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Finite temperature transitions in lattice QCD with Wilson quarks: Chiral transitions
and the influence of the strange quark
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The nature of finite temperature transitions in lattice QCD with Wilson quarks is studied near the chiral limit
for the cases of two, three, and six flavors of degenerate quatks 2, 3, and 6 and also for the case of
massless up and down quarks and a light strange quNgk-@+ 1). Our simulations mainly performed on
lattices with the temporal direction extensibip=4 indicate that the finite temperature transition in the chiral
limit (chiral transition is continuougor at most very weakly first ordefor Ng= 2, while it is of first order for
Ne=3 and 6. We find that the transition is of first order for the case of massless up and down quarks and the
physical strange quark where we obtain a valuengf/m,, consistent with the physical value. This result is
different from the previous result with staggered quarkilat 4 which suggests that the transition in the real
world is a crossover. Since the deviation from the continuum limit is large in both studibs=at, a
calculation with largeN, or with an improved action would be needed in order to obtain a definite conclusion
about the nature of the QCD transition. We also discuss the phase structure at zero temperature as well as that
at finite temperature$S0556-282(196)00823-3

PACS numbgs): 12.38.Gc, 11.15.Ha, 11.30.Rd, 12.38.Mh

I. INTRODUCTION investigate the finite temperature transition with Wilson
quarks and compare the results with those for staggered
One of the major goals of numerical studies in latticequarks.
QCD is to determine the nature of the transition from the In Sec. I, we define our action and coupling parameters.
high temperature quark-gluon-plasma phase to the low tenBecause chiral symmetry is explicitly broken on the lattice in
perature hadron phase, which is supposed to occur at tbe Wilson formalism, we first define the chiral limit for
early stage of the Universe and possibly at heavy ion colliWilson quarks and give a brief survey of the phase structure
sions. It is, in particular, crucial to know whether the transi-in Sec. lll. Our simulation parameters are summarized in
tion is a first order phase transition or a smooth transitiorSec. IV. Numerical results for the chiral limit are summa-
(second order phase transition or crosspuerunderstand rized in Sec. V. We then discuss, in Sec. VI, problems and
the evolution of the Universe. caveats which appear in a study of the finite temperature
The determination of the order of the transition for thetransition with Wilson quarks when performed on lattices
case of degenerate- flavors is an important step toward the available with the present power of computers. Section VII
understanding of the nature of the QCD transition in the reafleals with the transition in the chiral lim{thiral transition
world. We can compare the numerical results for variougn the degenerate casesf=2, 3, and 6. In Sec. VIII, we
number of flavors with theoretical predictions based on thestudy the influence of the strange quark on the QCD transi-
study of the effectivar model[1,2]. In order to investigate tion both in the degeneraté-=3 case and in a more real-
what really happens in nature, we have to ultimately studystic case of massless up and down quarks with a massive
the effect of the strange quark together with those of almosstrange quarkNg=2+1. We finally conclude in Sec. IX.
massless up and down quarks, because the critical temper@reliminary reports are given {r8—5].
ture is of the same order of magnitude as the strange quark
mass.
In this article we investigate finite temperature transitions Il. ACTION AND COUPLING PARAMETERS
in Igttice QCD using the Wilson formalism for quark§ for  \we use the standard one-plaquette gauge action
various numbers of flavordNg=2, 3, and 6 near the chiral
limit and also for the case of massless up and down quarks
and a light strange quarkNg=2+1). Most simulations of 2
finite temperature QCD were performed with staggered Sg:@
guarks. However, because the Wilson formalism of fermions
on the lattice is the only known formalism which possesses a
local action for any number of flavors, it is important to and the Wilson quark actiof6]
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FIG. 2. Schematic graph for the chiral limit lin€, defined by
FIG. 1. Pion screening mass squamﬁa2 and twice the quark mg=0 orm,=0 atT=0 in the coupling parameter spacg,K).
mass Mqa for Ne=2 at3=0 on an §x 10x 4 lattice. Errors are  Also plotted are the curves wheng,=0 andm,_=0 at finite N,
smaller than the size of symbols. Solid curves are the results of @herem_ is the pion screening mass. See text for discussions.
strong coupling calculation, Eg6).
In general, Ward-Takahashi identities derived from chiral
NF _ symmetry have corrections d@d(a) [9]. In the particular
Sq= —Zl > (MDD (Ky,n,m)ge(m), (2)  form of Eq. (4), we have absorbed th@(a) corrections in
-4 nm the definition ofm, or, equivalently, in the value df. dis-
cussed in the next subsection. Of course, @{@) correc-
_ _ _ tions in Eq.(4) with the other state vectors or in other Ward-
DK.n,m)=6hm Kz,:‘ (@~ 7 Un 00t m Takahashi identities cannot be removed with this definition
of my.
+ (14 Y,)Ul O s ) With this definition of quark mass, the PCA@artially

_ _ _ _ conserved axial-vector currgmelation
whereg is the bare coupling constant akdis the hopping

parameter. In the case of degenendteflavors, lattice QCD mf,oc Mg, (5)
contains two parameters: the gauge coupling constant = o ] o
B: 6/92 and the hopp|ng parametKr_ In the nondegenerate Wh|Ch IS eXpeCted to be SatISerd near the continuum I|m|t,

case, the number of the hopping parametesds was numerically first verified within numerical uncertainties
We denote the linear extension of a lattice in the temporafor the quenched QCD at zero temperature[16,11 and
direction byN, and the lattice spacing bg. subsequently for various cases including QCD whth=2

in [3,12—-14. It should be noted that the PCAC relation is
satisfied not only in the continuum limif3=c, but also
even in the strong coupling limit3=0: The result of the

In the Wilson formalism of fermions on the lattice, chiral Strong coupling expansion without quark lodg<],
symmetry is explicitly broken by the Wilson term even for (1—16K2)(1—4K?)

Ill. BRIEF SURVEY OF PHASE STRUCTURE

vanishing bare quark ma$g]. The lack of chiral symmetry cosiim,a)=1+ 5 —,
causes much conceptual and technical difficulties in numeri- 4K(2—-12K9)
cal simulations and physics interpretation of data. Therefore -
before going into a discussion of the details of data and oM.a=m.a 4K“sinh(m_a) ©
analyses, we give a brief survey of the phase structure at zero q 71— 4K?cosiim,a)’
temperature as well as that at finite temperat(i®§], in-
cluding the results presented in this article. gives the relatiorm? o m, at smallm,. Our numerical data
for Nc.=2 at =0 agree well with these formulas within
A. Quark mass and PCAC relation errors as shown in Fig. 1. We note that, if
We first define the quark mass through an axial-vector ( 0|Aym(p=0))m, 7)

Ward identity[9,10]
. . is satisfied for smalim, as is the case both fg=0 and
2my( O|P|7(p=0))=—m_( 0|Ay|m(p=0)), (4  B=oo, then the definitior(4) implies that the PCAC relation
(5) is exact. It should be also noted that E@) holds when
whereP is the pseudoscalar density aAgd the fourth com-  Euclidean invariance is recovergtio].
ponent of the local axial vector currerfiote that we have Equation(4) implies that wherm,=0, eitherm, =0 or
absorbed a multiplicative normalization factor into the defi-
nition of the quark masm, because this convention is suf-
ficient for our later study. We also note that there is an al- lin Ref. [12], agreement between E¢6) and numerical data in
ternative definition of the quark mass replacinmg, with, the confining phase is shown also for the chige=18. Thep me-
e.g.,[1—exp(—m,a)]/a, which gives a quark mass identical son mass, the nucleon mass, andAhmass also agree with corre-
with the above within the order af. ) sponding strong coupling mass formulas.
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TABLE I. Table of job parameters fd¥r=2 simulations performed on arf8 10x 4 lattice. Data marked with a dagger (1) are taken
from our previous simulatiof13] performed on an 8x20x 4 lattice. The column “Algo.” is for the algorithm used for update ©r R
whereH is for the hybrid Monte Carlo algorithm arRlis for theR algorithm) and for quark matrix inversiofCR or CG. N;,, is an average
number of iterations needed for the quark matrix inversion. Errorslfgrare in most cases about 1%. The last column is for the initial and
final phases ¢ is the low temperature confining phase,is the high temperature deconfining phase, amds the mix statg where
parentheses mean that the system is not completely thermalized.

K AT Tiot Ttherm Algo. Ninv Phase
0 0.2 0.02 1132 500 H-CR 37 c
0 0.21 0.01 1005 500 H-CR 48 c
0 0.22 0.01 1041 500 H-CR 45 c
0 0.23 0.01 700 500 H-CR 95 c
2 0.24 0.01 8 R-CG ~4000 d—(c)
3 0.18 0.01 250 100 H-CR 37 c
3 0.19 0.01 150 100 H-CR 35 [
3 0.2 0.01 160 100 H-CR 48 c
3 0.2352 0.01 16 R-CG ~4000 d—(c)
3.5 0.175 0.01 160 100 H-CR 27 c
35 0.185 0.01 160 100 H-CR 34 c
35 0.195 0.01 160 100 H-CR 46 c
3.5 0.2295 0.01 15 R-CG ~3500 d—(c)
3.8 0.225 0.01 15 R-CG >3000 d—(c)
3.9 0.224 0.01 22 R-CG >3000 d—(c)
4 0.17 0.02 1650 500 H-CR 15 C
4 0.18 0.02 2188 1000 H-CR 18 c
4 0.19 0.02 1550 500 H-CR 23 c
4 0.2226 0.002 50 24 H-CG 1054 d
4.1 0.2211 0.005 92 50 H-CG 781 d
4.2 0.2195 0.005 206 100 H-CG 430 d
4.3 0.165 0.02 520 320 H-CR 23 c
4.3 0.175 0.01 490 290 H-CR 28 c
4.3 0.185 0.01 400 200 H-CR 39 c
4.3 0.205 0.008 460 250 H-CR 250 d—c
4.3 0.207 0.005 16 H-CG c
4.3 0.207 0.005 30 H-CG d—(c)
4.3 0.208 0.005 38 H-CG c
4.3 0.208 0.005 45 H-CG d—(c)
4.3 0.21 0.005 150 50 H-CG 820 d
4.3 0.218 0.01 196 100 H-CG 338 d
4.5 0.16 0.02 500 300 H-CR 25 c
45 0.17 0.01 580 300 H-CR 34 c
4.5 0.18 0.01 530 300 H-CR 42 c
45 0.195 0.01 310 100 H-CR 92 c
45 0.2 0.005 175 135 H-CR 280 c
45 0.202 0.008 700 300 H-CG 473 d
4.5 0.205 0.01 190 100 H-CG 314 d
4.5 0.2143 0.01 197 100 H-CG 209 d
5 0.14 0.02 500 300 H-CR 17 c
5 0.15 0.02 520 300 H-CR 20 c
5 0.16 0.02 600 300 H-CR 24 c
5 0.17 0.01 540 300 H-CR 41 d—c
5 0.18 0.01 640 200 H-CG 169 c—d
5 0.19 0.01 720 300 H-CG 132 d
5 0.1982 0.01 761 300 H-CG 118 c—d
5.25 0.1 0.01 520 300 H-CR 12 c
5.25 0.11 0.01 600 300 H-CR 13 C
5.25 0.12 0.01 600 300 H-CR 15 c
5.25 0.13 0.01 560 300 H-CR 17 c
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TABLE I. (Continued.

