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We compute the effects of a stochastic background of gravitational waves on multiply imaged systems or on
weak lensing. There are two possible observable effects: a static relative deflection of images or shear, and an
induced time-dependent shift or proper motion. We evaluate the rms magnitude of these effects for a COBE
normalized, scale-invariant spectrum, which is an upper limit on spectra produced by inflation. Previous work
has shown that large-scale structure may cause a relative deflection large enough to affect observations, but we
find that the corresponding effect of gravity waves is smaller-t0* and so cannot be observed. This results
from the oscillation in time as well as the redshifting of the amplitude of gravity waves. We estimate the
magnitude of the proper motion induced by deflection of light due to large-scale structure, and find it to be
~10 8 arcsec per year. This corresponds~60 km/s at cosmological distances, which is quite small com-
pared to typical peculiar velocities. The COBE normalized gravity wave spectrum produces motions smaller
still by ~10?. We conclude that light deflection due to these cosmological perturbations cannot produce
observable proper motions of lensed images. On the other hand, there are only a few known observational
limits on a stochastic background of gravity waves at shorter, astrophysical wavelengths. We calculate the
expected magnitudes of the effects of lensing by gravity waves of such wavelengths, and find that they are too
small to yield interesting limits on the energy density of gravity way86556-282(196)04724-8

PACS numbe(s): 98.62.Sb, 04.30.Nk, 98.80.Cq

I. INTRODUCTION as cosmic strings, which generate GW's. A period of infla-
tion may leave behind a significant amount of GW’s. What-
Events in the early Universe may have left a stochasti@ver the source, any spectrum which extends over wave-
background of gravitational wave§&W'’s). In particular, a lengths comparable to the present horizon would contribute
generic prediction of inflation is a relic spectrum of GW’s to the quadrupole anisotropy of the cosmic microwave back-
[1]. Detecting these elusive remnants would not only estabground(CMB) [5]. Such a spectrum is therefore limited by
lish this prediction of general relativity, but also serve as athe anisotropy measured by the cosmic background explorer
critical test for inflation. While the predicted background (COBE) Differential Microwave RadiometefDMR) experi-
may be too weak for direct detecti¢d], it could be detected ment [6]. For our calculations we adopt a scale-invariant
indirectly through its effect on light propagation in the Uni- primordial spectrum, i.e., one which has constant energy
verse. Even if the effects of GW’s cannot be distinguisheddensity per logarithmic frequency, which we assume pro-
observationally from other effects, observers who assume nduces the entire measured quadrupole anisotropy. Inflation-
GW’s might reach incorrect conclusions about the distribu-ary models predict slightly tilted spectra which are respon-
tion of matter in the Universe. sible only for some fraction of the anisotropy,2], and so
Gravitational lensing is one of the most promising meth-are generally weaker than our adopted case.
ods of mapping the distribution of matter at cosmological In inflation, GW's are produced in conjunction with den-
distances. Detailed observations of multiple images of quasity fluctuations. The initial nearly-scale-invariant power
sars have been used to try to reconstruct the lensing maspectrum of density fluctuations evolves as modes reenter the
distribution (e.g.,[3]). It has also long been recognized that horizon after inflation, and as structure later forms in a uni-
measurements of the time delay between images can be useerse dominated by dark matter. The present spectrum is
to determine the Hubble constait]. Gravitational lenses strongly constrained by galaxy and cluster surveys, and can
and sources, however, typically lie at significant redshiftsbe used to study the effects of LSS on lensing. The induced
Light rays are thus deflected by large-scale structuf&s) effects are small but potentially observable. In weak lensing,
and GW's as they traverse the cosmological distance to thihe effect is a coherent distortion of background galaxies by
observer, and these deflections may change the simple lenan ellipticity of the order of a few percef?,8]. In strong
ing picture. lensing, the primary effect is an external shear which may be
GW’s may be produced by many sources. Astrophysicakignificant for observed four-image systef8s10].
sources, such as close binary systems which include a neu- In general, the influence at a given time of a weak metric
tron star or black hole, radiate GW’s, and numerous indi-perturbation on light propagation is simply described by two
vidual sources may superpose to create a stochastic bacéffects. Their magnitudes were estimated for LSS in Ref.
ground. At the Planck time, quantum fluctuations in the[10], which we summarize here. The first effect is a constant
metric are significant and may produce gravitons. Phase tramleflection, the same for all nearby light rays. This deflection
sitions in the universe may lead to topological defects suclsimply displaces the “true” angular position of an observed
lens or source, and is not directly observable. In the case of
LSS, deflections from coherent structures of sizé Mpc
*Electronic address: barkana@arcturus.mit.edu add up in a random walk, giving an overall deflection of
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order a few arcminutes at redshift 1, which scales as théance. The effect of different modes must be convolved with
square root of comoving distance The second effect is a a particular power spectrum and include the above-
relative deflection between nearby light rays, which pro- mentioned decay of each mode as the universe expands. We
duces a focusing and shear with observable effects on wedkd simple integral expressions for the scale-invariant spec-
and strong lensing. For two rays at initial angleeach co- trum. The total and relative deflections are smaller than those
herent structure at a distancecauses a relative deflection caused by large-scale structure by factors of the order of
proportional to their separation efr 6. The additional ran- 10° and 10, respectively. We do not need to explicitly set
dom walk gives a relative angular fluctuation #0.07¢ at  up the lens equation, since the rms shear in the lens equation
redshift 1, which scales as’2 is directly related to the rms relative deflection of light rays,

