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J. P. Bowes, R. Foot, and R. R. Volkas
Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville 3052, Au

~Received 11 March 1996!

In gauge theories such as the standard model, the electric charges of the fermions can be heavily const
from the classical structure of the theory and from the cancellation of anomalies. There is, however, moun
evidence suggesting that these anomaly constraints are not as well motivated as the classical constrain
light of this we discuss possible modifications of the minimal standard model that will give us comple
electric charge quantization from classical constraints alone. Because these modifications to the standard
involve the consideration of baryon-number-violating scalar interactions, we present a complete catalogu
the simplest ways to modify the standard model so as to introduce explicit baryon number violation. This
implications for proton decay searches and baryogenesis.@S0556-2821~96!04123-9#
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I. INTRODUCTION AND MOTIVATION

Investigation of explicit baryon number violation in
simple extensions of the standard model~SM! is interesting
for a number of different reasons, including~a! the require-
ment of baryon number violation to explain baryogenes
and ~b! the continuing interest in terrestrial searches f
baryon-number-violating processes.

The aim of this work is to provide a complete catalogu
of the simplest ways to explicitly violate baryon numbe
through extensions of the SM. A theoretical motivation fo
doing this arises also from the work done by one of us@4# on
the possibility of obtaining complete electric charge quan
zation from classical constraints.

The quantization of the electric charges of the known fe
mions is a well-established experimental phenomenon.
approach to a theoretical understanding of this phenomen
has emerged in recent years based on the SM@1#. The SM is
a gauge theory with gauge group

SU~3!c^SU~2!L^U~1!Y , ~1!

which is assumed to be spontaneously broken by the vacu
expectation value~VEV! of a scalar doubletf;(1,2,1). The
U(1)Y charge off can be normalized to 1 without loss o
generality due to a scaling symmetry,g→hg,Y→Y/h,
whereg is the U(1)Y coupling constant, andY is the gen-
erator of the U(1)Y gauge group. The gauge symmetry of th
Lagrangian can be used to choose the standard form for
vacuum:

^f&5S 0uD . ~2!

The VEV of f breaks SU(2)L^U(1)Y leaving an unbroken
U~1! symmetry, U(1)Q , which is identified with electromag-
netism. Its generatorQ is the linear combination that anni-
hilates the VEV of Eq.~2!:

Q5I 31Y/2. ~3!

The normalization ofQ is not physically measurable, and we
have adopted the convention of normalizing it so that t
54-2821/96/54~11!/6936~8!/$10.00
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chargedW bosons will have charge 1. The above reasoning
shows that the electric charge quantization problem would be
solved if a way could be found to deduce theY charges of
the fermions.

There are two quite distinct ways in which the standard
model constrains the electric charges of the fermions. First,
there is a set of constraints that follow from the definition of
the theory at the classical level: the requirement that the La-
grangian be gauge invariant. Second, there are other con
straints that are assumed to follow from the consistency of
the theory at the quantum level: the anomaly cancellation
conditions. The outcome of this is that charge quantization
follows, provided that there is only one anomaly-free U~1!
symmetry of the Lagrangian outside of those contained in
SU(3)c^SU(2)L . If it turns out that the generator of this
U~1! symmetry is precisely standard weak-hyperchargeY,
then not only is charge quantized but it is quantized cor-
rectly.

For instance, consider the minimal SM. In addition to
standardY, any one ofLe2Lm , Le2Lt , andLm2Lt gen-
erates an anomaly-free U~1! symmetry of the Lagrangian.
Therefore the minimal SM poses a charge quantization prob-
lem because the actual weak-hypercharge of the theory ca
be chosen to be cosQYstandard1sinQ(Li2Lj) whereQ is an
arbitrary parameter andi , j5e,m,t ( iÞ j ). See Ref.@1# for
more detailed reviews.

