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Projection scheme for handling large-number cancellation related to gauge invariance

Chao-Hsi Chang,1,2 Yi-Bing Ding,1,3 Xue-Qian Li,1,4 Jian-Xiong Wang,5 and Jie-Jie Zhu3
1China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China

2Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China
3The Physics Branch, The Graduate School, Academia Sinica, Beijing 100039, China

4Department of Physics, Nankai University, Tianjin 300071, China
5Institute of High Energy Physics, P.O. Box 918-4, Beijing 100039, China

~Received 9 April 1996!

A scheme, the so-called ‘‘projection,’’ for handling singularities in processes such ase1e2→tb̄e2n̄ ~or
e1e2→ud̄e2n̄) is proposed. In the scheme, with the help of gauge invariance, the large power quantities
(s/me

2)n (n>1;s→`) are removed from the calculation totally, while in the usual schemes the large quanti-
ties appear and only will be canceled at last. The advantages of the scheme in numerical calculations are
obvious; thus, we focus our discussions mainly on the advantages of the scheme in the special case where the
absorptive part for some propagators relevant to the process could not be ignored, and a not satisfactory but
widely adopted approximation is made; i.e., a finite constant ‘‘width’’ is introduced to approximate the ab-
sorptive part of the propagators phenomenologically even though QED gauge invariance is violated.
@S0556-2821~96!04323-8#

PACS number~s!: 11.15.Bt, 12.15.Ji, 11.80.Cr
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I. INTRODUCTION

Since the top quark mass has been measured at Ferm
@1,2# and the Higgs boson mass seems to possess some
straints@3#, at present there are better grounds to precise
testify do the validity of the standard model. The CER
e1e2 collider LEP II of 200 GeV and the Next Linear Col-
lider ~NLC! of about 500 GeV probably can do the job fur
ther in the near future.

Of the possible reactions,e1e2→tb̄e2n̄ is an interesting
one. It is asserted that of the Feynman diagrams, the f
associated with at-channel photon exchange shown in Fig
1, being gauge-invariant themselves, are dominant over o
ers asAs.250 GeV @4#. The propagator of the photon is
proportional to 1/k2 wherek2[(p12p)2 and p1 and p are
the momenta of the outgoing and incoming electrons. T
kinematics tells us

k25~p12p!252me
222E1E12upW 1uupW ucosue

;S 22
upW 1u

upW u
2

upW u

upW 1u
Dme

222upW 1uupW u~12cosue!, ~1!

as ue , the angle betweenpW 1 and pW approaches to zero,
k2→0, if me→0, i.e., the photon approaches to mass she
i.e., the propagator becomes singular. This singularity is
sential, because even after the final-state phase-space inte
tion it still survives. One can divide the integration overue
into two parts:

E
0

~ue!cut
sinueduef ~ue ,me!1E

~ue!cut

`

sinueduef ~ue ,me!,

~2!
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where (ue)cut is a small angle, and may be related to exper
mental measurements as one chooses. For the second i
gral, regularme can be safely set to approximately zero
whereas in general up to the first order of (ue)cut, the first
integration may be written as

FaS s

me
2D n1bS ln s

me
2D 1•••G•Due , ~3!

wheren>1 andDue is a small angle equivalent to (ue)cut.
Since the small-angle electron that finally scatters into th

beam tube~i.e.,ue being very small!, cannot be detected, the
phase-space integration for final state should always st
from the small angle instead of zero if the electron is ‘‘ex
clusively’’ measured, so the (ue)cut in Eq. ~2! has physical
meaning. However, if the electron in the reaction
e1e2→tb̄e2n̄ is detected inclusively, the smallue contribu-
tion cannot be negligible.

Note that in Eq.~3! the power terms (s/me
2)nDu being

very large even for very smallDu and the logarithmic terms
ln(s/me

2)Du being of much milder divergent behavior at
u;0, all of the terms may be suppressed if there is som
symmetry, e.g., the gauge symmetry for the concerned pr
cess. Many authors have investigated this process. Rai
et al. @5#, Panellaet al. @6# obtained quite different conclu-
sions subsequently; then Booset al. @4# pointed out that due
to an extravagant destructive interference among the fo
diagrams, the unexpected large contributions disappear a
summing up the contributions with the large number cance
lation.

