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We investigate the confinement-Coulomb phase transition in the four-dimensional~4D! pure compact U~1!
gauge theory on spherical lattices. The action contains the Wilson couplingb and the double-charge coupling
g. The lattice is obtained from the 4D surface of the 5D cubic lattice by its radial projection onto a 4D sphere,
and made homogeneous by means of appropriate weight factors for individual plaquette contributions to the
action. On such lattices the two-state signal, impeding the studies of this theory on toroidal lattices, is absen
for g<0. Furthermore, here a consistent finite-size scaling behavior of several bulk observables is found, with
the correlation length exponentn in the rangen50.3520.40. These observables include Fisher zeros, specific-
heat, and cumulant extrema as well as pseudocritical values ofb at fixedg. The most reliable determination
of n by means of the Fisher zeros givesn50.365(8). Thephase transition atg<0 is thus very probably of
second order and belongs to the universality class of a non-Gaussian fixed point.@S0556-2821~96!00423-7#

PACS number~s!: 11.15.Ha, 02.70.Fj, 05.70.Jk, 64.60.Fr
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I. INTRODUCTION

A. Motivation

The introduction of a space-time lattice for quantum fie
theories serves several purposes. It provides a regulariza
for the renormalization scheme; it allows us to apply efficie
computational methods to perform the functional integr
tions; it may be considered a mere approximation scheme
the problem in the continuum. Among the four-dimension
~4D! gauge field theories with Lie groups the one with U~1!
symmetry at first sight appears to be the simplest to test
approach. It is also of considerable interest as it has m
features in common with QCD, like a confining strong co
pling phase, topological excitations, and gauge balls. In
dition it shows a phase transition to a phase with a we
coupling signature, a massless photon, and a long range
teraction. In fact it has been the first lattice gauge model w
continuous gauge group to be studied by the computatio
methods that became available in the 1980s@1#.

Below ~in Sec. IB! we will discuss the various results
obtained since. However, in summary we may say that up
now there is no definite answer to the critical properties
the phase transition. In most simulations a two-state signa
the phase transition indicated a first-order transition. On
other hand, the critical behavior according to such a tran
tion has not been confirmed in thorough finite-size scali
~FSS! studies. The problem persisted when the original W
son action containing only cos(QP) was extended to include
the double-charge coupling

S52(
P

@bcos~QP!1gcos~2QP!#. ~1.1!

HereQPP@0,2p) is the plaquette angle, i.e., the argument
54821/96/54~11!/6909~14!/$10.00
ld
tion
nt
a-
for
al

this
any
u-
ad-
ak
in-
ith
nal

to
of
l at
the
si-
ng
il-

of

the product of U~1! link variables around a plaquetteP. It
was conjectured, that the first-order phase transition chang
into a second-order one at a tricritical point at small negative
values ofg, but that was never confirmed in actual simula-
tions atg<0. If there is indeed a second-order transition, its
properties have not been determined up today.

On the other hand, both computational and data analys
techniques have progressed. This provides us with the poss
bility to perform a thorough FSS study of this model in a
new context. Practically all other studies have dealt with the
standard periodic boundary conditions, i.e., hypertorus topo
ogy for the lattices. It has, however, been realized that ther
are nonlocal excitations in the system — closed monopol
loops — that may extend over the whole lattice. Therefore
the essentially local updating algorithms used for gaug
theories, together with the boundary conditions, may affec
thermalization properties. One expects, that in the thermody
namic limit the ‘‘continuum’’ properties of the system are
independent of the global topology of the system, if this
becomes locally flat. For these reasons it was suggested
simulate the model on lattices with spherelike topology@2#,
amounting to modified boundary conditions, such that close
loops are always homotopically equivalent to points. The
spherelike topology allows the monopoles more freedom in
their dynamics without changing the action.

