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Inflation and inverse symmetry breaking
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An inflation model with inverse symmetry breaking of two scalar fields is proposed. Constraints on the
parameters for successful inflation are obtained. In general the inequadtg <<\, should be satisfied, where
N1, andg are the coupling constants for self-interaction and mutual interaction of two scalar fields, respec-
tively. An example with an SU5) GUT phase transition and numerical study is presented. This model intro-
duces a new mechanism for the onset of inflat{@0556-282(196)05224-1

PACS numbsgps): 98.80.Cq, 11.30.Qc

I. INTRODUCTION scalar field(say, ¢,, for example a GUT Higgs bospris
responsible for the beginning of the inflation driven by a
Various inflation model$1] have been proposed to solve gauge singlet inflator{say ¢;) rather than the end of the
the horizon and flatness problems of standard big bang co#aflation. Moreover, the additional field#() is in the true
mology. However, in relation to particle physics each modeiacuum rather than the false vacuum during the inflation.
has its own problems to be solved. Therefore, reconciling the In Sec. I, we review inverse symmetry breaking and de-
inflation models with particle physics is an important subjectrive the conditions for the phenomenon. In Sec. Ill, the con-
of modern cosmology. straints for successful inflation are derived. In Sec. IV, an
Since the upper bound on the inflation energy scale igpplication with an S(6) GUT model and numerical study
about the grand unified theofBUT) scale[2], it is natural ~ are presented. Section V contains discussions.
to search for inflation during the GUT phase transition. How-

ever, the original inflation model has the graceful-exit prob- II. INVERSE SYMMETRY BREAKING
lem [1] and the “new” inflation model with the GUT non- ) ) o )
singlet fields leads to a too strong density fluctuafidh As In this section we review inverse symmetry breaking and

a solution to this problem a model with the GUT singlet conditions required for it. Consider the following potential,
inflaton coupled with an S(8) Higgs boson was suggested which is a simple example of inverse symmetry breaking.
[4]. Such a potential can appear in the approximation of the one-
Generally, the smallness of the coupling constants reloop finite temperature effective potential of the two interact-
quired for the small density perturbation prevents inflatonind massive scalar fields:
fields from obtaining thermal equilibrium, while the chaotic s 2,2 4 s 2,2
inflation model[5] uses this nonequilibrium state to give the  V(#1,¢2,T)=(D1T—u1) 1+ N1¢1+ (DT~ u3) ¢
initial conditions for the inflaton fields. a 2,2
Though many aspects of the phase transition theory have Tha¢ot9dréo+C, @)
already been used for the various inflation models, field

2420 ; 1 .
theory has still other mechanisms of the phase transition tﬁvhere Hi (.bi.(' 1,2) is the bare mass term fﬁ , andb;
be studied in the context of inflation. Is the coefficient of the thermal mass correction tefih].

In this paper, an inflation model with “inverse symmetry Here the constartt is introduced to make the cosmological

breaking” is investigated. Inverse symmetry breakjBg is constants zero. .

a phenomenon in which the symmetry broken at a higher 1N€ Mutual interaction term

temperature is restored at a lower temperature, contrary to 2.2

the ordinary phase transitions. The phenomenon has been Vin=99162, @
applied to solving the monopole problem by allowing the
temporary breaking of the () gauge symmetr{/7]. A simi-

lar phenomenon, called antirestoration, appears in some gl
bal supersymmetrySUSY) theories[8].

is essential for inverse symmetry breaking. We will consider

the case where this term exists in the tree-level potential.

This term may also arise via fermion exchange box dia-
Our model is a type of two fields inflation modglg], ~ 9rams, even if it is absent in the tree level potenftizZ].

where generally an additional scalar field besides inflaton is When the fields have vacuum expectation valV&V),

introduced to complete the inflation and/or give an approprith€Y acquire additional masses througf . Thzelr effective

ate density perturbation. For example, in the “hybrid” or Masses squared at a temperaflineithout D;T* terms are

“false vacuum” inflation model[10] the additional scalar

2 _ 2

field gives the inflaton extra masses, which make the inflaton M7 e T)=2[— ui+9(b2(T))%], 3)
roll down and end the inflation.

