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Limits on a stochastic background of gravitational waves from gravitational lensing

Rennan Bar-Kana*
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 10 June 1996; revised manuscript received 6 August 1996!

We compute the effects of a stochastic background of gravitational waves on multiply imaged systems or on
weak lensing. There are two possible observable effects: a static relative deflection of images or shear, and an
induced time-dependent shift or proper motion. We evaluate the rms magnitude of these effects for a COBE
normalized, scale-invariant spectrum, which is an upper limit on spectra produced by inflation. Previous work
has shown that large-scale structure may cause a relative deflection large enough to affect observations, but we
find that the corresponding effect of gravity waves is smaller by;104 and so cannot be observed. This results
from the oscillation in time as well as the redshifting of the amplitude of gravity waves. We estimate the
magnitude of the proper motion induced by deflection of light due to large-scale structure, and find it to be
;1028 arcsec per year. This corresponds to;50 km/s at cosmological distances, which is quite small com-
pared to typical peculiar velocities. The COBE normalized gravity wave spectrum produces motions smaller
still by ;102. We conclude that light deflection due to these cosmological perturbations cannot produce
observable proper motions of lensed images. On the other hand, there are only a few known observational
limits on a stochastic background of gravity waves at shorter, astrophysical wavelengths. We calculate the
expected magnitudes of the effects of lensing by gravity waves of such wavelengths, and find that they are too
small to yield interesting limits on the energy density of gravity waves.@S0556-2821~96!04724-8#

PACS number~s!: 98.62.Sb, 04.30.Nk, 98.80.Cq
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I. INTRODUCTION

Events in the early Universe may have left a stocha
background of gravitational waves~GW’s!. In particular, a
generic prediction of inflation is a relic spectrum of GW
@1#. Detecting these elusive remnants would not only est
lish this prediction of general relativity, but also serve a
critical test for inflation. While the predicted backgroun
may be too weak for direct detection@2#, it could be detected
indirectly through its effect on light propagation in the Un
verse. Even if the effects of GW’s cannot be distinguish
observationally from other effects, observers who assume
GW’s might reach incorrect conclusions about the distrib
tion of matter in the Universe.

Gravitational lensing is one of the most promising me
ods of mapping the distribution of matter at cosmologi
distances. Detailed observations of multiple images of q
sars have been used to try to reconstruct the lensing m
distribution ~e.g.,@3#!. It has also long been recognized th
measurements of the time delay between images can be
to determine the Hubble constant@4#. Gravitational lenses
and sources, however, typically lie at significant redshi
Light rays are thus deflected by large-scale structure~LSS!
and GW’s as they traverse the cosmological distance to
observer, and these deflections may change the simple
ing picture.

GW’s may be produced by many sources. Astrophys
sources, such as close binary systems which include a
tron star or black hole, radiate GW’s, and numerous in
vidual sources may superpose to create a stochastic b
ground. At the Planck time, quantum fluctuations in t
metric are significant and may produce gravitons. Phase t
sitions in the universe may lead to topological defects s
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as cosmic strings, which generate GW’s. A period of infl
tion may leave behind a significant amount of GW’s. Wh
ever the source, any spectrum which extends over wa
lengths comparable to the present horizon would contrib
to the quadrupole anisotropy of the cosmic microwave ba
ground~CMB! @5#. Such a spectrum is therefore limited b
the anisotropy measured by the cosmic background expl
~COBE! Differential Microwave Radiometer~DMR! experi-
ment @6#. For our calculations we adopt a scale-invaria
primordial spectrum, i.e., one which has constant ene
density per logarithmic frequency, which we assume p
duces the entire measured quadrupole anisotropy. Inflat
ary models predict slightly tilted spectra which are respo
sible only for some fraction of the anisotropy@5,2#, and so
are generally weaker than our adopted case.

In inflation, GW’s are produced in conjunction with den
sity fluctuations. The initial nearly-scale-invariant pow
spectrum of density fluctuations evolves as modes reente
horizon after inflation, and as structure later forms in a u
verse dominated by dark matter. The present spectrum
strongly constrained by galaxy and cluster surveys, and
be used to study the effects of LSS on lensing. The indu
effects are small but potentially observable. In weak lensi
the effect is a coherent distortion of background galaxies
an ellipticity of the order of a few percent@7,8#. In strong
lensing, the primary effect is an external shear which may
significant for observed four-image systems@9,10#.