The above analysis assumes that the cancellation of gaug
anomalies is a rigorous requirement for a consistent gauge
theory. There are, however, several arguments that throw
doubt on the validity of this requirement. For example there
may be a set of as yet undetected mirror fermions that re-
move the anomaly cancellation requirement. There are also
interesting arguments given by Kieu@2# in a series of papers
to the effect that a properly analyzed ‘‘anomalous’’ gauge
theory is not anomalous at all.~For other interesting work on
the question of the consistency or otherwise of anomalous
gauge theory see Ref.@3#.! If gauge anomaly cancellation as
routinely enforced is unnecessary, then there is no motiva-
tion to use these constraints in deriving electric charge quan-
tization. Clearly one is then left with the following result:
Electric charge quantization will be a necessary outcome of
6936 © 1996 The American Physical Society



h

e
r

z

m

-
t

e

s

g

i

k

a

t

e

s
n

-

g
-
l
e

e

re

d

-
y
n
:
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the construction of a theory (i.e., a Lagrangian) provide
that it displays only one unembedded U(1) invariance. If t
generator of this single U(1) symmetry is standard wea
hypercharge, then not only is charge quantized but it
quantized correctly.

The three-generation minimal SM has five U~1! invari-
ances@aside from U~1! subgroups of SU~3!^SU~2!#. In ad-
dition to standard weak hypercharge, there is baryon num
B and the three family lepton numbersLe , Lm , andLt . If
gauge anomaly cancellation is not enforced, then the gen
tor of the gauged U~1! in the minimal SM can be any linea
combination ofY, B, and theLi . This leads to a four-
parameter charge quantization problem.

These simple observations provide strong motivation
construct extensions of the minimal SM that explicitly brea
B and theLi ~but of course leaveY exact!. All such models
would explain charge quantization in the sense that they s
ply could not be constructed unless charge was quanti
~i.e., some terms in the Lagrangian would have to be abs
in order to reinstateB or any of theLi as a conserved
charge!. The purpose of this paper is to construct the si
plest extensions of the minimal SM that explicitly breakB
and each of theLi . Further, we will examine the most strin
gent phenomenological constraints on these models and
determine those that are least constrained and hence of m
experimental interest. This type of analysis was first p
formed in detail in Ref.@4#. We will extend the analysis of
Ref. @4# and correct an important technical error. This is al
a motivation for the present work.

The four parameter charge quantization problem of t
minimal SM corresponds to there being four classically u
determined electric charges, which can be taken to be
three neutrino charges and the down quark charge@4#. From
experimental data we know that three of these four char
are strongly constrained@5#, with only Q(nt) being weakly
constrained@4,6#. In the following work we seek to remove
this four parameter uncertainty by means of simple exte
sions of the minimal standard model which explicitly brea
U(1)B and each of the U(1)Li.

The simplest and most phenomenologically interesti
way to explicitly break the U(1)Li is to introduce nonzero
neutrino masses. This is most easily done by introduc
right-handed neutrinos into the model. If we choose that o
right- and left-handed neutrinos are related through Dir
mass terms,L5ln̄LnR1H.c., and if we assume that non
trivial mixing effects occur as in the quark sector, then w
obtain the constraintQ(ne)5Q(nm)5Q(nt). This leaves
just two undetermined electric charges, which can be ta
to be Q(ne) and Q(d), corresponding to the as yet un
broken global symmetries U(1)L and U(1)B where
L5Le1Lm1Lt is total lepton number. If we then add
Majorana mass termL5ln̄R(nR)

c, for one or more of the
right-handed neutrinos we obtain the additional constra
Q(ne)50 @7#. Put another way, the Majorana mass term
explicitly break U(1)L . This leaves just one undetermine
electric charge, which can be taken to be the electric cha
of the down quark,Q(d). Our four-parameter uncertainty
has therefore been reduced to a one-parameter uncertain
this simple extension of the lepton sector.
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Our remaining global symmetries are the hypercharg
U(1)Y and the baryon number U(1)B . Hence, assuming that
anomaly cancellation is unnecessary, any combination ofY
andB can be the U(1) symmetry that is gauged. To obtain
complete electric charge quantization we require that thi
unwanted baryon number symmetry somehow be broke
without affecting the U(1)Y hypercharge symmetry. This
double requirement rules out the introduction of baryon
number violating Majorana quark mass terms, because un
like their lepton counterparts such terms will result in the
violation of standard hypercharge and color.

