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Reconstruction of the bubble nucleating potential
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We calculate analytically the bubble nucleation rate in a model of first-order inflation which is able to
produce the large-scale structure. The computation includes the first-order departure from the thin-wall limit,
the explicit derivation of the preexponential factor, and the gravitational correction. The resulting bubble
spectrum then is compared with constraints from the large-scale structure and the microwave background. We
show that there are models which pass all the constraints and produce bubblelike perturbations of interesting
size. Furthermore, we show that it is in principle, possible to reconstruct completely the inflationary two-field
potential from observations.@S0556-2821~96!06324-2#

PACS number~s!: 98.80.Cq, 98.80.Es
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I. INTRODUCTION

One of the most interesting ideas introduced in inflatio
ary cosmology in recent years is the possibility of perfor
ing a phase transitionduring inflation. In such scenarios, tw
fields act on stage: one, sayv, slow rolls, driving enough
inflation to solve the standard problems; the second field,
c, tunnels from a false-vacuum state to an energetically
vored true-vacuum state, producingbubblesof the new phase
embedded in the old one. Both processes are governed
two-field potentialU(v,c). To avoid the graceful exit prob
lem, the true vacuum state has to allow for a period of in
tion on its own. We then can speak of a true-vacuumchannel
over which the bubbles slow roll until inflation ends, an
reheating takes over. Depending on the potential, th
classes of first-order inflation models have been propose
far. The first is the classical extended inflation@1–3#: the
bubbles are produced in a copious quantity, so that they
eventually the space and complete the transition. To av
too large distortions on the cosmic microwave backgrou
~CMB!, this scenario must produce very small bubbles@4,5#,
so that they are thermalized rapidly after inflation. No tra
of the bubbles is left in our Universe, and from this point
view, such scenarios do not lead to new predictions o
inflation without bubble production. The second class is
V,1 inflation @6–8#: here the transition is never complete
so that each bubble resembles an open Universe to in
observers. Therefore if the bubbles inflate for less than
canonicalNT560 or soe-foldings, they will approach an
V,1 Universe. Here the effect of the nucleation proces
observable, although it is indistinguishable from a slow r
inflation just shorter thanNT e-foldings and with no first-
order phase transition at all. Finally, in@9# a third class of
models has been proposed, following an early suggestio
La @10#. In such models, the phase transition is comple
beforethe end of inflation. Then it has been shown that
primordial bubbles can be large enough to drive struct
formation, and still be below the CMB level of detectio
@11–14#. In such a scenario, the present large-scale struc
is a direct outcome of the first-order transition, which
therefore, observable and testable.
540556-2821/96/54~12!/7199~8!/$10.00
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Several deep redshift surveys detected large voids in
galaxy distribution@15–17#, although it is still not clear if
they are really empty of matter or just lack luminous galax
@18#. Standard models of galaxy formation can barely a
count for these structure, and do so only at the price of
justing the parameters to get very large-scale power~see,
e.g., Ref.@19#!. Therefore just as we associate matter clum
to primordial fluctuations, it appears worth trying to asso
ate the present voids to primordial bubblelike fluctuatio
produced during a first-order phase transition. Within diffe
ent contexts, the idea of the voids as separate dynam
entities has been investigated several times in earlier lit
ture @20#.

A crucial aspect of bubble inflation is the calculation
the bubble spectrumnB(L), defined as the number o
bubbles per horizon with comoving size larger thanL. In @9#
we calculatednB in a specific model, built on fourth-orde
gravity @23#, which we found to possess the requested f
tures. We found thatnB(L) can be approximated by a powe
law,

nB5~Lm /L !p, ~1!

and thatLm can be as large as the observed voids in
Universe.