In general, the influence at a given time of a weak me
perturbation on light propagation is simply described by t
effects. Their magnitudes were estimated for LSS in R
@10#, which we summarize here. The first effect is a const
deflection, the same for all nearby light rays. This deflect
simply displaces the ‘‘true’’ angular position of an observ
lens or source, and is not directly observable. In the cas
LSS, deflections from coherent structures of size;1 Mpc
add up in a random walk, giving an overall deflection
7138 © 1996 The American Physical Society
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54 7139LIMITS ON A STOCHASTIC BACKGROUND OF . . .
order a few arcminutes at redshift 1, which scales as
square root of comoving distancer . The second effect is a
relative deflection between nearby light rays, which pr
duces a focusing and shear with observable effects on w
and strong lensing. For two rays at initial angleu, each co-
herent structure at a distancer causes a relative deflectio
proportional to their separation of'ru. The additional ran-
dom walk gives a relative angular fluctuation of'0.07u at
redshift 1, which scales asr 3/2.

It was suggested in Ref.@11# that gravity waves could
significantly affect the time delays in a multiply imaged sy
tem. It was later pointed out@12# that a correct analysis mus
include the lensing constraint, i.e., the fact that image ray
the presence of GW’s follow different paths than for
GW’s, so that all rays go from the source to a comm
destination, the observer. These later authors also sho
that both LSS and GW’s have no observable effects on le
ing, to lowest order. However, in their lowest order expa
sion they assumed that two image rays that are observe
an angular separationu are separated by a distance of exac
ru on the lens plane at a distancer . In other words, they
neglected the relative deflection between light rays, a
therefore only included an overall, constant deflection due
LSS or GW’s.

We can easily see why this assumption leads to no
servable effects. In the absence of metric perturbations,
can write the lens equation for a thin lens as~e.g., @13#!
bW 5uW 2aW lens(uW ), whereuW and bW are the image and sourc
angles, respectively, andaW lens is the scaled deflection angle
which is determined by the mass distribution of the lens
we neglect relative deflections, then LSS or GW’s can o
cause an angular shiftaW L between the observer and the len
and a shiftaW LS between the lens and the source. Then
lens equation becomesbW 5uW 2aW lens(uW )1aW S , whereuW is now
measured relative to theobserved~and shifted! lens position,
andaW S involvesaW L andaW LS ~see Sec. III for the full details!.
The constant~i.e.,uW -independent! deflectionaW S has no effect
on any observables of the lens system~e.g.,@13#!, sincebW is
not directly observable. Fermat’s principle then implies th
the lens equation must be equivalent to]Dt/]uW 50 at fixed
bW , whereDt is the relative time delay. There is thus n
observable effect on the time delay, either, since it can
derived from the lens equation, up to~unobservable!
uW -independent terms.

This approximation of neglecting the relative deflecti
may not be a good one. Indeed, such deflection can h
observational consequences, which may be sufficiently la
to detect in the case of LSS@9,10#. In this paper, we compute
the rms total and relative deflections between light rays
duced by a scale-invariant stochastic background of GW
Unlike LSS, GW’s oscillate with time, and so the effect
short wavelength modes does not amplify, as light rays
flect one way in crests and the opposite way in troughs
addition, the energy density and thus also the amplitude
subhorizon GW’s redshift away as the universe expands.
lensing effect is thus dominated by wavelengths on the s
of the distance to the source. Each such mode acts as a s
coherent structure, and so both the total and relative de
tions due to GW’s scale approximately linearly with di
e
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tance. The effect of different modes must be convolved w
a particular power spectrum and include the abo
mentioned decay of each mode as the universe expands
find simple integral expressions for the scale-invariant sp
trum. The total and relative deflections are smaller than th
caused by large-scale structure by factors of the orde
102 and 104, respectively. We do not need to explicitly s
up the lens equation, since the rms shear in the lens equa
is directly related to the rms relative deflection of light ray
which we calculate. This fact was demonstrated for LSS
Ref. @9#, and we give a general proof in Sec. III below. O
results imply that the static effects of the GW spectrum
lensing are negligible compared to those of LSS, and can
be detected in practice.

In addition to the static effects of LSS and GW’s on len
ing, it is possible that the fluctuation in the induced defle
tion with time would be directly manifested as an observ
proper motion of images. In other words, the sources do
really move but the light rays from the sources are deflec
and so the sources appear to move. We find that even
can only produce motions of order 1028 arcsec per year from
this effect. This corresponds to;50 km/s at a distance of a
Gpc, and the effect of GW’s is smaller still by a factor
;102. Since typical peculiar velocities are much larger, t
proper motion induced by deflection of light due to LSS
unobservable, and the same is true for the COBE-normal
scale-invariant spectrum of GW’s.

