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In gauge theories such as the standard model, the electric charges of the fermions can be heavily constrained
from the classical structure of the theory and from the cancellation of anomalies. There is, however, mounting
evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In
light of this we discuss possible modifications of the minimal standard model that will give us complete
electric charge quantization from classical constraints alone. Because these modifications to the standard model
involve the consideration of baryon-number-violating scalar interactions, we present a complete catalogue of
the simplest ways to modify the standard model so as to introduce explicit baryon number violation. This has
implications for proton decay searches and baryogen656-282196)04123-9

PACS numbes): 11.30.Fs, 12.66:i

I. INTRODUCTION AND MOTIVATION chargedw bosons will have charge 1. The above reasoning
shows that the electric charge quantization problem would be
Investigation of explicit baryon number violation in solved if a way could be found to deduce t¥echarges of
simple extensions of the standard mo¢®M) is interesting the fermions.
for a number of different reasons, includif@ the require- There are two quite distinct ways in which the standard
ment of baryon number violation to explain baryogenesismodel constrains the electric charges of the fermions. First,
and (b) the continuing interest in terrestrial searches forthere is a set of constraints that follow from the definition of
baryon-number-violating processes. the theory at the classical level: the requirement that the La-
The aim of this work is to provide a complete catalogueqyangian be gauge invariant. Second, there are other con-

or: the hsimplest_ waysf tﬁ eglp\)/llicglyhviolat(_a ﬁafyof‘ nymt}erstraints that are assumed to follow from the consistency of
through extensions of the SM. A theoretical motivation for o theory at the quantum level: the anomaly cancellation

doing this arises also from the work done by one ofdion o qitions. The outcome of this is that charge quantization
the possibility of obtaining complete electric charge quam"follows, provided that there is only one anomaly-fre€LU

zation from cllassical constraints_. symmetry of the Lagrangian outside of those contained in
The quantization of the electric charges of the known fer'SU(3)0®SU(2)L. If it turns out that the generator of this

mions isha wellr—]establisrlled c;experin:jental fpuenor;:enon. Arﬂj(l) symmetry is precisely standard weak-hypercharge
approach to a theoretical understanding of this p enomenqp t onlv is ch tized but it | tized 5
has emerged in recent years based on thd §Mrhe SM is en not only 1S charge quantized but 1t 1S quantized cor

i rectly.
a gauge theory with gauge group For instance, consider the minimal SM. In addition to
SU(3),@SU(2) ®U(1)y, 1) standardyY, any one ofL.—L,, Le—L,, andL,—L, gen-

erates an anomaly-free(l) symmetry of the Lagrangian.
which is assumed to be spontaneously broken by the vacuurtherefore the minimal SM poses a charge quantization prob-
expectation valu¢vVEV) of a scalar double$~(1,2,1). The  |em because the actual weak-hypercharge of the theory can
U(1)y charge of¢ can be normalized to 1 without loss of pbe chosen to be CO&gangard sin®(L;—L;) where® is an
generality due to a scaling symmetrg— 5g,Y—Y/#n,  arbitrary parameter andj=e,u,7 (i#]). See Ref[1] for
whereg is the U(1), coupling constant, anl is the gen- more detailed reviews.
erator of the U(1) gauge group. The gauge symmetry of the  The above analysis assumes that the cancellation of gauge
Lagrangian can be used to choose the standard form for thgnomalies is a rigorous requirement for a consistent gauge
vacuum: theory. There are, however, several arguments that throw
0 doubt on the validity of this requirement. For example there
)_ 2) may be a set of as yet undetected mirror fermions that re-
move the anomaly cancellation requirement. There are also
interesting arguments given by Ki¢R] in a series of papers
to the effect that a properly analyzed “anomalous” gauge
; : . A -~ theory is not anomalous at a{For other interesting work on
netism. Its generatdQ is the linear combination that anni- e question of the consistency or otherwise of anomalous
hilates the VEV of Eq(2): gauge theory see RdB].) If gauge anomaly cancellation as
Q=13+Y/2. () routinely enforced is unnecessary, then there is no motiva-
tion to use these constraints in deriving electric charge quan-
The normalization of) is not physically measurable, and we tization. Clearly one is then left with the following result:
have adopted the convention of normalizing it so that theElectric charge quantization will be a necessary outcome of

