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Inflation and inverse symmetry breaking
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An inflation model with inverse symmetry breaking of two scalar fields is proposed. Constraints on the
parameters for successful inflation are obtained. In general the inequalityl1!g,l2 should be satisfied, where
l1,2 andg are the coupling constants for self-interaction and mutual interaction of two scalar fields, respec-
tively. An example with an SU~5! GUT phase transition and numerical study is presented. This model intro-
duces a new mechanism for the onset of inflation.@S0556-2821~96!05224-1#

PACS number~s!: 98.80.Cq, 11.30.Qc
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I. INTRODUCTION

Various inflation models@1# have been proposed to solv
the horizon and flatness problems of standard big bang
mology. However, in relation to particle physics each mo
has its own problems to be solved. Therefore, reconciling
inflation models with particle physics is an important subj
of modern cosmology.

Since the upper bound on the inflation energy scale
about the grand unified theory~GUT! scale@2#, it is natural
to search for inflation during the GUT phase transition. Ho
ever, the original inflation model has the graceful-exit pro
lem @1# and the ‘‘new’’ inflation model with the GUT non
singlet fields leads to a too strong density fluctuation@3#. As
a solution to this problem a model with the GUT sing
inflaton coupled with an SU~5! Higgs boson was suggeste
@4#.

Generally, the smallness of the coupling constants
quired for the small density perturbation prevents infla
fields from obtaining thermal equilibrium, while the chaot
inflation model@5# uses this nonequilibrium state to give th
initial conditions for the inflaton fields.

Though many aspects of the phase transition theory h
already been used for the various inflation models, fi
theory has still other mechanisms of the phase transitio
be studied in the context of inflation.

In this paper, an inflation model with ‘‘inverse symmet
breaking’’ is investigated. Inverse symmetry breaking@6# is
a phenomenon in which the symmetry broken at a hig
temperature is restored at a lower temperature, contrar
the ordinary phase transitions. The phenomenon has b
applied to solving the monopole problem by allowing t
temporary breaking of the U~1! gauge symmetry@7#. A simi-
lar phenomenon, called antirestoration, appears in some
bal supersymmetry~SUSY! theories@8#.

Our model is a type of two fields inflation models@9#,
where generally an additional scalar field besides inflato
introduced to complete the inflation and/or give an appro
ate density perturbation. For example, in the ‘‘hybrid’’
‘‘false vacuum’’ inflation model@10# the additional scalar
field gives the inflaton extra masses, which make the infla
roll down and end the inflation.

The inflaton potential in our model is similar to that in th
hybrid model, but the detailed features of the phase transi
are very different. In our model the phase transition o
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scalar field~say,f2, for example a GUT Higgs boson! is
responsible for the beginning of the inflation driven by
gauge singlet inflaton~say f1) rather than the end of the
inflation. Moreover, the additional field (f2) is in the true
vacuum rather than the false vacuum during the inflation

In Sec. II, we review inverse symmetry breaking and d
rive the conditions for the phenomenon. In Sec. III, the co
straints for successful inflation are derived. In Sec. IV,
application with an SU~5! GUT model and numerical stud
are presented. Section V contains discussions.

II. INVERSE SYMMETRY BREAKING

In this section we review inverse symmetry breaking a
conditions required for it. Consider the following potentia
which is a simple example of inverse symmetry breakin
Such a potential can appear in the approximation of the o
loop finite temperature effective potential of the two intera
ing massive scalar fields:

V~f1 ,f2 ,T!5~D1T
22m1

2!f1
21l1f1

41~D2T
22m2

2!f2
2

1l2f2
41gf1

2f2
21C, ~1!

where2m i
2f i

2( i51,2) is the bare mass term off i , andDi

is the coefficient of the thermal mass correction term@11#.
Here the constantC is introduced to make the cosmologic
constants zero.

The mutual interaction term

Vint5gf1
2f2

2 , ~2!

is essential for inverse symmetry breaking. We will consid
the case where this term exists in the tree-level poten
This term may also arise via fermion exchange box d
grams, even if it is absent in the tree level potential@12#.