One generally expects that the thermodynamic propertie
of the bulk phase~defined by the behavior of the free energy
per unit volume in the thermodynamic limit! are not affected
by contributions which grow slower than the total volume.
Boundary contributions are suppressedO(1/L) relative to
the leading term, curvature terms at leastO(1/L2), and there-
fore they should not change the critical exponents of the bul
phase. This does not necessarily hold for the ground stat
For example, at phase transitions of first order the phas
6909 © 1996 The American Physical Society
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mixture may be different, depending on boundaries or ev
one individual spin, or due to an overall external field van
ishingO(1/LD). A similar influence may come from the cur-
vature, even if thinned out over the volume inO(1/L2).
However, if the manifold becomes locally flat in the thermo
dynamic limit the systems universalcritical properties
should be independent of the global topological structur
Otherwise we could hardly assume that we can do reliab
physics on earth without definite knowledge about the top
logical details of the universe.

Whereas in the original study@2# the surface of a 5D cube
was used, we here choose a discretization of the sphe
where the curvature is distributed more homogeneously ov
the lattice. Although the system is nonhomogeneous on t
scale of the lattice constant, it is homogeneous and isotro
on larger scales. As will be demonstrated here, in this 4
system with the topology of the surface of a 5D sphere w
find no two-state signal on lattices with up to almost 204

points. Of course we cannot exclude the possibility that
two-state signal reappears for even larger lattices. Howev
our FSS analysis leads to consistent results for a phase tr
sition of second-order forg<0.

The best measurement of the correlation length critic
exponentn by means of the FSS behavior of the Fisher zer
gives n50.365(8). Less precise FSS analyses of sever
other bulk observables are consistent withn values in the
interval n50.3520.40. As we argue in@3#, due to rigorous
dual relationships our results imply that also the Coulom
gas of monopole loops@4# and the noncompact U~1! Higgs
model at large negative squared bare mass~frozen supercon-
ductor! @5# have a continuum limit described by the sam
non-Gaussian fixed point. Some further related models a
discussed in@6#.

The first-order signal persists — also for the discusse
spherelike geometries — at valuesg.0.2. Since scaling may
be garbled close to tricritical points we concentrated o
negative values of the double-charge couplingg in our
study. Scaling and FSS is expected to improve at larger d
tance from the first-order part of the phase transition lin
Nevertheless, atg50 the two-state signal is still absent and
the scaling behavior is consistent with that found atg,0.

Let us add a remark on the extended action considere
Some time ago it was pointed out@7#, that, although the
Wilson and the heat kernel~Villain ! action do have reflection
positivity, some actions do not. Positivity is a sufficient, bu
not a necessary condition for unitarity; it guarantees the e
istence of a positive definite scalar product and the spect
condition, one of the formal conditions for the existence of
continuum limit field theory@8#. The actions with the param-
eter valuesg,0 considered here are not reflection positive
They share this property with other actions such as, e.g., t
~Symanzik! improved actions.

On the other hand, if reflection positivity holds on a par
of a critical surface that is in the domain of attraction of
fixed point of some renormalization group transformation
we expect that it should be satisfied everywhere in that d
main on large scales. Unitarity violating states such as gho
should then decouple. We therefore find it justified to stud
the action near candidates for critical points even outside t
regiong>0, where reflection positivity is respected on th
scale of the lattice spacing. Unitarity atg,0 is also sug-
en
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gested by the observation that the regions withg,0 and
g>0 are connected by the renormalization group~RG! flows
@9#.

Following a brief review of the situation in the U~1! pure
gauge model we then introduce the spherical lattice in Sec
II. ~Further technical details are given in the Appendix.! In
Sec. III we present the Monte Carlo simulation and discus
the observables in some detail, including the expected FS
behavior. The results and their analysis are summarized
Sec. IV, followed by our conclusions.

B. Situation of U„1… pure gauge studies

U~1! is the most elementary Lie group that can be used t
construct a quantum gauge field theory. Yet, when formu
lated on a lattice, the pure U~1! gauge theory turned out
unexpectedly to be one of the most intriguing and less un
derstood quantum gauge models. The awareness of this fa
has developed with an accumulation of the numerical expe
rience. In this section we give a brief description of this
historical development. We apologize for quoting only a sub
jectively chosen part of a much larger number of valuable
papers.