It is proved that due to the gauge invariance contributin
to the process the troublesome power terms (s/me

2)n do not
exist at the final cross section but only the well-known loga
rithmic term as ln(s/me

2), that also forms the basis of the
Weiszäker-Williams approximation @7#. In principle, a
6963 © 1996 The American Physical Society
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6964 54CHANG, DING, LI, WANG, AND ZHU
straightforward calculation can give the correct final result
done in Ref.@4# as long as the numerical calculation kee
all the large numbers accurate enough. Even though
troublesome power terms (s/me

2)n, generating large quanti-
ties, would kill the large quantities, and much smaller on
are retained due to the destructive interference nature
practice, such cancellations may cause 6 to 8 magnitude
ders reduction~see Ref.@4#!, so it very often causes a prob
lem, i.e., it can lead to a totally wrong result for numeric
computation; at least, it becomes very difficult to estima
the errors of the computation.

Formulating the above statement, one can write the a
plitude contributed by each individual of the four diagram
as

Mi5ai1bicosu, ~4!

whereu is the angle between the three-momenta of the
coming and outgoing electrons. The troublesome pho
propagator contributes a factor 1/@a1b sin2(u/2)#2 to the
differential cross section.a is proportional tome

2 andb is
related to the energy, so asu→0 andme→0, this is a sin-
gular term. The final-state phase-space integration includ
part over the solid angled sin2(u/2), therefore it alleviates
the singular degree. When we take the integration
u(Mi u2 overd sin2(u/2), we have

E d sin2S u

2DU(i51

4

~ai1bicosu!U2 1

„a1b sin2~u/2!…2

5E d sin2S u

2D(i , j @ai* aj1~ai* bj1ajbi* !cosu

1bi* bjcos
2u#

1

„a1bsin2~u/2!…2

5E d sin2S u

2D FU(i ~ai1bi !U2
2(

i , j
„4bi* bj12~ai* bj1ajbi* !…sin2S u

2D
14(

i , j
bi* bjsin

4S u

2D G 1

„a1b sin2~u/2!…2
. ~5!

It is easily rewritten as
as
s
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E
0

1

dx
~A1Bx1Cx2!

~a1bx!2

5E
0

1

dxF Cb2 ~a1bx!21
1

b S 22aC

b
1BD ~a1bx!

1SA1
a2C

b2 2
aB

b D G 1

~a1bx!2
, ~6!

wherex5sin2u/2.
It is easy to see that the first term is completely benign as

me→0, and the second term gives a logarithmic term lnme
2

while the last one produces an extravagantly singular term
proportional to 1/me

2 at u→0. Therefore as we discussed
above, the gauge invariance demands vanishing of the last
term; namely one should expect

A1
a2C

b2 2
aB

b
50, ~7!

where

A5U(
i

~ai1bi !U2, ~8!

B52(
i , j

~4bi* bj12ai* bj12ajbi* !, ~9!

C54(
i , j

bi* bj . ~10!

Furthermore, a very interesting and important issue has
been addressed recently; i.e., some authors@8–10,12#
pointed out that to get rid of the singularity at theW-boson
propagator 1/(q22MW

2 ) for higher energies, a regular Breit-
Wigner form 1/(q22MW

2 1 iGWMW! whereGW is the mea-
sured decay width of theW boson is introduced, whereas the
gauge invariance of QED is violated. The power divergent
terms may appear again. It is well known that the QED
gauge invariance is a fundamental principle and cannot be
upset at any case. Here the apparent violation is artificial or
due to an inappropriate approximation and misapplication of
the Breit-Wigner form. They suggested many approaches to
restore the gauge invariance. However, since most of the
treatments possess certain arbitrariness depending on the
FIG. 1. ~a! through~d!, the Feynman diagrams where at2channel photon propagator is involved.
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54 6965PROJECTION SCHEME FOR HANDLING LARGE-NUMBER . . .
way of restoring the gauge invariance as long as it is
based on a solid stone of the quantum field theory, eve
the gauge invariance is respected, some ‘‘unphysical’’ c
tributions emerge in the final results. Aeppli@10# and Pa-
pavassiliou, and Pilaftsis@11# provide very elegant ways o
setting more solid foundations to deal with the width of t
W propagator for the processes; namely loop contributi
for its self-energy and vertex are considered, and thus
effective widthG in theW propagator is a function of mo
mentum. But this procedure involves complicated loop c
culations so the intuitive meaning of the width is lost, and
the convenience for cross section evaluation. Argyreset al.
@12# also suggested that by taking into account the absorp
part of the triangular loop correction to theWWg vertex, one
can regain the gauge invariance. The method they prov
is practically efficient for real processes and the results
tained in various schemes that restore gauge invariance
incide with each other~see Table I of Ref.@12#!.