To achieve charge quantization in the simplest way, usin
only the standard model gauge symmetry, we therefore re
quire the addition of a new scalar that incorporates the dua
requirements of baryon number violation and hypercharg
conservation@4#. The violation of baryon number requires
that this new scalar interact with quarks, and assuming th
usual dimension four~Yukawa-type! couplings there is a fi-
nite list of possible quantum numbers for this scalar. Since
the scalar couples to a fermion bilinear, it follows from
gauge invariance that the quantum numbers of the scalar a
those of the fermion bilinears. For example a scalars1 cou-
pling via the interaction termL5ls1

†Q̄L( f L)
c implies that

s1 transforms asQ̄L( f L)
c. Following such a procedure all

possible scalars in terms of fermion bilinears can be foun
~see Ref. @4#!. These scalars together with their
SU(3)c^SU(2)L^U(1)Y representations are listed below:

s1.1;Q̄L~ f L!c;ūR~eR!c;d̄R~vR!c;~ 3̄,1,2yd!~21/3!,
~4!

s1.2;Q̄L~ f L!c;~ 3̄,3,2yd!~21/3!,

s2;Q̄LeR;ūRf L;~ 3̄,2,232yd!~21/3!,

s3.1;Q̄L~QL!c;ūR~dR!c;~3,1,2222yd!~22/3!,

s3.2;Q̄L~QL!c;~3,3,2222yd!~22/3!,

s3.3;Q̄L~QL!c;ūR~dR!c;~ 6̄,1,2222yd!~22/3!,

s3.4;Q̄L~QL!c;~ 6̄,3,2222yd!~22/3!,

s4;ūR~nR!c;~ 3̄,1,222yd!~21/3!,

s5;d̄Rf L;Q̄LnR;~ 3̄,2,212yd!~21/3!,

s6.1;ūR~uR!c;~3,1,2422yd!~22/3!,

s6.2;ūR~uR!c;~ 6̄,1,2422yd!~22/3!,

s7.1;d̄R~dR!c;~3,1,22yd!~22/3!,

s7.2;d̄R~dR!c;~ 6̄,1,22yd!~22/3!,

s8;d̄R~eR!c;~ 3̄,1,22yd!~21/3!.

Note that we have included the baryon number of the ferm
ion bilinear with which each scalar interacts as the last entr
in each line above and we have used the following notatio
for the standard model fermions and right-handed neutrinos
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f L;~1,2,21!, eR;~1,1,22!, nR;~1,1,0!,

QL;~3,2,11yd!, uR;~3,1,21yd!, dR;~3,1,yd!, ~5!

It should also be pointed out that the fermion interactio
Q̄L(QL)

c, Q̄c(QL)
c, ūR(uR)

c, d̄R(dR)
c, associated with

the s3.2, s3.3, s6.1, and s7.1 scalars are flavor anti-
symmetric.

Because of the fact that these proposed scalar partic
may carry baryon number, the above interactions by the
selves will not violate baryon number. Instead we can bre
baryon number by either proposing the existence of mo
than one quark-lepton interaction, or alternatively by propo
ing the existence of two or more scalar multiplets togeth
with their associated interactions.