It was suggested in Refl1] that gravity waves could Which we calculate. This fact was demonstrated for LSS in
significantly affect the time delays in a multiply imaged sys- Ref.[9], and we give a general proof in Sec. IIl below. Our
tem. It was later pointed o(il.2] that a correct analysis must results imply that the static effects of the GW spectrum on
include the lensing constraint, i.e., the fact that image rays itensing are negligible compared to those of LSS, and cannot
the presence of GW's follow different paths than for nobe detected in practice.

GW'’s, so that all rays go from the source to a common In addition to the static effects of LSS and GW's on lens-
destination, the observer. These later authors also showé@g, it is possible that the fluctuation in the induced deflec-
that both LSS and GW'’s have no observable effects on lendion with time would be directly manifested as an observed
ing, to lowest order. However, in their lowest order expan-proper motion of images. In other words, the sources do not
sion they assumed that two image rays that are observed &ally move but the light rays from the sources are deflected
an angular separatiahare separated by a distance of exactlyand so the sources appear to move. We find that even LSS
ré on the lens plane at a distance In other words, they ~can only produce motions of order 1darcsec per year from
neglected the relative deflection between light rays, andhis effect. This corresponds te 50 km/s at a distance of a
therefore only included an overall, constant deflection due té3pc, and the effect of GW's is smaller still by a factor of
LSS or GW's. ~10%. Since typical peculiar velocities are much larger, the

We can easily see why this assumption leads to no obproper motion induced by deflection of light due to LSS is
servable effects. In the absence of metric perturbations, wenobservable, and the same is true for the COBE-normalized
can write the lens equation for a thin lens @sg.,[13])  scale-invariant spectrum of GW's.

,é: 6— &Iens( 5)’ where 8 and 5, are the image and source However, we may try to use shear or proper motions of

. - . imaged sources to improve existing limits on stochastic
angles, respectively, antl. is the scaled deflection angle, GW's at a range of astrophysical wavelengths. There are
which is determined by the mass distribution of the lens. If I o o :
we neglect relative deflections, then LSS or GW’s can onlyOnly a ferUCh limits known: Slngle-pulsar timing y|elds