However, we may try to use shear or proper motions
imaged sources to improve existing limits on stochas
GW’s at a range of astrophysical wavelengths. There
only a few such limits known: Single-pulsar timing yield
Vl,131028 at l'2 pc @14,15#, binary pulsar timing im-
plies Vl,0.04 overl'2 pc to 1 kpc andVl,0.5 up to
10 kpc@14,16#, and the observed angular correlation functi
of galaxies sets a limit ofVl,1023 overl'100 kpc to 100
Mpc @17#. These limits apply to any stochastic backgrou
of GW’s, whether cosmological in origin or generated at lo
redshift as a superposition of many discrete sources. F
cosmological spectrum that existed at early times, there
also big bang nucleosynthesis constraints ofVl,1024 for
l,100 pc @18# and CMB limits ofVl,10212 at horizon
wavelengths~from COBE! and Vl,1028 for l.1 Mpc
from small-scale anisotropy@19#.

In Ref. @17# it was suggested that highly magnified lens
sources could increase the sensitivity to detecting proper
tions due to GW’s. The angular deviations induced by GW
produced by an individual source were discussed in R
@20#. Reference@21# considered detecting proper motions~of
unlensed sources! due to GW’s through very long baselin
interferometry~VLBI ! measurements, but our approach
simpler than theirs. For an image of a lensed source, only
angular deflection of the sourcerelative to the lens is easily
observed, and we find that this relative motion is small wh
we assume an isotropic GW background. Thus we do
find an interesting limit on the energy density.

II. FORMALISM

In this section we review the formalism describing grav
waves, their cosmological evolution, and their effect on le
ing, as well as the usual formalism of gravitational lensin
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7140 54RENNAN BAR-KANA
We work in the framework of a flat Robertson-Walker met
with small-amplitude tensor metric fluctuations. For we
perturbations, we can consider the effect of GW’s witho
including LSS, since the cross terms between them would
of higher order. In comoving coordinates we can write t
line element as

ds25a2~t!@2dt21~d i j1hi j !dx
idxj #. ~1!

Heret is the conformal time,a(t) the expansion factor, an
we have setc51. We expand the metric perturbation
plane waves (k52p/l):

hlm~xW ,t!5E d3k hn~kW ,t!e lm
n ~ k̂!e2 ikW•xW, ~2!

where e lm
n is the polarization tensor which depends on t

direction k̂ ( l andm are spatial indices ranging from 1 to 3
while n ranges over the polarization components1,3). For
a wave propagating in thez direction, the nonvanishing com
ponents are, in thex andy rows and columns,

e lm
1 5S 1 0 0

0 21 0

0 0 0
D , e lm

3 5S 0 1 0

1 0 0

0 0 0
D .

For other propagation directionskW , we rotatee→ReRT, with
R the standard 333 rotation matrix.

GW’s with a given wave vectorkW are produced during
inflation and then stretched outside the horizon. The am
tude is constant outside the horizon, but once a mode r
ters its energy redshifts asa24. For the inflationary spectrum
the effect of very short wavelength modes is negligible, a
so we can assume that all modes enter during the ma
dominated era, for which the exact time evolution is giv
@1,2# by a spherical Bessel function, 3j 1(kt)/(kt). This time
evolution is also correct for all modes long after matt
radiation equality. Inflation produces Gaussian, stocha
perturbations. The Fourier components have zero ensem
mean and a covariance

^hi~kW ,t1!h
j~qW ,t2!&5ATk

23F3 j 1~kt1!

kt1
GF3 j 1~kt2!

kt2
G

3d3~kW1qW !d i j , ~3!

for the scale-invariantk23 spectrum. Note that we do no
assume the short wavelength approximationhi(kW ,t)
}a21(t)eikt. The contribution toV at the present~averaged
over several periods! is

Vl5
dVGW

dlnk
5
3p

2
AT~kt0!

22, ~4!

wheret052H0
21 is the present value oft, and throughout

we setH0575 kmsec-1Mpc21. Normalization to the full
CMB quadrupole anisotropy givesAT56310211.

Consider a photon emitted from a source toward an
server at the origin, with the photon’s final direction defin
as ~minus! the z axis. We user to denote values of thez
coordinate~with zS denoting the source redshift, not itsz
t
e
e

li-
n-

d
r-

-
ic
ble

-

coordinate!. GW’s affect the distance-redshift relation, b
this effect is separate from that of the angular deflectio
which we are interested in, and it introduces only small a
ditional corrections in these quantities@17#. We can thus ne-
glect this effect, and assume that the photon path ob
r (t)5t02t. In a flat, matter-dominated universe
r S52H0

21@12(11zS)
21/2#. The components perpendicula

to thez axis of the photon direction obey@17#

dxi

dt
~t!2

dxi

dt
~t0!5hzi~t!2hzi~t0!2

1

2Et

t0
¹ ihzz~t8!dt8.