II. ONE SCALAR EXTENSIONS

In the interests of simplicity Ref.@4# considered the case
where just one of these new exotic scalar particles exist
with U(1)B being broken explicitly in the Higgs potential.
Because all of the scalars are either in the3 or 6 representa-
tion of SU(3)c , the only renormalizable terms that brea
baryon number and conserve SU(3)c and hypercharge are
s3f or s3f†. Since the Higgs doubletf has hypercharge 1
~in our normalization! these scalar potentials require that ou
scalar particles has either a hypercharge of21/3 or 1/3,
respectively. Out of all the possibilities listed in Eq.~4! only
s5 satisfies either of these constraints for the observed va
of yd522/3. It was thus concluded in Ref.@4# that under the
assumption of one exotic scalar and one set of quark lep
interactions, that electric charge can be quantized classica

Upon closer examination it is, however, found that th
scalar potential terms5

3f is in fact zero after antisymmetri-
zation over the SU(3)c group ~this is the error in Ref.@4#
alluded to earlier!. We must therefore broaden our search fo
baryon number violating extensions to the standard mo
that give the desired charge quantization.

We are primarily interested in simple extensions to th
model. Thus we will initially continue to search for exten
sions that require the introduction of just one scalar partic
However, we know from the unsuccessful attempts made
Ref. @4# that the consideration of just one of the interaction
shown in Eq.~4! will not provide the required charge quan
tization. In our quest for charge quantization we must ther
fore take the next step and consider pairs of interactions
Eq. ~4! that can couple to the same scalar in a baryon num
violating manner. Two different quark-lepton interaction
can only couple to the one scalar if the group properties
this scalar are compatible with both interactions. If this com
patibility is subject to the strict condition thatyd522/3,
then not only do we have two sets of interactions which c
be associated with the one scalar, but we also obtain cha
quantization; i.e., the two sets of interactions provide us w
the baryon number violation required for charge quantiz
tion. An example of such a pair iss1.2 ands3.2

† , which are
equal subject to the constraintyd522/3 as desired. Thus
s1.2 ands3.2 can be conjugate representations of the sam
particle, call its, with the lepton and quark interactions

L5l1~ f L!csQL1l2Q̄Ls~QL!c1H.c. ~6!
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Because( f L)
csQL and Q̄Ls(QL)

c have different baryon
numbers, U(1)B is explicitly broken.

All together there are three possible conjugate pairs,
which we list below:

s1.15s3.1
c ;~ 3̄,1,2/3!, s1.25s3.2

c ;~ 3̄,3,2/3!,

s45s7.1
c ;~ 3̄,1,24/3!. ~7!

For each of the above conjugate pairs there will be a set of
quark lepton interactions obtainable from Eq.~4! @for ex-
ample, the second pair has the interactions shown in Eq.~6!#.
From these quark lepton interactions it is easy to see that
baryon number violation of magnitudeDB51 will occur,
and as such these quark lepton interactions will give rise to
nucleon decay@see Fig. 1#. The simplest Feynman diagrams
leading to nucleon decay processes involve the production of
one meson and one antilepton~Fig. 1! with decay width
~evaluated from dimensional considerations only! of the
form

G5OS l4MN
5

Ms
4 D . ~8!

MN represents the nucleon mass,Ms the scalar particle
mass, and the dimensionlessl4[l1

2l2
2 factor represents the

contribution made by the Yukawa coupling constants@see
Eq. ~6!#. We can obtain a limit on the scalar mass by com-
paring the above decay width with the experimentally known
lower limit on the proton lifetime'1032 yr @8#. This gives a
lower limit onMs of

Ms.l31016 GeV. ~9!

This lower limit, however, does not hold true for the
s42s7.1

c conjugate pair containing the left-handed an-
tineutrino producings4 scalar. The production of left-
handed antineutrinos will result in there being an extra sup-
pression factor in Eq.~8!, which will consequently give rise
to a less strict lower limit on the scalar mass; this special
case will be considered later.

III. TWO SCALAR EXTENSIONS

The above lower limit onMs ~which was obtained by
proposing a one scalar particle extension to the standard
model! is very large, and as such is phenomenologically un-
interesting. In light of this it is desirable to consider the

FIG. 1. The proton decay diagram resulting from conjugate pair
s1.22s3.2

c .
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existence of two new scalar particles, in the hope of obta
ing a phenomenologically more interesting model. Althoug
this extension will complicate our model by requiring th
introduction of scalar potential terms, there will still only b
two sets of fermion-scalar interactions as in Eq.~6!.