B K AT Tiot Ttherm Algo. Niny Phase
5.25 0.14 0.01 580 300 H-CR 20 c
5.25 0.15 0.01 520 300 H-CR 25 c
5.25 0.155 0.01 520 300 H-CR 31 d—c
5.25 0.16 0.01 540 300 H-CR 39 d—c
5.25 0.165 0.01 600 300 H-CG 121 d
5.25 0.175 0.01 610 300 H-CG 118 d
5.25 0.18 0.01 640 300 H-CG 111 d
5.5% 0.15 0.025 2500 800 H-CR 17 d
5.5% 0.16 0.025 1572 500 H-CR 37 d
5.5t 0.1615 0.025 1532 500 H-CR 43 d
5.5t 0.163 0.025 1458 500 H-CR 53 d

6 0.15 0.01 427 200 H-CG 73 d

6 0.1524 0.01 230 150 H-CG 78 d

6 0.155 0.01 427 200 H-CG 80 d

6 0.16 0.01 400 200 H-CG 83 d
10 0.13 0.01 351 200 H-CG 48 d
10 0.14 0.01 400 200 H-CG 78 d
10 0.15 0.01 338 200 H-CG 60 d

( 0|A4|1-r(5=0)>=0. This further implies, when we define ~ As a statistical system on the lattice, QCD with Wilson

the pion decay constarft, by quarks is well defined also in the region above Kgline.
Some time ago, AoKil7] proposed and numerically verified
<0|A4|7r(|5=0)>=m f (8) that the critical IineKC(me) (for small Ng) can be inter-

preted as a second order phase transition line between the
that whenm,=0, eitherm_=0 or f .=0 is satisfied. Note Parity-conserving phase and a parity-violating phase. This
that f_=0 is the relation which should be satisfied wheninterpretation is useful in understanding the existence of sin-
chiralﬁsymmetry is restored, and that, =0 is the relation gula}rities of the partition f'unction. Once its existgnce i_s es-
when chiral symmetry is spontaneously broken, both in thd@Plished, various properties of hadrons can be investigated
chiral limit. It might be emphasized that although the action” the parity-conserving phase. In particular, even with the

40es not nossess chiral svmmetry. either relafor=0 or Wilson term, various amplitudes near the chiral limit do sat-
p y Y, alrop= isfy Ward-Takahashi identities derived from chiral symmetry

Yo the corrections ofO(a). Therefore, although the action
’ does not have chiral symmetry, the concept of the spontane-
ous breakdown of chiral symmetry is phenomenologically
very useful. Because our main interest is to study the physi-
B. Definition of the chiral limit and phase structure cal properties of hadrons in the continuum limit, it is impor-
at zero temperature tant to study these axial Ward-Takahashi identities and esti-
We identify the chiral limit as the limit where the quark mate the magnitude of th@(a) corrections from the Wilson
mass vanishes at zero temperature. This defines a chiral linf@rm in the physical quantities.
line K in the (8,K) plane, which is a curve frol=1/4 at We have defined th&, line by the vanishing point of
B=0 to K=1/8 at B==. See Fig. 2. In the following we My at zero temperature, because this line corresponds to
also discuss alternative identifications of the chiral limit. massless QCD(Numerical results foK are given in Sec.
When clear specification is required, we denote thjsas  V.) In this connection, however, it should be noted that there
Ke(mg). necessarily are ambiguities 6f(a) off the continuum limit
Let us denote a line where the pion mass vanishes at zeflr lines in the (3,K) plane which give the same theory in
temperature b)Kc(me)- This line is the critical line of the the continuum limit. This is true also for massless QCD:
theory because the partition function has singularities therdnstead of the conditiom,=0, we may fix other quantities
As discussed in the previous subsection, we expect th&uch asm,/my, which will lead to a line different from the
Ke(mg) andK(m2) are identical for smalNg . It should be, K line. Of course, the continuum limit is not affected by
however, noted that thé.(m,) line is conceptually different theseO(a) ambiguities. We, however, would like to stress
from the Ko(m2) line: If quarks are not confined and chiral that the definition we have taken for the, is conceptually
symmetry is not spontaneously broken, there iSKQ()mi) natural and useful for the reasons given in Sec. Il A.
line. In fact, for the case di=7, theK (m,) line belongs
to the deconfining phase amd,, remains nonzero there —
i.e., there is nd,(m?) line around theK(my) line, at least The temperature on a lattice with the linear extension in
for small 8 [12]. the temporal directioN; is given byT=1/N;a. On a lattice

is defined by Eq(4). In particular, in the confining phase
m,=0 whenm,=0 and vice versa.

C. Phase structure at finite temperatures
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TABLE Il. The same as Table | foNg=2 simulations per- TABLE Ill. The same as Table | foN=2 on an §X 10 lat-

formed on a 12x 6 lattice. tice. Data marked with a dagger (1) are taken from RES] ob-
tained on an 8x 20 lattice.

B K AT Tiot  Term Algo.  N;,, Phase
42 02195 000125 56 30 H-CG 1119 d A < AT T Twem AIGO. Ny Phase
4.3 0.2183 0.002 138 40 H-CG 863 d 4.5 0.16 0.02 500 300 H-CR 23 c
4.4 0.2163 0.005 160 30 H-CG 678 d 4.5 0.17 0.01 540 300 H-CR 29 c
4.5 0.2143 0.008 130 80 H-CG 505 d 4.5 0.18 0.01 540 300 H-CR 35 c
5 0.1982 0.01 224 100 H-CG 160 d 55f 0.15 0.025 2050 1000 H-CR 8 c
5.02 0.16 0.01 560 300 H-CR 27 c 5.5t 0.155 0.02 1600 500 H-CR 23 c
5.02 0.17 0.01 560 300 H-CR 36 c 6 0.1524 0.01 230 150 H-CG 78 d
5.02 0.18 0.01 180 100 H-CG 143 C
5.02 0.18 0.01 210 100 H-CG 529 d

sharply turns back upwardso largerK region at finite 3.
The lower part of thé<,(m?; T+0) line is almost identical

with a fixed N, , a finite temperature transition or crossover With th_eKC(me) line up to the sharp turning point, while the
from the low temperature regime to the high temperaturén@lytic results of the 2D Gross-Neveu model suggest that
regime occurs at some hopping parameter wheis fixed. they slightly differ from each other, probably wi(a). See
This defines a curvi, in the (8,K) plane. In this paper, for F19- 2. . ) o
simplicity, we use the term “transition” for both genuine  The nonexistence of thi (m7;T+0) line in the large
phase transitions and sharp crossovers, unless explicit region is consistent with the previous results that the pion
specified. At finite temperatures we denote the screenin§creening mass,, does not vanish in the deconfining phase
pion mass bym.. and sometimes we call it simply the pion along the chiral lineK,. The slight shift of theK (mZ%;T
mass, and similarly for other hadron screening masses. Th#0) line from theKc(me) line in the confining phase was
quark mass at finite temperatures is defined through(#lg. observed also in our previous stuf3,4] (see also Sec. V
with m_ the screening pion mass, and similarly féf  This slight shift of theKC(mf,;TaﬁO) line means tham,; is
through Eq.(8). Note that, with these definitions of, and  not rigorously zero on th&(m?2) line in the confining
f., the discussions given in Sec. Ill A hold also at finite phase at finite temperatures. This small pion screening mass
temperatures. on theK_; line in the confining phase is caused by a chiral
One of the fundamental problems is whether the finitessymmetry violation due to the Wilson term and should be of
temperature transition linié; does cross the chiral limit line O(a).
K¢, where we define th& line by the vanishing point of  Similarly to the K,(m2;T+0) line, we define the line
m, at zero temperaturéct. Sec. Il B). If the K, line does K (m,;T+#0) where the quark mass vanishes at finite tem-
not cross thé(c line, it means that there is no chiral limit in peratures. When we follow the Iian(mq T+ 0) from
the low temperature confining phase. Therefore it is naturag=q it is first identical with theK (m2;T#0) line. The
to expect that it does cross. However, as first noted by Fukuine Ko(my;T#0) passes through the turning point of the
gita et al. [18], it is not easy to confirm this: Thi; line K.(m2:T+#0) line and runs into the large region, where
creeps deep into t_he s_,trong coupling region. _In thi_s paper W?ﬁ st;rts to vanish instead ofi,, on theK (mg;T#0) line.
show that theK, line indeed crosses the chiral lin€. at  gee Fig. 2. This suggests that the turning point which is the
B~3.9-4.0 alN;=4 and~4.0-4.2 aiN;=6 for the case pqndary betweeh_=0 andm_=0 is the finite temperature
of Ne=2. (For previous reports see Ref8,4].) transition point. This further implies that the transition line
_ Because theK, line describes the massless QCD, Wey (qches the turning point of thé.(m2;T+0) line and
identify the crossing point of thK . andK; lines as the point moves upwards in thed K) plane. This observation is not
of the finite temperature transition of the massless QCD, i.;,, 4-cord with the argur;went by Aokit al. [19] that there is
the chiral transition pointWe will discuss latelO(a) am- a small gap between thé (m2 :T+0) andK, lines.

?l;?;é“\?viilcrz]hﬂ::%riiﬂf? Ictlr%ntr?:;tlgilf rg;ilr::glltstr:mte%rtempera- We have identified the crossing point of the and K,
y Y lines as the chiral transition point. In connection with the

Numerical studies show that, in the confining phase, th I~ f the line f | i th
pion screening mass vanishes, for a fixgdat the hopping _(a) ambiguities of the line or Massiess QCD in the cou-
' pling parameter space mentioned in Sec. lll B, there are

parameter which approximately equals the chiral likjt. Lo . o . -
On the other hand, in the deconfining phase, the pion ScreerQ(a) ambiguities also in the definition of the chiral transi

. . . tion. Therefore, one may alternatively identify the sharp
ing mass is of order of twice the lowest Matsubara frequenq{urnin oint of theK(m2 :T+0) line as the chiral transi-
27/N; in the chiral limit. Therefore, in the deconfining 9p e

phase, the system is not singular even onKhdine. :E!On p0||(1t. .;I'.he p}roperty of t?ef;:hlia:jt[)antsr:tlon n thebpon-
Recently, Aoki et al. [19] investigated a critical line inuum limit is, of course, not affected by the€¢a) ambi-

where the screening pion mass vanishes at finite temperg—u't'es'
tures, which we denote Uyc(mi ;T#0). Based on analytic

studies of the two-dimensionéD) Gross-Neveu model and
numerical results in lattice QCD witNg=2, they showed Let us summarize several characteristic properties of the
that theK (m2;T+0) line starting fromK=1/4 at 3=0  phase diagram of QCD which originate from the explicit

D. Characteristics for Wilson quarks
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TABLE IV. The same as Table | foN-=3 on an §x10x4 lattice.