(d)=

The VEV of ¢ breaks SU(2)®U(1)y leaving an unbroken
U(1) symmetry, U(1), which is identified with electromag-
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54 ELECTRIC CHARGE QUANTIZATION FROM GAUGE ... 6937
the construction of a theory (i.e., a Lagrangian) provided Our remaining global symmetries are the hypercharge
that it displays only one unembedded U(1) invariance. If theJ(1)y and the baryon number U(3) Hence, assuming that
generator of this single U(1) symmetry is standard weak-anomaly cancellation is unnecessary, any combinatio¥ of
hypercharge, then not only is charge quantized but it isandB can be the U(1) symmetry that is gauged. To obtain
quantized correctly. complete electric charge quantization we require that this
The three-generation minimal SM has fivé1l invari-  unwanted baryon number symmetry somehow be broken
ancedaside from U1) subgroups of SB)®SU(2)]. In ad-  Without affecting the U(1) hypercharge symmetry. This
dition to standard weak hypercharge, there is baryon numbéfouble requirement rules out the introduction of baryon
B and the three family lepton numbeks, L, andL,. If number violating Majorana quark mass terms, because un-
gauge anomaly cancellation is not enforced, then the generﬁlf‘e their lepton counterparts such terms will result in the

tor of the gauged () in the minimal SM can be any linear violation qf standard hyperqhar_ge gnd colpr. .
combination ofY. B. and thel.. This leads to a four- To achieve charge quantization in the simplest way, using
parameter chargé qL;antization plﬁoblem only the standard model gauge symmetry, we therefore re-

These simple observations provide strona motivation t quire the addition of a new scalar that incorporates the dual
P P 9 c}equirements of baryon number violation and hypercharge

construct extensions of the minimal SM that explicitly breakconservatior{4]. The violation of baryon number requires

B and theL; (but of course leavé’ exact. All such models  h4t this new scalar interact with quarks, and assuming the
would explain charge quantization in the sense that they sim;gs,al dimension foufYukawa-type couplings there is a fi-

ply could not be constructed unless charge was quantizegie Jist of possible quantum numbers for this scalar. Since

(e., some terms in the Lagrangian would have to be absefe scalar couples to a fermion bilinear, it follows from

in order to reinstateB or any of thel; as a conserved gauge invariance that the quantum numbers of the scalar are
charge. The purpose of this paper is to construct the sim-those of the fermion bilinears. For example a scalacou-

plest extensions of the minimal SM that explicitly breBk  pling via the interaction ternC=xo1Q, (f,)¢ implies that

and each of thé; . Further, we will examine the most strin- o, transforms ai(fL)c- Following such a procedure all

gent phenomenological constraints on these models and thggssible scalars in terms of fermion bilinears can be found
determine those that are least constrained and hence of mqgke Ref. [4]). These scalars together with their

experimental interest. This type of analysis was first pergy(3).@ SU(2). ®U(1)y representations are listed below:

formed in detail in Ref[4]. We will extend the analysis of _ o _ _

Ref.[4] and correct an important technical error. This is also o1.1~Q(fL)*~ur(er)*~dr(vr)*~(3,1,—yg)(—1/3),

a motivation for the present work. (4)
The four parameter charge quantization problem of the — . =

minimal SM corresponds to there being four classically un- o127 QUfF)*~(33,~ya) (= 1/3),

determined electric charges, which can be taken to be the — — -

three neutrino charges and the down quark chidgeFrom o2~ Quer~UrfL~(3,2,=3-Yq)(—1/3),

experimental data we know that three of these four charges

are strongly constraineld], with only Q(v,) being weakly

constrained4,6]. In the following work we seek to remove

this four parameter uncertainty by means of simple exten-

sions of the minimal standard model which explicitly break

U(1)g and each of the U(]t).