For example, a two scalar model can be used to reso
the antisymmetrization problem alluded to earlier; i.e., th
zero value of the scalar potential terms5

3f. This is achieved
by proposing the existence of two species of scalar with t
same group transformations ass5, which we will callsa and
sb . These particles will couple to leptons and quark
through the Lagrangian

L5l1
af̄ LsadR1l1

bf̄ LsbdR1l2
aQ̄Lsa

cnR1l2
bQ̄Lsb

cnR1H.c.,
~10!

and will combine in the nonzero hypercharge constraini
scalar potential term

DV~f,sa ,sb!5lsasb
2f1H.c. ~11!

The sa andsb scalar pair is just one of many combina
tions of scalar particles in Eq.~4! that violate baryon number
while giving the correct hypercharge assignment to the do
quarkyd522/3. However, unlike thesa andsb pair, these
other combinations will in general involve scalars with dif
ferent group transformation properties. By considering eve
possible scalar combination in Eq.~4!, two lists of possible
charge quantizing scalar potentials can be compiled, cor
sponding toDB51 baryon number violating processes an
DB52 baryon number violating processes, respectively. T
DB51 list is shown below:

s1 ,s2→s1.2s1.2s2f,

s1 ,s3→s1.1s3.11s1.1s1.1
c s1.1s3.11s1.1s3.1s3.1

c s3.1

161.163.1f
1f

→s1.2s3.21s1.2s1.2
c s1.2s3.21s1.2s3.2s3.2

c s3.2

161.263.2f
1f,

s1 ,s5→s1.1s5s51s1.2s1.2s5f
c,

s1 ,s6→s1.2s6.1ff, s1 ,s7→s1.2s7.1f
cfc,

s2 ,s3→s2
cs3.2s3.2f

c, s2 ,s7→s2s7.1f,

s3 ,s4→s3.2s4ff, s3 ,s5→s3.1s5f1s3.2s3.2s5
cf,

s3 ,s8→s3.2s8f
cfc,

s4 ,s7→s4s7.11s4s4
cs4s7.11s7.1s7.1

c s7.1s4

1s4s7.1f
1f,

s5 ,r→s5s5s5r, s5
a ,s5

b→s5
as5

bs5
bf,

s5 ,s7→s5s7.1f
c, s6 ,s8→s6.1s8 , 166.166.1

c 66.168

16868
c6866.1166.168f

1f, ~12!
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wheref represents the SM Higgs scalarf;(1,2,1), andr
represents a new Higgs-like scalarr;(8,2,1). The scalarr
is a new nonstandard model particle~like s) which differs
from the Higgs scalar in that it carries color charge; in fact it
transforms as an8 under SU(3)c . This means that unlike the
Higgs particlef, r will not take part in symmetry breaking
and will not form a VEV. Apart from this color structure, it
has similar Yukawa couplings tof.

The above scalar potential terms can be placed into
groups consisting of quadratic, cubic, and quartic terms, with
each subgroup giving rise to its own characteristic expres-
sion for the proton decay width. By comparing these decay
widths with the known lower limits on the nucleon lifetimes,
each subgroup will give its own particular constraint on the
masses of the scalar particles involved. We will again be
using dimensional arguments.

Note that in the following analysis we will initially be
ignoring terms involving thes4 scalar, due to the complica-
tions associated with the production of the right-handed neu-
trino and left-handed antineutrino.

