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Reconstruction of the bubble nucleating potential
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We calculate analytically the bubble nucleation rate in a model of first-order inflation which is able to
produce the large-scale structure. The computation includes the first-order departure from the thin-wall limit,
the explicit derivation of the preexponential factor, and the gravitational correction. The resulting bubble
spectrum then is compared with constraints from the large-scale structure and the microwave background. We
show that there are models which pass all the constraints and produce bubblelike perturbations of interesting
size. Furthermore, we show that it is in principle, possible to reconstruct completely the inflationary two-field
potential from observation$S0556-282(96)06324-2

PACS numbegps): 98.80.Cq, 98.80.Es

I. INTRODUCTION Several deep redshift surveys detected large voids in the
galaxy distribution[15—17, although it is still not clear if
One of the most interesting ideas introduced in inflation-they are really empty of matter or just lack luminous galaxies
ary cosmology in recent years is the possibility of perform-[18]. Standard models of galaxy formation can barely ac-
ing a phase transitioduring inflation. In such scenarios, two count for these structure, and do so only at the price of ad-
fields act on stage: one, say, slow rolls, driving enough justing the parameters to get very large-scale po(see,
inflation to solve the standard problems; the second field, sag.g., Ref[19]). Therefore just as we associate matter clumps
¥, tunnels from a false-vacuum state to an energetically fato primordial fluctuations, it appears worth trying to associ-
vored true-vacuum state, producibgbblesof the new phase ate the present voids to primordial bubblelike fluctuations,
embedded in the old one. Both processes are governed bypsoduced during a first-order phase transition. Within differ-
two-field potentialU (w, ). To avoid the graceful exit prob- ent contexts, the idea of the voids as separate dynamical
lem, the true vacuum state has to allow for a period of infla-entities has been investigated several times in earlier litera-
tion on its own. We then can speak of a true-vacumannel  ture[20].
over which the bubbles slow roll until inflation ends, and A crucial aspect of bubble inflation is the calculation of
reheating takes over. Depending on the potential, threghe bubble spectrummg(L), defined as the number of
classes of first-order inflation models have been proposed daubbles per horizon with comoving size larger tharin [9]
far. The first is the classical extended inflatiph-3]: the  we calculatedng in a specific model, built on fourth-order
bubbles are produced in a copious quantity, so that they filgravity [23], which we found to possess the requested fea-
eventually the space and complete the transition. To avoitures. We found thatg(L) can be approximated by a power
too large distortions on the cosmic microwave backgroundaw,
(CMB), this scenario must produce very small bubbles],
so that they are thermalized rapidly after inflation. No trace ng=(L,/L)", (0]
of the bubbles is left in our Universe, and from this point of
view, such scenarios do not lead to new predictions oveand thatlL, can be as large as the observed voids in the
inflation without bubble production. The second class is théJniverse.
Q<1 inflation[6—8J: here the transition is never completed, The central quantity needed to evaluatgis the nucle-
so that each bubble resembles an open Universe to insidgion rate in the semiclassical linfi21]
observers. Therefore if the bubbles inflate for less than the
canonicalN+=60 or soe-foldings, they will approach an I'= M%*exp —B), 2
(<1 Universe. Here the effect of the nucleation process is
observable, although it is indistinguishable from a slow rollwhere M is a constant with a dimension of mass, dhds
inflation just shorter thamN; e-foldings and with no first- the Euclidean least action minus the action for the external
order phase transition at all. Finally, [8] a third class of de Sitter space-time solution. The calculatiod’dh [9] (and
models has been proposed, following an early suggestion of most other papers on the topigas based on the thin-wall
La [10]. In such models, the phase transition is completedimit, on neglecting the gravitational correction, and on a
beforethe end of inflation. Then it has been shown that thedimensional argument for evaluatingy(. In this paper we
primordial bubbles can be large enough to drive structureemove, at least partially, all three approximations. This cal-
formation, and still be below the CMB level of detection culation allows us to reconstruct completely the inflationary
[11-14. In such a scenario, the present large-scale structurevo-field potential from the determination of four observable
is a direct outcome of the first-order transition, which is,quantities: the slope of the bubble spectrum, its amplitude,
therefore, observable and testable. the density contrast inside the bubbles, and the amplitude of
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the ordinary slow-rolling fluctuations. We remark that only Then, the true-vacuum state = —,, and the false
in a model, such as ours, in which the bubbles are directlwacuum isy= iy. The potentiak6), therefore, is defined by
observable, it is possible to reconstruct the tunneling sectdibur physical parametersg, R, A, ¢.
of the primordial potential.