B K AT Tiot Ttherm Algo. Ninv Phase

25 0.2381 0.01 8 R-CG ~2300 d—(c)

2.7 0.2369 0.01 10 R-CG ~2300 d—(c)

2.8 0.2364 0.01 12 R-CG >1900 d—(c)

2.9 0.2358 0.01 28 R-CG ~2300 d—(c)

3 0.205 0.01 280 170 R-CR 64 c

3 0.205 0.01 202 100 R-CR 64 c

3 0.215 0.01 190 100 R-CR 117 c

3 0.225 0.005 75 R-CR ~563 d—(c)

3 0.23 0.0025 18 R-CG d—(c)

3 0.2352 0.01 23 R-CG ~2300 m— (c)

3 0.2352 0.01 68 R-CG ~2300 c—(c)

3 0.2352 0.01 159 100 R-CG 851 d

3.1 0.2341 0.01 160 50 R-CG 650 d

3.2 0.2329 0.01 114 50 R-CG 556 d

3.2 0.2329 0.01 169 100 R-CG 504 d

4 0.18 0.01 520 300 R-CR 35 c

4 0.19 0.01 520 300 R-CR 47 c

4 0.2 0.01 391 200 R-CR 84 d—c

4 0.205 0.01 320 200 R-CG 351 d

4 0.21 0.01 308 200 R-CG 247 d

4 0.2226 0.01 320 200 R-CG 188 d

45 0.16 0.01 500 300 R-CR 25 c

45 0.17 0.01 542 300 R-CR 30 c

45 0.18 0.01 545 300 R-CR 40 d—c

45 0.185 0.01 534 300 R-CR 51 d—c

4.5 0.186 0.01 301 150 R-CR 56 c

45 0.1875 0.01 191 100 R-CR 82 c

4.5 0.1875 0.01 181 100 R-CG 248 d

45 0.189 0.01 207 100 R-CG 214 d

4.5 0.19 0.01 336 200 R-CG 200 d

45 0.2 0.01 394 200 R-CG 158 d

45 0.205 0.01 190 R-CG 142 d

45 0.2143 0.01 101 R-CG 132 d

5 0.13 0.01 313 150 R-CR 49 c

5 0.14 0.01 275 150 R-CR 20 c

5 0.15 0.01 310 150 R-CR 22 c

5 0.16 0.01 324 150 R-CR 27 c

5 0.165 0.01 373 150 R-CR 65 c

5 0.165 0.01 202 150 R-CG 48 d—c

5 0.166 0.01 120 R-CG d—(c)

5 0.166 0.01 264 150 R-CR 35 c

5 0.167 0.01 145 R-CR c—(d)

5 0.167 0.01 187 100 R-CG 155 d

5 0.17 0.01 291 150 R-CG 119 d

55 0.1 0.01 652 150 R-CR 13 c

55 0.11 0.01 505 150 R-CR 15 c

55 0.12 0.01 571 250 R-CR 16 c

5.5 0.125 0.01 695 250 R-CR 17 c—m

55 0.1275 0.01 676 100 R-CR 18 d

5.5 0.13 0.01 364 150 R-CR 18 c—d

55 0.135 0.01 174 100 R-CR 20 d—d

55 0.14 0.01 296 100 R-CR 23 d

6 0.08 0.01 355 100 R-CG 23 d

6 0.09 0.01 194 100 R-CG 27 d

6 0.1 0.01 320 100 R-CG 33 d

6 0.11 0.01 270 100 R-CG 41 d

6 0.12 0.01 244 100 R-CG 51 d

6 0.135 0.01 180 100 R-CG 72 d
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TABLE V. The same as Table | faiz=3 on a 13x 4 lattice. TABLE VI. The same as Table | foNz=6 on an §x10x4
lattice.
B K AT Tt Therm  Algo. N Phase
4 02 001 198 100 R-CR 8 ¢ P K A7 Tot Them AlGO. Ny  Phase
4 0.202 0.01 273 100 R-CR 101 c 0 0.2 0.01 32 20 R-CR 38 c
4 0.203 0.01 229 100 R-CR 117 c 0 0.21 0.01 32 20 R-CR 49 c
4 0.203 0.01 63 R-CG d—(c) 0 0.22 0.01 33 18 R-CR 67 c
4 0.204 0.01 219 100 R-CG 152 c 0 0.235 0.01 40 20 R-CR 155 c
4 0.204 0.01 169 100 R-CG 449 d 0.1 0.2495 0.01 11 R-CG >5000 d—(c)
4 0.205 0.01 93 R-CG c—(d) 0.2 0.249 0.01 11 R-CG >5000 d—(c)
4 0.205 0.01 192 100 R-CG 380 d 0.2 0.24936 0.01 23 R-CG >10000 d—(c)
4 0.21 0.01 203 100 R-CG 272 d 0.3 0.2485 0.01 16 R-CG >5000 m—(c)
45 0.18 0.01 282 100 R-CR 40 c 0.3 0.2485 0.01 9 R-CG >5000 m—(c)
45 0.186 0.01 230 100 R-CR 56 c 0.3 0.2485 0.01 27 R-CG 600 d
45 0.1875 0.01 1040 369 R-CR 74 c 0.3 0.249 0.01 16 >5000 m—(c)
45 0.1875 0.01 1072 100 R-CG 264 d 0.4 0.248 0.01 20 10 R-CG 500 d
45 0.189 0.01 183 100 R-CG 230 d 05 0.23 0.01 6 R-CG d—(c)
45 0.19 0.01 196 100 R-CG 219 d 0.5 0.235 0.01 6 R-CG d—(c)
47 0.17 0.01 307 100 R-CR 32 c 05 0.24 0.01 6 R-CG d—(c)
4.7 0.175 0.01 225 100 R-CR 38 c 0.5 0.245 0.01 53 R-CG ~1400 d—c
47 0.178 0.01 232 100 R-CG 117 d—c 0.5 0.2475 0.01 25 15 R-CG 445 d
47 0.179 0.01 335 100 R-CR 48 c 1 0.2 0.01 113 50 R-CR 42 c
47 0.179 0.01 253 R-CG d—(c) 1 0.21 0.01 104 50 R-CR 60 c
47 01795 0.01 1035 100 R-CR 50 c 1 0.22 0.01 115 55 R-CR 80 c
47 01795 0.01 1073 100 R-CG 236 d 1 0.225 0.01 267 100 R-CR 126 c
47 0.18 0.01 299 100 R-CG 228 d 1 0.23 0.01 293 100 R-CR 192 c
47 0.18 0.01 410 R-CG c—(d) 1 0.235 0.01 40 R-CG d—c
5 0.165 0.01 203 100 R-CR 33 c 1 0.235 0.005 112 60 R-CG 970 c
5 0.166 0.01 574 200 R-CR 35 c 1 0.235 0.005 19 R-CG d—(c)
5 0.166 0.01 405 R-CG/CR d—(c) 1 0.237 0.005 42 R-CG d
5 0.16625 0.01 570 200 R-CR 37 c—m 1 0.237 0.005 49 R-CG c—(d)
5 0.16625 0.01 545 200 R-CR 47 d—m 1 0.238 0.005 28 R-CG 440 d
5 01665 0.01 502 R-CR c—(d) 1 024 0.005 108 40 R-CG 325 d
5 0.1665 0.01 611 200 R-CR 75 d 1 0.245 0.01 114 60 R-CG 306 d
5 0.167 0.01 475 250 R-CR 53 d 2 0.24 0.01 18 R-CG 162 d
5 0.168 0.01 419 100 R-CR 104 d 4 0.22 0.01 15 R-CG 88 d
5 0.169 0.01 164 100 R-CG 163 d 45 0.15 001 71 61 R-CR 21 c
5 0.17 0.01 231 100 R-CG 166 d 45 0.16 0.01 38 28 R-CR 27 c
45 0.165 0.01 60 50 R-CR 32 c

chiral symmetry violation of the Wilson term. They are in 4.5 0.165 0.01 60 R-CR d=(c)

sharp contrast with those of staggered quarks where at leasf'® 0166 001 277 267 R-CR 36 d—c
part of chiral symmetry is preserved. 45 0167 001 193 18 RCR 36 c
(i) In the coupling parameter space, the location of the#> 0.167 ~ 0.01 159 149 R-CR 105 d
point wherem_=0 in the confining phase is not protected by 45 0.168  0.01 152 R-CG c—(d)
chiral symmetry off the continuum limit. Therefore, the chi- 45 0.17 001 73 R-CG c—(d)

ral limit K¢, defined bym;=0 orm,=0 at zero tempera- 4.5 0.18 001 41 31 RCG 115 c—d
ture, is different from the bare massless lidit=1/8 except 4.5 0.19 001 38 28 R-CG 92 c—d
at g=ce, 45 0.2143 0.01 181 150 R-CG 87 d
(ii) As a statistical system on the lattice, QCD with Wil-
son quarks is well defined also in the region above Khe
line. At zero temperature, the. line is a second order tran-

sition line between the conventional parity-conserving phas%ation of the point wheren_=0 in the confining phase

at K< Ke an.d.a parity-violating phase ?(F> KC,[N]' 5 slightly depends omN; [19]. The continuum limit is not af-
(i) At finite temperatures, the critical lIn&.(M7;T  focted by thes©(a) effects.

#0) where the screening pion mass vanishes is not a line
from K=1/4 at =0 to an end at some finit@, but it
sharply turns back toward largkrregion at the finites [19].

(iv) Although the major part of the effects from the Wil-  In this article we mainly perform simulations on lattices
son term can be absorbed by the shiftkgf from K=1/8,  with the temporal direction extensioN;=4. The spatial

there still exist additional smalD(a) effects which are re-
lated to the chiral symmetry violation. In particular, the lo-

IV. SIMULATION PARAMETERS
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TABLE VII. The same as Table | foNg=2+1 on an TABLE IX. The same as Table VIl foNg=2+1 on an
82x10x4 lattice. The molecular-dynamics time step is 8%x10 lattice. Simulations are performed with tRealgorithm for

A7=0.01. Simulations are performed with tRealgorithm for up-  updating configurations and with the CR method for quark matrix
dating configurations and with the CG method for quark matrixinversions.

inversions.

" " Nud N oh B Kud Ks Ttot Ttherm N.l#\j, Nisnv Phase
A ud s Tt Twem v inv 8¢ 35 0195 02017 196 100 46 58 ¢
3.2 02329 0.2043 15 ~3000 ~250 d—(c) 35 02 0.2017 164 50 57 59 ¢
34 0.2306 0.2026 20 ~3000 ~290 d—(c) 35 0205 02017 166 50 74 61 ¢
3.5 0.2295 02017 9 ~3000 ~260 m—(c) 35 021 0.2017 158 40 109 64 ¢

3.5 0.2295 0.2017 553 100 862 394 d
3.6 0.2281 0.2006 153 100 622 344 d

lower triangle matrix—upper triangle matyiprecondition-

3.7 02267 0.1692 20 ~2500 ~100 d—(c) i(ng [24] or tr?e conjugatepgpradielocg) meth{)g) without pre-

38 02254 0.1684 47 ~2500 ~93 d—(c) conditioning. We find that the CR method is efficient in the
3.9 0224 01677 12 ~2500 ~93 m—(c)  confining phase when it is not very close to the chiral limit
3.9 0224 01677 760 100 797 135 and also in the deconfining phase at lagyand smallK. In

4 02226 01669 159 100 521 137 other cases we use the CG method. The convergence condi-
4 02226 01964 167 100 235 201 tion for the norm of the residual r is

43 0218 01643 159 100 229 130 VIrlP/(12V)<4.5x 1077 (1.0x10°8) for configuration

55 0163 015 376 208 119 97 generationghadron measurementswhereV is the lattice
volume. We also check that the relative changes of the quark
propagator at several test points on theandt axes are
sizes are 8x 10 and 12. To study theN, dependence for the smaller than 10° for the last iteration of the matrix inver-
Ng=2 case, we also make simulations Np=6 and 8 lat-  gjon steps:|(G,— Gy 1)/G,|<10"% where n denotes the

tices. Simulations on aN,=8 lattice are performed also for |ast iteration. In the HMC calculations, we check that the
the case oNg=2+1. When the hadron spectrum is calcu-

lated, the lattice is duplicated in a direction of lattice size 10
or 12. We use an antiperiodic boundary condition for quarks
in the t direction and periodic boundary conditions other-
wise.