Our analysis begins with the quadratic potential terms
m2s is j @see Eq.~12!#, wherem2 is the coupling constant
with dimensions of mass squared. These two particle inter-
actions can be considered as constituting the off-diagonal
elements of the exotic scalar mass matrix. The simplest
nucleon decay processes that can be obtained from these bi-
linears involve the decay of the nucleon into a meson and an
antilepton. For example, the proton decay diagram resulting
from thes1.1s3.1 bilinear is shown in Fig. 2. From dimen-
sional arguments these bilinears give rise to decay widths of
the form

G.OS l4m4MN
5

Ms i

4 Ms j

4 D . ~13!

In this case the dimensionless constantl4[l i
2l j

2, wherel i

and l j represent the Yukawa couplings associated withs i
ands j . If we compare this decay width with experimental
lower limits on the proton lifetime, i.e.,'1032 yr, we obtain
a lower limit onMs of

Ms.~lm/Ms!31016 GeV, ~14!

where we have expressed the coupling constantm in terms of
the scalar massMs .

The simplest nucleon decay processes resulting from the
Higgs doublet containing quadratic terms,b^f&s is j , in-
volve the decay of a nucleon into a lepton and a meson@see
Fig. 3 for example#. The decay widths for these processes
take the form

G.OS l4b2^f&2MN
5

Ms i

4 Ms j

4 D . ~15!

In this case the coupling constantb has units of mass and the
Yukawa coupling constants have again been taken into con-
sideration via thel4[l i

2l j
2 factor. The above decay pro-

cesses are experimentally constrained by a lifetime lower
limit of '1031 yr @8#, which gives rise to a constraint on
Ms of

Ms.~l2b/Ms!1/331011 GeV. ~16!
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The simplest nucleon decay process resulting from
quadratic terms with two Higgs scalars, i.e.,l^f&^f&s is j ,
involve the creation of a meson and an antilepton produ
The decay widths for these processes take the form

G.OS l6^f&4MN
5

Ms i

4 Ms j

4 D , ~17!

where thel6 factor represents the combined contributio
made by thel4[l i

2l j
2 Yukawa coupling and thel2 exotic

scalar coupling. These nucleon decay processes are best
strained by thetn.1032 yr bound neutron decay limit@8#,
giving rise to the constraint

Ms.l3/43109 GeV. ~18!

The above analysis is not, however, valid for th
^f&^f&s1.2s6.1 bilinear, where we have an additional com
plication resulting from the fact that this bilinear necessar
gives rise to the production of charm quarks. The product
of charm containing mesons from nucleon decay is of cou
kinematically forbidden. Thus our simplest nucleon dec
process must involve an additionalc→u conversion that will
inhibit the decay width shown in Eq.~17!, by an additional
GF
2MN

4 factor, whereGF is the Fermi coupling constant. By
taking this additional complication into consideration it
found that the lower limit onMs in the case of the
^f&^f&s1.2s6.1 bilinear is

Ms.l3/43108 GeV. ~19!

We next consider the cubic terms,bs is js j and
l^f&s is js j . The simplest nucleon decay diagrams arisi
from the former of these terms involves the decay of
nucleon into one meson, two leptons, and one antilepton.
the other hand the latter, Higgs boson containing, cubic te
gives rise to decays involving the production of two meso
and one antilepton~see Fig. 4!, or in the special case o

FIG. 2. Proton decay resulting from thes1.1s3.1 quadratic.

FIG. 3. Neutron decay resulting from the^f&s2s7.1 quadratic.
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^f&s2s1.2s1.2, one meson, two antileptons, and one lepton
The order of magnitude decay widths for thebs is js j and
thel^f&s is js j cubics are

G.OS l6b2MN
11

Ms j

8 Ms i

4 D ~20!

and

G.OS l8^f&2MN
11

Ms j

8 Ms i

4 D , ~21!

respectively. Note that we have included the dimensionles
Yukawa coupling constants as al6[l i

2l j
4 factor. The

nucleon decay processes resulting from these cubic terms a
constrained by an experimental limit of around'1031 yr @8#.
Therefore the lower limits onMs for the bs is js j and the
l^f&s is js j cubics are

Ms.~l3b/Ms!1/53106 GeV ~22!

and

Ms.l2/33105 GeV, ~23!

respectively.
Finally we have the quartic termsls is i

cs is j . The sim-
plest nucleon decay processes arising from these terms
volves the decay of the nucleon into either one meson, tw
antileptons, and one lepton; or, depending on the scalars
volved, two mesons and one antilepton. The decay width fo
these processes takes the form

G.OS l10MN
17

Ms i

12Ms j

4 D , ~24!

wherel10[l2l i
6l j

2 . These quartic nucleon decay processe
are experimentally constrained by an approximately 1031 yr
lower limit, giving the constraint

Ms.l5/83104 GeV. ~25!