Since the introduction of lattice gauge theories by Wilson
@10#, the pure compact U~1! theory has been of interest as a
theory with a rigorously established@11,12# phase transition
between the confinement and the free charge~Coulomb!
phases at zero temperature. One reason was the importan
of topological excitations, the monopoles, for confinement
as manifested by their prominent role in this phase transitio
@4,13–17#. Another purpose was to study it as a prototype
example for applications of numerical methods of statistica
physics in a lattice gauge theory, in particular an investiga
tion of the continuum limit at the phase transition. However,
the lesson has been that this phase transition provides n
simple exercise.

In the very first numerical investigations@1,18–21#, re-
stricted tog50 and small lattices, a behavior consistent with
a second-order phase transition atb.1 was observed. But
this order was questioned by the subsequent observation o
two-state signal on larger lattices@22#. Such a signal could
imply that the phase transition atg50 is actually of weak
first order, which would prevent taking a continuum limit
there. The question was, and remained to be, whether th
signal may be a finite-size effect.

In the model with extended Wilson action~1.1! it was
found @23# that the confinement-Coulomb phase transition is
clearly of first order forg>0.2, and weakens with decreas-
ing g. This suggested that the order of the transition change
wheng is decreased, presumably at a tricritical point.

The question at which value ofg this happens turned out
to be very difficult. First, even at large negativeg, a two-
state signal has been observed, e.g., atg520.5 on the 84

lattice @24#. Second, tricritical points are known to cause in-
tricate finite-size effects@25#, easily mocking up a false order
of the phase transition.

In the hope to clarify the situation, an investigation of the
strongly first-order part of the phase transition line at
g>0.2 was performed@24#. There the latent heatDe can be
determined reliably even on moderately large lattices. Its in
dependence on the lattice size was checked very carefull
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The extrapolation ofDe to zero with decreasingg by means
of the power law

De}~g2gTCP!bu ~1.2!

suggested that the order of the transition changes at the
ritical point ~TCP! with gTCP520.11(5), implying first-
order phase transition atg50.

This extrapolation procedure is an attempt to cont
finite-size effects, but it uses the assumption that the po
law behavior~1.2!, which the data in the investigated regio
g50.220.5 are consistent with, indeed holds throughout t
whole interval betweeng50.5 andg5gTCP. This assump-
tion has remained unverified. Another possible uncertainty
@24# was the determination ofDe at a strong first-order tran-
sition, without the more advanced methods of investigat
of such transitions@26#.

Monte Carlo RG~MCRG! studies@27,28,9,29# did not
confirm this position of the tricritical point at negativeg. Of
course, also the MCRG approach suffers from ambiguit
due to a small number of RG steps and a restricted num
of couplings considered. Therefore also these studies
mained inconclusive about the order of the transition arou
g50 in the thermodynamic limit~although they all observed
clear two-state signals!.

In spite of this, numerous attempts to determine the cr
cal exponentn provided roughly consistent values in th
rangen.0.2820.42. These studies used various metho
the analytic calculations @30,31#, the FSS analysis
@18,19,23,32#, the scaling of the string tension@20,33–35#,
and the MCRG method@27,28,9,36,29#. Three actions,
Wilson-, extended Wilson-, and Villain-type actions hav
been used.

This suggested that the pure compact U~1! lattice theory
might have an interesting continuum limit at th
confinement-Coulomb phase transition, pondered, e.g.
@5,37#. However, the two-state signal, observed on finite l
tices even forg,0 @24# as well as for the Villain action@36#,
hindered the investigations of this possibility. Even if th
signal is only a finite-size effect and the transition in th
infinite volume limit is genuinely of second order, it repre
sents a serious impediment for a precise FSS analysis
MCRG studies. Because of this the investigation of the p
compact U~1! gauge theory lost its momentum. Until now
there is no established second-order phase transition with
undisputed determination of critical indices in this model.