We generate gauge configurations fog=2 by the hy-
brid Monte Carlo(HMC) algorithm [20] with a molecular
dynamics time ste@A 7 chosen in such a way that the accep-
tance rate is abo80 — 90%. ForNg=3 andNg=2+1 we
use the hybridR algorithm[21] with A7=0.01, unless oth-
erwise stated. We fix the time length of each molecular dy-
namics evolution ta=1. TheR algorithm introduces errors
of O(A7?), while the HMC algorithm is exact. As reported
recently also for staggered quaflZ2], we note that step size
errors with theR algorithm are large in the confining phase
near the chiral limit. In the immediate vicinity of the chiral
transition, we observe step size errors also in the deconfining
phase where a largAr can even push the phase into the
confining phase, as reported previously with staggered
guarks[23]. In these cases, we apply a sufficiently small
A7 so that the results for physical quantities become stable
for a change ofA 7.

The inversion of the quark matrix is done by the minimal
conjugate residualCR) method with the incomplete LU

O 0 o o o

TABLE VIIl. The same as Table VII forNg=2+1 on an
82X 10X 4 lattice. Simulations are performed with tRealgorithm
for updating configurations and with the CG method for quark ma-

trix inversions. FIG. 3. Physical quantities foNg=2 at B=5.0 on an
82X 10X 4 lattice (open squarés(a) pion screening mass squared

B Kyd Ks Tt Term  NUY NS, Phase m2a? and twice the quark massn®a, (b) the plaquette and the
Polyakov loop. Plotted together are the data by the MILC Collabo-

39 0224 0.1677 14 ~3000 ~93 m—(c) ration on an 8x 20X N, lattice with N;=4 (filled square} 6 (tri-

39 0224 0.1677 398 100 999 139 d angles, and 8(diamond$ [16]. The finite temperature transition

4 0.2226 0.1669 396 100 636 141 d K, obtained by the MILC data locates & =0.177-0.178

(1/K=5.62-5.6% for N;=4.
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TABLE XI. The chiral limit K. at 8=4.5 determined by
m,=0 andmy=0, wherem_ is the pion screening mass and values
of mi and m, in the confining phase are linearly extrapolated in
1/K using data fromK=0.16-0.18 for Nr.=2 and 3 and
K=0.15-0.165 forNg=6 [becauseK;=0.167(1) forNg=6 at
N,=4]. The spatial lattice size is?& 10.

N,=4 N,=8
NF Kc(mi) Kc(mq) Kc(mi) Kc(mq)
2 0.2141) 0.21421) 0.2121) 0.2091)
3 0.21@1) 0.2041)
6 0.208%2) 0.20411)
V. NUMERICAL RESULTS FOR K,
- \ W(lx1l) A As discussed in Sec. Il B, the chiral limi; is defined
N=8 o ;
ozl ' 1 by Fhe vanishing point ofmq. at zero temperature. O_ne_
straightforward way to determine numerically the chiral limit
- Polyakov at a fixed value of3 is to calculate the quark mass through
0 . , ) - Eqg. (4) at several hopping parameters and extrapolate them
45 5 5.5 6 6.5 to its vanishing point in terms of a linear function oK1/\We
(b) /K denote theK; thus determined biK.(m,). Because we ex-

pect the PCAC relatioif5) to hold also at finite3, we may
FIG. 4. The same as Fig. 3 @=4.5 on &X10XN, lattices,  alternatively calculat& by the vanishing point ofn_ using

whereN,=4 (square} 6 (triangleg, and 8(diamonds. The finite g linear extrapolation ofm? in 1/K. We denote thix by
temperature transitiork; locates atK=0.200 — 0.202 (K Kc(mz)
%).

=4.95 — 5.0 for N;=4. On finite temperature lattices, it was previously shown

that the value of the quark mass at a givghK) does not
Sdepend on whether the system is in the deconfining or con-

fini h =5.85in th h 4 t
The statistics is in general totally= several hundreds. ining phase aj3=5.85 in the quenched QCAL4] and a

The initial ! tion is taken f th lized t,8=5.5fortheN;:=2 cas€13]. This enables us to determine
€ nitial contiguration 1S taken Irom a thermalized one aby, oy fimit, for these values g8, alternatively by the

similar simulation parameters when such a configuration IS anishi : - :
. anishing point ofm, at finite temperatures. Strictly speak-
available. In most cases, the plaquette and the Polyakov oo gp 9 b y SP

are measured every simulation time unit and the hadroIRg there are syfstematic errors which come from fihife as

spectrum is caleulated everyr=10 (or less depending on entioned earlier. On the other hand, in the deconfining
L . phase, one is able to perform simulations aroundthdine

':_f;e;;oé?l tﬁft'sﬁ'C?!:,hen;r?ﬁ-\éill;?eofr%fgﬂ'n??hlﬁﬂz as discussed later; i.e., we can determihewithout an ex-

. ) physical quantit s e trapolation which usually leads to a considerable amount of

we think the lattice sizes and the statistics are sufficient forBystematic errors. Therefore, the determinatiorKgffrom

our purpose to determine the global phase structure of QCD’ ™. L . . .

at ﬁFr)ﬂtep temperature. Errors gjelre esFt)imated by the sianIer—nq in the deconfining phase is useful in particular at large

elimination jackknife method. B

Simulation parameters are summarized in Tables I-1X.

difference of the action after molecular dynamic evolution
is sufficiently small with this convergence condition.

TABLE XII. Finite temperature transitioi; for Nc.=2, 3, and
TABLE X. The chiral limit K. for Nc.=2 determined on an 6 obtained on an Bx 10X 4 lattice [data with an asterisk (*) ob-
82X 10x 4 lattice. The results fog=3.0-4.5 are determined by tained on a 12x4 lattice]. For Ng=2 at 8=5.0, the data by the
m,=0 andm,=0, wherem_ is the pion screening mass and values MILC ~ Collaboration [16] give a more precise value of
of m% andm, in the confining phase are linearly extrapolated in 0.177-0.178 foK, (cf. Fig. 3.
1/K. The results fo3=6.0 and 10.0 are determined from an inter-

polation ofm in the deconfining phase. Ng=2 Ng=3 Ng=6

- B Ki B Ki B Ki
A Ke(m>) Ke(me) 43  0207-0210 30 > 0230 05 0.245-0.2475
3.0 0.2351) 0.2301) 45  0200-0202 40 0.200-0.205 1.0 0.235-0.237
35 0.2301) 0.2261) 50 0170-0.180 45 0.186-0.189 45 0.166-0.168
40 0.2231) 0.2184) 525 0.160-0.165 4.5* 0.186-0.189
43 0.2181) 0.2141) 47% 0.179-0.180
45 0.2141) 0.2101) 50 0.166-0.167
6.0 0.15641) 5.0% 0.166-0.1665

10.0 0.13961) 55 0.125-0.130
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TABLE XIIl. Results of the plaquette, the Polyakov loop, the pion screening mass, twice the quark mass,
and thep meson screening mass fbi-=2 obtained on an Bx 10x 4 lattice. Data marked with a dagger
(1) are taken from Ref.13] obtained on an 3x20x 4 lattice.

B K Plaquette Polyakov m_a 2mya m,a

0 0.2 0.00881) 0.03613) 1.4413) 0.7152) 1.542325)
0 0.21 0.010@1) 0.04493) 1.2724) 0.55233) 1.40534)
0 0.22 0.01341) 0.054832) 1.0863) 0.40Q2) 1.30Q37)
0 0.23 0.01602) 0.068110) 0.8715) 0.2532) 1.07465)
3 0.18 0.217®) 0.025213) 1.5547) 0.8085) 1.631(44)
3 0.19 0.220(12) 0.03617) 1.3767) 0.6215) 1.47348)
3 0.2 0.224W3) 0.045414) 1.1795) 0.4373) 1.34261)
35 0.175 0.258B) 0.026812) 1.6065) 0.8485) 1.67924)
35 0.185 0.2628) 0.033313) 1.4087) 0.6494) 1.53231)
35 0.195 0.26(4) 0.043613) 1.2117) 0.4614) 1.39243
4 0.17 0.30341) 0.02492) 1.6233) 0.8742) 1.6885)
4 0.18 0.30761) 0.03182) 1.4263) 0.6592) 1.5236)
4 0.19 0.314(1) 0.04082) 1.20714) 0.4582) 1.367114)
4 0.2226 0.400Q) 0.132824) 0.831(35) -0.07411)

4.1 0.2211 0.430@) 0.134520) 0.99741) -0.10Q9) 1.0744)
4.2 0.2195 0.444®) 0.153529) 1.25432) -0.0819) 2.1236)
4.3 0.165 0.331@) 0.022@7) 1.6637) 0.9205) 1.71521)
43 0.175 0.3362) 0.02938) 1.4637) 0.6965) 1.54622)
43 0.185 0.344@) 0.04048) 1.2426) 0.4853) 1.37924)
4.3 0.205 0.373@) 0.07368) 0.6478) 0.0943)

43 0.21 0.428@1) 0.136912) 0.75574) -0.0269)

43 0.218 0.4661) 0.179@18) 1.41313 -0.0839) 1.78455)
4.5 0.16 0.352®) 0.02097) 1.7326) 0.9974) 1.7828)
4.5 0.17 0.358@) 0.02826) 1.5206) 0.7604) 1.5951)
45 0.18 0.365@) 0.03847) 1.2985) 0.5344) 1.42398)
4.5 0.195 0.385@) 0.059@9) 0.88211) 0.2014) 1.14538)
4.5 0.2 0.400%®) 0.080719) 0.69624) 0.0905)

45 0.202 0.459B) 0.16439) 1.13536) -0.07238)

4.5 0.205 0.4753) 0.180917) 1.421(18) -0.12827) 1.73843)
4.5 0.2143 0.4943) 0.213716) 1.55210) -0.0348) 1.74619)
5 0.14 0.40982) 0.01287) 2.0485) 1.3795) 2.0726)
5 0.15 0.414@) 0.02177) 1.80112) 1.0931) 1.82819)
5 0.16 0.421B) 0.03017) 1.5518) 0.8056) 1.6041)
5 0.17 0.435(2) 0.04098) 1.2796) 0.5225) 1.39412)
5 0.18 0.517®@) 0.225@8) 1.43013) -0.0869) 1.637111)
5 0.19 0.53781) 0.258@7) 1.68611) -0.09638) 1.8618)
5 0.1982 0.547Q3) 0.27896) 1.71715) 0.0295) 1.8317)
5.25 0.1 0.442@) 0.00188) 2.9345) 2.5085) 2.9376)
5.25 0.11 0.444@) 0.00415) 2.681(10) 2.1918) 2.687111)
5.25 0.12 0.4472) 0.008%7) 2.4237) 1.8617) 2.4338)
5.25 0.13 0.4502) 0.01447) 2.1848) 1.5636) 2.20Q9)
5.25 0.14 0.455@) 0.02137) 1.9414) 1.2634) 1.9705)
5.25 0.15 0.4638) 0.030%9) 1.657112) 0.9399) 1.70914)
5.25 0.155 0.474@) 0.049912) 1.4956) 0.7566) 1.5637)
5.25 0.16 0.484@) 0.067811) 1.3249) 0.57Q7) 1.397112)
5.25 0.165 0.5302) 0.224110) 1.3519) 0.1739) 1.46812)
5.25 0.175 0.551(2) 0.269%8) 1.531(12) -0.13419) 1.69610)
5.25 0.18 0.5584) 0.28618) 1.6966) -0.1606) 1.8537)
5.5t 0.15 0.553@) 0.24137) 1.4866) 0.5121) 1.5288)
5.5t 0.16 0.5662) 0.281%5) 1.4187) 0.1035) 1.490Q7)
5.5t 0.1615 0.56712) 0.28638) 1.4415) 0.0486) 1.5139)
5.5t 0.163 0.5699) 0.290%8) 1.4388) -0.0164) 1.5068)
6 0.15 0.61212) 0.345610) 1.4697) 0.2335) 1.5108)
6 0.1524 0.613B) 0.347816) 1.46717) 0.14238) 1.5147)
6 0.155 0.615[) 0.355%9) 1.4805) 0.0427) 1.5299)
6 0.16 0.6188) 0.36079) 1.5346) -0.12Q6) 1.5948)
10 0.13 0.785Q) 0.612611) 1.4966) 0.4472) 1.4916)
10 0.14 0.7868) 0.61578) 1.4398) -0.01G4) 1.4379)

10 0.15 0.787@) 0.623@8) 1.5912) -0.4276) 1.5983)
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TABLE XIV. The same as Table XIll foNz=2 on a 13X 6 lattice.