3.1~ QL(QL) ~Ur(dR)~(3,1,— 2~ 2y)(— 2/3),
T3~ QL(QL)~(3,3,— 2 2y)(—2/3),

3.5~ QL(QL) ~Ur(dR)~(6,1,— 2~ 2y)(— 2/3),

The simplest and most phenomenologically interesting 03.4~Q_L(QL)°~(6_,3-—2—2yd)(—2/3),
way to explicitly break the U(1) is to introduce nonzero .
neutrino masses. This is most easily done by introducing o4~UR(VR) ~(3,1,—2—-yy)(—1/3),
right-handed neutrinos into the model. If we choose that our _ _ _
right- and left-handed neutrinos are related through Dirac o5~dgf ~Q v~ (3,2,—1-yy)(—1/3),
mass termsL=Av_vg+H.c., and if we assume that non- o
trivial mixing effects occur as in the quark sector, then we 061~ UR(UR)“~(3,1,—4—2yy)(—2/3),
obtain the constrainQ(ve)=Q(v,)=Q(»,). This leaves o —
just two undetermined electric charges, which can be taken 06~ UR(UR) ~(6,1,—4—2yq)(—2/3),
to be Q(v.) and Q(d), corresponding to the as yet un- _
broken global symmetries U(l) and U(l)y where 071~ dr(dr)®~(3,1,—2yy)(—2/3),
L=Le+L,+L, is total lepton number. If we then add a _ _
Majorana mass ternf =\ vg(vg)¢, for one or more of the g7~-dg(dr)*~(6,1,—2yq)(—2/3),
right-handed neutrinos we obtain the additional constraint _ _
Q(ve)=0 [7]. Put another way, the Majorana mass terms og~dr(er)*~(3,1,2-yy)(—1/3).

explicitly break U(1) . This leaves just one undetermined

electric charge, which can be taken to be the electric chargiote that we have included the baryon number of the ferm-
of the down quark,Q(d). Our four-parameter uncertainty ion bilinear with which each scalar interacts as the last entry
has therefore been reduced to a one-parameter uncertainty liyeach line above and we have used the following notation
this simple extension of the lepton sector. for the standard model fermions and right-handed neutrinos:
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fL~(1,2,-1), er~(1,1,—-2), vrg~(1,1,0,

QL~(3!211+yd)v uR~(3!112+yd)v dR~(3!11yd)u (5) n

It should also be pointed out that the fermion interactions
QL(QL)% Qc(QL)®  Ur(Ur)®, dr(dgr)®, associated with
the o3,, 033, 061, and o, 4 scalars are flavor anti-
symmetric.

Because of the fact that these proposed scalar particles
may carry baryon number, the above interactions by them-
selves will not violate baryon number. Instead we can break 12 732
baryon number by either proposing the existence of more — — . )
than one quark-lepton interaction, or alternatively by proposBecause(f.)*oQ. and Q o(Q.) have different baryon

ing the existence of two or more scalar multiplets togethefUmbers, U(13 is explicitly broken. _ _
with their associated interactions. All together there are three possible conjugate pairs,

which we list below:

= =]
Q
o =1
+

FIG. 1. The proton decay diagram resulting from conjugate pair
C

IIl. ONE SCALAR EXTENSIONS - -
011~ Ug_1~(3,1,2/3, 0102= U§_2~(3,3,2/3,

In the interests of simplicity Ref4] considered the case
where just one of these new .e>.<ot|g scalar partlcles e>§|sted, oa=0% ~(31,—413). @)
with U(1)g being broken explicitly in the Higgs potential.
Because all of the scalars are either in $er 6 representa-

son f S}, th ol Eromalzale e hat 155k . s swahank o 2 1 5

Jryon nUrtber ; ypP 9 ample, the second pair has the interactions shown irf&.
0°¢ ora”¢’. Since the Higgs doublep has hypercharge 1 prom these quark lepton interactions it is easy to see that
(in our normalization these scalar potentials require that OUrpharyon number violation of magnitud&B=1 will occur
scalar particleo has either a hypercharge 6f1/3 or 1/3, 51 a5 such these quark lepton interactions will give rise to
respectively. Out of all the possibilities listed in Ed) only |, ,cleon decaysee Fig. 1 The simplest Feynman diagrams

o satisfies either of these constraints for the observed Valul‘:éading to nucleon decay processes involve the production of
of yg=—2/3. It was thus concluded in R¢#] that under the ;o meson and one antileptgRig. 1) with decay width

assumption of one exotic scalar and one set of quark leptofyygjuated from dimensional considerations onbf the
interactions, that electric charge can be quantized classicallyy