The central quantity needed to evaluatenB is the nucle-
ation rate in the semiclassical limit@21#

G5M4exp~2B!, ~2!

whereM is a constant with a dimension of mass, andB is
the Euclidean least action minus the action for the exter
de Sitter space-time solution. The calculation ofG in @9# ~and
in most other papers on the topic! was based on the thin-wa
limit, on neglecting the gravitational correction, and on
dimensional argument for evaluatingM. In this paper we
remove, at least partially, all three approximations. This c
culation allows us to reconstruct completely the inflationa
two-field potential from the determination of four observab
quantities: the slope of the bubble spectrum, its amplitu
the density contrast inside the bubbles, and the amplitud
7199 © 1996 The American Physical Society
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7200 54LUCA AMENDOLA et al.
the ordinary slow-rolling fluctuations. We remark that on
in a model, such as ours, in which the bubbles are dire
observable, it is possible to reconstruct the tunneling se
of the primordial potential.

The scheme of the paper is as follows. In Sec. II
present the class of potentials we are going to investigate
Sec. III we give the basic formulas. In Sec. IV, V, and VI w
go through the detailed calculation ofG, taking into account
deviations from the thin-wall limit, inserting the gravitation
correction, and calculating explicitly the factorM. In Sec.
VII we introduce our model of first-order inflation in
fourth-order gravity theory@23# and calculate the time
dependent nucleation rate. In Sec. VIII we write down t
bubble spectrum and in Sec. IX, finally, we compare it w
constraints from CMB and the large-scale structure. In
last section we draw our conclusions.

II. THE MODEL

We consider the scalar field theory described by the
tion ~hereinafter,\5c51)

S5E d4xA2gS 2
R

16pG
1
1

2
c ;mc ;m2U~c! D , ~3!

whereg is the metric determinant andR is the curvature
scalar. The potential is a generic quartic function with no
degenerate minima which allows for tunneling. We can wr
it very generally in the form

U~c!5L1V1~c!1V2~c!, ~4!

whereL is a cosmological constant,V1 is a quartic with two
equal-energy minima, andV2 is a symmetry-breaking poten
tial which brings the energy of one minimum, the fal
vacuum~subscriptF), to a value larger than the other, th
true vacuum~subscriptT). In the two minima, the Einstein
equation reduces simply to

H258pGU/3. ~5!

We will denote withHT ,UT the Hubble constant and th
potential energy of the true vacuum, and withHF ,UF the
same quantities for the false vacuum. We wish to calcu
the tunneling rate~2! where B5SE(c)2SE(cF), and
SE(c) is the Euclidean least action, i.e., the Action of t
‘‘bounce’’ solution. We perform the computation in the thin
wall limit ~actually, we go to a post-thin-wall limit calcula
tion!, according to which theO(4) bubbles nucleated hav
four-radiusR@D, whereD is the wall thickness. Further, w
include the gravitational term in the action: as we will sho
this term is important when the parameterg5RHT ~not to be
confused with the metric determinant! is much larger than
unity. This limit amounts in fact to a bubble approaching t
space curvature radius 1/H. It is convenient to write the po
tential ~4! in the form

U~c!5
3g2

8pGR2
1

1

2D2c0
2~c22c0

2!21
1

RD
~c1c0!

2.

~6!
ly
or
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e
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-
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Then, the true-vacuum state isc52c0, and the false
vacuum isc5c0. The potential~6!, therefore, is defined by
four physical parameters:g,R,D,c0.

III. THIN-WALL LIMIT

The Euclidean action of the scalar theory~3! is

SE5E d4xA2gS 2
R

16pG
1
1

2
c ;mc ;m1U~c! D . ~7!

In the Euclidean metric for an O~4! space
ds25dr21a2(r )dV3

2, one hasR526(aa91a8221)/a2

and

SE52p2E drF 3

8pG
~a2a91aa822a!1a3S 12c821U D G

52
3p

2GE dra~12a2H2!, ~8!

where the prime denotes derivation with respect to the fo
radiusr . The Euclidean Klein-Gordon equation forc is

c913
a8

a
c85dU/dc ~9!

and the Euclidean Friedmann equation is

a82511
8pG

3
a2S 12c822U D . ~10!

In the zero-gravity limit,G→0, the latter equation gives
a85const, so that Eq.~9! reduces to

c91
3

r
c85dU/dc. ~11!