~5!

Integrating this we find, for the perpendicular components
the position@with respect toxW (t0)50#,

xi~t!5E
t

t0F12 ~t82t!¹ ihzz~t8!1hzi~t0!2hzi~t8!Gdt8.

~6!

We define a~two-component! angleb i5xi(t)/r (t).
In gravitational lensing with a primary thin lens at a di

tancer L ~but no LSS or GW! the lens equation is~e.g.,@13#!

bW 5uW 2aW lens~uW !, ~7!

whereuW is the observed image angle,bW is the source angle
~defined asxWS /r S , in terms of the perpendicular position o
the source!, and aW lens is the deflection angle scaled b
r LS /r S ~we definer LS5r S2r L). In this case, the fiducialz
axis is defined to be in the observed direction of the lens. T
distortion of the image of a small source is given by t
inverse of the Jacobian matrix:

]b i

]u j 5d i j2C i j , ~8!

whereC i j is also termed the shear tensor of the lens.

III. SHEAR INDUCED BY GW’s ON LENSING

In this section we follow the approach used for LSS
Ref. @10#; i.e., we compute some of the same quantities
GW’s and compare the results. As stated in Sec. I, we do
need to include a lens explicitly, as we now justify. In th
presence of a metric perturbation, but without a primary le
the lens equation has the formbW 5uW 2aW OS(uW ), whereaW OS
results from the accumulated deflection between the obse
and the source. As defined in Sec. II, the shear tensor fo
image atuW due to the perturbation isFi j5]aOS

i (uW )/]u j . On

the other hand, the relative deflection atuW between two rays
separated by a tiny anglegW is aW OS(uW 1gW )2aW OS(uW ). We de-
note the rms of this quantity bysDb . We average over di-
rections ofgW ~which for this calculation is equivalent to fix
ing gW and assuming thatFi j is isotropic! and takeg→0,
obtaining the relation1

1Repeated indices are summed over thex andy directions. There
is no distinction between upper and lower indices.
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S sDb

g D 251

2
^Fi j Fi j &, ~9!

all evaluated at positionuW . Thus,sDb /g yields an estimate
of the magnitude of the shear tensor. Indeed, it fully char
terizes rms values ofFi j , since, for an isotropic field,

^Fi j Fkl&5 1
8 @d i jdkl1d ikd j l1d i ld jk#^F

mnFmn&. ~10!

If we also include a primary lens, in the lens equation
simply add up all deflections linearly, assuming all defle
tions are small. For the primary lens alone, we have Eq.~7!.
Figure 1 shows this setup schematically. In the presence
metric perturbation, we trace a light ray that is observed
r50 to come from the directionuW , back to the source. We
find a different form for the lens equation:

bW 5uW 2aW OS
~2,3!2aW lens~uW 2aW OL

~2!!. ~11!

HereaW OS
(2,3) refers to the integrated deflection caused by L

or GW’s along the paths labeled 2 and 3 in Fig. 1, defined
that the total induced change inxW (tS) equalsr SaW OS

(2,3) . Simi-

larly, r LaW OL
(2) is the induced change inxW (tL). In integrating

the deflections along the unperturbed paths 2 and 3, we
assuming that the relative deflections due to LSS or GW
are small compared tou anda lens, which is true for the case
which we consider below.

When the perturbation is included,uW is no longer an ob-
servable, since it is measured with respect to the unpertu
position of the lens. The observed position of the lens~whose
actual position has not changed! is now uW lens5aW OL

(1) , and so

the lens equation in terms of the observableuW 85uW 2uW lens is

bW 5uW 81aW OL
~1!2aW OS

~2,3!2aW lens~uW 81aW OL
~1!2aW OL

~2!!. ~12!