All the above-mentioned numerical work has been p
formed on 4D toroidal lattices. Recently, following earlie
suggestions@38,28,9#, two of the present authors speculate
that the two-state signal atg<0 may be related to monopole
loops winding around the toroidal lattice, and trapped
simulations with local update algorithms@2#. They used the
4D surface of a 5D cubic lattice instead of the torus, a
observed that atg50 the two-state signal vanishes on la
tices of all investigated sizes.

Choosing a spherelike topology provides a way to allo
the monopoles more freedom in their dynamics without
fecting them locally by changing the action. We consider th
as preferable to adding terms to the action that forbid
restrict the occurrence of monopoles, which produc
O(LD) contributions to the total free energy and thu
ric-
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changes the bulk properties of the system@39,40#. In that
case one explores the phase diagram in different regions o
the space of couplings and the position of the phase transi
tion in b moves to different values, depending on the extra
couplings. None of these studies has led to phase transition
of second order, though.

However, the cause for the two-state signal on the toroidal
lattice, and of its vanishing on a lattice with the topology of
a sphere, is not yet fully understood. Possibly the trivial first
homotopy group of such a lattice allows a smooth vanishing
of winding monopole loops in simulations. But some other
recent results do not seem to support this interpretation@40–
42#.

On the other hand, for a study of the continuum limit on
lattices with the topology of a sphere, a complete under-
standing of the dynamics of the two-state signal on a torus is
not really necessary. What is required is a construction of a
spherelike lattice which is homogeneous, in order to avoid
the possibly related problems with the FSS analysis, encoun
tered in@2#. Achieving that in this paper, we hope to give a
new momentum to the investigation of the confinement-
Coulomb phase transition in the pure compact U~1! gauge
theory on the lattice. A construction of the continuum limit
appears now to be feasible.

II. SPHERELIKE LATTICES AND LATTICE GEOMETRY

In an attempt to formulate the theory without modification
of the locally defined plaquette action and without forbidding
or hindering the dynamic evolution of monopole loops, the
lattice topology was modified. The usual periodic~or antipe-
riodic! boundary conditions correspond to the topology of a
4D torusT4 with the first homotopy groupZ4. Closed loops
~or networks of loops! cannot necessarily be contracted to a
point and the corresponding ground state may be classified
accordingly. The original motivation to divert from this lat-
tice structure was to study the possible influence of this prop-
erty on the dynamics of the phase transition.

In @2# it was therefore suggested to simulate and study the
model on a lattice with spherelike topology, in particular on
the surfaceSH@N# of a 5D hypercubic lattice of sizeN5.
This lattice may be best visualized in analogy to the 2D
surface of a 3D cubic lattice. It may also be considered as a
collection of 10 hypercubic lattices of sizeN4, glued together
at their boundaries. This implies that one can expect the
same critical coupling in the thermodynamic limit as for the
usual torus. This was indeed verified in the Monte Carlo
calculations@2#. Details and parameters of the geometry are
listed in the Appendix.

The so-defined lattice is locally flat, except at certain
plaquettes@(D22)-dimensional elements#, where the curva-
ture is concentrated, a well-known property of Regge skel-
etons. The unusual features include plaquettes bordering
only three 3D cubes~instead of the usual four!, links border-
ing less than six plaquettes and sites with less than eigh
links. These curvaturelike contributions as we might call
them in the absence of a strict theory in 4D are suppressed
O(1/N2) relative to the leading terms in the action.

In an attempt to distribute these local inhomogeneities
more uniformly over the lattice we introduced the ‘‘almost
smooth’’ spherical latticeS@N#. In the construction we
project sites, links, and plaquettes ofSH@N# ~or its dual
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SH8@N#) onto the surface of a concentric 4D sphere an
introduce weight factors similar to those used by@43# in their
study of random triangulated lattices:

S52(
P

wP@bcos~QP!1gcos~2QP!#

with

wp5
AP8

AP
. ~2.1!