In the thin-wall limit, in whichR@D, one can assume tha
the second term in Eq.~11! can be neglected, and tha
dU/dc52c(c2/c0

221)/D2. The solution which interpo-
lates between false and true vacuum is then

c~0!5c0tanhS r2Rw

D D , ~12!

whereRw is an integration constant that will be determin
later. To integrate the action over the bounce solution,
consider that outside the bubble, i.e. in the false vacu
c5c0, so thatBext5SE(c0)2SE(c0)50. On the wall, at
distanceRw , we have

Bwall52p2Rw
3S1 , ~13!

where

S15E
2c0

c0
dc@2„U~c!2UF…#

1/25
4c0

2

3D
. ~14!

Finally, inside the bubble,c52c0, and since@from Eq.
~10!, and neglectingc8# da5dr@12a2HT

2#1/2, we have
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Bint52
3p

2GE0
Rw
ada@~12a2HT

2!1/22~12a2HF
2 !1/2#.

~15!

The general expression is, therefore,

B~Rw!52p2Rw
3S11

p

2G
$HT

22@~12Rw
2HT

2!3/221#

2HF
22@~12Rw

2HF
2 !3/221#%. ~16!

Let us note thatR53S1 /«, where«5UF2UT54c0
2/RD.

Then we see thatB(Rw) is minimized by@24#

Rw5R~11g214pGRS1112p2G2R2S1
2!21/2. ~17!

Then, for G→0, which implies g5RHT→0, one has
Rw5R. Notice that the parameterRwHT which appears in
Eq. ~16! equalsg, sinceHT

25g2/R2 for the potential~6!.
This shows explicitly the role played by the constantsR and
g. Finally, we obtain the usual~zero-gravity, thin-wall! result
@21#

B0527p2
S1
4

2«3
5
2p2

3

R3c0
2

D
. ~18!

IV. THE GRAVITATIONAL CORRECTION

Now to the general case,GÞ0. To the purpose of this
paper, we simplify our problem by puttin
(HF

22HT
2)/HT

2!1, i.e. assuming that the vacuum energy d
ference is much smaller than the true-vacuum energy.
results will be consistent with this approximation. This
equivalent to neglecting the last two terms in parenthese
Eq. ~17!. Then we have thatB(Rw) is minimized by a bubble
radiusRw5R/(11g2)1/2. The bounce action isB5B0f (g)
whereB0 is the no-gravity action~18! and where

f ~g!54~11g2!23/2$11g24@213g222~11g2!3/2#%.
~19!

For g→0, f (g)→1, as expected. To the lowest nontrivi
order ing,

B5B0~12g2!. ~20!

Gravitational effects, then, increase the nucleation rateG
@21#.

V. POST-THIN-WALL CORRECTION

Let us come back to the Euclidean spherically symme
equation of motion in absence of gravity, Eq.~11!. While the
trivial true-vacuum solutionc252c0 holds also when the
symmetry-breaking term in the potential is considered,
false-vacuum solution is displaced slightly:

c15c0S 12
D

R
2

D2

R2 2••• D . ~21!

It is useful now to expand the equation of motion arou
r5R. Introducing the variablez5(r2R)/D, we obtain
-
ur

in

c

e

c91
3D

R
c8S 12

zD

R
1
zD2

R2 1••• D
5
2c

D2 ~c2/c0
221!1

2

RD
~c2c0!, ~22!

where now the prime denotes derivation with respect toz.
We search solutions of Eq.~22! to the first order inD/R:

c5c~0!1c~1!~D/2R!1•••. ~23!

We know already that to the zeroth orderc (0)5c0tanh(z).
Subtracting the zeroth solution from Eq.~22! we get, for
i>1,

c9~ i !1c~ i !S 241
6

cosh2zD5 f i~z!, ~24!

where f i(z) is defined order by order from Eq.~22! and
depends only onz and not onc ( i ). At first order, then, the
solution is

c5c0H tanhz1S D

2RD S 2
z

cosh2z
2tanhz21D

22S D

2RD 2~ tanhz11!J . ~25!