If we now calculate the shear tensor resulting from Eq.~12!,
it will contain the shear of the primary lens, shear terms fr
the perturbation, and also cross terms. For simplicity, in
case of GW’s we only estimate one characteristic magnitu
that of the shear resulting fromaW OS

(2,3) , by evaluating the cor-
respondingsDb /g. In Ref. @9# all the different shear term
were studied for LSS, showing thatsDb /g indeed estimates

FIG. 1. Sketch showing positions of the observer, lens,
source, as well as an image ray and several comoving distanc
c-
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the relative magnitude of the various corrections due to L
Since we find thatsDb /g is much smaller for GW’s, we do
not have any motive to explore Eq.~12! further in this case.
Instead of the path(2),(3), we may use astraight path from
r50 to r5r S to evaluate the rms of various quantities in th
section, sincea lens!1 and so the components of vectors a
tensors as well as the relative distances of points along
path ~both of which enter into the rms calculations! are un-
changed@except forO(a lens) corrections#. Thus we only
need to consider the effect of GW’s in the absence o
primary lens.

Consider first a single light ray withuW 50. In the absence
of GW’s ~or LSS! it would follow the straight line
xi(t)50 for all t. We now include the effect of GW’s, an
compute the rms fluctuation in the photon’s perpendicu
displacement at the source,sb5^bW (tS)•bW (tS)&

1/2. This is a
measure of the common deflection of all image rays, an
therefore not observable, but it is useful for the calculatio
that follow. We use Eq.~6! and convert the expression t
Fourier space. Consider first only thehzz term, whose con-
tribution to sb

2 we denotesb,a
2 . The polarization gives

(ezz
1)21(ezz

3)25sin4uk , wherekW5(k,uk ,fk) in spherical co-

ordinates. Performing the angularkW integrations then yields

sb,a
2 5

432p

r S
2 ATE

tS

t0
dt1E

tS

t0
dt2E

0

`

dk k~t12tS!~t22tS!

3
j 1~kt1!

kt1

j 1~kt2!

kt2

j 3@k~t12t2!#

@k~t12t2!#
3 .

The j 3@k(t12t2)#/@k(t12t2)#
3 term represents a furthe

suppression of short wavelength modes due to phase ca
lations among different waves in the assumed isotropic
chastic background. Lettings5kt1 and q5t2 /t1, we can
simplify this expression to a double integral,

sb,a
2 5

864p

r S
2 ATE

qS

1 H qt0S 12 t02tSD2tSr S

1tS
2F 12q1 ln~q/qS!G JW~q!dq, ~13!

whereqS5tS /t0, and withu[(12q)s we define

W~q!5E
0

` j 1~s!

s

j 1~qs!

qs

j 3~u!

u3
sds. ~14!

Similarly, the contribution of thehzi terms of Eq.~6! is

sb,b
2 5

144p

r S
2 ATE

qS

1 F tS
2

2q2
1t0S 12 t02tSD GG~q!dq, ~15!

where

G~q!5E
0

` H 15 F j 1~s!

s G21 1

5 F j 1~qs!qs G2

22
j 1~s!

s

j 1~qs!

qs F j 1~u!

u
22

j 2~u!

u2 G J dss . ~16!

d
.
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7142 54RENNAN BAR-KANA
Integrating over angles gives a zero cross term, and
sb
25sb,a

2 1sb,b
2 Numerically, we find that sb

5531026 (zS51), 931026 (zS53). This is much
smaller than the estimates for LSS@10#, 631024

(zS51), 731024 (zS53).
To estimate the relative deflection between rays atuW 50,

we choose two directions~labeledA andB) separated at the
observer by an infinitesimal angleg, and find the rms differ-
ence between the deflections due to GW’s in these two
rections,sDb5^@bW A(tS)2bW B(tS)#

2&1/2. We cannot evaluate
this with the method used for LSS, which assumes that
rizon size modes are negligible@8#. Instead we must calcu
latesDb

2 explicitly and keep all the terms to lowest order
g, i.e., quadratic order. These include terms which co
from multiplying polarization components for the differe
directionsA andB. The final result is

~sDb /g!254sb,a
2 1sDb,a

2 1sDb,b
2 1sDb,c

2 , ~17!

where

sDb,a
2 5

576p

r S
2 ATE

qS

1 Ft0tS
q

~11q!22S t0
21

tS
2

q D ~11q!

1~t01tS!r Sln~q/qS!G I 1~q!dq,

sDb,b
2 5

1728p

r S
2 ATE

qS

1

$~t01tS!
22t0

2~11q!2

12qtS~tS2qt0!1@tSt0~11q2!

1q~t01tS!
2# ln~q/qS!%I 2~q!dq,

sDb,c
2 5

288p

r S
2 ATE

qS

1 F tS
2

2q2
1t0S 12 t02tSD G I 3~q!dq,

I 1~q!5E
0

` j 1~s!

s

j 1~qs!

qs F j 2~u!

u2
23

j 3~u!

u3 Gsds,
I 2~q!5E

0

` j 1~s!

s

j 1~qs!

qs

j 4~u!

u4
s3ds,

I 3~q!5E
0

` H 2

15F j 1~s!

s G21 2

15F j 1~qs!qs G2

22
j 1~s!

s

j 1~qs!

qs F j 1~u!

u
23

j 2~u!

u2 G J dss . ~18!