The scheme of the paper is as follows. In Sec. Il we . THIN-WALL LIMIT
present the class of potentials we are going to investigate. In
Sec. Ill we give the basic formulas. In Sec. IV, V, and VIwe  The Euclidean action of the scalar thed8) is
go through the detailed calculation Bf taking into account
deviations from the thin-wall limit, inserting the gravitational s :f d“x\/—_(— R +1¢ W‘+U(¢)) @
correction, and calculating explicitly the factgvl. In Sec. £ 9 160G 27+ '
VIl we introduce our model of first-order inflation in a
fourth-order gravity theory[23] and calculate the time- In  the Euclidean metric for an @) space
dependent nucleation rate. In Sec. VIIl we write down theds?=dr?+a%(r)dQ3, one hasR=—6(aa’+a'?—1)/a’
bubble spectrum and in Sec. IX, finally, we compare it withand
constraints from CMB and the large-scale structure. In the

last section we draw our conclusions. SE=2772f dr (a%a’+aa'?—a)+a’ —¢’2+U
87G 2
Il. THE MODEL 3
: _ _ =——| dra(1—a?H?), 8
We consider the scalar field theory described by the ac- 2G ( ) ®

tion (hereinafterfi=c=1) . o _
where the prime denotes derivation with respect to the four-
R 1 radiusr. The Euclidean Klein-Gordon equation fgris
= Aed—qgl = —— 4+ = M

J'+3—¢'=dU/dy 9)

where g is the metric determinant an® is the curvature a
scalar. The pqtgntlal is a generic quartic fgnctlon with NON-, 4 the Euclidean Friedmann equation is
degenerate minima which allows for tunneling. We can write
it very generally in the form G

8
12 _ 2
a 1+—3 a

%W—U). (10)
U =A+V1i(h)+Va(4), (4)

In the zero-gravity limit, G—0, the latter equation gives

whereA is a cosmological constant, is a quartic with two 57— onst. so that Eq9) reduces to

equal-energy minima, and, is a symmetry-breaking poten-

tial which brings the energy of one minimum, the false 3

vacuum(subscriptF), to a value larger than the other, the Y+ ' =duUldy. (11
true vacuum(subscriptT). In the two minima, the Einstein

equation reduces simply to In the thin-wall limit, in whichR>A, one can assume that

) the second term in Eq(ll) can be neglected, and that
H*=87GU/3. 4 durdy=2y(yy2—1)IA% The solution which interpo-
lates between false and true vacuum is then
We will denote withH+,U+ the Hubble constant and the
potential energy of the true vacuum, and with ,Ug the r—Ry,
same quantities for the false vacuum. We wish to calculate 0= wotan?‘( A ) (12
the tunneling rate(2) where B=Sg(¢)—Sg(#¢), and