When the fields have vacuum expectation value~VEV!,
they acquire additional masses throughVint . Their effective
masses squared at a temperatureT without DiT

2 terms are

m1 eff
2 ~T![2@2m1

21g^f2~T!&2#, ~3!

m2e f f
2 ~T![2~2m2

21g^f1~T!&2!, ~4!

where^f i(T)& is the VEV off i at T.
7153 © 1996 The American Physical Society
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Then the phase transition temperatureTci at which the
coefficient off i

2 vanishes can be defined: i.e.,

Tci
2 [2

mieff
2 ~Tci!

2Di
. ~5!

From now on we will consider the case

Tc1.Tc2 , ~6!

which means that̂f1(T)& becomes nonzero atTc1, and after
the expansion of the universe^f2(T)& becomes nonzero at
the lower temperatureTc2 in turn. If ^f2(T)& is sufficiently
large atTc2, the symmetry off1 broken atTc1 can be re-
stored due to the additional mass term fromVint @see Eq.~4!
and Fig. 1#. This is so-called ‘‘inverse symmetry breaking’
@6#.

If at this temperature (Tc2) f1 rolls down slowly from
^f1(Tc2)& to zero and its energy dominates others, we c
expect a chaotic-type slow-rollover inflation and regardf1
as an inflaton field. Note that here we use the terminolo
‘‘chaotic’’ to mean a kind of inflation potential and not a
chaotic initial condition@13#.

^f i(T)& can be found from the relation
dV(f1 ,f2 ,T)/df i50. From Eq.~1! one can obtain

^f1~T!&5Am1
22g^f2~T!&22D1T

2

2l1
.A m1

2

2l1
[s1 ,

~7!

whenTc2,T,Tc1.
The above approximation is justified by the fact tha

^f2(T)&50 in this temperature range, andD1T
2 term de-

creases rapidly after the phase transition atTc1 ~see again
Fig. 1!.

Similarly, whenT,Tc2,

^f2~T!&.A m2
2

2l2
[s2 . ~8!

FIG. 1. Schematic diagram for inverse symmetry breakin
^f1(T)&~thick line! and ^f2(T)&~dashed line! versus temperature
T.
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From now on, to simplify the calculation, we will us
s i as an approximation of̂f i(T)& in the temperature region
described above. It is a good enough approximation for
order of magnitude estimates.

Note that s1 and s2 minimize V(f1,0,0) and
V(0,f2,0), respectively.

III. CONSTRAINTS FOR THE INFLATION

In this section the conditions for a successful inflation w
be obtained. There are many constraints for the succes
inflation models. The most significant one comes from
density perturbation:

FDTT G
Q

2

5
32pVinf

3

45Vinf82MP
6 , ~9!

whereVinf8 is dVinf /df1 at the horizon crossing of the ob
served scale. We consider the quadratic-term-dominated
flaton potentialVinf[m1

2f1
2/2, which is thef1-dependent

part of the approximation ofV(f1 ,f2 ,T<Tc2). So
m1
2/2.2m1

21gs2
2.

Cosmic Background Explorer~COBE! @14# observation,
@DT/T#Q.631026, demandsm1.1013 GeV for our model.

The sufficient expansion condition requires@15#

s15A N

2p
MP*3MP ~10!

for eN expansion andN*60. Note that for the quadratic term
dominated inflaton-potential slow-rolling conditionm1!H
is automatically satisfied fors1*MP . The above two con-
straints are common to many mass term dominated cha
type inflation models.

Now we will investigate conditions specific to our mode
First, the condition for inverse symmetry breaking@Eq.

~6!# is equal to

m1
2

D1
.

m2
22gs1

2

D2
. ~11!

Second, the phase transition atTc2 must be energetically
favorable to take place. It means that the free energy relea
by symmetry breaking byf2 must be larger than the fre
energy absorbed by symmetry restoration byf1. This im-
plies

V„^f1~T!&,0,T>Tc2…2V„0,̂ f2~T!&,T<Tc2….0,
~12!

or approximately V(s1,0,0)2V(0,s2,0).0, which is
equivalent to

m1
2s1

2,m2
2s2

2 . ~13!

Third, restoring the symmetry of f1 implies
m1 eff
2 (0).0, or

m1
2,gs2

2 . ~14!

Similarly, the broken symmetry off2 impliesm2 eff
2 (0),0,

.
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m2
2.gs1

2 . ~15!