Then sDb /g5731026 (zS51), 1.331025 (zS53). By
contrast, LSS gives asDb /g50.07 (zS51),0.14 (zS53).
For LSS, the relative deflection is greatly increased by
herent deflections for short wavelength modes, but for G
the effect of these modes is cut off by the redshifting as w
as the temporal oscillations. We also used the rela
krSg!1 in the calculation ofsDb . The reason we find a
sDb of order gsb is that long wavelength modes overla
over the two light rays, and the relative deflection is sm
compared to the total deflection. Indeed, a Taylor expans
suggests that in generalsDb /g;krSsb , and krS;1 is
so

i-

o-

e

-

ll
n

ll
n

dominant for this GW spectrum. As shown above, the sh
tensor~which is also used in weak lensing! is closely related
to sDb /g, and so the mean square ellipticity at a point i
duced by GW’s is of order 1025, again negligible compared
to the few percent expected from LSS~e.g.,@8#!.

We can also try to derive general limits on GW’s at a
trophysical wavelengths from the induced shear. To obta
limit on Vl , we compute thesDb /g produced by an isotro-
pic background of GW’s at a single wave numberk. Note
that for modes at a givenk, we can use Eqs.~3! and~4! even
for short wavelengths~with AT a normalization factor, sepa
rate for eachk), for timest long after matter-radiation equa
ity. Since GW’s at horizon wavelengths are already stron
constrained by the CMB as noted above, we restrict our
culation to the casekrS@1, in which case thehzi terms in
Eq. ~6! can be neglected. We can estimate from Eq.~6! that
in order of magnitudesb

2 should equalAT /(kt0)
4, and thus

that sDb
2 /g2;AT /(kt0)

2. However, we find from the exac
calculation that there is no term this large, only higher ord
terms in 1/(kt0). We outline in the Appendix a mathematic
argument showing this cancellation at small wavelengt
This result requires both the phase cancellations that com
averaging over an isotropic background and also the osc
tion with time of the GW’s. With different assumptions, e.g
if we analyzed GW’s from a particular source, which a
then not isotropic, stronger limits may be possible.

IV. PROPER MOTIONS INDUCED BY LSS AND GW’s

We now consider the fluctuation of the angular deflect
of image rays with time and the resulting proper motion.
the deflection of image rays induced by LSS or GW
changes significantly during an observation of a lens syst
then the slow shift in alignment between the lens and
source will change the impact parameter at the lens o
given ray from the source. The images will therefore mo
and even tiny motions may be detected since the source
tion is magnified if it is lensed by a primary lens. We fir
show that this effect is still expected to be too small to m
sure for LSS and for the GW power spectrum that we ha
considered above. However, given the weakness of exis
limits on GW’s at astrophysical wavelengths~Sec. I!, we
also consider possible limits on a general GW spectrum.

Again we consider a single light ray from the observer o
to some distancer S , in the absence of a primary lens~we
consider the effect of a lens below!. Given a ray with a fixed
direction at the observer, its positionxi(r S) at r Smoves with
time, and it is this motion which we evaluate. In practice, w
are interested in a fixed source atr S , in which case itsap-
parent position will drift with the same speed but in th
opposite direction. For LSS we have~e.g.,@10#!

xi~r S!522E
r50

r S
~r S2r !¹ if~t5t02r !dr, ~19!

in terms of the Newtonian potential~or scalar metric pertur-
bation! f. We are now using the parameterr rather thant,
since as time changes all comoving distances remain fix
The only change is the time of evaluation off, and so to find
dxi(r S)/dt0 from xi(r S) we simply replacef(t5t02r ) by
ḟ(t5t02r ), with the partial time derivative inḟ taken at a
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fixed position. The rms value ofdxi(r S)/dt0 depends on the
power spectrum ofḟ, a quantity which has been estimate
by various authors in connection with the Rees-Sciama ef
on the CMB ~e.g., @22#!. While the integrated deflection i
dominated by short (;1 Mpc! wavelengths, the LSS poten
tial only evolves on a cosmological time scale. In
Einstein–de Sitter universe,f is time independent in the
linear regime of small density perturbations, but in this ca
too ḟ becomes nonzero when nonlinear structure forms
general, therefore, the proper motion induced by LSS is
order sb /t0.1028 arcsec per year. For the gravity wav
spectrum considered above, horizon size modes are d
nant, and so here too the induced proper motion is of or
sb /t0, with a sb smaller by;102 than for LSS. Any ob-
served proper motion will thus be dominated by pecu
velocities of hundreds of km/s generated, e.g., by the ve
ity dispersion of stars in a galaxy or galaxies in a gala
group or cluster.