Here, AP and AP8 denote the areas of the correspondin
plaquette and its dual, respectively, of the projected lattic

As discussed in@43# in the situation of triangulated ran-
dom lattices, one has to distribute the total integration vo
ume over all contributions to the action, i.e., the plaque
terms in our case. This may be done with the help of the du
lattice, where to each site, link or plaquette there is an as
ciated dual 4D cube, 3D cube, or plaquette. The dual latt
sites in our situation are constructed from the barycenters
the 4D cubes that have been projected to the sphereS4, fol-
lowed by an adjusting projection of these points to th
sphere. Further reasoning according to@43# leads to the
weight factorswP in Eq. ~2.1!. This choice is not unique, but
reproduces the usual continuum actionFmn

2 in the naive con-
tinuum limit g→0 (b→`) and is thus homogeneous in this
limit. We study the system at finiteb; there slight distortions
from the regular spherical surface are possible. The value
bcrit might be modified due to the weight factors and thu
does not necessarily agree with that of the torus orSH.

Technically we have to introduce some approximation
Usually the plaquettes — constructed via the projection
the sites to the sphere — will not be flat. Plaquette areas
therefore determined from the sum of two triangles. Also f
this reason the curvature in this formulation will not be pe
fectly uniformly distributed. In order to achieve this, we
would have to rely on a triangulated lattice. This would im
ply a significant change of the action, which we wanted
avoid. On the other hand, we expect these effects to beco
irrelevant in a situation with a large correlation length. Th
consistency of the found FSS behavior justifies these simp
fications.

The connectivity properties ofSH andS are identical. In
the computer programs the geometry is implemented w
tables and the weight factorswP are precalculated. During
the development of the program and in the early stages of
analysis we also determined the monopole positions~on the
dual lattice! and reproduced them graphically. We observe
the expected properties: The monopole loops were alwa
closed; the smallest loops had length 3~corner plaquettes on
the dual lattice!; they fluctuated freely, appearing and disap
pearing without noticeable correlation with positions close
corners. This also served as a check of the consistency of
connectivity tables.

In our discussions we will refer to theeffective lattice
volume

V5
1

6(P wP ~2.2!
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as the typical size quantity. ForSH this would be just the
number of sites, forS it is very close to this value. A length
scale may be defined as

L[V1/4. ~2.3!

Table I summarizes the effective volumes for the lattice size
used in our study.

For strictly asymptotic dependencies as they come up in
FSS studies it is irrelevant, whether one usesN or L. How-
ever, for moderately sized finite systems a suitable choic
improves the approach to the asymptotic behavior. Let u
mention in this context that in@44# different lattice geo-
metries were compared and it was demonstrated, that th
scaling curves show best agreement with each other, if on
indeed usesL — the size derived from the total volume as
opposed to the base lengthN — as size variable. In the
present work we cannot compare with torus results, since fo
those the two-state signal obscures the measured values
the cumulants.

III. SIMULATION METHODS AND STATISTICS

In an earlier study@2# we found that for lattice typeSH
there are two-state signals at the pseudocriticalb for
g50.2, but no such indications atg50. For this reason we
now studied the action~2.1! of the spherical latticeS at the
valuesg50,20.2, 20.5. Preliminary results have been pre-
sented in@45,46#.

A. Updating and measuring

We have worked with latticesS@N# for N ranging be-
tween 4 and 12. The couplings were chosen in the immediat
neighborhood of the pseudocritical values ofb. For the
analysis we determined the histograms of the weighted sum
of plaquette values

E[(
P

wPcosQP . ~3.1!

Note that this is not the total energy, but just the part corre
sponding to the coupling parameterb; it coincides with the
total plaquette energy for the Wilson action,g50. Any
scaling- or two-state signal should be observable in tha
quantity. We also define the density

TABLE I. Effective volumes for the studied latticesSH@N#. We
also give the value ofL5V1/4 which would give the base length for
a hypertorus lattice with the same volume.