Se() is the Euclidean least action, i.e., the Action of theyhereR,, is an integration constant that will be determined
bounce” solution. We perform the computation in the thin- |ater. To integrate the action over the bounce solution, we
wall limit (actually, we go to a post-thin-wall limit calcula- consider that outside the bubble, i.e. in the false vacuum,

tion), according to which th€(4) bubbles nucleated have =y, so thatB.,= Sz(1/) — Se(1¥g) =0. On the wall, at
four-radiusR>A, whereA is the wall thickness. Further, we gjstanceRr,,, we have

include the gravitational term in the action: as we will show,
this term is important when the parameger RH+ (not to be Bual= ZWZR\?VSl, (13
confused with the metric determinans much larger than

unity. This limit amounts in fact to a bubble approaching thewhere
space curvature radiusH/ It is convenient to write the po-

tential (4) in the form

o 4y
Sl=f; dw[Z(U(w)—UF)]”Z:?)—lZO. (14

_ 3¢’ 1 5 25, 1 2 ’
U(w)_SwGR2+2A2¢//S\¢ =) +ﬁ(¢+¢o) :

Finally, inside the bubbley= -, and since[from Eq.
(6)  (10), and neglecting)’] da=dr[1—a?H2]*2 we have
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B =—B—WJRwada[(l—a2H2)1/2—(1—a2H2)1’2] .
int 2G 0 T IS .
(15

e ————— — ]

The general expression is, therefore,
0.5

o™
_HEZ[(l_RgvH,Z:)S/Z_ 1]} (16) N 0
Let us note thaR=3S, /e, wheree=Ur—Ur=4y5/RA.

Then we see thaB(R,,) is minimized by[24]
-0.5

R.,=R(1+g%+47GRS +1272G?R?S)) 2. (17)

LIS S B S BN S R R S N S S BN R B S R |

Then, for G—0, which implies g=RH;—0, one has

U YR S SN NN SN TR SR WO NN TR SR S R N

R,=R. Notice that the parametd®,H; which appears in -1

Eq. (16) equalsg, since H2=g?R? for the potential(6). T

This shows explicitly the role played by the constaRtand z

g. Finally, we obtain the usugkero-gravity, thin-wall result

[21] FIG. 1. The bounce solution, interpolating between false

vacuum FV and true vacuum TV. The solid line corresponds to
A/R=0, the dotted line toA/R=0.1, and the dashed line to

_ 2
Bo=27m A/R=0.3.

3 A

Si 2w R
2:3 18

3A ZA  zA?
IV. THE GRAVITATIONAL CORRECTION l/f”+ ﬁdf’ 1—- — + -

Now to the general cas&+#0. To the purpose of this ROR
paper, we simplify our problem by putting 2¢ 2
(H2—H2)/H2<1, i.e. assuming that the vacuum energy dif- P('/’Z/‘pg_ 1)+ ga (= o), (22)
ference is much smaller than the true-vacuum energy. Our
results will be consistent with this approximation. This is where now the prime denotes derivation with respect.to
equivalent to neglecting the last two terms in parentheses Ve search solutions of E¢22) to the first order inA/R:
Eq.(17). Then we have tha@(R,,) is minimized by a bubble ©) 4 (1)
radiusR,,=R/(1+g%) Y2 The bounce action i8=B,f(g) Y=y 7+ P (ARR) A+ - - (23

whereB, is the no-gravity actiori18) and where We know already that to the zeroth ordgf®)= ygtanhg).

f(g)=4(1+0?) 341+g 4 2+3g2—2(1+ g7} Subtracting the zeroth solution from E®2) we get, for
(19 i=1,
For g—0, f(g)—1, as expected. To the lowest nontrivial w(iy o 0 6 |_ _
order ing, Y 4% cosiz) = Ti®) 24
B=By(1—g%). (20 where f;(z) is defined order by order from Ed22) and

o _ _ depends only oz and not ony(". At first order, then, the
Gravitational effects, then, increase the nucleation fate gg|ytion is

[21].
B e A z t
V. POST-THIN-WALL CORRECTION Y=ol tanfe+| 55| ~ Costrz —1NMETL
Let us come back to the Euclidean spherically symmetric 2
equation of motion in absence of gravity, Efj1). While the —2| g/ (tanfe+1) . (25)
trivial true-vacuum solutiony_= — i, holds also when the
symmetry-breaking term in the potential is considered, thgt can be noticed, from Fig. 1, that the post-thin-wall correc-
false-vacuum solution is displaced slightly: tion moves the large value ofy from ¢ to ¢ . In Eq.(25)
A A2 we included the part of the correction at second order which