The inflaton potential in our model is similar to that in the méeff(T)EZ(—,u%Jr 9 P1(T))?), (4)

hybrid model, but the detailed features of the phase transition
are very different. In our model the phase transition of awhere(;(T)) is the VEV of ¢; at T.
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From now on, to simplify the calculation, we will use
(6:(T)) o; as an approximation df¢;(T)) in the temperature region

: described above. It is a good enough approximation for the
order of magnitude estimates.
o L Note that o, and o, minimize V(¢4,0,0) and
V(0,¢,,0), respectively.

[lI. CONSTRAINTS FOR THE INFLATION

\ In this section the conditions for a successful inflation will
be obtained. There are many constraints for the successful
inflation models. The most significant one comes from the
density perturbation:

ATr 327V3, ©
Tl 45V/EM3’

FIG. 1. Schematic diagram for inverse symmetry breaking.\'\/heredvinf IIS d\\//\}”f/d¢1 .Zt thi hor|2(()jn grossmgdof the 03'.
{$1(T))(thick line) and {$,(T))(dashed ling versus temperature SErved scale. ve con32| (Zart € qua ratlc-term- ominated in-
T flaton potentialVi,=mi¢1/2, which is the ¢,-dependent

part of the approximation ofV(¢,,¢,, T<T.). SO
Then the phase transition temperatdrg at which the mi/2=— u3+gos.

coefficient of $? vanishes can be defined: i.e., Cosmic Background ExplorelCOBE) [14] observation,
[AT/T]o=6x10"°, demandsn,~10" GeV for our model.
miZeﬁ(Tci) The sufficient expansion condition requirfds]
Te=——0p 5
2D, \/W
=1/=—Mp=3M 10
From now on we will consider the case 71 27 F P (19
Te1>Teos (6)  for eN expansion antl=60. Note that for the quadratic term

dominated inflaton-potential slow-rolling conditian;<<H
which means that®,(T)) becomes nonzero &t,, and after is automatically satisfied fos;=Mp. The above two con-
the expansion of the universeb,(T)) becomes nonzero at straints are common to many mass term dominated chaotic
the lower temperatur@,, in turn. If (¢,(T)) is sufficiently  type inflation models.

large atT.,, the symmetry of¢, broken atT., can be re- Now we will investigate conditions specific to our model.
stored due to the additional mass term frofg [see Eq(4) First, the condition for inverse symmetry breakifgg.
and Fig. 1. This is so-called “inverse symmetry breaking” (6)] is equal to
[6].

If at this temperatureT;,) ¢, rolls down slowly from Mi Mg—gai
(¢$1(T¢p)) to zero and its energy dominates others, we can D, D, (12)

expect a chaotic-type slow-rollover inflation and regargd
as an inflaton field. Note that here we use the terminology Second, the phase transitionTat, must be energetically
“chaotic” to mean a kind of inflation potential and not a favorable to take place. It means that the free energy released

chaotic initial condition[13]. by symmetry breaking by, must be larger than the free

(¢i(T)) can be found from the relation energy absorbed by symmetry restoration ¢y This im-
dV(¢1,¢,,T)/d¢p;=0. From Eq.(1) one can obtain plies

pi= (o)’ =D T? [ u] V(($1(T)),0,T=Te2) = V(O ¢o(T)), T<T(2)>0,
($(T))= = =0y, (12)
2\, 2\,
@) or approximately V(o4,0,0)-V(0,0,,0)>0, which is

whenT,<T<T,. equivalent to

The above approximation is justified by the fact that
{¢,(T))=0 in this temperature range, am}T? term de-
creases rapidly after the phase transitionTgt (see again
Fig. 1.

