA is small and negative| §|<1), the solu-
“throat” of the geometry, which connects the two identical tions resemble again the BK solitons, however, they ap-
patches of the manifol@see the conformal diagram in Fig. proach the anti-de Sitter geometry in the asymptotic region.
3). The resulting diagrams for severa=1 solutions are We have also investigated the stability properties of the
presented in Fig. 9. The diagrams show that the throat besolutions presented in this paper. The stability analysis for
comes narrower a& tends to the critical valud o5, Where these—asymptotically not flat—solutions is, however, rather
the manifold splits into two separate pieces. involved. In particular, the fact that the siie of the two-
spheres develops a local maximum gives rise to the follow-
ing difficulty: Either the pulsation equations assume the form
of a regular, formally self-adjoint system witlinphysical

The features of the static, spherically symmetric solutionglegrees of freedom, or one isolates the unphysical modes
to the EYM equations depend critically on the value of theand obtains aingular pulsation equation. The methods by
cosmological constant. For every node number and any  which these problems can be solved are presented in an ac-
A with 0<A<Ai(n) there exists a globally regular solu- companying papel8], and here we merely mention the re-
tion for the BK soliton surrounded by a cosmological hori- sult: all of the solutions described above are unstable.

VIIl. CONCLUDING REMARKS

[1] O. Brodbeck, M. Heusler, and N. Straumann, Phys. Re§3D Commun. Math. Physl43 115(1991); J. A. Smoller and A.
754 (1996. G. Wassermanipid. 151, 303(1993; 154, 377 (1993.

[2] N. E. Mavromatos and E. Winstanley, Phys. Rev5% 3190 [6] P. Breitenlohner, P. Forgacs, and D. Maison, Commun. Math.
Phys.163 141(1994.

(1996. . .

[3] R. Bartnik and J. McKinnon, Phys. Rev. Lef, 141(1988. 71 ;.4;'702r|(|,19K9.3Maeda, and T. Tachizawa, Phys. Rev. 42

[4] J. Cervero and L. Jacobs, Phys. Let8B, 427 (1978; M'. [8] O. Brodbeck, M. Heusler, G. Lavrelashvili, N. Straumann, and
Henneaux, J. Math. PhyéN.Y.) 23, 830(1982; Y. Hosotani, M. S. Volkov, this issue, Phys. Rev. B, 7338(1998.
Phys. Lett.147B, 44 (1984. [9] G. Johnstone Stoney, Philos. Md@er. 5 11, 381 (1881).

[5] J. A. Smoller, A. G. Wasserman, S. T. Yau, and J. B. McLeod,[10] H. Nariai, Sci. Rep. Res. Inst. Tohoku Univ.3%, 62 (1951).