_» ’ 0, <1X10 ° at \~2 pc[14,15, binary pulsar timing im-
cause an aqgular shiff, between the observer and the Iens,p”eS Q,<0.04 over\~2 pc to 1 kpc and2,<0.5 up to
and a shifta; s between the lens and the source. Then thel0 kpc[14,16], and the observed angular correlation function
lens equation becomed= 6— ajend 6) + as, whered is now  of galaxies sets a limit of, <102 over A ~100 kpc to 100
measured relative to thebservedand shifted lens position, Mpc [17]. These limits apply to any stochastic background
andas involvesa, anda, s (see Sec. Il for the full detajls ~ ©f GW'S, whether cosmological in origin or generated at low
The constanti.e., 5-independer)tdeflection&s has no effect redshift as a superposition of many dlscrete.sources. For a
) S cosmological spectrum that existed at early times, there are
on any observables of the lens ’systé_mg.,[13]), SINceB IS ais0 big bang nucleosynthesis constraints(gf< 104 for
not directly observable. Fermat's principle tben implies that, 109 pc[18] and CMB limits of Q, <10 *2 at horizon
the lens equation must be equivalentdtbt/76=0 at fixed  wavelengths(from COBE and Q,<1078 for A\>1 Mpc
B, where At is the relative time delay. There is thus no from small-scale anisotropj19].
observable effect on the time delay, either, since it can be In Ref.[17] it was suggested that highly magnified lensed
derived from the lens equation, up t@nobservable sources could increase the sensitivity to detecting proper mo-
5-independent terms. tions due to GW's. The angular deviations induced by GW'’s
This approximation of neglecting the relative deflectionProduced by an individual source were discussed in Ref.
may not be a good one. Indeed, such deflection can hal&0l- Referenc¢21] considered detecting proper motiafus
observational consequences, which may be sufficiently largenlensed sourcgsiue to GW's through very long baseline
to detect in the case of LY9,10]. In this paper, we compute mterferometry(\/_LBl) measurements, but our approach is
the rms total and relative deflections between light rays inSimpler than theirs. For an image of a lensed source, only an
duced by a scale-invariant stochastic background of GW’sangular deflection of the sourcelative to the lens is easily
Unlike LSS, GW's oscillate with time, and so the effect of Observed, and we find that this relative motion is small when
short wavelength modes does not amplify, as light rays dee assume an isotropic GW background. Thus we do not
flect one way in crests and the opposite way in troughs. Ifind an interesting limit on the energy density.
addition, the energy density and thus also the amplitude of
subhorizon GW's redshift away as the universe expands. The
lensing effect is thus dominated by wavelengths on the scale
of the distance to the source. Each such mode acts as a singleln this section we review the formalism describing gravity
coherent structure, and so both the total and relative defleavaves, their cosmological evolution, and their effect on lens-
tions due to GW's scale approximately linearly with dis- ing, as well as the usual formalism of gravitational lensing.

Il. FORMALISM
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We work in the framework of a flat Robertson-Walker metric coordinate¢. GW's affect the distance-redshift relation, but
with small-amplitude tensor metric fluctuations. For weakthis effect is separate from that of the angular deflections
perturbations, we can consider the effect of GW's withoutwhich we are interested in, and it introduces only small ad-
including LSS, since the cross terms between them would bditional corrections in these quantitigs7]. We can thus ne-

of higher order. In comoving coordinates we can write theglect this effect, and assume that the photon path obeys
line element as r(r)=ro—7. In a flat, matter-dominated universe,
rs=2Hy [1—(1+zg) 2. The components perpendicular

— a2 2 i j
ds’=a®(7)[ —d7?+ (& +h;)dxdx]. () {0 thez axis of the photon direction obgit7]
Here 7 is the conformal timea(7) the expansion factor, and i dx 1 (o
we have setc=1. We expand the metric perturbation in E(T)—E(TO):hzi(T)—hzi(To)—EJ Vih, (7" )d7'".

plane wavesK=27/\):

©)
hym(X, 7) = f d2k h(K, 7)€l (k)e kX, (2) Integrating this we find, for the perpendicular components of
the position[with respect tax(7y) =0],
where e{‘m is the polarization tensor which depends on the o1
directionk (I andm are spatial indices ranging from 1 to 3, xi(T)zf ("= 71)V,h,(7")+h,i(m9)—hy,(7')|d7’.
while n ranges over the polarization componetitsx). For w12

a wave propagating in thedirection, the nonvanishing com- (6)

ponents are, in the andy rows and columns, We define atwo-componentangle 8'=xi(7)/r (7).

In gravitational lensing with a primary thin lens at a dis-
1 0 0 0 1 0 L
tancer (but no LSS or GWthe lens equation ie.g.,[13])

e=|0 -1 0|, &=(100

0 0 0 0 0 0 B=0— ajend ), @)

For other propagation directios we rotatee—ReRT, with ~ Whered is the observed image anglg,is the source angle
R the standard & 3 rotation matrix. (defined axg/rg, in terms of the perpendicular position of