B K Plaquette Polyakov m_a 2mga m,a
4.2 0.2195 0.441@) 0.006712) 0.897150) -0.08211)

4.3 0.2183 0.4592) 0.00546) 1.07062) -0.11%21)

4.4 0.2163 0.4742) 0.00987) 1.241298) -0.1058) 1.67152)
4.5 0.2143 0.488%2) 0.007110) 1.3711)) -0.0589) 1.60431)
5 0.1982 0.5458) 0.083110) 1.6387) 0.0449) 1.7498)
5.02 0.16 0.425@) 0.00234) 1.5435) 0.8004) 1.6056)
5.02 0.17 0.4384) 0.00413) 1.2426) 0.5084) 1.34311)
5.02 0.18c 0.4698) 0.01025) 0.71010) 0.1495) 0.98629)
5.02 0.18d 0.518@) 0.03999) 0.92347) -0.16418) 1.4016)

At small B8 region (8<5.3) where we mainly perform tical. The values OKC(me) for Nc=2 for variousp’s are
simulations in this workm, in the deconfining phase does listed in Table X. We estimate the systematic errors due to
not agree with that in the confining phase. Therefore, thehe extrapolation are of the same order as the differences
proportlonallty betweerm, in the deconfining phase and betweenK.(m,) and K¢(m2).

< in the confining phase is lost, contrary to the cgse The N, dependence df; at 3=4.5 are listed in Table XI.
5 5 discussed above. This behavior is seen in Figs. 3 and Zhe Ng dependence is also given. We find that the differ-
where physical quantities fdlg=2 at 8=5.0 and 4.5, re- ences due t?éNg andN; are of the same order of magnitude
spectively, are shown. As we discuss in Sec. VI, we interpres the difference betweef(m,) andK.(m?).
this unexpected phenomenon gt<5.3 in the deconfining To summarize this section, we note that although the chi-
phase as a lattice artifact. ral limit is defined by the vanishing point afh, at zero

In the confining phase on the other hand, the PfOpOftlontemperature there are several practically usefl ways to de-
ality betweenm, andm is well satisfied for all values of termineK, : Ke(mg) andKC(m ) atT=0 and in the confin-

B [3,12-164. We also find thatn, andm,, are almost inde- ing phase and.(mg) in the deconfining phase. They all

pendent o, in the confining phase See Fig. 4g=2 at  gjve the same results within present numerical errors.
B=4.5. Therefore we can calculatec approximately also

by the vanishing point ofm,, Kc(mg), or that of m
C(m ), in the confining phase &t>0. VI. FINITE TEMPERATURE TRANSITION
The numerical results fdk. for Np=2 obtained by vari- AND PROBLEMS WITH WILSON QUARKS

ous groupg3,13,25-29 are plotted in Fig. 5 together with  The |ocation of the finite temperature phase transitgn
finite temperature transition lines discussed in the followingjs jdentified by a sudden change of physical observables such
sections. The values &f; show a slight dependen¢at most a5 the plaquette, the Polyakov line, and screening hadron
of the order of 0.0Lon the choice 0K(mg) or K(m%),  masses(A more precise determination of the location will
which can be probably attributed to the systematic errors irbe given by the maximum point of the susceptibility of a
the extrapolation ofn and m, in?> 1/K, because, as dis- physical quantity such as the Polyakov loop. However, our
cussed above, we expect thg(m,) and Kc(m ) are iden-  statistics is not high enough for)itSee Figs. 3 and 4 for the
case ofNg=2 at 8=5.0 and 4.5. Our numerical results of
K, are summarized in Table XlI. Results éf for Np=2 at

2The range of the quark mass value we use in this article for the\It 4 andl 6d0bta|ned by usl anfd otherSQroﬁﬁz)é 2d6 29— 31d
extrapolation to determine th€. is mainly about 0.2—0.5 in lattice are compiled in Fig. S(Results forNg=3 will be discusse

units in the confining phase. As seen from Fig.rﬁfr and my n \SNec vill) | h . limit. th h
sometimes show slightly convex curves irkK1/In such cases, a If expeet, at eastfnear L € fr::_)ntllr?_uu_m r|]m|t, t a_t_as ;c) e
choice of the fit range at smallen, will lead to slightly smaller quark mass increases from the chiral limit, the transition be-

values forK comes weaker with the quark mass and it becomes strong

TABLE XV. The same as Table XIll foN=2 on an §X 10 lattice. Data marked with a dagger (1) are
taken from Ref[13] obtained on an 8x 20 lattice.

B K Plaquette Polyakov m_a 2mga m,a

4.5 0.16 0.352Q) 0.001a7) 1.7317) 0.9995) 1.77920)
45 0.17 0.35741) 0.00046) 1.5135) 0.7594) 1.58819)
4.5 0.18 0.3644) 0.00236) 1.2815) 0.5293) 1.398198)
5.5t 0.15 0.537(B) 0.00731) 1.11516) 0.5426) 1.16719)
5.5t 0.155 0.548B) 0.00812) 0.80135) 0.30814) 0.87439)

6 0.1524 0.613B) 0.347816) 0.83119) -0.0034) 0.88122)
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35 " a5 5 55 P FIG. 6. Molecular-dynamics time history of;,, for Nc.=2 on
B the K, line obtained on an 8< 10x 4 lattice.

tion such as the order of the transition are not affected by
FIG. 5. Phase diagram fdi=2. Solid symbols are foK. lattice artifacts. We certainly have to check in the future that

determined by m.=0 and my=0. Open symbols are for the conclusions in this article are also satisfied when an im-
Ki(N;=4) and other symbols such as crosses except solid ones agroved action is adopted.

for K{(N;=6). Circles are our data. Lines are to guide the eye.

again when the quark mass is heavy enough to recover thél- NUMERICAL RESULTS FOR CHIRAL TRANSITIONS
first order transition of the S@3) gauge theory. The MILC
Collaboration performed a systematic study of the transitio
at variousk and g and found that, contrary to expectations,
when we decreask from the chiral limitK, on anN;=4
lattice, the K; transition becomes once very strong at
K=0.18 and becomes weaker again at smddldd6]. On a

lattice withN;=6 they even found a first order transition at |, previous papef12] we showed that, whehg=7

K:L%jlz;g.;gﬁg]bhase diagram shown in Fig. 5 closely Wethere is a bulk first order phase transition &0 which
- o : S ' "=separates the confining phase at sraffom a deconfinin
note that theK; lines initially deviate from theK line and P gp 9

hase near the chiral limit & =1/4. This implies that the
then approach the&K. line at 8~4.8 and K~0.18 for D e o 'S mpl

i B K, line does not cross thi€; line at finite 8 for any N;. On
N;=4 and at~4.8-5.2 andK~0.17 - 0.19 forNi=6, 5 gher hand, wheNg=<86, the chiral limit belongs to the
contrary to the naive expectation that they monotonously deéonfining phase 38=0, which implies that there is a cross-

viate from.thel'<C line. The points wherg strong transitions ing point somewhere at finitg for the caseNg<6.
occur are just in the region where tKg lines approach the

K. line. Therefore, it is plausible that the strong transition at
intermediate values df is a result of lattice artifacts caused A. On-K; method
by this unusual relation of th&; and K. lines [7]. This In order to identify the crossing poimd.; and study the
unusual relation is probably due to the sharp bend of therder of the chiral transition there, we take the strategy of
K. line at 3=5.0 which is caused by the crossover phenom-performing simulations on thk_ line starting from a value
enon between weak and strong coupling regions of QCDof 8 in the deconfining phase and reducifgWe call this
Our recent study indeed shows that, with an improved latticénethod the “onK,.” simulation method. The number of it-
action, the distance between the figandK; lines becomes  erationsN;,,, needed for the quark matrix inversion, in gen-
monotonically large when we decrealkeand, correspond-
ingly, theK; transition becomes rapidly weak as we decrease
K from the chiral limit[32]. Also the unexpectedl; depen- )
dence ofm, in the deconfining phase at small discussed in " .
the previous section, is removed with the same improved
lattice action. onK
The appearance of the lattice artifacts implies that we ¢
have to be cautious when we try to derive the conclusions in 1
the continuum limit from the numerical results at finjge s b '
We also note thall,=4 is far from the continuum limit and
therefore we should take with reservation, in particular, 0 L .
guantitative values in physical units which are quoted in the 3.8 4 4.2 4.4 4.6
following. We, however, note that the PCAC relatianf. B
«mg expected from chiral symmetry in the confining phase
is well satisfied even in the strong coupling region and there- FIG. 7. The pion screening mass squarefa® for N.=2 on
fore we expect that qualitative features of the chiral transithe K, line obtained on 8x10x4 and 13x6 lattices.

As discussed in Sec. lll C, the chiral transition can be
tudied along th&, line at the crossing point of thi€; and
K. lines, which we denote as the chiral transition point
Bt We first address ourselves to the problem of whether
the chiral limit of the finite temperature transition exists at
all. We then study the order of the chiral transition.
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TABLE XVI. The same as Table XIll foNz=3 on an §x10x 4 lattice.