N V L

4 825.1 5.4
5 2576.6 7.1
6 6268.1 8.9
7 12986.9 10.7
8 24064.1 12.5
9 41074.6 14.2
10 65837.3 16.0
12 147113.8 19.6
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e[E/(
P

wP5E/~6V!. ~3.2!

We combined the various histograms~for fixed g but dif-
ferentb) with the help of the Ferrenberg-Swendsen mu
histogram reweighting technique@47#. For eachg we thereby
construct the density of statesr(E;g). The representation o
the partition function

Z~b,g![(
E

r~E;g!exp~2bE! ~3.3!

allows us to determine various observables for continu
values ofb through

^En&5
1

Z~b,g!(E r~E;g!Enexp~2bE!. ~3.4!

Since we never observed two-state signals we did not im
ment multicanonical updating@26#. We used a three-hit Me-
tropolis update; forg50 we included an additional overre
laxation step ~the autocorrelation length decreased by
factor of about 2!. For each lattice size at eachg we typically
accumulatedO(106) updates, which is between 103 and
104 times the integrated autocorrelation length for the o
servableE ~cf. Table II!.

The histograms had up to 104 bins in order to exclude any
possible influence due to binning. In fact, by rebinning w
found no changes within single precision down toO(500)
bins. Due to the fine binning the raw histograms have a no
appearance, which is irrelevant for the Ferrenberg-Swend

TABLE II. Statistics of the data for the studied values ofg:
Lattice base lengthN, total numbern of configurations in multiples
of 106, range ofb values, maximalt int values~from a fit to all b
values, as discussed in the text; errors are typically 10% of
values!.

g N n/106 b range t int,max

0 4 1.1 0.98–1.025 12
6 1.0 1–1.025 56
8 1.1 1.0125–1.0275 150
10 1.47 1.01–1.025 304

-0.2 4 1.1 1.07–1.2 24
5 1.8 1.15–1.175 63
6 1.6 1.13–1.21 116
7 1.1 1.14–1.175 188
8 1.6 1.155–1.175 272
9 1.1 1.1655–1.1715 367
10 1.0 1.1635–1.1715 583

-0.5 4 4.8 1.3–1.65 37
5 1.8 1.38–1.47 76
6 2.1 1.35–1.5 149
7 1.9 1.402–1.452 311
8 1.5 1.4–1.455 332
9 1.8 1.42–1.442 480
10 1.55 1.42–1.442 473
12 1.6 1.43–1.44 1565
lti-
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analysis and for the representation~3.3!. For the plots we use
rebinned versions with only 500 bins maximum.

The total CPU time spent for the calculations on worksta
tions and on a Cray-YMP sums up to 6800 h in Cray-YMP
units.

B. Observables and FSS

1. Cumulants

We determined the second- and fourth-order cumulants
the observableE. Because of the analogy to the internal en
ergy ~identical toE only for g50) we call the second-order
cumulant the specific heat. The specific-heat, the Chall
Landau-Binder cumulant@48#, and another fourth-order cu-
mulant suggested by Binder~cf. @49,50#! are defined through

cV~b,L !5
1

6V
k~E2^E&!2l, ~3.5!

VCLB~b,L !52
1

3

k~E22^E2&!2l
^E2&2

, ~3.6!

U4~b,L !5
k~E2^E&!4l
k~E2^E&!2l2

. ~3.7!

The positions and values of their respective extrema are us
for the FSS analysis.

From the usual scaling hypothesis@51–55# one expects
for the singular part of the free energy density the scalin
behavior

f ~t,L !5L21/Df ~tL1/n,1!, ~3.8!

wheret[(12b/bc) denotes the reduced coupling andL is
a length scale parameter. From this one derives the scal
behavior of the cumulants. At a second-order phase tran
tion we expect~for D54 anda.0)

cV,max~L !;La/n, ~3.9!