We now estimate the lensing limit on stochastic GW’s
general, at any wave numberk. VLBI observations can di-
rectly measure or limit proper motions, and this then impl
a limit on GW’s. Again we restrict ourselves to wavelengt
with krS@1, and consider first the apparent motion of
source that is not lensed by a primary lens. The appa
motion due to GW’s of a fixed object at distancer S is
2dbW (r S)/dt0. Up to corrections of order 1/krS , the mean
square of this motion is

K F d

dt0
b~r S!G2L 5

18pAT

5k2t0
4 F11

2

3
cos~2kt0!G . ~20!

However, when there are both a lens and a source, a
background will produce correlated proper motions in bo
and the relative motion may be small. Limits from VLBI o
proper motions in gravitational lenses were recently con
ered in Ref.@23#, and we proceed similarly. We may hop
for strong limits because, in the presence of lensing, a pro
motion of the source relative to the lens is magnified int
larger proper motion of the images. Furthermore, only arela-
tivemotion between images needs to be detected, as opp
to a more difficult measurement of motion with respect to
external reference frame, since if the source moves~relative
to the lens!, the different images donotall move together. In
general, different values of the magnification matrix at t
different image positions will produce relative motions b
tween images of the same order of magnitude as the abs
motions. Moreover, pairs of highly magnified images gen
ally have antiparallel motions@23#.

To analyze how proper motion due to GW’s may be ma
nified, we start from Eq.~12!, and consider the same equ
tion a timeDt later, when the deflections from GW’s hav
changed. E.g.,aW OL

(1) has changed toaW OL
(1)1D (1), and a total

changeDW in the observeduW 8 has been induced. Expandin
the lens equation to first order in the small changes and s
ing for DW , we obtain

D i5D i
~2!2D i

~1!1Mi
j@D j

~2,3!2D j
~2!#, ~21!
ct

e
n
f

i-
er

r
c-
y

s

nt

W
,

-

er
a

sed
n

e
-
ute
-

-

v-

where the magnification matrixMi
j equals the inverse o

d i
j2] ia lens

j ~and is evaluated atuW 81aW OL
(1)2aW OL

(2)). Consider
first the magnified termD j

(2,3)2D j
(2) . Averaging over direc-

tions ofDW (2,3)2DW (2) we obtain a result analogous to Eq.~9!
for the mean square. SinceMi j is symmetric for a thin lens
@13#, it has two real eigenvaluesma andmb ~where the mag-
nificationM5umambu). Letting

M̃5@ 1
2 ~ma

21mb
2!#1/2, ~22!

we find that

rmsuMi
j@D j

~2,3!2D j
~2!#u5M̃3rmsuDW ~2,3!2DW ~2!u. ~23!

In Eq. ~23! we may evaluate the rms on the right-hand s
using a straight path~as in Sec. III!. Letting

d

dt0
bW LS52

d

dt0
bW ~r S!1

d

dt0
bW ~r L!, ~24!

we find that in^ḃLS
2 & there is no term of orderAT /(k

2t0
4) @as

in Eq. ~20!#, but only higher order terms in 1/(kt0). Once
again this small wavelength cutoff results from combini
the time oscillation of GW’s and the phase cancellations
averaging over an isotropic background~see the Appendix!,
and as a result there is only a very weak limit onVl .

V. CONCLUSIONS

Gravitational lensing is affected by perturbations to t
homogeneous and isotropic background metric. Such pe
bations, whether they are caused by LSS or GW’s, may p
duce a number of effects on light propagation. One su
effect is an overall shift in the angular positions of near
objects, which is not observable. Another is a relative diff
ence between the induced shifts in nearby light rays. T
relative deflection manifests itself as a shear which m
cause weak lensing and also affect strong lensing. A th
effect is a fluctuation of the angular position of distant o
jects with time, leading to a directly observable proper m
tion.

The actual amplitude of long wavelength modes of L
and GW’s is limited by the quadrupole anisotropy of t
CMB. Even if both make comparable contributions to t
anisotropy, LSS is dominant in its effects on lensing. T
results from cancellations due to the time oscillation of sh
wavelength gravity waves, as well as the redshifting of th
amplitude. For LSS, on the other hand, the effect of sm
coherent structures is amplified as the deflection execut
random walk. We find that the relative deflection due
GW’s is four orders of magnitude smaller than that of LS
and is therefore not observable.