Similarly, whenT<T,,,

piot<pjos. (13)

Third, restoring the symmetry of ¢; implies
m3 .(0)>0, or

2 pi<gos. (14)
)=\ z—=0). 8
(42(T)) 2\ 72 ® Similarly, the broken symmetry ab, implies m§ «#(0)<<0,



5_4
,u,g>go€. (15)
From Eqg.(11) and Eq.(13) we obtain
2 2 2
D,<—pt D~ p,< 02) D (16)
m 2 ;g 2< oy D2

where we have used EL5) in the approximation.
Finally, we want the potential;,; to be dominated by the
&3 term rather than by the term. So

2

ni<3z903. (17)

Using Eq.(7) and Eqg.(8), one can rewrite the constraints
[Eq. (11 and Eq.(13)] with \; instead ofy; :

St =)

4 D, g

D, +2 (18

<A<\ ( 1)
(Y]
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IV. AN EXAMPLE WITH A SU (5) GUT
AND A NUMERICAL STUDY

Let us apply our model to a §6) GUT. Consider the
case wherep, is a SU5) Higgs field[3]. Then the phase

transition temperature Tcz—lol Gev= \/(#22—9021)/D2
\/,ug gozl, becauseD,= 8gsu(f-,)—:a with the unified
gauge couplin@sy(s)-
We also know thatr,=M x/gsy(s)= 10" GeV.
From Eq.(10) and Eq.(16) it is easy to find that

D <( ) D,<10&. (22)
01

From the density perturbation constrain’nl/2~—v(1013
GeVy=—u’+ ga2 gos we get g=10“ However,
D;=0.1g<10 8 sog<10 . Hence,g cannot satisfy both
conditions. This problem is easily solved by considering the
GUT models whose energy scale is largerT
=10'®GeV). In this case, using the same procedure we ob-
tain g=10 % andD,;=<10 5, so all the conditions are satis-
fied within our approximation.

Let us further consider miscellaneous constraints. The From Eq.(14) and Eq.(7) we obtain

one-loop correction ta; should not be larger than itself, i.e.,
\;=0.19°.

Whether¢, drives an inflation or not af ;,, ¢, oscillates
around the potential minimao(;) with period ~1/m, after
the phase transitiofsee Fig. 1, and its energy densi'qgtd,2

decreases &R 3(t) such as the classical nonrelativistic mat-

ter field[16]. Herem3/2= —
M5 i(T) At Tor<T<T,.

SinceRxt?? in the matter-dominated erp,,, is propor-
tional to t~2 during the oscillation.(Even if Py, rapidly

,u§+ ga% is an approximation of

changes to radiation energy so that the universe is in th8Y
radiation-dominated era, the energy density is proportional to

t~2 and the above arguments still hold.
We need to know the time/(t <9 Whenp¢,2 decreases to

Py, and the inflation by¢, begins. From the fact that
Py, (1)=py,(t2)H(t2) ~?t 2 this time scale is given by

1 1/2

H(t2)

Po,(t2)
Py,

M

Atos=
osc myoy

: (19

whereM =M /87 is the reduced Planck mads,is the time
when the oscillation of ¢, starts and H(t,)~ m20'2/
1’2/ M. We have also used the fact tha; m be-

fore b start to oscillate.

During Ateee, ¢1 should not fall down too much. Since
the equation forp, is

3H¢1=—migs, (20

whose solution is¢;=0o;—m;Mpt/2,/3 [15], the rolling
time scale isAt,y~1/m, (the dots denote time derivatives.
Therefore one can know that if;>M, At <At and
¢, does not decrease too much durigg oscillation, and
one could expect inflation bg;.

2
>\1<9(2) <1012 (22)

20'1

SO\ <0.

Such a small coupling constant is typical to many slow-
rollover inflation models, and gives rise to a thermal non-
equilibrium problem. Like many other slow-rollover inflation
models (except for the chaotic inflation modelit is very
hard to establish the initial thermal equilibrium required for
r model.

For the following, we will assume that somehow this
equilibrium is established and; has the appropriate initial
values. (The parametric resonance mechanigh?@] might
help good reheating, but it is still unclear whether produced
light particles can obtain the thermal equilibrium before
Te2)

If we want any inflation afT.,, the vacuum energy of
¢4 Or ¢, must be larger than the radiation energy. In this
case, from Eq(13) the energy of¢, is larger than that of
¢4, SO it is possible that there is a new inflation by,”
before that by¢,. So our model could be a kind of “double
inflation” [18].