It can be noticed, from Fig. 1, that the post-thin-wall corre
tion moves the largez value ofc from c0 to c1 . In Eq.~25!
we included the part of the correction at second order wh
also contributes to the leading classical correction to the
tion after integration overz.

The Euclidean action, finally, is calculated as

B5S~c!2S~c0!5B0~129D/2R!. ~26!

FIG. 1. The bounce solution, interpolating between fa
vacuum FV and true vacuum TV. The solid line corresponds
D/R50, the dotted line toD/R50.1, and the dashed line t
D/R50.3.
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The term 9D/2R is, therefore, the post-thin-wall correctio
term, which again increases the tunneling rate.

VI. THE PREEXPONENTIAL FACTOR

In semiclassical approximation in four dimensions, t
rate of false vacuum decay is given by Coleman’s form
@21#

G5S B

2p D 2U det„4…„2]21U9~c!…

det„2]21U9~c1!…
U21/2

e2B, ~27!

where the functional determinant is computed with the fo
zero eigenvalues omitted,c is the classical solution of Eq
~22!, c1 is the trivial false-vacuum solution. It was shown
@22# that in the thin-wall limit, the functional determinan
can be expanded in power series of 2R/D as

ln
det~5!D

det~5!D0
5Cl ln~2R/D!1C3~2R/D!3

1C2~2R/D!21•••. ~28!

The parts of this expression, which behave as powers
2R/D have no universal significance, for they are adjusted
even concealed completely by ultraviolet renormalizatio
and we will include them in the overall multiplicative facto
M8. The logarithmic part, on the other hand, is not expec
to be affected by short distance structure. The universa
frared logarithm ln(2R/D) is associated with the geometr
cal features of the bubble and does not depend on the spe
form of the double well potential. Since the logarithmic ter
appears due to the infrared region, we have to consider
low-lying levels of the operator of the small fluctuation
around the bounce solution

D52]21U9~c!. ~29!

This operator is rotationally invariant and, thus, its eige
functions, are, in their angular dependence, four-dimensio
scalar spherical harmonics. In terms of radial eigenfunctio
the eigenfunction equation becomes

S 2
d2

dr2
1
l ~ l12!13/4

r 2
1U9~c! D f nl~r !5lnl f nl~r !.

~30!

Expanding the centrifugal potential in power series arou
r5R ~it is justified when we deal with the low-lying state
l!2R/D since bound states are localized at the wall of
bubble!, keeping only the leading term, and replacingr with
z, we can rewrite Eq.~30! for n50 as

S 2
d2

dz2
1D2U9~c!22E0D f 0l50, ~31!

where

E05
1

2 S D2l0l242
4l ~ l12!13

~2R/D!2 D ~32!

does not depend on the quantum numberl . TakingE0 in the
form of expansion
a

r

of
r
s

d
n-

ific

he

-
al
s,

d

e

E052S a1
b

2R/D
1

c

~2R/D!2D , ~33!

we obtain the spectrum of the eigenvalues in the form

l0l5
4

D2 S a1
b

2R/D
1

c

~2R/D!2
111

4l ~ l12!13

4~2R/D!2 D .
~34!

We know that in the spectrum of the eigenvalues, there
one negative eigenvaluel00 corresponding to uniform ex
pansion of the bubble, which is just vacuum instabili
There is also the 4-fold degenerate eigenvaluel1050 de-
scribing translations of the bubble center in the Euclide
space in four directions. Therefore substitutingl51 into Eq.
~34!, we obtain

a521, b50, c5215/4 ~35!

and find the lowest band of the eigenvalues

l0l5
~ l21!~ l13!

R2 . ~36!

It is important to know that in deriving Eq.~36! for l0l , we
assumed the existence of nontrivial classical solution of
equation of motion which breaks a translational invarian
~zero modes! and the thin-wall limit in order to justify the
expansion in powers of 2R/D. Therefore this equation doe
not depend on the specific form of the potentialU(c).