VCLB,min~L !;La/n24, ~3.10!

U4,min~L !5O~1!1O~L2a/n!, ~3.11!

bc~L !2bc;L2l. ~3.12!

For a50 there are logarithmic terms. The asymptotic valu
of U4,min depends on the details of the distribution densit
r(E) and is 3 for a Gaussian distribution. Mean field value
aren51/2 and with Josephson’s lawa522Dn50.

We denote bybc(L) definitions for pseudocritical points
like the positions of the extrema in the cumulants. The s
called shift exponentl is for many models equal to 1/n, but
not necessarily so in general; such an identity is not a ne
essary result of FSS~cf. the discussion in@55#!. We return to
this issue later. Furthermore,a priori we know nothing about
the absolute size of the multiplicative coefficients in the sca
ing formulas. They depend on the details of the action, th
lattice geometry and the topology@55#.

For first-order transitions one expects the FSS behavio

the
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L2DcV,max→
1

4
~eo2ed!

2, ~3.13!

VCLB,min→2
1

12

~eo
22ed

2!2

~eoed!
2 1O~L2D!, ~3.14!

U4,min→11O~L2D!, ~3.15!

bc~L !2bc5O~L2D!. ~3.16!

Hereeo anded denote the discontinuous values of the ener
density at the phase transition point.

As discussed, in the considered lattice geometry there
inhomogeneities in the sense that the coordination numb
of some sites, links and plaquettes deviate from the us
torus numbers. For theSH lattices these may be considere
as lattice inhomogeneities. Their contribution to the total fr
energy is suppressedO(1/N2)5O(V22/D). In our smoothed
version of that latticeS, the inhomogeneous contributio
should be smaller. There is, however, still a possible con
bution of the total curvature to the free energy, which
suppressed with the same order~cf. also the discussion for
the 2D Ising model@44#!. Thus, in principle, we also may
expect ‘‘surface’’ corrections ofO(V22/D) in all FSS rela-
tions. Indeed such contributions have been observed for
SH lattices@2#. It turns out that they are much smaller in ou
present study, in fact too small to study them.

2. Fisher zeros

Equation~3.3! defines implicitly an analytic continuation
to complex values ofb not too far away from the real axis
Therefore it is possible to determine the nearby zeros of
partition function@56# in the complexb plane, the so-called
Fisher zeros@57# ~cf. @58#!.

One should add a warning concerning technical aspe
The histograms are binned, having both, upper and low
limits for Emax and Emin as well as a bin size
D5(Emax2Emin)31024. The representation~3.3! for
b5bR1 ib I therefore is a discrete Fourier transformation.
will induce a periodicity inb I due to the bin size and an
effective grid with grid spacing 2p/(Emax2Emin) ~although
the values of the partition functionZ are well defined even
between the grid points, they carry no additional inform
tion!.

Usually the distribution is similar to a Gaussian distrib
tion; let us for the sake of the argument assume such a fo

r~E!exp~2bRE!.exp@2c~E2E0!
2#. ~3.17!

From Eq.~3.3! one then expects an oscillatory behavior
Z proportional to exp(ibIE0). This is indeed observed in the
calculation. In the search for partition function zeros o
starts with an identification of sign changes of ImZ and
ReZ. The rapidly oscillating phase factor may confuse t
pattern and one has to work with a very fine resolution and
carefully combine the sign-change analysis with a search
uZu. Also the grid structure may interfere with these oscill
tions and one has to proceed with care.

So real and imaginary parts of the closest Fisher ze
provide further~even! observables. In particular the imag
nary part of the zero closest to the real axis provides a h
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quality estimator for the critical exponentn ~cf. @59# for a
recent high statistics study of the 4D Ising model, where it
was possible to identify the logarithmic corrections to scal-
ing on basis of the Lee-Yang zeros@56#!. As will be demon-
strated below this quantity appears to have small corrections
to the leading FSS behavior in our environment; this obser-
vation is analogous to other recent investigations of sphere-
like lattices in 2D@60,44#.