B K Plaquette Polyakov m_ a 2mga m,a

3 0.205 0.240@2) 0.07797) 1.0494) 0.3342) 1.22318)
3 0.215 0.2501) 0.100212) 0.8204) 0.1801) 1.24767)
3 0.225 0.263%) 0.126624)

3 0.2352d 0.354®) 0.171816) 0.98830) -0.0645)

3.1 0.2341 0.3743) 0.181212) 1.08421) -0.0694) 1.5326)
3.2 0.2329 0.3882) 0.185@10) 1.19219) -0.0717) 1.5222)
4 0.18 0.317@) 0.05087) 1.4087) 0.6385) 1.49714)
4 0.19 0.329R2) 0.06697) 1.1798) 0.4245) 1.34417)
4 0.2 0.34863) 0.09788) 0.8999) 0.2045) 1.19350)
4 0.205 0.4465%) 0.210211) 1.3134) -0.05630) 1.77198)
4 0.21 0.4678) 0.234111) 1.54210) -0.05111 1.76Q20)
4 0.2226 0.494@) 0.263712) 1.5525) 0.0094) 1.6896)
45 0.16 0.359@) 0.03347) 1.7175) 0.9795) 1.7686)
45 0.17 0.369®) 0.04596) 1.4915) 0.7323) 1.5759)
45 0.18 0.383&) 0.06417) 1.2506) 0.4784) 1.38514)
4.5 0.185 0.3952) 0.08128) 1.0948) 0.3405) 1.281(15)
4.5 0.186 0.4023) 0.092710) 1.07Q9) 0.2995) 1.26723
45 0.1875c 0.4128) 0.109415) 1.0236) 0.2508) 1.28734)
45 0.1875d 0.48618) 0.234317) 1.39444) -0.0787) 1.63655)
45 0.189 0.49641) 0.249215) 1.50219) -0.11414) 1.69623)
45 0.19 0.501@) 0.256@11) 1.580110) -0.11812) 1.788198)
45 0.2 0.523R2) 0.285211) 1.6935) 0.0106) 1.8148)
4.5 0.205 0.5318) 0.295713)

4.5 0.2143 0.5433) 0.318327)

5 0.13 0.41022) 0.01386) 2.25710) 1.64776) 2.27110)
5 0.14 0.416®) 0.02239) 2.0367) 1.3736) 2.0638)
5 0.15 0.4248) 0.03199) 1.79Q7) 1.07716) 1.83010
5 0.16 0.438®3) 0.052210) 1.5159) 0.7638) 1.58612)
5 0.165 0.453®) 0.079810) 1.35912) 0.57412) 1.44416)
5 0.166 0.469%) 0.124717) 1.34013) 0.49114) 1.44712)
5 0.167 0.514®) 0.236917) 1.37911) 0.18517) 1.48817)
5 0.17 0.529R) 0.269811) 1.47310 0.00319) 1.58411)
55 0.1 0.501(®) 0.018%7) 2.8485) 2.4135) 2.8495)
5.5 0.11 0.505@) 0.028310) 2.5517) 2.0557) 2.5578)
5.5 0.12 0.5148) 0.051€15) 2.2539) 1.6798) 2.26210)
5.5 0.125 0.521@) 0.083716) 2.1044) 1.4955) 2.1185)
5.5 0.1275 0.5278) 0.122616) 2.0314) 1.3924) 2.0464)
55 0.13 0.538®) 0.187213) 1.9505) 1.2544) 1.96716)
5.5 0.135 0.5453) 0.214124) 1.8148) 1.0566) 1.8368)
55 0.14 0.552@) 0.241313) 1.6724) 0.8434) 1.6965)
6 0.08 0.596®) 0.258213) 3.31235) 2.9934) 3.3135)
6 0.09 0.597(13) 0.274%15) 2.9825) 2.5914) 2.9845)
6 0.1 0.5984) 0.282913) 2.64714) 2.1824) 2.6494)
6 0.11 0.59812) 0.287415) 2.3445) 1.7994) 2.3475)
6 0.12 0.602@) 0.306315) 2.04611) 1.4019) 2.05112)
6 0.135 0.6076®) 0.334616)

eral, provides a good indicator for discriminating the decon-confining phase, while none exists in the deconfining phase
fining phase from the confining pha$&4,33. The use of [12,33,34: We have checked this difference for the existence
N;,v @s an indicator is extremely useful on tKe line, be-  of zero modes in various cases discussed below and conclude
causeN;,, is enormously large on thi. line in the confin-  that the difference oN;,, is not a numerical artifact.

ing phase, while it is of order several hundreds in the decon- In the deconfining phase on the. line, we measure
fining phase. Therefore there is a sudden drastic change physical observables such as the Polyakov loop, the
N;,v across the boundary of the two phases. This differencplaquette, and hadron screening masses, as usual, after ther-
is due to the fact that there are zero modes ardGpéh the  malization. From the behavior of physical quantities toward
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B K Plaquette Polyakov m_a 2mga m,a

4 0.2 0.347®) 0.09458) 0.9106) 0.2013) 1.13926)
4 0.202 0.354@) 0.10536) 0.8594) 0.1742) 1.12925)
4 0.203 0.358(®) 0.11047) 0.8365) 0.1542) 1.13930)
4 0.204c 0.3682) 0.127@d8) 0.8099) 0.1192) 1.07179)
4 0.204d 0.4378) 0.203@9)

4 0.205 0.448@) 0.21027)

4 0.21 0.467@) 0.23228)

4.5 0.18 0.3828) 0.064585) 1.2525) 0.4793) 1.3789)
4.5 0.186 0.401®) 0.09217) 1.07Q7) 0.3044) 1.26612)
45 0.1875c 0.4132) 0.1115%4) 1.0326) 0.2443) 1.25714)
45 0.1875d 0.487Q) 0.23533) 1.43010 -0.0795) 1.67414)
45 0.189 0.494(3) 0.245710) 1.5567) -0.0917) 1.75313)
45 0.19 0.5002) 0.2525%7) 1.5869) -0.1147) 1.82916)
4.7 0.17 0.398@) 0.05364) 1.4176) 0.6475) 1.5058)
4.7 0.175 0.407@) 0.06617) 1.2866) 0.5134) 1.4059)
4.7 0.178 0.4181) 0.08147) 1.1908) 0.4084) 1.32813)
4.7 0.179 0.4232) 0.090%7) 1.1476) 0.3693) 1.3129)
4.7 0.1795c 0.4273) 0.09763) 1.1444) 0.3503) 1.3107)
4.7 0.1795d 0.4968) 0.236@4) 1.3937) -0.0047) 1.5979)
4.7 0.18 0.4998) 0.23997) 1.381(15) 0.00313) 1.59616)
5 0.165 0.4538) 0.078€10) 1.35714) 0.5694) 1.4485)
5 0.166 0.463@) 0.10177) 1.3186) 0.5133) 1.4247)
5 0.16625 0.4792) 0.14547) 1.3124) 0.4283) 1.4196)
5 0.1665 0.503@) 0.20868) 1.3496) 0.28Q5) 1.4636)
5 0.167 0.515®) 0.23778) 1.3847) 0.1788) 1.4959)
5 0.168 0.519Q) 0.24785) 1.4015) 0.1345) 1.5165)
5 0.169 0.526@) 0.260910) 1.42117) 0.0628) 1.537119)
5 0.17 0.529@) 0.268&8) 1.43210) 0.02Q7) 1.5649)

Bei, we are able to study the nature of the chiral transitiontion of them starting a hot state or a mix state. Although it is
In the confining phase, on the other hand, it is hard to makensatisfactory that we cannot obtain expectation values for
the system on thi line thermalized due to the enormously physical quantities in the confining phase, thekgnmethod
large N;,, we encounter in the configuration generation. IniS very powerful in identifying the critical point because the
this case, we only obtain at most bounds for several physicdlifference between the two phases is clear already with short

quantities by measuring the molecular dynamic time evolulime histories. We also check that the crossing point thus
determined is consistent with a linear extrapolation of the

0.24 !AI T T T T T T
P B
B, ©
02 ® B
B Vﬂv.
K ° v”? "y
N=3 [ey
o6 A
3
L K(N=4) uN=2
T t é F
012335 4 45 5 55 6
p

FIG. 8. Phase diagram fod=2 and 3. Solid symbols are for
Kc(mi) andK¢(mg). Open symbols are fdk;(N;=4) for Ng.=2
and open circles with cross fod-= 3. Circles are our data. On the
K, line for Nc.=3, clear two-state signals are observeq3at4.7
both on §x10x 4 and 13x 4 lattices. Lines are to guide the eye.

line K; toward the chiral limit.

2000

1000 f

B. Chiral transition for Ng=2

For the case of QCD with two flavors, studies of an ef-
fective o model[1,2] imply that the order of the chiral tran-

/| B=3.0 mix start

100

FIG. 9. Time history ofN;,, for Nc.=3 on theK. line obtained
on an &x10x4 lattice.
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FIG. 10. Pion screening mass squarefia® for Nc=3 on the FIG. 11. Time history oN;,, for Nc=6 on theK_ line obtained
K. line obtained on anB8<10x 4 lattice. on an &x10x4 lattice.

sition depends on the the strength of the(l) anomaly term  Ke(m3) for Ne=2 in Table X and interpolated ones. As
at the transition temperature. When the strength is zero, it igiscussed previousl¥ (m?) in general depend on the value
of first order. However, if the strength of the anomaly term inof N;. However, the differences between those on the
the effectivec model is nonzero at the starting point of a Ny=4 and 8 lattices are within numerical uncertainties as
renormalization transformation, it is likely that the effective shown Table XI. Therefore, we take the stringent condition
action is attracted to ®(4) symmetric fixed point under a to verify the existence of the crossing point, taking the far-
renormalization group transformatidi35]. Therefore, it is thest values oK.

plausible that the chiral transition is of second order. When we take into account the structure K‘;g(mi;T
Our main results of the measurementsNp=2 are sum- #0) that it sharply turns back at finit8, we may hit the
marized in Tables XIlI-XV. upper part of it by taking the largest valueskof for the on-

Let us first discuss the results Idf=4. In order to con- K. method. This, however, does not affect the conclusion
firm the existence of the crossing point, we take the largesthat theK; line crosses thé<, line. Our estimates for the
(farthesj values of K, for onK. simulations, that is, value of 8., in this case will be slightly underestimatécf.

TABLE XVIII. The same as Table XlIl folNz=6 on an &x 10X 4 lattice.

B K Plaquette Polyakov m_a 2mga m,a

0 0.2 0.02865) 0.120832) 1.4227) 0.6872) 1.52423)
0 0.21 0.03615) 0.156720) 1.2484) 0.5144) 1.38427)
0 0.22 0.04116) 0.197132) 1.0649) 0.3609) 1.22747)
0 0.235 0.0566) 0.263224) 0.7775) 0.16Q1) 1.15786)
0.3 0.2488 0.22299) 0.310919) 1.04Q5) -0.0374)

0.4 0.248 0.2364.2) 0.3112298) 1.07916) -0.0425)

0.5 0.2475 0.2548) 0.30626) 1.1576) -0.0633)

1 0.2 0.09763) 0.131314) 1.3644) 0.6154) 1.4947)
1 0.21 0.10783) 0.163412) 1.1705) 0.4382) 1.33215)
1 0.22 0.119%) 0.209913) 0.9843) 0.2812) 1.21719
1 0.225 0.125@) 0.23858) 0.8884) 0.2111) 1.20129)
1 0.23 0.12622) 0.259%7) 0.7973) 0.1541) 1.21847)
1 0.235 0.163®) 0.303516) 0.7256) 0.0782) 1.11(23)
1 0.24 0.2944b5) 0.303247) 1.2617) -0.0446) 1.586398)
1 0.245 0.320B) 0.298815) 1.31412) -0.0587) 1.71782)
4.5 0.15 0.369(8) 0.049317) 1.90911) 1.2008) 1.94534)
4.5 0.16 0.387®) 0.082223) 1.66810) 0.90810) 1.72841)
4.5 0.165 0.401@) 0.108333) 1.5517) 0.7653) 1.64136)
4.5 0.166 0.417@3) 0.139429)

4.5 0.167 0.417) 0.131718)

4.5 0.167 0.5028) 0.303430)

4.5 0.168 0.515@®) 0.325626)

4.5 0.17 0.5294.4) 0.344828) 1.55412) -0.04123)

4.5 0.18 0.567@) 0.396427) 1.7995) -0.11610)

4.5 0.19 0.588%) 0.423724) 1.8036) 0.1677)

4.5 0.2143 0.6203) 0.466619) 1.6166) 0.15610) 1.6418)
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FIG. 12. Pion screening mass squarefia® for Nc.=6 on the 05 - =45 T
K. line obtained on an8x 10x 4 lattice. o N=
4 | .
Fig. 2). This comment applies also fdée=3 and 6. 0a | W(xl) A
We first perform orK . simulations by theRk algorithm to
identify the crossing point, because it is very time consuming 0.2 .
to perform simulations with the HMC algorithm due to a low 01 - Polyakov
acceptance rate on th€, line in the confining phase. We . . :
find that whenB8=4.0, N,,, stays around several hundreds, 0 45 5 55 6 6.5
while for 8<3.9 it increases withr and exceeds several (b) 1/K

thousandgsee Fig. 6, and in accordance with this behavior

the plaquette, the Polyakov loop, and the pion screening FIG. 14. The same as Fig. 13 A& 4.5. The finite temperature
massm, decrease rapidly toward those in the confiningtransitionK, locates alk=0.1875 (1K=5.33).

phase. Therefore we identify the crossing poinBat-3.9 —

i.oiil’;reh:SIBiCSt IsShSSVr:']SIif]teFri]; V\gth a linear extrapolation of the time histories folN;,, at 3=4.0 plotted in Fig. 6 are obtained
t . .