Upon closer examination it is, however, found that the
scalar potential ternzrgd) is in fact zero after antisymmetri-
zation over the SU(3)group (this is the error in Ref[4] F:O(
alluded to earlier We must therefore broaden our search for
baryon number violating extensions to the standard model
that give the desired charge quantization. My represents the nucleon madd,, the scalar particle
We are primarily interested in simple extensions to themass, and the dimensionles$=\3\3 factor represents the
model. Thus we will initially continue to search for exten- contribution made by the Yukawa coupling constajgse
sions that require the introduction of just one scalar particleEg. (6)]. We can obtain a limit on the scalar mass by com-
However, we know from the unsuccessful attempts made iparing the above decay width with the experimentally known
Ref.[4] that the consideration of just one of the interactionslower limit on the proton lifetime~10°? yr [8]. This gives a
shown in Eq.(4) will not provide the required charge quan- lower limit on M, of
tization. In our quest for charge quantization we must there-
fore take the next step and consider pairs of interactions in M,>\X10' GeV. (9)
Eq. (4) that can couple to the same scalar in a baryon number
violating manner. Two different quark-lepton interactions This lower limit, however, does not hold true for the
can only couple to the one scalar if the group properties 054—031 conjugate pair containing the left-handed an-
this scalar are compatible with both interactions. If this com+tineutrino producingo, scalar. The production of left-
patibility is subject to the strict condition thaty=—2/3,  handed antineutrinos will result in there being an extra sup-

then not (_)nly do_we have two sets of interactions which carpression factor in Eq(8), which will consequently give rise
be associated with the one scalar, but we also obtain chargg a less strict lower limit on the scalar mass; this special

guantization; i.e., the two sets of interactions provide us withcase will be considered later.
the baryon number violation required for charge quantiza-
tion. An example of such a pair is, , and ag_z, which are
equal subject to the constraigf=—2/3 as desired. Thus
o1, and o3, can be conjugate representations of the same The above lower limit onM, (which was obtained by
particle, call ito, with the lepton and quark interactions proposing a one scalar particle extension to the standard
_ . mode) is very large, and as such is phenomenologically un-
L=N(f)0QL+N\,QLo(Q)+H.c. (6) interesting. In light of this it is desirable to consider the

For each of the above conjugate pairs there will be a set of

5
NMY
M4

®

Ill. TWO SCALAR EXTENSIONS
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existence of two new scalar particles, in the hope of obtainwhere ¢ represents the SM Higgs scalar-(1,2,1), andp

ing a phenomenologically more interesting model. Althoughrepresents a new Higgs-like scajar(8,2,1). The scalap

this extension will complicate our model by requiring the is a new nonstandard model parti¢like o) which differs

introduction of scalar potential terms, there will still only be from the Higgs scalar in that it carries color charge; in fact it

two sets of fermion-scalar interactions as in E). transforms as a8 under SU(3). This means that unlike the
For example, a two scalar model can be used to resolvEliggs particleg, p will not take part in symmetry breaking

the antisymmetrization problem alluded to earlier; i.e., theand will not form a VEV. Apart from this color structure, it

zero value of the scalar potential tenﬂqb. This is achieved has similar Yukawa couplings t@.

by proposing the existence of two species of scalar with the The above scalar potential terms can be placed into

same group transformations as, which we will callo, and  groups consisting of quadratic, cubic, and quartic terms, with

op. These particles will couple to leptons and quarkseach subgroup giving rise to its own characteristic expres-

through the Lagrangian sion for the proton decay width. By comparing these decay
. o - o widths with the known lower limits on the nucleon lifetimes,
L=\ odrt+ N2 f L opdr+ A3Q  0Svr+ A3Q 0trr+H.c.,  each subgroup will give its own particular constraint on the

(10 masses of the scalar particles involved. We will again be
_ o ~using dimensional arguments.
and will combine in the nonzero hypercharge constraining Note that in the following analysis we will initially be

scalar potential term ignoring terms involving ther, scalar, due to the complica-
) tions associated with the production of the right-handed neu-
AV(¢,0q,00) =Noa0p¢p+H.C. (1) trino and left-handed antineutrino.