Alternatively, we propose a different scheme to appro
the problem, namely ‘‘project out’’ the large compone
from each piece of the amplitude~corresponds to each dia
gram!, by means of choosing a special gauge based on
gauge invariance of the processes, thus the power terms
the large numbers, do not appear in the calculations c
pletely. Furthermore, even if the gauge invariance is ar
cially violated, in this scheme, the additional contributi
related to the violation is also suppressed. For instance,
though the naive Breit-Wigner formulation of the propaga
for describing the unstable nature of the particle is adop
the large terms are eliminated and only the ter
GW /MWln(s/me

2)Du survive. A more precise discussion a
comparisons of the results obtained in this scheme with
others, especially that of the authors of Ref.@12# will be
given below. Reasonable consistency with other schem
found.

II. THE PROJECTION SCHEME

~i! The scheme.
The amplitude corresponding to the Feynman diagra

shown in Fig. 1~a! through~d! characterized by possessing
common electron line, can be written as

M5(
i51

4

Mi5 lmTm

2 i

k2
5ūe~p1 ,s1!g

mue~p,s!
2 i

k2

3~T11T21T31T4!m , ~11!

where lm is the lepton current,ue’s are the incoming and
outgoing electrons andTi ’s are the effective currents dete
mined by the weak interaction andk25(p12p)2 is the
squared momentum carried by the photon. Due to the ga
invariance for the four diagrams themselves, we have

TABLE I. The cross sections ofe1e2→ud̄e2n̄e obtained in the
projection scheme~the definition of theW width appearing in the
table may be found in Ref.@12#.

s ~pb! 0.08977~60.000200! with fixedW width

s ~pb! 0.08983~60.000200! with runningW width
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k•T[km
•(
i51

4

Tim50. ~12!

As aforementioned, through a straightforward calculation
one may show that each ofTi ’s, i51, . . . ,4 itself contrib-
utes power termss/me

2 to the cross section at the vicinity of
ue50. The ‘‘total cross section’’s ~here only the four Feyn-
man diagrams in Fig. 1 are included, and it is introduced
only for the discussion’s convenience!,

s5
1

4s2E )
j51

4
d3pj

~2p!32Ej
(

all spins
uM u2

5
1

4s2E )
j51

4
d3pj

~2p!32Ej
(

all spins
U(
i51

4

lmTimU2 1k4 , ~13!

wherepj ’s are the momenta of the outgoingt,b̄,e2, and n̄.
Note once more it has been proved@4# that the final-state
integration only results in a ln(s/me

2) term, but not any power
term (s/me

2)n (n>1). The disappearance of the troublesome
power terms finally is due to the gauge invariance of QED.

Nevertheless, there is still the problem in the numerical
calculation that the ‘‘cross section’’ involves subtraction
among large quantities with a very small quantity remaining
as shown in Fig.~3! of Ref. @4#. To solve the problem, we
propose the so-called project scheme by choosing a very spe-
cial gauge. One can add an arbitrary term proportional to
km to the lepton currentlm such as

lm8 5 lm2ckm . ~14!

Due to the gauge invariance, herec may be any variable or
constant. The idea of the projection scheme is to subtract a
suitable quantity from every amplitude~corresponding to
each Feynman diagram! by choosing a proper gauge~here
the quantityc) , so as to project out a fraction that results in
the large power divergent term in the final cross section.
Indeed the idea may be carried through successfully as fol-
lows. To make each component of the four-vectorlm8 mini-
mal, we choose a condition

d

dc
max~ u l 08u,u l 18u,u l 28u,u l 38u!50. ~15!

To be symmetric, alternatively we adopt the following con-
dition instead:

d

dc
~ l 0
,* l 0

, 1 l 1
,* l 1

, 1 l 2
,* l 2

, 1 l 3
,* l 3

, !50. ~16!

Note here that the summation( l i
,* l i

, is defined in ‘‘Euclid-
ean space measure’’ but not in a Minkovsky one, thus it
minimizes the squared radius of the Euclidean four-sphere.
Then we obtain

c5
k0l 01k1l 11k2l 21k3l 3

k0
21k1

21k2
21k3

2 , ~17!

under the condition. Becausekmlm50 ~with the metric
(1,21,21,21) as convention!, we have
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c5
2k0l 0
uukuu2

,

where uukuu2[k0
21k1

21k2
21k3

2. Thus with the gaugec, the
lepton current may be replaced by

lm8 5 lm2
2k0l 0
uukuu2

km , ~18!

which indeed projects out the large term fromlm . Due to the
smallness ofme in the process, one can expandk0l 0 in me

and only keep terms up tome
3 in the series.