21) also contributes to the leading classical correction to the ac-
tion after integration ovez.
The Euclidean action, finally, is calculated as

Yo=do|l-g—gz |-

It is useful now to expand the equation of motion around
r=R. Introducing the variable=(r —R)/A, we obtain B=S(¢) —S(¢g) =Bo(1—9A/2R). (26)
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The term A/2R is, therefore, the post-thin-wall correction c
term, which again increases the tunneling rate. Eo=2|a+tspn 2RIAZ) (33
VI. THE PREEXPONENTIAL FACTOR we obtain the spectrum of the eigenvalues in the form

In semiclassical approximation in four dimensions, the

rate of false vacuum decay is given by Coleman’s formula ), = + b + c +1+ Ad+2)+3
) 0= A2| 2T SR/A T (2RIA)2 4(2RIA)2
[21] (34
2 4) _ 92 " —-1/2
:<E det ( 2'9 +}’J () e B, (27)  We know that in the spectrum of the eigenvalues, there is
27) | def(—d°+U"(¢,)) one negative eigenvaluky, corresponding to uniform ex-

rpansion of the bubble, which is just vacuum instability.
There is also the 4-fold degenerate eigenvalyg=0 de-
scribing translations of the bubble center in the Euclidean
space in four directions. Therefore substitutimgl into Eq.
(34), we obtain

where the functional determinant is computed with the fou
zero eigenvalues omitted; is the classical solution of Eq.

(22), ¢, is the trivial false-vacuum solution. It was shown in
[22] that in the thin-wall limit, the functional determinant
can be expanded in power series ®/A as

5) a=-1, b=0, c=-15/4 (35
det®D .
InfT=C, IN(2R/A)+ C5(2R/A) _ .
det>’Dg and find the lowest band of the eigenvalues
+C,(2RIA)?+ - - -, (28 (I—1)(1+3)
. . . Ng=———. 36
The parts of this expression, which behave as powers of o R (36)

2R/A have no universal significance, for they are adjusted or

even concealed completely by ultraviolet renormalizationdt is important to know that in deriving Eq36) for A , we
and we will include them in the overall multiplicative factor assumed the existence of nontrivial classical solution of the
M. The logarithmic part, on the other hand, is not expectedtquation of motion which breaks a translational invariance
to be affected by short distance structure. The universal iniZero modesand the thin-wall limit in order to justify the
frared logarithm In(R/A) is associated with the geometri- €xpansion in powers of 2 A. Therefore this equation does
cal features of the bubble and does not depend on the specifi©t depend on the specific form of the potentigly).

form of the double well potential. Since the logarithmic term  Calculating the product ok for | <2R/A and keeping
appears due to the infrared region, we have to consider thenly the logarithmic term, it is straightforward to show that
low-lying levels of the operator of the small fluctuations ¢;=— 10 (see Eq. 28 Then it follows immediately from the

around the bounce solution general formula27) that in the thin-wall limit, and taking
into account the quantum corrections, the rate of false-
D=-3?+U"(¢). (29)  vacuum decay is given by

This operator is rotationally invariant and, thus, its eigen- M'4B2

i in thei imensi =_———ge® (37)
functions, are, in their angular dependence, four-dimensional (2R/IA)?
scalar spherical harmonics. In terms of radial eigenfunctions,
the eigenfunction equation becomes independently of the specific form of the potenti#().

d> 1(1+2)+314
- W-f' r—2+U () | Ta(r)=Ngfr(r). VII. A FOURTH-ORDER GRAVITY, FIRST-ORDER