L i Our analysis begins with the quadratic potential terms

_ The o, and oy, s_calar_ pair is just one of many combina- MzUin [see Eq.(12)], where u? is the coupling constant
tions of scalar particles in E@4) that violate baryon number yith dimensions of mass squared. These two particle inter-
while giving the correct hypercharge assignment to the dowRyctions can be considered as constituting the off-diagonal
quarkyy= — 2/3. However, unlike ther, andoy, pair, these  glements of the exotic scalar mass matrix. The simplest
other combinations will in general involve scalars with dif- ,cleon decay processes that can be obtained from these bi-
ferent group transformation properties. By considering everinears involve the decay of the nucleon into a meson and an
possible scalar combination in E@), two lists of possible  aniilepton. For example, the proton decay diagram resulting
charge quantizing scalar potentials can be compiled, corrgyom the o1 1031 bilinear is shown in Fig. 2. From dimen-

sponding toAB=1 baryon number violating processes andgjonal arguments these bilinears give rise to decay widths of
AB=2 baryon number violating processes, respectively. Thgne form

AB=1 list is shown below:

N utMy
01,02 01012020, I'=0| a7 |- 13
o7 0j
C C
01,037 0110311 011071011031 011031031031 In this case the dimensionless constafi=A?\?, where),
+6,163.10" ¢ and\; represent the Yukawa couplings associated with
o ando;. If we compare this decay width with experimental
— 019039 01 205 o0 1 20301 01503205 032 lower limits on the proton lifetime, i.es 10°2 yr, we obtain

N a lower limit onM . of
+61.263.20" &,

M,>(Au/M,) X 10 GeV, (14

01,05 0110505+ 01 201 20595, . .
> Us > where we have expressed the coupling constaintterms of

the scalar masM .

The simplest nucleon decay processes resulting from the
Higgs doublet containing quadratic termis(¢)oio;, in-
volve the decay of a nucleon into a lepton and a mdsee

c Fig. 3 for examplé The decay widths for these processes
03,04 03040, 03,05—03105¢+ 030305, take the form

C C

01,06— 01206190}, 01,07—01071¢°¢",
C C

02,03 03030320°, 02,07 020710,

03108—>03.ﬁs¢°¢°, r~ (7\4b2<¢>2ME (15)

M MG,

04,07 04071+ 040304071+ 07107 107104
t oy, 1T b In this case thg coupling constamhas qnits of mass and the
: ' Yukawa coupling constants have again been taken into con-
sideration via thex*=\7\? factor. The above decay pro-
cesses are experimentally constrained by a lifetime lower

. . limit of ~10% yr [8], which gives rise to a constraint on
05,07—~05071¢°, 06,08~ 06108, +66.165 166.168 M, of

a b a_b b
05,p—050505p, 05,05 050505,

+65656566.11 66,1650 " b, (12) M,>(A%b/M )X 10™ GeV. (16)
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FIG. 4. Proton decay resulting from tke) o5 ,05 203 » cubic.
The simplest nucleon decay process resulting from the

quadratic terms with two Higgs scalars, i.e(@¢){(d)oio;,  (P)o,01,01,, One meson, two antileptons, and one lepton.
involve the creation of a meson and an antilepton productThe order of magnitude decay widths for the;o;o; and
The decay widths for these processes take the form the \(¢) o0 cubics are
A(g) My AD’M
I'=0 W y (17) I'=0 W (20)
I ] i

where the\® factor represents the combined contribution ang
made by thex*=\?\? Yukawa coupling and tha? exotic

scalar coupling. These nucleon decay processes are best con- )\8<¢>2|\/|h1
strained by ther,>10*? yr bound neutron decay limfig], I'=0 VMEME | (22)
giving rise to the constraint ap