To see the results, by comparing with Eq.~4! under the
limit of me

2→0, i.e.,a in Eq. ~5! is zero, if one calculates the
amplitude for each diagram in terms of the projecti
scheme, one will find that each amplitude is proportional
1/sin(u/2) instead of 1/sin2(u/2) in the usual scheme, thus th
singularity becomes mild and after the integration over fin
phase space, only the logarithm term remains, even for
contribution from each diagram individually.

To show the advantages more precisely, we recalcu
the process numerically. The numerical results are show
Fig. 2. We plot the dependence of the cross sections on
(ue)cut, which is the lower limit of the angle integration. I
order to compare with the results of Ref.@4#, we recalculate
the contributions from the four diagrams of Fig. 1~without
the interference among them! in terms of the usual way,
where we deliberately choosemt5140 GeV andAs5190
GeV precisely as given in Ref.@4#. The individual curves are
the upper four in the figure and they are exactly consist
with those of Ref.@4#. It is noticed that the total cross sectio
is lower than them by 8 magnitude orders as pointed out
Booset al. The lower four curves correspond to the cont

FIG. 2. The dependence of the cross sections on the angle
(ue)cut . The upper four curves show a rapid rise near (ue)cut→0,
which correspond to the cross sections of the individual diagram
Fig. 1 calculated in the regular scheme. The lower four solid lin
also correspond to the individual diagrams of Fig. 1, but are ca
lated with the projection scheme. The dashed line is the total c
section. To compare with previous calculations, we takemt5140
GeV andAs5190 GeV.
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butions from the four diagrams individually also, but are
calculated in the projection scheme. The total cross section
exactly coincides with that obtained in the usual scheme
where the high accuracy computation technique is employed.
It is interesting to note that the ‘‘individual’’ curves obtained
by the projection scheme have the same order as the total
cross section.

~ii ! Under the approximation of a finiteW-boson width
GW .

As the concerned energy is relatively low as long as all
intermediateW bosons are far away from its mass shell, the
propagator can be written as

2 i

q22MW
2 1 i e S gmn2

qmqn

mW
2 D .

As showed by Kurihara@8#, with propagators corresponding
to zero width, it is easy to checkkmTm50, i.e., the gauge
invariance holds. However, when the others-channel dia-
grams for the processe1e2→tb̄e2n̄ are concerned and as
the energy is increasing (As>mt1mb1MW), q

2 of the pro-
cess may cross the mass shell ofW boson and the singularity
of the propagator would result in a new singularity. In fact
this divergence is caused by an unsuitable approximation.
Since the intermediate boson is not a stable particle, the
propagator should be modified, for instance,

2 i

q22MW
2 1 iGWMW

S gmn2
qmqn

mW
2 D .

However, it still is a problem deciding whatGW in the propa-
gator is. Generally it is an ‘‘effective’’ width, corresponding
to the absorptive part of the self-energy of the particle; there-
fore, only thes-channelW-boson, being timelike, can be
nonzero, whereas thet channel is spacelike, so will always
be zero. ThereforeGW in the propagator should be a function
of momentum behaving as

GW~q2!5G1~q
2!u~q22L1

2!1G2~q
2!u~q22L2

2!1•••,
~19!

whereL i
2 is the threshold of a corresponding channel (i ). In

practice, the Breit-Wigner formulation is adopted widely
@13#, i.e., one has

GW~q2!5H ḠW , q2.0 ~s channel!,

0 q2,0, ~ t channel!,
~20!

whereḠW , being constant, is taken as the measured width of
the realW boson. This brings in an inconsistency, i.e., the
gauge invariance of QED is violated artificially. To amend
the fake violation, many authors proposed various methods
@8,9#, and Aeppli@10# summarized them and indicated that
all schemes may possess some unphysical additions artifi-
cially imposed to the results.