The simplest nucleon decay processes resulting from th
quartic ls5s5s5r, and the closely related cubic
ls5

as5
bs5

b^f&, entail the creation of a one meson and thre
lepton product. The respective decay widths of these tw
nucleon decay processes are shown below:

FIG. 4. Proton decay resulting from the^f&s2.2
c s3.2s3.2 cubic.
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G.OS l10MN
17

Ms5

12M r
4D , ~26!

G.OS l8^f&2MN
11

Ms
5
a

4
Ms

5
b

8 D . ~27!

Both of these decay widths have a dimensionlessl8[l2l5
6

contribution, with the former expression also containing
l2 contribution from the Yukawa constant associated w
the r scalar. For both potentials the strictest experimen
constraint onMs5 ,r

comes from bound neutron decay pr
cesses~see Fig. 5!, which have a lower lifetime limit of
about 1031 yr @8#. From this constraint we obtain lower limit
onMs,r of

Ms,r.l5/83104 GeV ~28!

and

Ms.l2/33105 GeV, ~29!

respectively. This lower limit ofMs,r.l5/83104 GeV is the
lowest constraint onMs for any of theDB51 scalar pairs
listed in Eq.~12!.

Before leaving theseDB51 processes, we still have t
consider the interesting case where one of the decay prod
is necessarily a right-handed neutrino or a left-handed
tineutrino. This occurs for all of thes4 containing potentials
in Eq. ~12!. We assume the usual seesaw model wherenR
gains a large Majorana massM that leads to the usual hier
archy of masses@9#,

mnR
.M@m@mnL

.
m2

M
, ~30!

wherem is the Dirac mass of the neutrinos, as given in t
Dirac mass termmn̄LnR , andM is the Majorana mass of the
neutrinos, as given in the Majorana mass termM n̄R(nR)

c.
The massiveness of this right-handed neutrino means
any proton decay producing such a particle will be high
suppressed, as the amount of left-hand–right-hand neut
mixing will be very small. By assuming that the Dirac ma
of the neutrino is around the same as the Dirac masses o
other fermions, it is found that the suppression in the de
width will be of order'10214.

By considering this additional attenuation, our lower lim
its on Ms for the s4 containing interactions are found t
reduce tol31012 GeV for the conjugate pairs4-s7.1

c ; to
(lm/Ms)31012 GeV for the quadratic s4s7.1; to
l3/43107 GeV for the quadratics3.2s4ff; to l5/83103

GeV for the quartics7.1s7.1
c s7.1s4; and tol5/83102 GeV for

the quartic s4s4
cs4s7.1. For the scalar combination

s4 ,s7.1 our strongest constraintMs.(lm/Ms)31012 GeV,
has thus been reduced in comparison to
(lm/Ms)31016 GeV constraint obtained for the quadratic
in Eq. ~12! without thes4 scalar.

TheDB52 scalar potentials, which consist of cubic an
quartic terms are shown below:
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s1 ,s3→s1.1s3.1s1.1s3.11s1.1s3.2s1.1s3.2

1s1.1s3.3s1.1s3.31s1.1s3.4s1.1s3.4

1s1.2s3.1s1.2s3.11s1.2s3.2s1.2s3.2

1s1.2s3.3s1.2s3.31s1.2s3.4s1.2s3.4,

s3 ,s7→s3.1s3.1s7.21s3.2s3.2s7.21s3.3s3.3s7.2

1s3.4s3.4s7.2,

s4 ,s7→s4s7.1s4s7.11s4s7.2s4s7.2,

s6 ,s7→s6.2s7.1s7.11s6.2s7.2s7.2. ~31!