From Eq.~11! and Eq.~13! we obtain

D1,
m1
2

m2
22gs1

2D2.
m1
2

m2
2D2,S s2

s1
D 2D2 , ~16!

where we have used Eq.~15! in the approximation.
Finally, we want the potentialVinf to be dominated by the

f1
2 term rather than by thef1

4 term. So

m1
2,

2

3
gs2

2 . ~17!

Using Eq. ~7! and Eq.~8!, one can rewrite the constrain
@Eq. ~11! and Eq.~13!# with l i instead ofm i :

l1S s1

s2
D 4,l2,l1S s1

s2
D 2D2

D1
1
g

2 S s1

s2
D 2. ~18!

Let us further consider miscellaneous constraints. T
one-loop correction tol i should not be larger than itself, i.e
l i*0.1g2.

Whetherf2 drives an inflation or not atTc2, f2 oscillates
around the potential minima (s2) with period;1/m2 after
the phase transition~see Fig. 1!, and its energy densityrf2

decreases asR23(t) such as the classical nonrelativistic ma
ter field@16#. Herem2

2/2[2m2
21gs1

2 is an approximation of
m2 eff
2 (T) at Tc2<T,Tc1.
SinceR}t2/3 in the matter-dominated era,rf2

is propor-

tional to t22 during the oscillation.~Even if rf2
rapidly

changes to radiation energy so that the universe is in
radiation-dominated era, the energy density is proportiona
t22 and the above arguments still hold.!

We need to know the time (ntosc) whenrf2
decreases to

rf1
and the inflation byf1 begins. From the fact tha

rf2
(t).rf2

(t2)H(t2)
22t22 this time scale is given by

ntosc.
1

H~ t2!
F rf2

~ t2!

rf1

G 1/2; M

m1s1
, ~19!

whereM[MP/8p is the reduced Planck mass,t2 is the time
when the oscillation off2 starts andH(t2);m2s2 /
M;rf2

1/2/M . We have also used the fact thatrf i
;mi

2s i
2 be-

fore f i start to oscillate.
During ntosc, f1 should not fall down too much. Sinc

the equation forf1 is

3Hḟ152m1
2f1 , ~20!

whose solution isf15s12m1MPt/2A3 @15#, the rolling
time scale isnt rol;1/m1 ~the dots denote time derivatives!
Therefore one can know that ifs1@M , ntosc!nt rol and
f1 does not decrease too much duringf2 oscillation, and
one could expect inflation byf1.
e

e
to

IV. AN EXAMPLE WITH A SU „5… GUT
AND A NUMERICAL STUDY

Let us apply our model to a SU~5! GUT. Consider the
case wheref2 is a SU~5! Higgs field @3#. Then the phase
transition temperatureTc2.1015GeV.A(m2

22gs1
2)/D2

.Am2
22gs1

2, becauseD25
75
8gSU(5)

2 .3 with the unified
gauge couplinggSU(5) .

We also know thats2.MX /gSU(5).1015 GeV.
From Eq.~10! and Eq.~16! it is easy to find that

D1,S s2

s1
D 2D2&1028. ~21!

From the density perturbation constraintm1
2/2.(1013

GeV)2.2m1
21gs2

2<gs2
2 we get g*1024. However,

D1.0.1g,1028, sog,1027. Hence,g cannot satisfy both
conditions. This problem is easily solved by considering
GUT models whose energy scale is larger (Tc2
.1016GeV). In this case, using the same procedure we
tain g*1026 andD1&1026, so all the conditions are satis
fied within our approximation.

From Eq.~14! and Eq.~7! we obtain

l1,
g

2 S s2

s1
D 2&10212, ~22!

sol1!g.
Such a small coupling constant is typical to many slo

rollover inflation models, and gives rise to a thermal no
equilibrium problem. Like many other slow-rollover inflatio
models ~except for the chaotic inflation model!, it is very
hard to establish the initial thermal equilibrium required f
our model.

For the following, we will assume that somehow th
equilibrium is established andf i has the appropriate initia
values. ~The parametric resonance mechanism@17# might
help good reheating, but it is still unclear whether produc
light particles can obtain the thermal equilibrium befo
Tc2.!