(30) INFLATION MODEL

As we mentioned in the Introduction, astrophysically in-

Expan_di_ng_the_ _centrifugal potential_in power se_ries aroun({eresting bubbles can be produced only in a two field model,
r=R (it is justified when we deal with the low-lying states in which one has slow-rolling along a fieldy, while the

|<2R/A since bound states are localized at the wall of the ' L
bubblg, keeping only the leading term, and replacingith second fieldy, performs a phase transition in an orthogonal

ite Eq(30) for n=0 direction.
z, we can rewrite Eq(30) for n=0 as We introduced already ifi9] a specific model of first-

2 ., order inflation able to generate large bubbles in fourth-order
_WJFAZU (¢)—2E0)f0,=0, (3D gravity. Once a conformal transformation is applied, the
model is described by the actiogmve put hereinafter also
where G=1)
1 41(1+2)+3 f " R .
I 2 Y P — _ o ) T
EO_Z(A No—4 (2RIAY? (32 S V—gdx 16q-r+(3/477)w'“w

does not depend on the quantum numbdrakingE, in the

1
_a 20 oy
form of expansion t5e Ty +U(l/fyw)), (39
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where the potential is (there is an extra factor of 1/4 because now the vacuum
) states are at 0 angl, instead of att ;). In terms ofN this

o 3M v is
Uw) =& V(p)+ Wi (1-e22], (39

N4 N,\? N4
and where B:N_‘l‘[l_(ﬁ) H1—<N—3> } (49
8\ 1
W) =1+ Ja i’ (4—ygo)*, V(p)=zm*y% (40  where
0 33/2 lﬁ m3
The slow-roll inflation driven byw takes place ab>1, and Nsz VOQT’ (50)
is over whenw approaches zero. At large, the potential
U is dominated byWV(), and, thus, the false-vacuum mini- 2 o
mum at g~y for which Ug=e *“[(3M?2/327)(1 N2 2/ Yom (51
—e2?)2+ V()] is unstable with respect to tunneling to- 28 M2’
ward the true vacuung=0 (for which Ur~3M?/327). At
smallw, U is dominated by/(¢), and both the true and the , [27m\ Y2 yom?
false vacua converge to the global zero-energy minimum at 37132 M2 (52)

w=1=0, where inflation ends and reheating takes place.
The slow-roll solution in this model fo>1 can be written  The two approximations we adopted are valid fér-N,
very conveniently a§9] (thin wall), and for N<Nj; (gravitational correction It is
A 20 useful now to introduce a fourti+folding epoch Ny, defined
sN=e", (42) as the epoch at which the crucial quant®=4=T/9H*
whereN is the number oe-foldings to the end of inflation. €duals unity. This can be seen as the epoch at which one
In the same limit,H=M/2. The potential(39) for w>1 bubble for horlzon volume for Hubble timer 4-r_10r|zor) is
takes the form(6) by the substitution nucleated, that is, the bubbles are saturating the false-
vacuum space. The bulk of the nucleation occurs, therefore,
Y+ ol2 (42)  just beforeNg, and spans only feve-folding times. We,
therefore, can approximat@(N) as
and, therefore, in the new notations we have

S S 2] )
R=(3/27r)1/2M2Le4“’, 43) Q= on? ~ & N 1 No 1 N ,
Mg (53
A=(8m/3) 1/2ML)\01I_, (44) where
. N | (6477/\/14)
g=MR/2. (45) NO_[l—(N2/NO)2][1—(N0/N3)4] " oM
(54)

Notice that now R depends on thee-folding time as
R~N?2. This is where the scale dependence of the bubblje_rom Eq. (37) we can write
spectrum arises from, as we show below. M,Bl/z(A/'zR)_

The Euclidean action is

Se= f V=gd*

the factor M as

The scalar and gravitational zero-point fluctuations gener-
R 1 ated during thew-driven slow-rolling are proportional t