Unlike the DB51 processes, theseDB52 processes will
not give rise to nucleon decay. In order to obtain constrai
on the scalar masses for these cases we must instead com
the above interactions withDB52 experimental limits, such
as binucleon decay measurements.

The cubic terms in Eq.~31!, i.e., bs is js j , give rise to
binucleon decay that in the simplest cases result in the p
duction of two mesons. For example, the neutron-neutr
decay diagram resulting from thes3.1s3.1s7.2 process is
shown in Fig. 6. The decay widths for these processes, us
a dimensional approach, take the form

G.OS l6b2MN
11

Ms i

4 Ms j

8 D , ~32!

whereMN represents the mass of the nucleons.1 GeV, and
the dimensionless constantl6[l i

2l j
4 , where l i and l j

again represent the Yukawa couplings associated withs i and
s j . There is an approximate 10

31 yr @8# lower limit on these
binucleon decay processes, thus for these trilinear terms
have a lower limit onMs of

FIG. 5. Neutron decay resulting from thes5s5s5r interaction.
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Ms.~l3b/Ms!1/53106 GeV. ~33!

The quartic terms in Eq.~31!, i.e., ls is js is j , will give
rise to binucleon decays that in the simplest cases will res
in the creation of a meson and two antilepton product@see
Fig. 7#. The decay widths of these processes take the for

G.OS l10MN
17

Ms i

8 Ms j

8 D , ~34!

wherel10[l2l i
4l j

4 . These decay processes are again c
strained by an approximate 1031 yr limit, giving a lower limit
onMs of

Ms.l5/83104 GeV. ~35!

For thes4 containing quartics we have an extra supress
resulting from the production of two left-handed antineut
nos. The lower limit onMs for these quartics is thus reduce
to

Ms.l5/83102 GeV. ~36!

This is the least stringent constraint onMs that we have
obtained. Therefore thes42s7.2 scalar combination is the
combination with the weakest constraint onMs ; the
s42s7.1 combination is of course strictly constrained by i
DB51 processes.

IV. CONCLUSION

In this paper we have demonstrated how the obser
charge quantization can be accounted for solely through c

FIG. 6. Double neutron decay resulting from thes3.1s3.1s7.2

interaction.
ult
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sical constraints. In order to obtain complete charge quanti
zation from classical constraints alone, we extended the
minimal standard model to include right-handed neutrinos
and baryon number violation. We have effectively suggested
that the necessity of charge quantization from classical con
straints provides a strong argument in favor of the existence
of these baryon number violating processes. We considere
only simple extensions of the SM Yukawa interaction where
our new quark lepton interactions couple through new scala
particless.

We know from experimental data on the decay of the
proton and decay of nuclei that baryon number violation is
very much inhibited. Thus, if these new baryon number vio-
lating Yukawa interactions exist, the masses of the associ
ated scalars must be above a certain lower limit so as to
evade detection by present day experiments. Using a dimen
sional approach, these lower limits were calculated for all of
our proposed scalars and scalar combinations. From this ex
ercise it was found that the scalar pair with the lowest con-
straints onMs is thes42s7.2 combination that gives rise to
the quartic term listed in Eq.~31!. This weakly constrained
scalar combination is of interest as the possibility of these
scalars appearing in low-energy interactions is not ruled out

As a result of the fact that present day theories on baryo-
genesis suggest that baryon number violation must have oc
curred in the early universe, it would be of some interest to
investigate the implications of these baryon number violating
processes on baryogenesis.
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FIG. 7. Double proton decay resulting from the
s1.1s3.2s1.1s3.2 interaction.
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eratorÛ in terms of time-ordered products of the interaction
Hamiltonian does not solve the Tomonaga-Schwinger equa-
tion. This is due to certain terms that are routinely neglected in
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