In our scheme for taking the special gauge@Eq. ~17!#,
thanks to the projection in the gauge, the large terms
(s/me

2)nDu do not occur at all, whereas in usual schemes
they appear in the intermediate stage of the calculation.
When gauge invariance is violated, such dangerous power
terms still do not appear; even when the gauge invariance is

cut
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54 6967PROJECTION SCHEME FOR HANDLING LARGE-NUMBER . . .
violated, in the final result only the term proportional to
ln(s/me

2) appears in terms of the projection scheme. In sum
mary, when the gauge invariance is artificially violated, in
this scheme there could be only additional terms,

aS GW

MW
DmS s

me
2D n3Du1bS GW

MW
Dm8

ln
s

me
2Du, ~21!

which vanish asGW→0. In the Breit-Wigner formulation,
both a andb terms in Eq.~21! are nonzero and any proce-
dure to restore the gauge invariance would make the pow
term disappear, i.e., imposea to be zero, and bring in some
change to the logarithmic term. The change, in fact, mu
involve unphysical components due to the violating of the
gauge invariance.

For an explicit comparison with the literature@12#, we
have calculated the cross section ofe1e2→ud̄e2n̄e for
As5175 GeV. As the collision energy is so high, we have
adopted a little larger fine-structure constant:

ae~s51752 GeV2!51/125.0

in our computations. The numerical values for the cross se
tion we obtained are listed in Table I. When calculating th
values in the table, the parameters

MW580.22 GeV,

me50.51131023 GeV,

ae~0!51/127.034,

sinuW50.232,

50,AP1
2 ,110 GeV,

are taken, along with the definitionP15Pl1Pn . The cou-
pling constantae is mainly based on the formulas@15#. In
the calculationsmt5176 GeV is used.

To compare with the results of Ref.@12#, their calculation
for the cross section is 0.08887~8!pb for fixed width
(umin50), while from Table I one may see ours is about 1%
larger only. The result with running width is only 0.07%
larger than that for the fixed width. We should note here tha
a comparatively larger value forae is adopted in our calcu-
lation, hence a slightly larger number should be expected.

III. DISCUSSIONS AND CONCLUSION

To solve the problem of large number cancellation
around the singularity such as that in the forward directio
for the processe1e2→tb̄e2n̄, we propose a ‘‘projection’’
scheme so as toa priori project out the large quantity in each
amplitude where at-channel photon-propagator is involved.

Figure 2 shows that in usual schemes, the curves corr
sponding to the contribution of the individual diagrams o
Fig. 1 rise very fast as (ue)cut approaches zero, but the total
cross section does not. It is a result of the gauge invarian
as discussed above. In contrast, in the new scheme~a special
gauge is applied! the contribution presents a smooth behav
ior at zero-(ue)cut.

Indeed, this intriguing problem was conceived by som
-

er

t

-

t

e-

e

authors a long time ago and they employed a special schem
@14#. The squared amplitude is

1

4( uTu25L0
mn~p,p1!Hmn~pt ,pb ,q!, ~22!

where L0
mn is the lepton current part,q5p2p1 and

qmHmn50 by gauge invariance. In general,L0
mn may be writ-

ten as

L0
mn5~e1

me1
n1q2gmn!L~q2!, ~23!

whereL(q2) is a scalar function; the polarization may be
written as

e1
m5pm1p1

m1Z1q
m,

where Z1 stands for an arbitrary parameter. The authors
proved that if a special choice,

Z152~p01p1
0!/q0,

is taken, and further to demande1
050 and

e252ueW1u254me
21~Z1

221!q210~me
2!,

the power terms (s/me
2)n can be effectively eliminated. Our

projection scheme is in a way parallel to their treatment. Ou
scheme systematically handles the power singularity at th
collinear limit. We adopt the projection at the amplitude
level while the authors of Ref.@14# dealt with it at the
amplitude-square level.

As pointed out above, so far there is no very satisfactory
~simple, intuitive, and not breaking the existent symmetries
etc.! way to dictate the absorptive part of the propagator
when the ‘‘finite width’’ effects cannot be ignored. Usually
when the finite width is introduced phenomenologically the
gauge invariance is artificially violated. Large power singu-
lar terms generally emerge. Therefore one would try some
methods to restore the gauge invariance, but so far most o
the treatments~there are a few exceptions, e.g., Ref.@12#!
‘‘planting in’’ gauge invariance by hand, may get rid of the
unphysical power singular terms, but at the same time would
bring in other new unphysical and undesired changes. In ou
scheme, the unphysical power singularity is eliminated from
the very beginning, and is therefore even with the artificial
gauge invariance violation. Even though an unphysical loga
rithmic term due to the violation of the gauge invariance
indeed emerges and is added to the final result, compared
other schemes this additional unphysical contribution is
much suppressed and the influence to the total cross sectio
is within 1%, a tolerable error at least for the tree level. It is
because for all known unstable particles that we have so fa
treated, we always have the width much smaller than th
mass, e.g., forW boson we haveGW!MW , the extra term,
behaving as Eq.~21!, does not make a substantial contribu-
tion at the highest energy in the foreseen future.