Then we repeat ok, simulations by the HMC algorithm with the HMC algorithm, which are similar to those with the
o}

for 8=4.0 in order to measure physical observables. TheR @gorithm. TheA r should be taken small nef, in order
to keep the acceptance rate reasonably ffighg= 4.0, 4.1,

and 4.2 we usé\ 7=0.002, 0.005, and 0.005 to get accep-
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FIG. 13. Physical quantities forNg=3 at B=4.0 on
82X 10X 4 (open squaresand 12x 4 (solid diamondslattices:(a)
pion screening mass squaresdf,a2 and twice the quark mass

(b)

1/K

FIG. 15. The same as Fig. 13 At=4.7 obtained on a £x4

2mgqa, (b) the plaguette and the Polyakov loop. The finite temperadattice. The finite temperature transitidty locates atK=0.1795
ture transitionK, locates alk =0.204 (1K=4.90).

(1/K=5.57).
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FIG. 16. The same as Fig. 13 g=5.0: (@) Pion screening
mass squarecn‘nf,a2 and twice the quark massnga, (b) the
Polyakov loop. The finite temperature crossouer locates at

K=0.166— 0.1665 (K¥=6.01-6.02.

tance rates 0.91, 0.79, and 0.93, respectjv€he value of

N =3 p=4.7 Plaquette
I 0.180

K=0.1795 -
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FIG. 18. Time history of the plaquette foNg=3 at (a)
B=4.7 and(b) 5.0 on a 13x 4 lattice.

We find no two-state signals aroumd;. This is in sharp

m? thus obtained decreases smoothly toward zero as the ctiontrast with theNg=3 and 6 cases where we find clear
ral transition is approached and is consistent with zero at th&wvo-state signals aﬁct, as discussed below. This, together

estimatedB,; (see Fig. 7.

10 T T

0.6 T T

05 +
0.4 | B=55

03

W(1x1)

Polyakov

FIG. 17. The same as Fig. 13 @#=5.5 obtained on an
82X 10x 4 lattice. The finite temperature crossowr locates at
K=0.125-0.130 (K=7.7-8.0.

8.5
/K

with the vamshmgnw toward B, suggests that the chiral
transition forNg=2 is continuous(second order or cross-
oven, although the possibility of a very weakly first order
transition is not excluded. A finite size scaling study would
be needed to determine the order of the transition reliably.
The results from onk, simulations on theN;=6 lattice
are similar to those on tHiz;Il 4 lattice. The estimated tran-
sition point isB.;~ 4.0—4.2. The value crhfT listed in Table

*ﬁ 2mq
i i ]
o T
0 I L I
0 05 1 15 2
I/K—I/KC

FIG. 19. Thep meson screening masg,a and twice the quark
mass Inga in the confining phase as a function ofKt 1/K..
Open symbols are falg=2, 8=3.0, 3.5, 4.0, 4.3, and 4.5 on an
82X 10x 4 lattice. Solid symbols are fdl-=3, 8=4.0, 4.5, and
4.7 on &x10x4 and 13x4 lattices. The value oK () for
Ng=2 is used. Horizontal errors are from those fqr with taking
into account the difference due to definitions, either the vanishing
point of m2 or my,.
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TABLE XIX. Results of the plaquette, the Polyakov loop, the pion screening mass,itfeson screening
mass, and the> meson screening mass fii-=2+1 obtained on an Bx 10x 4 lattice.

B Kud Ks Plaquette Polyakov m_a m,a m,a
3. 0.2295 0.2017 0.3909) 0.1781) 0.991(19) 1.43233)
3.6 0.2281 0.2006 0.4118 0.1891) 1.18221)

3.d 0.224 0.1677 0.4173) 0.17Q1) 1.00329) 1.5217)
4 0.2226 0.1669 0.4403 0.1892) 1.25427) 1.77493 1.53423)
4 0.2226 0.1964 0.4764) 0.2442) 1.52Q7) 1.7136) 1.81Q19
4.3 0.218 0.1643 0.4902 0.2462) 1.5358) 1.69912) 1.520110)
55 0.163 0.15 0.58@2) 0.3281) 1.48710) 1.56912) 1.5329)

XIV and plotted in Fig. 7, again decreases toward zero a$ig. 8.(The nature of the transitiol, off the chiral limit is
B approachesB.. For Ny=18 with the spatial size discussed in Sec. VI.Thus we identify the crossing point
1&x24, we previously found that the transition is at at 8,~3.0(1).With the clear two-state signal we conclude

Bci~4.5-5.0[3]. Although the spatial size is not large that the chiral transition is of first order fotg=3.
enough, this result suggests that the shifteaf with N, is

very slow. D. Chiral transition for Ng = 6

Our previous study aB=0 [12] shows that forNg=7
there is no crossing point of th€. and K, lines and that
Ne=6 is the largest number of flavors for which a crossing
point exists. The main results of measurementsNer= 6
are summarized in Table XVIII. The overall features of the
transition obtained from numerical simulations fiE=6

C. Chiral transition for Ng=3

The main results of measurements fr=3 are summa-
rized in Tables XVI and XVII. The phase diagram for
Ng= 3 obtained from our simulations gt=4.0, 4.5, 4.7, 5.0,
and 5.5 is shown in Fig. 8. We find that tKg line linearly

approaches th&.. line. In order to confirm the existence of imil h FoM— for the | . ¢
the crossing point by oi, simulations, we take the largest are very simrar to those fd =3 except for the ogatlon 0
© ' Bct, which moves to a smalleB as expected. Figure 11

: 2 _ ,
g:; ré?:jl ;ﬁ(’:etht?]tislsi’str(lg]wrzl’ofs?rsTrianin?tc{); r? d\ilgliinh?(\)/re theshows thaiN;,, on theK, line stays at several hundreds for
' =0.4 and for a hot start g8=0.3. On the other hand,

existence of8.;. We use them and interpolated values for . )
Bt P N;,, grows rapidly with7 and exceeds 5000 f@#<0.2 and

onK. simulations here. FONz=6 discussed in the next s ) ,
subsection, we interpolate these values Kf with for a mix start at3=0.3. In accordance with this, we have

K.=0.25 at 8=0. Note that the differences df.'s for WO values ofmfr at[_-3=0.3(cf. Fig. 12. Therefore we iden-

Ne=2, 3, and 6 are of the same magnitude of numericafify the crossing point aB.~0.3(1) and conclude that the

uncertainties oK. chiral transition is of first order foNg=6. This 8., is con-
Figure 9 showsN;,, as a function of the molecular- Sistent with a linear extrapolation of tH& line (cf. Table

dynamics timer for several values of3’s. When 8=3.1, ) _ ) _ _

Ni,, is of order of several hundreds, while whegh<2.9,  For QCD withNg=3, Pisarski and Wilczek predicted a

N;,, shows a rapid increase with At 3= 3.0 we see a clear first order chiral .transmon from a renormalization group

two-state signal depending on the initial condition: For a hotStudy of an effectiver model[1]. Our results foNg=3 and

start,N,,, is quite stable around 800 and the pion screening © areé consistent with their prediction.

mass squaredﬁ is large (~1.0). On the other hand, for a

mix start, N;,, shows a rapid increase with and exceeds VIII. INFLUENCE OF THE STRANGE QUARK

2000 in 7~20, and in accordance with thisy; decreases In the previous section, we have seen that the chiral tran-

with . 5. o sition is consistent with a second order transition for

The value ofm’, is plotted in Fig. 10. A{3=3.0 we have  N_=2, while it is of first order forNz=3, both in accor-
two values form’ depending on the initial configuration. dance with theoretical expectations. Off the chiral limit, we
The larger one obtained for the hot start is of order 1.0expect that the first order transition fdt-=3 smoothens
which is a smooth extrapolation of the valuegat3.1- 3.2.  into a crossover at sufficiently larg®,. In this way the
The smaller one is an upper bound fof. for the mix start.  nature of the transition sensitively dependsNa and mg .

We note that the result g8~ 3.0 is consistent with an Therefore, in order to study the nature of the transition in the
extrapolation ofK; points listed in Table XII as is shown in real world, we should include the strange quark properly

TABLE XX. The same as Table XIX foNz=2+1 obtained on a £X 4 lattice.

B Kud Ks Plaquette Polyakov m_ a m,a m,a

3.d 0.224 0.1677 0.4180) 0.1691) 1.07829) 1.51838)
4 0.2226 0.1669 0.4407) 0.19Q1) 1.27Q9) 1.70254) 1.5096)
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TABLE XXI. The same as Table XIX foNr=2+1 obtained on an8x 10 lattice.

B Kud Ks Plaquette Polyakov m_a m,a m,a

35 0.195 0.2017 0.2812 0.00%11) 1.1504) 1.3058) 1.19810)
35 0.2 0.2017 0.28%2) 0.0031) 1.0233) 1.21812) 1.19413)
35 0.205 0.2017 0.2892) 0.0031) 0.8994) 1.114198) 1.17215)
35 0.21 0.2017 0.2933) 0.0031) 0.7484) 1.08442) 1.17916)

whose massn, is of the same order of magnitude as thethe first order phase transition persists.
transition temperaturé.=~100-200 MeV. We observe clear two state signals@t= 4.0, 4.5, and
In a numerical study we are able to vary the mass of the}.7, while for 8=5.0 and 5.5 no such signals have been
strange quark. Assuming that the chiral transition is of secseen: The simulation time history of the plaquette at
ond order forNg=2 (i.e., ms==), when the mass of the 5—4.7 on a 13x4 lattice is plotted in Fig. 1@). The con-
strange quark is reduced from infinity to zero with up andfining and deconfining phases coexist over 1000 trajectories
down quarks fixed to the chiral limit, the nature of the tran-t kK = 0.1795 and, in accordance with this, we find two-state
sition must change from second order to first order at Somgjgnals also in other observables such as the plaquette and
quark massm; . This point atmg is a tricritical point[2].  the pion screening mass,, (cf. Fig. 15. From them we
The crucial question is whether the physical strange quarkonclude that the transition &=0.1795(5) and3=4.7 is
mass is larger or smaller than . Studies with an effective first order. On the other hand, the time history of the
linear o model suggest a crossover for the case of realistiplaquette at3=5.0 shown in Fig. 1) suggests that the
guark masses in a mean field approximation and in a larggansition is a crossover there.
1/Ng approximation [36,37, while the possibility of a At the transition point(in the confining phase of
weakly first order transition is not excluded when numericalg=4.7 the value of mja is 0.1752) and
errors in the calculation of basic parameters are taken intm#/mpzo_gn{e)_ Theresults of the hadron spectrum in the
account 37]. range of3=3.0-4.7 forNg=2 and 3(cf. Fig. 19 indicate
that the inverse lattice spacirgj ! estimated from the
A Ng=3 meson mass is almost independent@in this range and
a~'~0.8 GeV.(Hereafter we use ! determined fromm,

Let us first discuss the case of the degenefde=3: i, the chiral limit) Therefore we obtain a bound on the criti-
K,=Kgs=Ks=K. As we have already discussed the chlralCal quark mass mg”tz 140 MeV or, equivalently,

transition previously, we are mainly interested in the transi- crit—, :
. ; : " =0.8736). It shoul hat the ph I
tion for the massive quarks. In order to find the tranS|t|on(m”/m”) 0.8736). It should be noted that the physica

points we perform simulations #8=4.0, 4.5, 4.7, 5.0, and strange quark mass determined fram=1020 MeV, using

) o » ~ . _the data shown in Fig. 19, turns out to g~ 150 MeV in
5.5. The results for physical quantities are plotted in F'gsthis,B range with our definition of the quark mass.