Whether the first inflatiofby ¢,) can exist depends on
the rolling speed of¢, at this phase transition. Since the
number ofe-foldings of expansion in the new inflation is
given by N=(H/m,)?, the first slow-rollover inflation is
available only form,<H.

However, from the fact tham3/2= — u5+go?, one can
know thatm,>H,=10" GeV without fine tuning and there
is no slow-rollover inflation driven byp, precedingg, in-
flation with a GUT.

Now we will discuss the numerical study of our model.
The process of our inflation model seems to be rather com-
plicated. To confirm the scenario we perform numerical
study of the following equations for the evolution of the
fields:
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8 . : [ : chaotic inflation by®,. So it seems to be essential to assume

7L | the initial thermal equilibrium, if we consider our model with
a GUT.

6 o) -

5L , , . I » V. DISCUSSIONS

4r ] The most special feature of our model is that we can

3L H F— choose the initial value of the inflaton field{) by varying

the parameters.
From Eq.(18) and Eq.(22) we know that the relation

Lr &2 © N1<€g<\, should be satisfied for successful inflation.

0 For some parameter ranges our model could be a two-

] . ! ! . field double inflation model whose properties depend on the
0 5 10 15 20 rolling speed ofe,.

Our model with the GUT phase transition requires the
GUT energy scale to be 10'® GeV, while the assumption of

¢1,¢, andH versus time in log scale=In(m,t). ¢, is in units of  jnflation models.

M, ¢, in units of 10°*M andH in units of 10 *m,. The numerical study indicates that in spite of the com-
plexity of our model, inflation could occur with parameters
1 (2 ¢ w2 _ Py, const_rained by many conditions. _ _
= [W(T + - +V . ¢i+3Hop+ 3% =0, _ This model_ may also be used to give the_ appropriate den-
i 23 sity perturbation to match COBE normalization with the

galaxy-galaxy correlation functiofl9]. Note that for this
purposeo; [Eq. (10)] should be lowered so that we can
whereV is V(¢,,,,0) in Eq.(1). We have ignored thermal observe the effect of the inflation hy,.
contributions that may become small relatively when there is Many constraints on the masses and couplings of the
inflation or oscillation of¢ , ¢. fields for the successful inflation and inverse symmetry
Figure 2 shows the results wittm;=10*GeV, m, breaking are studied. However, some of the requirements can
=5x10'% GeV, 0,=5M, 0,=5X10"2M, andg=10"". be abandoned. For exampl$; needs not have zero VEV
After the long oscillation ofp, for r=11 (in the realistic  after inflation and may have some finite VEV. In this case,
case, this oscillation disappears rapidly by producing pare¢; could be a scalar field responsible for the broken symme-
ticles), Po, decreases ang; rolls down and begins the in- try in some particle physics theories.

flation. The sign of the inflation by, can be identified by It is also possible that the inflaton potential is dominated
the flat region of thed graph (-=16). After inflation ends, bY the quartic term, not by the quadratic term. _
#, starts to oscillate whem=19. Furthermore, for more general case the potential

Now let us consider the case where no initial thermalV(#1,#2,T) may have a small barrier term, suchT{;ts?. In
equilibrium state is established. It is well known that at thethis case, it is possible that there is a first-order inflation by
Planck scale the typical initial value @f, could be about ~¢2. Which is interesting, because it could be another mecha-
)\1_1/4M »>Mp. Hence, generally there could be a chaoticiSM for the recently _propos_ed opfan-mflanon _moc[é[s)].
inflation by ¢, before the inflation byp, and/or by, at the In a vyord, there still remain various scenarios to be stud-
lower temperature. ied in different parame_ter spaces in this model where our

Whether there has been a chaotic inflation or ggtfield ~ Means of the onset of inflation is introduced.
rolls down too; and starts to oscillate whet,— o, be-
comes abouM p . Sincem,>m;, during the chaotic inflation
¢, rolls down too, rapidly, then the effective mass ¢f; The authors are grateful to H. Kim, H. Kwon, and Y. Han
becomes positive andl; may roll down to zero again. In this for useful comments. This work was supported in part by
case our scenario is hardly distinguishable from the ordinar)K OSEF.
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