If we want any inflation atTc2, the vacuum energy o
f1 or f2 must be larger than the radiation energy. In th
case, from Eq.~13! the energy off2 is larger than that of
f1, so it is possible that there is a new inflation by ‘‘f2’’
before that byf1. So our model could be a kind of ‘‘double
inflation’’ @18#.

Whether the first inflation~by f2) can exist depends on
the rolling speed off2 at this phase transition. Since th
number ofe-foldings of expansion in the new inflation i
given by N.(H/m2)

2, the first slow-rollover inflation is
available only form2!H.

However, from the fact thatm2
2/252m2

21gs1
2, one can

know thatm2@H2.1013GeV without fine tuning and there
is no slow-rollover inflation driven byf2 precedingf1 in-
flation with a GUT.

Now we will discuss the numerical study of our mode
The process of our inflation model seems to be rather c
plicated. To confirm the scenario we perform numeric
study of the following equations for the evolution of th
fields:
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H5F 1

3M2 S ḟ1
2

2
1

ḟ2
2

2
1VD G1/2, f̈ i13Hḟ i1

]V

]f i
50,

~23!

whereV is V(f1 ,f2,0) in Eq.~1!. We have ignored therma
contributions that may become small relatively when ther
inflation or oscillation off1 ,f2.

Figure 2 shows the results withm151013GeV, m2
5531016 GeV, s155M , s25531022M , andg51027.

After the long oscillation off2 for t*11 ~in the realistic
case, this oscillation disappears rapidly by producing p
ticles!, rf2

decreases andf1 rolls down and begins the in

flation. The sign of the inflation byf1 can be identified by
the flat region of theH graph (t*16). After inflation ends,
f1 starts to oscillate whent.19.

Now let us consider the case where no initial therm
equilibrium state is established. It is well known that at t
Planck scale the typical initial value off1 could be about
l1

21/4MP@MP . Hence, generally there could be a chao
inflation byf1 before the inflation byf1 and/or byf2 at the
lower temperature.

Whether there has been a chaotic inflation or not,f1 field
rolls down tos1 and starts to oscillate whenf12s1 be-
comes aboutMP . Sincem2@m1, during the chaotic inflation
f2 rolls down tos2 rapidly, then the effective mass off1
becomes positive andf1 may roll down to zero again. In this
case our scenario is hardly distinguishable from the ordin

FIG. 2. The results of numerical study showing the evolution
f1 ,f2 andH versus time in log scalet5 ln(m2t). f1 is in units of
M , f2 in units of 1022M andH in units of 1022m2.
is
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chaotic inflation byf1. So it seems to be essential to assu
the initial thermal equilibrium, if we consider our model wit
a GUT.

V. DISCUSSIONS

The most special feature of our model is that we c
choose the initial value of the inflaton field (s1) by varying
the parameters.

From Eq. ~18! and Eq.~22! we know that the relation
l1!g,l2 should be satisfied for successful inflation.

For some parameter ranges our model could be a t
field double inflation model whose properties depend on
rolling speed off2.

Our model with the GUT phase transition requires t
GUT energy scale to be;1016GeV, while the assumption o
thermal equilibrium is needed like many other slow-rollov
inflation models.

The numerical study indicates that in spite of the co
plexity of our model, inflation could occur with paramete
constrained by many conditions.

This model may also be used to give the appropriate d
sity perturbation to match COBE normalization with th
galaxy-galaxy correlation function@19#. Note that for this
purposes1 @Eq. ~10!# should be lowered so that we ca
observe the effect of the inflation byf2.

Many constraints on the masses and couplings of
fields for the successful inflation and inverse symme
breaking are studied. However, some of the requirements
be abandoned. For example,f1 needs not have zero VEV
after inflation and may have some finite VEV. In this cas
f1 could be a scalar field responsible for the broken symm
try in some particle physics theories.

It is also possible that the inflaton potential is dominat
by the quartic term, not by the quadratic term.

Furthermore, for more general case the poten
V(f1 ,f2 ,T) may have a small barrier term, such asTf i

3 . In
this case, it is possible that there is a first-order inflation
f2, which is interesting, because it could be another mec
nism for the recently proposed open-inflation models@20#.

In a word, there still remain various scenarios to be st
ied in different parameter spaces in this model where
means of the onset of inflation is introduced.
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