GW's with a given wave vectok are produced during the sourcg and @ens is the deflection angle scaled by
inflation and then stretched outside the horizon. The amplir, s/rg (we definer gs=rg—r,). In this case, the fiduciat
tude is constant outside the horizon, but once a mode reemxis is defined to be in the observed direction of the lens. The
ters its energy redshifts as *. For the inflationary spectrum distortion of the image of a small source is given by the
the effect of very short wavelength modes is negligible, andnverse of the Jacobian matrix:
so we can assume that all modes enter during the matter- ,
dominated era, for which the exact time evolution is given ap' _ sl il 8
[1,2] by a spherical Bessel functionj 3k 7)/(k). This time Y ’ ®)
evolution is also correct for all modes long after matter- -
radiation equality. Inflation produces Gaussian, stochastighere¥' is also termed the shear tensor of the lens.
perturbations. The Fourier components have zero ensemble

mean and a covariance Ill. SHEAR INDUCED BY GW’s ON LENSING

3ja1(k7y) || 3j1(kTo)
le sz

In this section we follow the approach used for LSS in
Ref.[10]; i.e., we compute some of the same quantities for
GW'’s and compare the results. As stated in Sec. |, we do not

X 83(K+q) 8ij (3) need to include a lens explicitly, as we now just_ify. In the
presence of a metric perturbation, but without a primary lens,
for the scale-invariank™2 spectrum. Note that we do not the lens equation has the forf= 6— aog(6), where aps
assume the short wavelength approximatidni(k,7) results from the accumulated deflection between the observer
xa~Y(7)e'k". The contribution td) at the presenaveraged and the source. As defined in Sec. II, the shear tensor for an

(h'(K,7)hi(q, 7)) =Ark 3

over several periodss image atf due to the perturbation ' = dahy 6)/96). On
dQgw 37 the other hand, the relative deflectionéabetween two rays
N dink TAT(kTo)fzy (4 separated by a tiny anglgis aog( 6+ 7) — aos(6). We de-

note the rms of this quantity by, ;. We average over di-

where To:2H6l is the present value of, and throughout rections ofy (which for this calculation is equivalent to fix-
we setHy=75kmsedMpc L. Normalization to the full ing y and assuming thaE' is isotropio and takey—0,
CMB quadrupole anisotropy gives;=6x10" %, obtaining the relatioh

Consider a photon emitted from a source toward an ob-
server at the origin, with the photon’s final direction defined
as (minug the z axis. We use to denote values of the IRepeated indices are summed oversthendy directions. There
coordinate(with zg denoting the source redshift, not its s no distinction between upper and lower indices.
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the relative magnitude of the various corrections due to LSS.
S Since we find thatr, /7y is much smaller for GW'’s, we do
~ not have any motive to explore E(L2) further in this case.

N Instead of the pathi2),(3), we may use atraight path from
FQions S r=0 tor =rgto evaluate the rms of various quantities in this
b section, sincey,<<1 and so the components of vectors and

3 \mage ray tensors as well as the relative distances of points along the
S"/ l path (both of which enter into the rms calculatiorare un-
changed[except forO(a end corrections. Thus we only

r.8 need to consider the effect of GW’s in the absence of a
rsfB primary lens.

Consider first a single light ray with=0. In the absence

1 0 of GW's (or LSS it would follow the straight line

x'(7) =0 for all 7. We now include the effect of GW's, and
ompute the rms fluctuation in the photon’s perpendicular

displacement at the source,z=(B(7s)- B(7))*2 This is a
measure of the common deflection of all image rays, and is
oagl? 1 therefore not observable, but it is useful for the calculations
(—'B> =5(FFy), 9) that follow. We use Eq(6) and convert the expression to
2 Fourier space. Consider first only the, term, whose con-

tribution to ¢ we denotec,. The polarization gives

(e1)2+ (€))?=sir6,, wherek= (k, 6, ¢) in spherical co-

4

FIG. 1. Sketch showing positions of the observer, lens, an
source, as well as an image ray and several comoving distances.

all evaluated at positio@. Thus, o,/ y yields an estimate
of the magnitude of the shear tensor. Indeed, it fully charac

terizes rms values d&'l, since, for an isotropic field, ordinates. Performing the angulrintegrations then yields
Fi Fu) =3[08 8+ 68y + 81 83 J(F™F . (10 4327
< ij kl> 8[ ij Ykl ik ¢jl il jk]< mn> ( ) 2a TJ dTlf def dkk Ts)(Tz_Ts)
If we also include a primary lens, in the lens equation we
gimply add up all deflectipns linearly, assuming all deflec- j1(k7y) j1(KT) ja[k(71—75)]
tions are small. For the primary lens alone, we have(Eyg. X — 3
le k'TZ [k T1 7'2)]