- EJF Ee_zwlﬁ;’ulﬂ;’u"f' U((ﬂ,w)) [26,27. From the current microwave background measure-
(46) ments, we obtaitM ~5x 108 (in Planck unit3, a value that

we will adopt in the numerical results below. However since

(neglecting the kinetic energy @$). To obtain a canonical N our model one also should consider the contribution of the

kinetc term, we rescale the coordinatef25] as bubbles to the microwave background, this constraint is ac-
x*=e~“X*, so that, in the new coordinates tually only an upper limit orM. OnceM is fixed, the three
e-folding constant®N; _ 5 determine fully the inflationary po-

do 4 R 1 ) tential, through the three remaining constams\, . A
Se=e f V-gd*%| - T6n Ty U successful sequence of epochs is the followingNat the
R gravitational correction ceases to be important;Nat the

=e 49S(y), (47)  crucial parametef is of order unity, and the bubbles satu-

- rate the space; aN, the thin-wall approximation breaks
where finallySg is canonical. Combining Eq47), Eq.(26),  down; and finally atN; the bounce actio® equals unity,
and Eq.(20), we obtain and, thus, the semiclassical approximation is no longer reli-

5 03,2 able. For traces of the phase transition to be visible today, we
B=e‘4“’7T— %( 1 %) (1-g?) (48) also must impos®& <Ny, beingN; the observable last 60
6 A 2R e-foldings of the inflation. Then the full set of constraints is
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VIll. THE BUBBLE SPECTRUM

We now can calculate explicitly the bubble spectrum in
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astrophysically large bubbles and escapes the CMB bounds,
contrary to what occurs in the other models of first-order
inflation.

IX. RESULTS AND DISCUSSION

our model. The number of bubbles nucleated in the interval

dt is [28]

dnB_
dt

A7 (t t dr
o ’ A1V 0
3 jodt T(t")a(t )(La(r

whereV, is the horizon volume aN=Nr, Vin=47T/3Hi?E

Ira3Vv,exp—1),

3
} . (56

and where the exponential factor accounts for the fraction an
space which remains in the false vacuum. To get a manage-

able expression, we first change variable in &) from the
nucleation epoclh to the scald. in horizon crossing at, by
use of the relationlL/dt~ —H;,Ly,/a valid during slow roll.
This gives

dn
—==-3L3L*Q(N)e".

a0 (57)

We approximateQ(N) around N=N, as Q~exds(N,
—N)], where

N,\? No|*

No Ng/ |’

We make use of the relation between taéolding time N
and the bubble comoving size

NS
s=4—|1— 1- (59)
Nl

HL(N) = H;,Lpexp(N—Ny). (59)

It follows Q=e S*N(L,/L)S, where AN=N;—N, corre-
sponds to the duration of the transition. Hek1, i.e., far
from the end of the transition, we obtain

dng

d—L=AL‘4‘S (60)
and
ng=(Lm/L)P, p=3+s, (61)
where
Lm=Lpe® PAND(3/n)Lp, (62)

We now wish to compare the bubble spectrum with the
constraints from large-scale structure and the cosmic micro-
wave background. It is not the aim of this work to determine
the best model parameters, also because the statistics on ob-
served voids is still at a very schematic level. We will focus
instead on showing that there is a region of parametric space
which gives astrophysically large bubbles, that can contrib-
ute significantly, if not exclusively, to structure formation,
while passing the CMB constraints.

When a bubble nucleates, its density contrast can be esti-
ated(in the thin-wall limit), as

Up—Uy _
8=|5plp|= U =[(N/Ny)2+1]71, (63)
where
2,2
m
N‘Z‘ZSW#. (64)

Since the bubbles cross out the horizon soon after their
nucleation, the same density contrast will be found at reenter.
The bubble density contrast increases to unity Nbg Ny,

i.e., toward the end of inflation. One can also write
N,~1.5MN3/N3. For instance, taking acceptable values as
N;=90, N;=20, and M=5x10"% one obtains
6~6x10"* at N~Ny~50. TakingN;— one would ob-
tain completely void bubbles§— 1. Here we will consider
instead only small values o [13]. From Eg.(59) and
N>N,, we have the density spectrum at reenter

S(L)= (65)

o 1)
N_T 1—N—Tln(L/Lh) .