Calculating the product ofl0l for l!2R/D and keeping
only the logarithmic term, it is straightforward to show th
cl5210 ~see Eq. 28!. Then it follows immediately from the
general formula~27! that in the thin-wall limit, and taking
into account the quantum corrections, the rate of fal
vacuum decay is given by

G5
M84B2

~2R/D!4
e2B ~37!

independently of the specific form of the potentialU(c).

VII. A FOURTH-ORDER GRAVITY, FIRST-ORDER
INFLATION MODEL

As we mentioned in the Introduction, astrophysically i
teresting bubbles can be produced only in a two field mod
in which one has slow-rolling along a field,v, while the
second field,c, performs a phase transition in an orthogon
direction.

We introduced already in@9# a specific model of first-
order inflation able to generate large bubbles in fourth-or
gravity. Once a conformal transformation is applied, t
model is described by the action~we put hereinafter also
G51)

S5E A2gd4xS 2
R
16p

1~3/4p!v ;mv ;m

1
1

2
e22vc ;mc ;m1U~c,v! D , ~38!
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where the potential is

U~c,v!5e24vSV~c!1
3M2

32p
W~c!~12e2v!2D , ~39!

and where

W~c!511
8l

c0
4 c2~c2c0!

2, V~c!5
1

2
m2c2. ~40!

The slow-roll inflation driven byv takes place atv@1, and
is over whenv approaches zero. At largev, the potential
U is dominated byW(c), and, thus, the false-vacuum min
mum at c'c0, for which UF5e24v@(3M2/32p)(1
2e2v)21V(c0)# is unstable with respect to tunneling to
ward the true vacuumc50 ~for which UT'3M2/32p). At
smallv, U is dominated byV(c), and both the true and th
false vacua converge to the global zero-energy minimum
v5c50, where inflation ends and reheating takes pla
The slow-roll solution in this model forv@1 can be written
very conveniently as@9#

4
3 N5e2v, ~41!

whereN is the number ofe-foldings to the end of inflation.
In the same limit,H5M /2. The potential~39! for v@1
takes the form~6! by the substitution

c→c1c0/2 ~42!

and, therefore, in the new notations we have

R5~3/2p!1/2
Ml1/2

m2c0
e4v, ~43!

D5~8p/3!1/2
c0

Ml1/2, ~44!

g5MR/2. ~45!

Notice that now R depends on thee-folding time as
R;N2. This is where the scale dependence of the bub
spectrum arises from, as we show below.

The Euclidean action is

SE5E A2gd4xS 2
R
16p

1
1

2
e22vc ;mc ;m1U~c,v! D

~46!

~neglecting the kinetic energy ofv). To obtain a canonica
kinetic term, we rescale the coordinates@25# as
xm5e2vx̂m, so that, in the new coordinates

SE5e24vE A2gd4x̂S 2
R
16p

1
1

2
c ;mc ;m1U D

5e24vŜE~c!, ~47!

where finallyŜE is canonical. Combining Eq.~47!, Eq. ~26!,
and Eq.~20!, we obtain

B5e24v
p2

6

R3c0
2

D S 12
9D

2RD ~12g2! ~48!
at
.

le

~there is an extra factor of 1/4 because now the vacu
states are at 0 andc0 instead of at6c0). In terms ofN this
is

B5
N4

N1
4 F12SN2

N D 2GF12S NN3
D 4G , ~49!

where

N1
25

33/2

4

c0m
3

M2l
, ~50!

N2
25

27p

8

c0
2m2

M2l
, ~51!

N3
25S 27p32 D 1/2 c0m

2

M2l1/2. ~52!

The two approximations we adopted are valid forN.N2
~thin wall!, and forN,N3 ~gravitational correction!. It is
useful now to introduce a fourthe-folding epoch,N0, defined
as the epoch at which the crucial quantityQ54pG/9H4

equals unity. This can be seen as the epoch at which
bubble for horizon volume for Hubble time~or 4-horizon! is
nucleated, that is, the bubbles are saturating the fa
vacuum space. The bulk of the nucleation occurs, theref
just beforeN0, and spans only fewe-folding times. We,
therefore, can approximateQ(N) as

Q5
4pG

9H4 5expH ~N0
42N4!