M, >\%¥*x 10° GeV. (18)  respectively. Note that we have included the dimensionless

Yukawa coupling constants as ®°=\’\{ factor. The
The above analysis is not, however, valid for thenucleon decay processes resulting from these cubic terms are
(p) @)y 064 bilinear, where we have an additional com- constrained by an experimental limit of arousd 0> yr [8].
plication resulting from the fact that this bilinear necessarilyTherefore the lower limits oM, for the bojojo; and the
gives rise to the production of charm quarks. The production\(¢)cjojo;j cubics are
of charm containing mesons from nucleon decay is of course
kinematically forbidden. Thus our simplest nucleon decay M,>(A3b/M )X 10° GeV (22
process must involve an additioral u conversion that will
inhibit the decay width shown in Eq17), by an additional and
G2ZMy, factor, whereG. is the Fermi coupling constant. By

taking this additional complication into consideration it is M,>\Px10° GeV, (23
found that the lower limit onM, in the case of the ]
(PN @)y 2064 bilinear is respectively.
Finally we have the quartic term&riofoiaj . The sim-
M, >\34%x10° GeV. (19 plest nucleon decay processes arising from these terms in-

volves the decay of the nucleon into either one meson, two

We next consider the cubic termshojojo; and  antileptons, and one lepton; or, depending on the scalars in-
N(¢)oiojo;j. The simplest nucleon decay diagrams arisingvolved, two mesons and one antilepton. The decay width for
from the former of these terms involves the decay of athese processes takes the form
nucleon into one meson, two leptons, and one antilepton. On
the other hand the latter, Higgs boson containing, cubic term
gives rise to decays involving the production of two mesons, I'=0
and one antileptorisee Fig. 4, or in the special case of

A lOM ]’\.17

W , (24)

wherex>=\?\P\?. These quartic nucleon decay processes
are experimentally constrained by an approximatel§* 1®

u u lower limit, giving the constraint
K+
T — 5/8
n |4 /?\ S M, >\ 10* GeV. (25)
X The simplest nucleon decay processes resulting from the

d : e~ quartic Nosososp, and the closely related cubic
T No2olal(¢), entail the creation of a one meson and three
lepton product. The respective decay widths of these two
FIG. 3. Neutron decay resulting from theb) o,07 1 quadratic. nucleon decay processes are shown below:
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Ao n
=0 IVEVELR (26)
ag ' p (u d d)
N p)’ My v
'=0| —g—%— 2 L
MiaMib (27
5 5
P«
Both of these decay widths have a dimensionde%s A2\ 2 1 Os
contribution, with the former expression also containing a p ! c;‘
A2 contribution from the Yukawa constant associated with 7777 °° Nttt
the p scalar. For both potentials the strictest experimental |
constraint onM og.p COMES from bound neutron decay pro- E o,
cesses(see Fig. 3 which have a lower lifetime limit of A
about 16 yr [8]. From this constraint we obtain lower limits
onM, , of
M, ,>\>8x 10" GeV (29 - ;
’ (u d) ¢ Vi
and o+
M,>A?RPx10° GeV, (29

FIG. 5. Neutron decay resulting from theososp interaction.
respectively. This lower limit oM, ,>\%8x 10* GeV is the
y a,p

lowest constraint oM, for any of theAB=1 scalar pairs 01,03 0110310110311 011032011032
listed in Eq.(12).
Before leaving thes&aB=1 processes, we still have to +0110330110331 011034011034
consider the interesting case where one of the decay products
is necessarily a right-handed neutrino or a left-handed an- 0120310120311 012032012032
tineutrino. This occurs for all of the, containing potentials
in Eg. (12). We assume the usual seesaw model where t 0120330120331 0120340120324,
gains a large Majorana mab4 that leads to the usual hier-
archy of massef9], 03,07 031031072 03203207, 033033072
m2 + 034034072,
m, ,=M>m>m, =—+-, (30
M 04,07 04071040711 0407204072,
wherem is the Dirac mass of the neutrinos, as given in the 06,07 0600710711 050070075, (31