The induced proper motions expected for LSS or
GW’s generated in inflation are small compared to typi
peculiar velocities, and thus are not observable. The mot
are also too small to yield interesting limits on the ener
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density of GW’s at shorter wavelengths.
After this paper was submitted for publication, the ben

ing of light by gravity waves was analyzed differently in Re
@24#, for the case of short~subhorizon! wavelengths, in a
nonexpanding flat space~i.e., neglecting the redshifting o
the amplitude of GW’s!. That simplified analysis shows tha
the relative proper motion between two sources is small
only if they are at different redshifts along the same line
sight~in agreement with our calculation of^ḃLS

2 & in Sec. IV!,
but also if they are separated on the sky by a small an
The treatment presented in Ref.@24# changes quantitatively
if expansion is included, but not qualitatively for GW’s wit
a period short compared to the redshifting time scale~i.e., a
Hubble time!.
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APPENDIX

In trying to set limits on GW’s at short wavelength
krS@1, we twice encountered a weaker limit than simp
dimensional analysis would suggest: Once in calculat
sDb /g or shear in Sec. III, and then in estimating the ma
nified proper motion in Sec. IV. In this appendix we outlin
the first of these calculations and show how this res
emerges. The second calculation can be done similarly.

From Eq.~6! in the limit of short wavelengths~compared
with the present horizon!, we derive

sDb
2 /g25

1728p

r S
2 ATk

4E
tS

t0
dt1E

tS

t0
dt2~t12tS!~t22tS!

3~t02t1!~t02t2!
cos~kt1!

~kt1!
2

cos~kt2!

~kt2!
2

3
j 4@k~t12t2!#

@k~t12t2!#
4 .

The j 4@k(t12t2)#/@k(t12t2)#
4 term comes from the angu

lar kW integrations, including the angular dependence of
polarizations and assuming an isotropic background. Let
x5kt1 andu5k(t12t2) ~alsox05kt0, etc.! leads to
-

ot
f

e.

e

oll,
I

g
-

lt

e
g

864p

k2r S
2 ATE

xS

x0
dx

~x2xS!~x02x!

x2

3E
xS2x

x02x

du
~x1u2xS!~x02x2u!

~x1u!2
j 4~u!

u4

3@cosu~11cos2x!2sinu sin2x#.

We evaluate only the first cosu term here, since the othe
terms in the square brackets can be evaluated similarly. N
that dimensional analysis suggests that thex andu integrals
should give a term of order 1~not larger, because of th
oscillating integrand!.

To do theu integral we separate the smooth and oscill
ing parts and then repeatedly integrate by parts: We
w[n] (u) be the nth indefinite integral of @cosu#j4(u)/u

4

with respect tou, and v [n] (u) the nth derivative of (x1u
2xS)(x02x2u)/(x1u)2 with respect tou. For eachn such
thatw[n] (u) converges foru→6`, we fix the arbitrary con-
stant byw[n] (`)1w[n] (2`)50 ~any constant will do for
othern). Then theu integral equals a series of terms eval
ated at the two limits of integration:

(
n50

`

~21!n$w[n11]v [n] uu5x02x2w[n11]v [n] uu5xS2x%.

Since the two series of terms can be handled similarly,
evaluate here only theu5x02x terms. We do thex integra-
tion in the same way as theu integration. Thus we continue
to integratew[n11](x) with respect tox, and letv [n,m] (x) be
themth derivative of (x2xS)(x02x)v [n] (x02x)/x2 with re-
spect tox. The contribution tosDb

2 /g2 from the terms we
have kept is

864p

xS
2 AT (

n,m50

`

~21!n11$w[n1m12]~0!v [n,m]~x0!

2w[n1m12]~x02xS!v
[n,m]~xS!%.

Now, v [n,m] (x) at x@1 is of orderx2(n1m), w[n] (0) is 0 or
a constant, and we find thatw[n] (x) at uxu@1 is of order
uxun25. This last fact, thatw[n] (6`) converges for the first
few n, depends on the specific functionw[0] (x) which in
turn is determined by the two physical assumptions of ti
oscillation and angular averaging. The only term from t
final sum that could give a contribution of orderAT /xS

2 is the
n5m50 term. We find thatw[2] (0) is a nonzero constant
but sincev [0,0](x)50 identically, there is no term of this
lowest order.
,
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