N1
4 F12SN2

N0
D 2GF12SN0

N3
D 4G J ,

~53!

where

N0
45

N1
4

@12~N2 /N0!
2#@12~N0 /N3!

4#
lnS 64pM4

9M4 D .
~54!

From Eq. ~37! we can write the factorM as
M8B1/2(D/2R).

The scalar and gravitational zero-point fluctuations gen
ated during thev-driven slow-rolling are proportional toM
@26,27#. From the current microwave background measu
ments, we obtainM'531026 ~in Planck units!, a value that
we will adopt in the numerical results below. However sin
in our model one also should consider the contribution of
bubbles to the microwave background, this constraint is
tually only an upper limit onM . OnceM is fixed, the three
e-folding constantsN123 determine fully the inflationary po-
tential, through the three remaining constantsm,l,c0. A
successful sequence of epochs is the following: atN3, the
gravitational correction ceases to be important; atN0 the
crucial parameterQ is of order unity, and the bubbles satu
rate the space; atN2 the thin-wall approximation break
down; and finally atN1 the bounce actionB equals unity,
and, thus, the semiclassical approximation is no longer r
able. For traces of the phase transition to be visible today,
also must imposeN0,NT , beingNT the observable last 60
e-foldings of the inflation. Then the full set of constraints
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N3.NT.N0.N1 ,N2 . ~55!

VIII. THE BUBBLE SPECTRUM

We now can calculate explicitly the bubble spectrum
our model. The number of bubbles nucleated in the inter
dt is @28#

dnB
dt

5Ga3Vinexp~2I !,

I[F2
4p

3 E
0

t

dt8G~ t8!a3~ t8!S E
t8

t dt

a~t! D 3G , ~56!

whereVin is the horizon volume atN5NT , Vin54p/3H in
3

and where the exponential factor accounts for the fraction
space which remains in the false vacuum. To get a man
able expression, we first change variable in Eq.~56! from the
nucleation epocht to the scaleL in horizon crossing att, by
use of the relationdL/dt'2H inLh /a valid during slow roll.
This gives

dnB
dL

523Lh
3L24Q~N!e2I . ~57!

We approximateQ(N) around N5N0 as Q'exp@s(N0
2N)#, where

s54
N0
3

N1
4 F12SN2

N0
D 2GF12SN0

N3
D 4G . ~58!

We make use of the relation between thee-folding timeN
and the bubble comoving sizeL

HL~N!5H inLhexp~N2NT!. ~59!

It follows Q5e2sDN(Lh /L)
s, where DN5NT2N0 corre-

sponds to the duration of the transition. ForI!1, i.e., far
from the end of the transition, we obtain

dnB
dL

5AL242s ~60!

and

nB5~Lm /L !p, p531s, ~61!

where

Lm5Lhe
~32p!DN/p~3/p!1/p. ~62!

In the thin-wall, zero-gravity limit,s54N0
3/N1

4 @9#. When I
approaches unity, the nucleation process reaches a peak
then declines rapidly, due to the fast decrease in the fa
vacuum space available. In@9# we showed that the peak oc
curs, as expected, just afterN0, which we, therefore, conside
the end of the nucleation.

As we discussed in Ref.@9#, Eq. ~62! differs from the
analogous quantity in extended inflation@1,5,10# because
here we haveDN instead ofNT'60. We show below, by a
suitable choice ofDN, i.e. of the duration of the transition
that we may have a bubble spectrumnB which generates
al

of
e-

and
e-

astrophysically large bubbles and escapes the CMB bou
contrary to what occurs in the other models of first-ord
inflation.