Dirac mass ternmy,_ vg, andM is the Majorana mass of the

neutrinos, as given in the Majorana mass tmeV_R(VR)C- Unlike the AB=1 processes, thestB=2 processes will

The massiveness of this right-handed neutrino means th&0t give rise to nucleon decay. In order to obtain constraints

any proton decay producing such a particle will be highlyon the scalar masses for these cases we must instead compare

suppressed, as the amount of left-hand—right-hand neutriri@€ above interactions withB=2 experimental limits, such

mixing will be very small. By assuming that the Dirac massas binucleon decay measurements.

of the neutrino is around the same as the Dirac masses of the The cubic terms in Eq(3)), i.e., bajojo;, give rise to

other fermions, it is found that the suppression in the decapinucleon decay that in the simplest cases result in the pro-

width will be of order~10" 14 duction of two mesons. For example, the neutron-neutron
By considering this additional attenuation, our lower lim- decay diagram resulting from thes 03107, process is

its on M, for the o4 containing interactions are found to shown in Fig. 6. The decay widths for these processes, using

reduce to\ X 10 GeV for the conjugate pait4-0S,; to @ dimensional approach, take the form

(Au/M,) X102 GeV for the quadratic o,074; tO

A% 10" GeV for the quadratico;04¢¢; to N¥8x 10°

GeV for the quartiar; 105 107.104; and tox8x 107 GeV for

the quartic o4050407,. For the scalar combination

04,071 0Ur strongest constraid ,> (A /M) X 10'> GeV,  WhereM represents the mass of the nucleent GeV, and

has thus been reduced in comparison to thghe dimensionless constamtﬁz)\iz)\f, where \; and A,

(A /M) X 10' GeV constraint obtained for the quadratics again represent the Yukawa couplings associated ayitmd

in Eq. (12) without theo, scalar. aj. There is an approximate $oyr [8] lower limit on these
The AB=2 scalar potentials, which consist of cubic and binucleon decay processes, thus for these trilinear terms we

quartic terms are shown below: have a lower limit onM , of

)\GbZM ]’\.‘l
M* M8
g o

: (32
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FIG. 6. Double neutron decay resulting from thg 03,072
interaction.

M,>(\%b/M,)Px10° GeV. (33

The quartic terms in E¢31), i.e., \ojojoioj, will give
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sical constraints. In order to obtain complete charge quanti-
zation from classical constraints alone, we extended the
minimal standard model to include right-handed neutrinos
and baryon number violation. We have effectively suggested
that the necessity of charge quantization from classical con-

rise to binucleon decays that in the simplest cases will resultraints provides a strong argument in favor of the existence

in the creation of a meson and two antilepton prodisete

of these baryon number violating processes. We considered

Fig. 7]. The decay widths of these processes take the formonly simple extensions of the SM Yukawa interaction where

A lOM ]'\.17

1" -
MiM;

o) : (34

our new quark lepton interactions couple through new scalar
particleso.

We know from experimental data on the decay of the
proton and decay of nuclei that baryon number violation is

Where)\loz )\2)\?)\?_ These decay processes are again convery much inhibited. Thus, if these new baryon number vio-

strained by an approximate *@r limit, giving a lower limit
on M, of

M,>\%8x10* GeV. (35

lating Yukawa interactions exist, the masses of the associ-
ated scalars must be above a certain lower limit so as to
evade detection by present day experiments. Using a dimen-
sional approach, these lower limits were calculated for all of

our proposed scalars and scalar combinations. From this ex-

For theo, containing quartics we have an extra supressionycise it was found that the scalar pair with the lowest con-

to

M,>\8x 107 GeV. (36)

This is the least stringent constraint &, that we have
obtained. Therefore the,— o, scalar combination is the
combination with the weakest constraint ov,; the

o,— a74 combination is of course strictly constrained by it

AB=1 processes.

IV. CONCLUSION

scalar combination is of interest as the possibility of these
scalars appearing in low-energy interactions is not ruled out.
As a result of the fact that present day theories on baryo-
genesis suggest that baryon number violation must have oc-
curred in the early universe, it would be of some interest to
investigate the implications of these baryon number violating
5 processes on baryogenesis.
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