Figure 1 shows this setup schematically. In the presence of a
metric perturbation, we trace a light ray that is observed afhe ja[ k(71— ) J/[K(7—75)]° term represents a further
r=0 to come from the directiod, back to the source. We suppression of short wavelength modes due to phase cancel-

find a different form for the lens equation: lations among different waves in the assumed isotropic sto-
s o sy = 2 =) chastic background. Letting=k7; and q=7,/7, we can
B=0—ags — aend 60— agp). (11 simplify this expression to a double integral,

Here a% refers to the integrated deflection caused by LSS , 864 1 1

or GW's along the paths labeled 2 and 3 in Fig. 1, defined so 0pa~ rs ATL Q7o 5707 7s| T Tsl's

that the total induced change xfrs) equalsr sa{2). Simi- N

larly, r a2 is the induced change iv(7,). In integrating 42 i+|n / ]W d 13

the deflections along the unperturbed paths 2 and 3, we are 7S 2q (9/as) (@da, 13

assuming that the relative deflections due to LSS or GW's
are small compared t andae,s, Which is true for the cases Whereqs= 7s/ 7, and withu=(1-q)s we define
which we consider below. ) ] .
When the perturbation is included,is no longer an ob- W(q)= Jw“(s) 11(as) 13(;’) sds (14)
servable, since it is measured with respect to the unperturbed o S gs u
position of the lens. The observed position of the lemsose
actual position has not changed now fien=all), and so  Similarly, the contribution of théx; terms of Eq.(6) is

the lens equation in terms of the observables 6— 6,gns iS

, ld4m fl 75 e ) (o) 15
>5_ 2 > Ogp="_2 o tTol 570~ T ,
B: 0 + a( _ agSS)_ alenie + a(l) agL (12) B.b ré s 2q2 0 2 0 S g)aq
If we now calculate the shear tensor resulting from @@), where
it will contain the shear of the primary lens, shear terms from
the perturbation, and also cross terms. For simplicity, in the B 1[j1(s)]? 1[ji(gs)]?
case of GW’s we only estimate one characteristic magnitude, Gla)= ol5| s 5| gs
that of the shear resulting from{%>), by evaluating the cor- - _ _
respondingo,z/y. In Ref.[9] all the different shear terms _211(5) 11(99) [ j1(u) _212(U) ds (16)
were studied for LSS, showing that, ;/y indeed estimates S qs u u? s’
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Integrating over angles gives a zero cross term, and sdominant for this GW spectrum. As shown above, the shear
02= O’%Va'i- oéb Numerically, we find that o4 tensor(which is also used in weak lensinig closely related
=5x10 % (zg=1), 9x10 %(zg=3). This is much 10 oz/y, and so the mean square ellipticity at a point in-
smaller than the estimates for LS$10], 6x10 %  duced by GW's is of order 1@, again negligible compared

to the few percent expected from L$&9.,[8]).

(zs=1), 7x10°% (zs=3). ; 9.,
To estimate the relative deflection between ray$-ap, We can also try to derive general limits on GW's at as-

we choose two directiondabeledA andB) separated at the t_rophysical wavelengths from the induced shear. Tq obtain a
observer by an infinitesimal angle and find the rms differ- imiton Q,, we compute thery g /'y produced by an isotro-
ence between the deflections due to GW's in these two diPiC background of GW's at a single wave numberNote

rections,oAB:<[,l§A(TS) _BB(TS)]2>1/2- We cannot evaluate that for modes at a givela, we can use Eq$3) and(4) even

this with the method used for LSS, which assumes that hof-or short wavelengthéwith Ay a normalization factor, sepa-

rizon size modes are negligiblé]. Instead we must calcu- rate for eaclk), for timesr long after matter-radiation equal-

late o2 . exolicitly and keep all the terms to lowest order in ity. Since GW'’s at horizon wavelengths are already strongly
O ap EXPUCILy P . : constrained by the CMB as noted above, we restrict our cal-
v, i.e., quadratic order. These include terms which com

from multiplying polarization components for the differentecmaltion o the cas&rs>1, in which case thé,; terms in
directionsA andB. The final result is _Eq. (6) can be ne_glectt;d. We can estimate from &.that