IX. RESULTS AND DISCUSSION

We now wish to compare the bubble spectrum with t
constraints from large-scale structure and the cosmic mi
wave background. It is not the aim of this work to determi
the best model parameters, also because the statistics o
served voids is still at a very schematic level. We will foc
instead on showing that there is a region of parametric sp
which gives astrophysically large bubbles, that can cont
ute significantly, if not exclusively, to structure formatio
while passing the CMB constraints.

When a bubble nucleates, its density contrast can be
mated~in the thin-wall limit!, as

d[udr/ru5
UF2UT

UF
5@~N/N4!

211#21, ~63!

where

N4
253p

c0
2m2

M2 . ~64!

Since the bubbles cross out the horizon soon after t
nucleation, the same density contrast will be found at reen
The bubble density contrast increases to unity forN!N4,
i.e., toward the end of inflation. One can also wr
N4'1.5MN3

4/N1
2. For instance, taking acceptable values

N3590, N1520, and M5531026, one obtains
d'631024 at N'N0'50. TakingN3→` one would ob-
tain completely void bubbles,d→1. Here we will consider
instead only small values ofd @13#. From Eq. ~59! and
N@N4, we have the density spectrum at reenter

d~L !5SN4

NT
D 2S 12

2

NT
ln~L/Lh! D . ~65!

Sinced!1, we do not consider~contrary to Refs.@9,11,14#!
the overcomoving growth that takes place only if and wh
in its late history, the density becomes nonlinear.

Let us discuss first the CMB constraints. A bubble
radiusL at decoupling produces a Sachs-Wolfe distortion
the microwave temperature ofDT/T;d(L)L2/Ld

2 if Ld de-
notes the horizon scale at decoupling. In reality, bubb
which reenter before decoupling have time to deepen; for
range of scales we are interested in, however, this is a m
effect and we neglect it. In a pixel corresponding to a size
Lp.L at decoupling, a further factor ofL2/Lp

2 smears the
signal@5#. There are two main CMB constraints arising fro
observational upper bounds to such Sachs-Wolfe effect. F
sky, low-resolution surveys such as the Cosmic Backgro
Explorer ~COBE! can detect rare big bubbles as hot spo
On the other hand, a large number of small bubbles can
detected as Poissonian fluctuations in high resolution, sm
coverage experiments with antenna beam below 1°. Here
restrict our attention to the first kind of observational effe
as the second one depends on the lesser-known physi
the small bubbles nucleated near the end of the first-o
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transition. At any rate, the small bubble constraint is e
pected to be less severe than the hot-spot test for bu
spectrum slopesp<10 @11#. In @13,14# we also analyzed the
constraints on bubble models from Doppler effects on
last scattering surface, and found them to be gener
smaller than the Sachs-Wolfe ones.

Assuming a power-law spectrum like Eq.~56!, the con-
straint can be put in form of restrictions on the two para
etersp andLm for largep @11#. Let Lv denote the smalles
bubble at decoupling that can give an observable 3s signal
(DT/T'531025) in a COBE pixel. We simply require tha
there are fewer than one bubble larger thanLv intersecting
the last scattering surface. Then the hot-spot constr
amounts to@5,9#

Lm,LvS ~p21!Lh
pLv

D 1/p. ~66!

Lv is calculated as

DT/T'
d~Lv!

3

Lv
4

Ld
2Lp

2 . ~67!

We will take Ld5190h21 Mpc, andLp5300h21 Mpc. The
latter value corresponds to a beam angular opening of
which is roughly the COBE beam opening.

Next we impose to our bubble spectrum the qualitat
requirement that it be able to produce a significant lar
scale structure. We realize this condition in a very simplifi
way: we just find the parametric region for which bubbl
larger than 3h21 Mpc fill the space for more than 50%@9#, a
constraint which can be compared, for instance, with the
served voids in the SSRS2 database@17#. Notwithstanding its
simplicity, this minimal condition puts a strong constraint
the parameter space. If we had indications on the real ma
content of large voids, we could put a further direct co
straint ond. For instance, if the voids of 20h21 Mpc ~which,
therefore, are nucleated 5-6e-foldings afterNT) that are de-
tected currently on the large-scale surveys~see, e.g.,@17#!
are completely empty of matter, they should haved>1023 at
decoupling, in order for them to be cleared of matter
linear growth at the present. If some matter, maybe in
form of Lya clouds@18#, is found inside the voids, then on
should impose on the contraryd,1023. Here, to fix the
ideas, we putd51023 on scales of'30h21 Mpc. In any
case, the results are not very sensitive tod.