Sinceé< 1, we do not considefcontrary to Refs[9,11,14)
the overcomoving growth that takes place only if and when,
in its late history, the density becomes nonlinear.

Let us discuss first the CMB constraints. A bubble of
radiusL at decoupling produces a Sachs-Wolfe distortion on
the microwave temperature &fT/T~ 6(L)L2/L§ if Ly de-
notes the horizon scale at decoupling. In reality, bubbles
which reenter before decoupling have time to deepen; for the
range of scales we are interested in, however, this is a minor
effect and we neglect it. In a pixel corresponding to a size of

In the thin-wall, zero-gravity Iimit,s=4N8/N‘11 [9]. Whenl L,>L at decoupling, a further factor dleL,z) smears the
approaches unity, the nucleation process reaches a peak, asignal[5]. There are two main CMB constraints arising from
then declines rapidly, due to the fast decrease in the falsebservational upper bounds to such Sachs-Wolfe effect. Full-
vacuum space available. [8] we showed that the peak oc- sky, low-resolution surveys such as the Cosmic Background
curs, as expected, just aftdp, which we, therefore, consider Explorer (COBE) can detect rare big bubbles as hot spots.

the end of the nucleation. On the other hand, a large number of small bubbles can be

As we discussed in Ref9], Eq. (62 differs from the
analogous quantity in extended inflatioth,5,10 because
here we have\N instead ofN+~60. We show below, by a

suitable choice ofAN, i.e. of the duration of the transition,

that we may have a bubble spectrurg which generates

detected as Poissonian fluctuations in high resolution, small
coverage experiments with antenna beam below 1°. Here we
restrict our attention to the first kind of observational effect,
as the second one depends on the lesser-known physics of
the small bubbles nucleated near the end of the first-order
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transition. At any rate, the small bubble constraint is ex- 0
pected to be less severe than the hot-spot test for bubble L
spectrum slopep<10[11]. In[13,14 we also analyzed the L
constraints on bubble models from Doppler effects on the -
last scattering surface, and found them to be generally -
smaller than the Sachs-Wolfe ones. 300
Assuming a power-law spectrum like E6), the con-
straint can be put in form of restrictions on the two param-

etersp andL,, for largep [11]. Let L, denote the smallest L CMB i
bubble at decoupling that can give an observahlfesgynal 4 200 ‘
(AT/T~5x10 %) in a COBE pixel. We simply require that - P ' -
there are fewer than one bubble larger thanintersecting r b ]
the last scattering surface. Then the hot-spot constraint i N T ]
amounts td5,9] 100 [ | M=5.107° d
L | 5=.001 N d
( _ 1)L 1p I _ s ~ \ i
Lm<LU<u . (66) || AT/T=510 S~
pL, L —=—=I=
ol 1 v v o e b by
. 4 6 8 10 12
L, is calculated as P
AT/ T~ a(L,) Ly 6 FIG. 2. Parametric region of the model. The shaded area is the
T3 |_§|_l2)' (67) region which passes the constraint from the microwave background

isotropy(solid line labeled CMB and the constraint from the large-
scale structurédashed line labeled L3SThe two dotted lines give

i - -1 - -1
We will take L4=190h™~ Mpc, andL,=300h Mpc. The | —L_(p)inour model for the two values M, shown. The other
latter value corresponds to a beam angular opening of 3parameters adopted are indicated in the box.

which is roughly the COBE beam opening.