' in order of magnituder5 should equalAt/(k)*, and thus
that o5 5/ v?~Ar/(kT)?. However, we find from the exact

(opgly)?=402 +o-i +0'i b+0'i , (17)
o pa pa p pre calculation that there is no term this large, only higher order

where terms in 1/k7p). We outline in the Appendix a mathematical
) argument showing this cancellation at small wavelengths.
2 S76m 1\ 7975 > [ 2, 75 This result requires both the phase cancellations that come in

Oaga= 2z At (1+q)°=| 5+ —|(1+q) : : - :
Ba 2 ds q averaging over an isotropic background and also the oscilla-

tion with time of the GW’s. With different assumptions, e.g.,
if we analyzed GW’s from a particular source, which are
+(7ot+ 79)rdn(a/qs) 11(q)dq, then not isotropic, stronger limits may be possible.

2 1728r IV. PROPER MOTIONS INDUCED BY LSS AND GW'’s

1

UA,B,b:—rg ATL {(7o+ 79)%— 75(1+0)?
S

+2q7g( 75— 7o) +[ 7s70(1+G?)

+q( 7o+ 79)%1In(a/gs) H 2(q)da,

) 288 1
Oagc™ 2 N1
' s ds

2
7s

2_qZ+TO I5(q)dq,

1
ETO_TS

(W) _ja(w)

We now consider the fluctuation of the angular deflection
of image rays with time and the resulting proper motion. If
the deflection of image rays induced by LSS or GW's
changes significantly during an observation of a lens system,
then the slow shift in alignment between the lens and the
source will change the impact parameter at the lens of a
given ray from the source. The images will therefore move,
and even tiny motions may be detected since the source mo-
tion is magnified if it is lensed by a primary lens. We first

|1(q):f 11(9) 12(a9) —— 3> |sds show that this effect is still expected to be too small to mea-
o S @gs [ U u sure for LSS and for the GW power spectrum that we have
) ) _ considered above. However, given the weakness of existing
1( )=J°°11(5) 11(99) j4(u) Sds limits on GW’s at astrophysical wavelengtliSec. ), we
249 o S gs u? ' also consider possible limits on a general GW spectrum.
Again we consider a single light ray from the observer out
= 2[j1(s)]? 2[ji(g9)]? to some distances, in the absence of a primary leitwe
I3(q)= fo [ 18l s B gs consider the effect of a lens beldvGiven a ray with a fixed

direction at the observer, its positiaf(rg) atrg moves with
ds time, and it is this motion which we evaluate. In practice, we
]?- (18 are interested in a fixed sourcera, in which case itsap-
parent position will drift with the same speed but in the
opposite direction. For LSS we have.g.,[10])

2]1(5) j1(gs)
s Qs

Ja(u) —ja(u)
u o u?

Then 0,3/ y=7X10"° (zs=1), 1.3x10°° (zs=3). By
contrast, LSS gives a,z/y=0.07 (2s=1),0.14 @s=3).
For LSS, the relative deflection is greatly increased by co-
herent deflections for short wavelength modes, but for GW
the effect of these modes is cut off by the redshifting as well ) ] .
as the temporal oscillations. We also used the relatiod terms of the Newtonian potentigbr scalar metric pertur-
krsy<1 in the calculation ofo,,. The reason we find a Pation ¢. We are now using the parameterather thanr,
osp Of order yog is that long wavelength modes overlap Since as time changes all comoving distances remain fixed.
over the two light rays, and the relative deflection is smallThe only change is the time of evaluationgfand so to find
compared to the total deflection. Indeed, a Taylor expansiofiX (r's)/d7o from x'(rs) we simply replacep(7=7o—r) by
suggests that in generatyz/y~Krsog, and krg~1 is  ¢(7=7—r), with the partial time derivative i taken at a

s

x(rg)= —2fr:0(rs—r)Vi¢(T= o—r)dr, (19
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fixed position. The rms value @fx'(rs)/dr, depends on the where the magnification matrip! equals the inverse of
power spectrum ofp, a quantity which has been estimated &/ — g al,, (and is evaluated ab’ +al)— a2)). Consider
by various authors in connection with the Rees-Sciama effedrst the magnified terrTAJ(Z'3)—A(2). Averaging over direc-
on the CMB (e.g.,[22]). While the integrated deflection is .