For e1e2→tb̄e2n̄, since in the fourt-channel photon
exchange diagrams of Fig. 1, theW boson cannot go onto its
mass shell, whether ats or t channels, so the finiteGW
should not give rise to any substantial change in that case
Our results with theW propagator having a finite width only
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at the timelike region are numerically consistent with that
null GW , and the error is within 1%, so it confirms our afor
mentioned discussions that the gauge-invariance viola
can only cause a term proportional to (GW /MW)

2lns/me
2 . In

the processe1e2→ud̄e2n̄, the effects of a finite width
GW become important even for the four photon-exchan
diagrams in Fig. 1. With our scheme, the troublesome
physical power term does not appear either, and the unph
cal term corresponding to artificial gauge invariance is a
suppressed to (GW /MW)

2 order, so they are negligible up t
a sufficient accuracy, for example asAs5200 GeV,
(GW /MW)

2lns/me
2;0.016, and 0.016Du must be much less

than 1. The results, shown in Table I, indicate that the eff
of violating gauge invariance caused by the runningW width
does not affect the final conclusion within a range of 1%.
contrast, without the projection, the power term caused
the artificial gauge invariance violation is too large to tole
able, in fact, it blows up the numerical results~see Table I of
Ref. @12#!.

It is certain that the scheme of Ref.@12# is more solid
from a theoretical point of view that is based on more so
ground, such as quantum field theory where through lo
one can connect the vertex to the self-energy diagram
restore the gauge invariance when finite width effects
concerned. Even though this is the case, we still should n
that if one restricts oneself to work in an exact perturbat
theory, surely the gauge invariance will be kept order
order; however, theW propagator cannot be simply writte
in the compact form2 i /(q22mW

2 1 iGWMW), which is a
result of resummation of chain diagrams. Thus it is not ea
to mend the singularity problem at a given order. In fa
what we need is to eliminate the dangerous power div
gence caused by the artificial violation of gauge invarian
so as to reach a reliable result to the desired accuracy
serve is goal, one either restores the gauge invarianc
automatically remove the dangerous power divergence
gets rid of the troublesome term directly as we do in th
work. For restoration of the gauge invariance, an appropr
scheme is to include all loop corrections of the self-ene
and vertex whose absorptive parts would consistently re
in the imaginary part in the full propagator ofW bosons,Z
bosons, and fermions and retains the gauge invaria
@11,12#. In Ref. @12#, the authors proved that the absorptiv
part of the triangular loop compensates the unbalances
andt channels due to introducing finite width to the unstab
W boson, so the gauge invariance is regained in the calc
of
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tions. The authors showed that deviations for various
schemes that are adopted to retain gauge invariance and
eliminate the power divergences/me

2 are reasonably small.
In our scheme, we simply avoid the trouble of power diver-
gence and suppress the gauge invariance violation effects.
Indeed, in principle and in practice our scheme may let the
calculations escape from the problems due to violation of the
gauge invariance caused by phenomenologically introducing
a finite width in the propagator~s!.

The advantages of the scheme are obvious. Many large
number cancellations due to internal gauge invariance in the
concerned process are avoided. Those advantages are crucial
sometimes for numerical calculations. Futhermore, a simple
but rough numerical computation indicates that the final re-
sults for the cross sections ofe1e2→e2n̄eud̄ in the projec-
tion scheme only deviates from that in the schemes that re-
store the gauge invariance by considering a loop correction
to theWWg vertex by less than 1%. A more careful calcu-
lation is in progress and the results will be published some
time later@16#.

Since the processe1e2→ud̄e2n̄e attracts much attention
due to its significance for better understanding of top physics
and precise tests of the standard model, further studies are on
going @17#. Indeed, a convenient method that greatly simpli-
fies analysis of data and at the same time obtains results
deviating from the ‘‘accurate’’ values obtained by other
more solid, but much more complicated methods only by a
small fraction within the experimentally allowed tolerance,
should be helpful and probably preferable. This projection
scheme may be one of the appropriate and desired ones for
both experimentalists and theoreticians.
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