éf_#gi;r;eoé?gsggg Spglrr;ts il\?:nn?rl:l?rigg ;a(lls;gger;oct:tr;%n%e We note that these values for the critical quark mass are
Fi P g We note that th& Iin% for Ne=3 atN.—4 IoF::ates much larger than those with staggered quarks where
9. o t F t mg'a=0.025-0.075[38,39 (m{"~10-40 MeV using

sufficiently far from the points where th¢€, line bends rap- a-1-05 GeV atB—5.2 for Ne= 2 [40]) which means that
~0. =5, £=

idly. This situation is quite different from thdlr=2 case (mw/mp)c”tzo.42 _ 0.58(using the results of meson masses

where the unusual relation between egline andK. line K o =
causes the lattice artifacts. Therefore, we expect that theg;agvrali\llgt;; atf=5.2[41], because the data fbf=3 are not

lattice artifacts are small in thd-=3 case.
In the previous section we have seen that the transition is

of first order in the chiral limitK,=0.235 atB=3.0 for B.Ne=2+1

Ng=3. For phenomenological applications, it is importantto  Now let us discuss a more realistic case of massless up

estimate the critical value of the quark mm$" up to which  and down quarks and a light strange quakg&2+1). The

TABLE XXII. Hopping parameters folNg=2+1 simulations performed on?& 10x4 and 18x 4
lattices.K 4 for u andd quarks is set to be equal 0. andK for s quarks is chosen so that,~150 MeV
and 400 MeV in the left and right columns, respectively.

mg=~150 MeV mg=~400 MeV
,3 Kud Ks ﬁ Kud Ks
3.2 0.2329 0.2043 3.7 0.2267 0.1692
3.4 0.2306 0.2026 3.8 0.2254 0.1684
3.5 0.2295 0.2017 3.9 0.2240 0.1677
3.6 0.2281 0.2006 4.0 0.2226 0.1669

4.0 0.2226 0.1964 4.3 0.2180 0.1643
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m =0 150MeV | 400MeV

031 1 From the value ofa”

p

0 100 200 300 400 500 Ks shown in Table XXII.
(b) T In order to confirm that our choice of parameters for the
casems~ 150 MeV is really close to the physical values, we
FIG. 20. Time history of(a) N;, and (b) the plaquette for have also made a zero temperature spectroscopy calculation
~150 MeV on an 8x 10x 4 lattice. for theN=2+1 case aB=3.5 on an §x 10 lattice. Keep-

ing Kg=0.2017 fns~ 150 MeV), we varyK,,

0
28 3 32 34 36 38 4 42 44

L p=4.0 ¥ s 4 FIG. 22. Pion screening mass squaneda® versus g8 for
m,=0, 150, and 400 MeV withm,4=0. Solid and open symbols
are for £x10x4 and 12X 4 lattices, respectively.

We study two cases ofmg~150 MeV and 400 MeV.
1-0.8 GeV and an empirical rule
i,/ ’ . mga=(2/3)(1K—-1/K,) satisfied forNg=2 and 3 in theg

134 region we have studie(tf. Fig. 19, we get the values for

q from 0.195 to

main results of measurements are summarized in Table$210 in steps of 0.005. Taking the chiral limit Kf,4, we

XIX—XXI. Our strategy to study the phase structure is simi- optain a~'=903(38) MeV from the p meson mass
lar to that applied in Sec. VIl for the investigation of the m,a=0.853(36) aK,=0.2227, where . is determined by
chiral transition in the degenerate quark mass cases, Whick|inear extrapolation cﬂnza in terms Of 1K]. The mass of

we called the ork, method. We set the value of masses for
the up and down quarkm,q to zero Ky q=K,), fix the
strange quark massg to some value, and make simulations

NF=2

pure gauge

starting from a value of3 in the deconfining phase and re-

ducing the value of3. Whenu andd quarks are massless,

the number of iterationd\;,,, needed for the quark matrix

inversion (for u and d quarks is enormously large in the .
confining phase, while it is of order of several hundreds in s
the deconfining phase. The values which we takekfpiare 4004
given in Table XXII. They are the vanishing point of ex- (MeV)
trapolatedm? for N.=2 and interpolated ones. We have ng
used those foNgz= 2, because we have the most data in this

case, and the difference between thatNgr=2 and 3 is of 1504
the same order of magnitude as the difference due to the

definition of K, (cf. discussions in Sec. VI

I3pIO puy

Crossover

atr
&8

0'=250MeV

0.5 T T T
p=4.0

Plaquette
=
S

o
w

mix start

mud

N FIG. 23. Order of the finite temperature QCD transition at

N;=4 in the (m,q,my) plane. First order signals are observed at the

p=3.9 hot start points marked with solid circles, while no clear two-state signals

are found at the points with open circles. The second order transi-

tion line is suggestef42] to deviate from the vertical axis a8,y

\ p=3.9 = (m# —mg)®2 below m¥ . The values of quark mass in physical
N =2+1 m =400MeV units are computed usira ! determined fronm,, : a 1~0.8 GeVv

- " - for B<4.7 and~1.0(1.8) GeV for3=5.0(5.5). The real world

0 100 200 800 400 determined by the value @f,/m, andm, /m, corresponds to the

T

is still far onN;=

point marked with a star. It should be noted that the continuum limit
4 lattices. See Sec. VIl for more detailed discus-

FIG. 21. Time history of the plaquette fon,~400 MeV on a  sions and caveats on the values of the quark mass in physical units
122X 4 lattice. and the identification of the physical point.
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the ¢ meson at the simulation point turns out to be 13)3 continuum limit is large in both the studies B=4, we
GeV which should be compared with the physical value 1.0Zertainly should make a calculation with largsy [43] or
GeV. Thus the hopping parameter chosenrfigr-150 MeV  using an improved actiof82] to get closer to the continuum
corresponds to the physical strange quark mass, in this sendiit and to obtain a definite conclusion about the nature of
As far as we consider the meson sector the numerical result§eé QCD transition. With Wilson quarks using the standard
for the mass ratio do not differ so much from the physicalgauge action, however; should be enormously large
values. However, we emphasize one caveat here. The=18) [3]in order to avoid the lattice artifacts discussed in
nucleonp mass ratiany /m,, turns out to be 2.@) which is Sec. \(I. Improvgment of the lattice action will be essential
the same as the result 2.0 in the strong coupling limit and i§SPecially for Wilson quarks.

much larger than the physical value 1.22. This implies that

B=3.5 is far from the continuum limit. IX. CONCLUSIONS

The simulation time history o, on the & 10 spatial We have studied the nature of finite temperature transi-
lattice is plotted in Fig. 2@) for the case of 150 MeV. When  tions near the chiral limit for various numbers of flavors
B=3.6, Nin, is of order of several hundreds, while when (N.=2, 3, and 6 and also for the case of massless up and
B=<3.4,Nj,, shows a rapid increase with At 5=3.5 we  down quarks and a light strange quaikg(=2+1), mainly
see a clear two-state signal depending on the initial condipn |attices withN,=4, using the Wilson formalism of quarks
tion: For a hot startiN;,, is quite stable around 900 amf, iS  on the lattice.
large (~1.0 in lattice unity. On the other hand, for a mix  We have found evidence suggesting that the chiral transi-
start,N;,, shows a rapid increase withand exceeds 2500 in tion is continuous(at most very weakly first ordgrfor
7~10, and in accordance with this, the plaquette arrﬁ,d Ne=2, while it is of first order forNr=3 and 6. These
decreases with as shown in Fig. 2@®) for the plaquette. For results are in accordance with theoretical predictions based
the case of 400 MeV a similar clear two-state signal is ob-on universality{1,2]. Our results with Wilson quarks are also
served aB3=3.9 both on the 8x 10 and 12 spatial lattices consistent with those with staggered qua4].

(cf. Fig. 21). The values ofn? versusg are plotted in Fig. Our results for QCD with a strange quark as well as up
22 together with those in the case of degenehite-3 on  and down quarks obtained =4 lattices are summarized
the K. line. At 8=3.5 for the case of 150 MeV and at in Fig. 23. Clearly, the point which corresponds to the physi-
B=3.9 for the case of 400 MeV, we have two values forcal values of the up, down, and strange quark masses mea-
m2 depending on the initial configuration. The larger ones ofsured bym,/m, andm_/m,, marked with star in Fig. 23,
order 1.0 are for hot starts, while the smaller ones are upp@XiStS in the range of first order transition. If this situation
bounds for mix starts. These results imply tmaf =400  Persists in the continuum limit, the transition for the physical
MeV in our normalization for quark masses. quark masses is of first order. .

Following the Columbia group39], we summarize our On the other hanq, the previous result by the Columbia
results about the nature of the QCD transitioNat4 as a  9roup[39] at N;=4 with staggered quarks suggests that the
function of m,y andm, in Fig. 23, together with theoretical transition in the real world is a crossover. We have f_o_und
expectation$1,2,49 assuming that the chiral transition is of that Wilson quarks tend to give larger values for critical
second order foNg= 2. Clearly the point which corresponds duark massesmeasured, for example, byn,/m, and
to the physical values of the up, down, and strange quarﬂ?w/mp) thgn those with _staggered quarks. This leads to 'the
masses measured by, /m, andm,,/m, exists in the range dlffer_e_nce in the conclusmn; e_lbout the nature <_)f the phy_su_:al
of the first order transition. If this situation persists in the transition. Because the deviation from the continuum limit is

continuum limit, the transition for the physical quark massedarge on theN;=4 lattices in both studies, we certainly
is of first order. should make a calculation with largé¥, or with an im-

The Columbia group studied the influence of the strangdroved action[32] in order to get closer to the continuum
quark for the case of staggered quafl@®]. Their result limit and to obtain a defllnllte conclusmn_about thg nature of
shows that no transition occurs ah,a=mga=0.025, the phyS|ca'I QCD transition, by resolving the dlscrepa_ncy
m@a=0.1 (m,=my~12 MeV, m~50 MeV using betw_een \_Nllson_ and staggered quarks for the c_onclusmns.
a 1~0.5 Ge\). Their zero temperature values fom /m, Stu_d|es Wlt_h an improved gauge action and the Wilson quark
andm,,/m, obtained at this simulation point suggest that this2Ction are in progress.
value formg is smaller than its physical value and those for
m, andmy are larger than their physical values. This implies ACKNOWLEDGMENTS
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