dominated by shortt1 Mpc) wavelengths, the LSS poten- for the mean square. Sindé" is symmetric for a thin lens

tial only evolves on a cosmological time scale. In an ; -
i . . . L . . 13], it has two real eigenvaluas, andm,, (where the mag-
Einstein—de Sitter universep is time independent in the E]ifig:ationM—|m mb|)gLetting a b ( 9
=|m, )

linear regime of small density perturbations, but in this case

too ¢ becomes nonzero when nonlinear structure forms. In

general, thereforg, the proper motion induced by .LSS is of I\~/I=[%(m§+ me))]1/2, (22)
order o5/ 7y=10"° arcsec per year. For the gravity wave

spectrum considered above, horizon size modes are domi-

nant, and so here too the induced proper motion is of ordefe find that

ol 1o, With a oz smaller by~ 10? than for LSS. Any ob-

served proper motion will thus be dominated by peculiar

tions of A(23)— A2 we obtain a result analogous to H)

velocities of hundreds of km/s generated, e.g., by the veloc- rmgMI[A{>Y - AD]|= MXxrmgA?I-K@]. (23
ity dispersion of stars in a galaxy or galaxies in a galaxy
group or cluster. In Eq. (23) we may evaluate the rms on the right-hand side

We now estimate the lensing limit on stochastic GW's insing a straight pattas in Sec. I1]. Letting
general, at any wave numbkr VLBI observations can di-
rectly measure or limit proper motions, and this then implies
a limit on GW’s. Again we restrict ourselves to wavelengths d . d . d .
with krg>1, and consider first the apparent motion of a grBLs= — g B+ —Ar), (24
. . To To To
source that is not lensed by a primary lens. The apparent
motion due to GW'’s of a fixed object at distance is ]
—dp - we find that in( 82¢) there is no term of ordek;/(k?73) [as
dB(rs)/d7g. Up to corrections of order &fg, the mean LS . Oy 0
square of this motion is in Eq. (20)], but only higher order terms in Kg,). Once
again this small wavelength cutoff results from combining
d 2\ 187A;
E e )

the time oscillation of GW'’s and the phase cancellations in
However, when there are both a lens and a source, a GW

averaging over an isotropic backgroufmte the Appendjx
. (200 and as a result there is only a very weak limit Qg .

background will produce correlated proper motions in both, Gravitational lensing is affected by perturbations to the
and the relative motion may be small. Limits from VLBI on homogeneous and isotropic background metric. Such pertur-
proper motions in gravitational lenses were recently considbations, whether they are caused by LSS or GW'’s, may pro-
ered in Ref[23], and we proceed similarly. We may hope duce a number of effects on light propagation. One such
for strong limits because, in the presence of lensing, a propeffect is an overall shift in the angular positions of nearby
motion of the source relative to the lens is magnified into aobjects, which is not observable. Another is a relative differ-
larger proper motion of the images. Furthermore, onigla-  ence between the induced shifts in nearby light rays. This
tive motion between images needs to be detected, as opposealative deflection manifests itself as a shear which may
to a more difficult measurement of motion with respect to ancause weak lensing and also affect strong lensing. A third
external reference frame, since if the source mavelative  effect is a fluctuation of the angular position of distant ob-
to the leng, the different images doot all move together. In  jects with time, leading to a directly observable proper mo-
general, different values of the magnification matrix at thetion.
different image positions will produce relative motions be- The actual amplitude of long wavelength modes of LSS
tween images of the same order of magnitude as the absoluted GW's is limited by the quadrupole anisotropy of the
motions. Moreover, pairs of highly magnified images gener-CMB. Even if both make comparable contributions to the
ally have antiparallel motiong23]. anisotropy, LSS is dominant in its effects on lensing. This

To analyze how proper motion due to GW’s may be mag+esults from cancellations due to the time oscillation of short
nified, we start from Eq(12), and consider the same equa- wavelength gravity waves, as well as the redshifting of their
tion a timeAt later, when the deflections from GW’s have amplitude. For LSS, on the other hand, the effect of small
changed. E_g_&(olL) has changed t@;gL)J, A®M and a total Ccoherent structures is amplified as the deflection executes a