The main results are contained in Fig. 2. On the pla
(p,Lm), we display as a shaded area the parametric regio
cosmological interest, i.e., the models which satisfy
CMB constraint~66!, and fill the space as requested. T
CMB constraint is plotted forN3590 andd51023, which,
along withM5531026, impliesN1'17. These values sat
isfy all the conditions for a successful inflation. Then we p
two curvesLm(p) given in Eq.~61! for N0553,55. It can be
seen that these curves cross the acceptable region; our m
is, therefore, capable of producing bubble spectra which p
the CMB tests and have interesting large scale features.
us consider one pair of parameters for reference:p59,
Lm5100h21 Mpc, which lies on the curveN0554, and is
-
le

e
ly

-

nt

°,

e
-
d

-

ter
-

y
e

e
of
e

t

del
ss
et

inside the acceptable region. Then, from Eq.~58!, and put-
ting d50.001 andM5531026, we have that the full set o
e-folding parameters is

N0554, N1517, N2516, N3590, ~68!

which verifies Eq.~55!; we have alsoN451.7. Clearly, this
is only one of an infinite set of parameters that fulfills all t
conditions; however, the values are, in general, close to th
quoted. We also may note that with such a bubble spectr
p59 and Lm5100h21 Mpc, one can estimate
(Rs /Lh)

3nB(.20h21 Mpc)'70 voids larger than 20
h21 Mpc by radius in a spherical survey of dep
Rs5200h21 Mpc; this value, which of course is extreme
approximate, is indicative that many, if not all, of the prese
voids can be explained by a first-order phase transition.
nally, the potential parameters, other thanM , are ~all in
Planck units!

l5431023, m53.331023, c051.831023.
~69!

Thus as anticipated in the Introduction, the observations
the two bubble spectrum parameters,Lm andp, of the matter
content inside bubbles~so to fix d), and of the ordinary
fluctuations driven byv on the microwave background
which giveM , are in principle all what we need to recon
struct completely the primordial first-order potential. Th
would be impossible in the other models of first-order infl
tion, in which bubbles do not leave observable traces.

FIG. 2. Parametric region of the model. The shaded area is
region which passes the constraint from the microwave backgro
isotropy~solid line labeled CMB! and the constraint from the large
scale structure~dashed line labeled LSS!. The two dotted lines give
Lm5Lm(p) in our model for the two values ofN0 shown. The other
parameters adopted are indicated in the box.
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X. CONCLUSIONS

Large voids are ubiquitous in the Universe. They occu
most of the observable volume, and are probably the do
nant contribution to the large-scale power spectrum@16#. The
standard possibility is that they derive simply from the p
mordial underdensities which are expected in the ordin
Gaussian models of structure formation. However this s
nario would be put in jeopardy if larger and larger voi
continue to be discovered@29#. Moreover, if the voids are
actually filled with unclustered, or mildly clustered, matter
would be impossible to explain their roughly spheric
shape: an underdensity, in fact, becomes more and m
et

v.

ev

9

9

y
i-

y
e-

l
re

spherical only as it becomes nonlinear@30#. It is, therefore,
worthy to investigate alternatives. We proposed here, ba
on earlier work@11,9#, a first-order inflationary model which
produces primordial nonempty bubbles, along with ordina
slow-rolling fluctuations. We calculated in detail the nucl
ation rate, including classical, quantum, and gravitatio
corrections, and showed that the model gives a strong c
tribution to large scale structure, while passing the mic
wave constraints. The determination of four observa
quantities fixes completely the primordial potential, inclu
ing the tunneling sector, which, on the contrary, is unobse
able in the other models of first-order inflation.
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