Next we impose to our bubble spectrum the qualitative. . ,
requirement that it be able to produce a significant IargemS'de_the acceptabke reg|opé Then, from E8f), and put-

; . oo . .2 ting §=0.001 andv =5X10"°, we have that the full set of

scale structure. We realize this condition in a very simplified
way: we just find the parametric region for which bubbles
larger than &~ Mpc fill the space for more than 5088], a
constraint which can be compared, for instance, with the ob- No=54, N;=17, N,=16, N3=90, (69)
served voids in the SSRS2 databpkd. Notwithstanding its
simplicity, this minimal condition puts a strong constraint on
the parameter space. If we had indications on the real mattayhich verifies Eq.(55); we have alsiN,=1.7. Clearly, this
content of |arge voids, we could put a further direct Con_iS only one of an infinite set of parameters that fulfills all the
straint ons. For instance, if the voids of 20 ' Mpc (which, ~ conditions; however, the values are, in general, close to those
therefore, are nucleated 5esfoldings afterN;) that are de- quoted. We also may note that with such a bubble spectrum,
tected currently on the large-scale survéyse, e.g.[17) P=9 and L,=10Ch"*Mpc, one can estimate
are completely empty of matter, they should hawe10 3at  (Rs/Ly)ng(>20h"' Mpc)~70 voids larger than 20
decoupling, in order for them to be cleared of matter byh * Mpc by radius in a spherical survey of depth
linear growth at the present. If some matter, maybe in théRs=20Ch~* Mpc; this value, which of course is extremely
form of Lya clouds[18], is found inside the voids, then one approximate, is indicative that many, if not all, of the present
should impose on the contrar§<10 3. Here, to fix the Voids can be explained by a first-order phase transition. Fi-
ideas, we puts=10"° on scales of~30h~* Mpc. In any nhally, the potential parameters, other thih are (all in
case, the results are not very sensitiveSto Planck unitg

The main results are contained in Fig. 2. On the plane
(p,L), we display as a shaded area the parametric region of _ _3 _ _3 _ _3
cosmological interest, i.e., the models which satisfy the A=4X1075 m=3.3<1075  gp=1.8x10" 69)
CMB constraint(66), and fill the space as requested. The
CMB constraint is plotted foN;=90 ands=10"3, which,
along withM=5x10"5, impliesN;~17. These values sat- Thus as anticipated in the Introduction, the observations of
isfy all the conditions for a successful inflation. Then we plotthe two bubble spectrum parametdrs, andp, of the matter
two curvesL ,(p) given in Eq.(61) for Ny=53,55. It can be content inside bubblegso to fix §), and of the ordinary
seen that these curves cross the acceptable region; our modleictuations driven byw on the microwave background,
is, therefore, capable of producing bubble spectra which passhich give M, are in principle all what we need to recon-
the CMB tests and have interesting large scale features. Latruct completely the primordial first-order potential. This
us consider one pair of parameters for referengez9,  would be impossible in the other models of first-order infla-
L,=100h"! Mpc, which lies on the curvé,=54, and is tion, in which bubbles do not leave observable traces.

e-folding parameters is
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X. CONCLUSIONS spherical only as it becomes nonlind&0]. It is, therefore,
Large voids are ubiguitous in the Universe. They occupyworthy to investigate alternatives. We proposed here, based

most of the observable volume, and are probably the domi" earlier wor{11,9], a first-order inflationary model which

nant contribution to the large-scale power spectf@s]. The ~ Produces primordial nonempty bubbles, along with ordinary
standard possibility is that they derive simply from the pri- slgw-roll|ng .fluctugtlons. Wg calculated in detail the. nu.cle—
mordial underdensities which are expected in the ordinartion rate, including classical, quantum, and gravitational
Gaussian models of structure formation. However this sce€orrections, and showed that the model gives a strong con-
nario would be put in jeopardy if larger and larger voids tribution to large scale structure, while passing the micro-
continue to be discoverel®9]. Moreover, if the voids are Wwave constraints. The determination of four observable
actually filled with unclustered, or mildly clustered, matter, it quantities fixes completely the primordial potential, includ-
would be impossible to explain their roughly sphericaling the tunneling sector, which, on the contrary, is unobserv-
shape: an underdensity, in fact, becomes more and mow@ble in the other models of first-order inflation.
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