> >, . . random walk. We find that the relative deflection due to
changeA in the observedy’ has been induced. Expanding GW's is four orders of magnitude smaller than that of LSS,

the lens equation to first order in the small changes and SOIVénd is therefore not observable.

ing for A, we obtain The induced proper motions expected for LSS or for
GW'’s generated in inflation are small compared to typical
@A) (23 A(2) peculiar velocities, and _thus_are not obs_er\_/able. The motions

A=A =AY+ MI[AT = A, (21)  are also too small to yield interesting limits on the energy

2
1+ §cos{2kro)

V. CONCLUSIONS
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density of GW'’s at shorter wavelengths. 864 Xo  (X—Xg)(Xg—X)
After this paper was submitted for publication, the bend- WATJ Xz
ing of light by gravity waves was analyzed differently in Ref. S Xs
[24], for the case of shor{subhorizon wavelengths, in a x0=X  (X+U—Xg)(Xg—X—U) j4(u)
nonexpanding flat spacg.e., neglecting the redshifting of X L iy du (x+u)2 U
-

the amplitude of GW’s That simplified analysis shows that
the relative proper motion between two sources is small not X [coqu(1+ cosx) — sinu sin2x].
only if they are at different redshifts along the same line of

sight(in agreement with our calculation 6B2) in Sec. IV),
but also if they are separated on the sky by a small angl
The treatment presented in RE24] changes quantitatively
if expansion is included, but not qualitatively for GW’s with

We evaluate only the first casterm here, since the other
terms in the square brackets can be evaluated similarly. Note
&hat dimensional analysis suggests thatxrendu integrals
should give a term of order (not larger, because of the
oscillating integrand

a period short compared to the redshifting time s¢aee, a To do theu integral we separate the smooth and oscillat-
Hubble time. ing parts and then repeatedly integrate by parts: We let
wi"l(u) be the nth indefinite integral of [cosu]j,(u)/u®
ACKNOWLEDGMENTS with respect tou, andv!™(u) the nth derivative of &+u

2 .
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APPENDIX 240 (=Mwin ] —wm I

In trying to set limits on GW's at short wavelengths Since the two series of terms can be handled similarly, we
kr>1, we twice encountered a weaker limit than simple Y

dimensional analysis would suggest: Once in calculatin igil?r?tti:z;em%n%;ma;)i(r)l;i)r:tfr?;?i.o\r/]veTﬂasfhv?elr;tjr?t:?;e

aply or shear in Sec. lll, and then in estimating the mag—to inte ratew[““](x)ywith res egt o aﬁd leto ™M (x) be

nified proper motion in Sec. IV. In this appendix we outline h r?d o M p_ (v 152 with re-

the first of these calculations and show how this resulf!®Mth derivative of &=xs)(xo 2X)U 2 (Xo=)/x" with re

emerges. The second calculation can be done similarly. ~ SPECt tox. The contribution too 5/ y* from the terms we
From Eg.(6) in the limit of short wavelength&compared have kept is

with the present horizonwe derive

8641 ”
—Ar X (=) Hwlrmr2l0)pnml(xy)
Xg n,m=0

2 o 17287 k4JTOd J'Tod
TpplY __rsr T s 71 s (11— T5) (72— Tg) —W[n+m+2](X0—Xs)v[n’m](XS)}.
cogkr;) cogkry) Now, vI™M(x) atx>1 is of orderx™ ("*™ wl"(0) is 0 or
X(ro=m)(70— 72 (kr)?  (krp)? a constant, and we find thaul"l(x) at [x|>1 is of order
. |x|"5. This last fact, thaw!"l(+ =) converges for the first
Jalk(T1—=73)] few n, depends on the specific function® (x) which in
[k(r—712)]*" turn is determined by the two physical assumptions of time

oscillation and angular averaging. The only term from the
The ja[k(1— m5) J/[K(71— 72)]* term comes from the angu-  final sum that could give a contribution of ordes /X2 is the
lar k integrations, including the angular dependence of thev=m=0 term. We find thaw!?}(0) is a nonzero constant,
polarizations and assuming an isotropic background. Lettingut sincev[®%(x)=0 identically, there is no term of this

x=k7; andu=k(7,— 75) (alsoxy=Kkr, etc) leads to lowest order.
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