From the scaling arguments for the free energy we expect

uz0~L !2bcu;L21/n. ~3.18!

This provides an upper bound for the real and imaginary part
of z0, in particular

Imz0~L !5O~L21/n!, ~3.19!

Rez0~L !2bc5O~L21/n!. ~3.20!

Although in some cases the angle, under which the zeros
approach the real axis~defined as the angle of a line connect-
ing the two closest zeros! is known ~e.g.,p/2 for the 2D
Ising model in the Onsager solution@57#, p/4 in the mean
field solution for the 4Df4 model @61#, both on cubic lat-
tices with torus topology! there is no FSS theory for this
angle of approach with regard to the sizeL. Depending on
details of the model, the geometry and the topology, thereal
part— which by analogy to the cumulants we call a pseud-
ocritical value — may approach the asymptotic value faster,
i.e., with a shift exponentl larger than 1/n @55#. Such a
behavior has been observed in a recent study of the 2D Ising
model @44#.

We also mention here that the position of the closest
Fisher zero is related to the peak position and value of the
specific heat. Since the partition function may be expressed
by the Vieta product of all its zeros$zi%, the specific heat is
proportional to

(
i

1

~b2zi !
2 ~3.21!

and therefore the leading contribution toV3cV near the
phase transition is proportional to (Imz0)

22. The peak posi-
tion is in leading order given by Rez0. Of course there are
further contributions due to the other zeros and a possible
background from an entire function.

Also these observables may in principle exhibit correc-
tions to FSS due to curvature and topology as discussed
above.

IV. RESULTS AND DATA ANALYSIS

A. Autocorrelation and error analysis

For all individual runs we determined the integrated auto-
correlation for the observableE,

t int,E5
1

2
1 (

n.0

^E0En&2^E&2

^E2&2^E&2
. ~4.1!
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~Here the index indicates thenth configuration measured in
the Markov process.! The inverse value provided us with a
weight factor of the corresponding data sample in the mul
histogram analysis.

For the maximum values of the autocorrelation lengths w
produced two sets of values. One was the maximal observ
values oft int,E for all samples for the given lattice size. The
other resulted from a fit to the values oft int(b) to a peak
shaped curve which has its peak position where the spec
heat~see the discussion below of the analysis for the cum
lants! assumes its maximum. In the subsequent analysis
discuss only the results due to the first set. The second set
to similar results.

The maximum values oft int,E ~cf. Table II! increase from
values of .12 for g50, L54 up to .1600 for
g520.5, L512. This demonstrates the necessity to wor
with large samples of several 105 configurations for each
value ofb, at least for the large lattices.

At second-order phase transitions the maximum values
the integrated autocorrelation time provides an estimate f
the corresponding dynamical critical exponentzE through

t int,E.min~L,j!zE ~4.2!

~wherej denotes the correlation length!. At first-order tran-
sitions one expects that the autocorrelation length grows e
ponentially.exp(cLD21). In Fig. 1 a log-log plot shows that
the size dependence is indeed compatible with Eq.~4.2!. We
assume that the peak values correspond to the point whe

t int,E~bpeak!5c~g!LzE. ~4.3!

A simultaneous fit to all three data sets~for the three values
of g) gives for the dynamical critical exponent
zE52.85(6). Thecoefficients grow fromc(0)50.12 up to
c(20.5)50.32. The results forg50 were obtained with an
additional overrelaxation step in the Metropolis updating
Although the absolute value of the autocorrelation length
decreased by a factor of about 2, the dynamical critical e
ponent appears not to be affected.

FIG. 1. The maximum values of the integrated autocorrelatio
length for the energy observable together with the fit to an exp
nential dependence on the lattice size.
i-

e
ed

fic
-
e
led

k

of
or

x-

e

.
s
-

That value is substantially larger than the valuez52 ex-
pected for the random walk dynamics of local algorithms and
demonstrated for Gaussian models. This behavior is indica-
tive of a more complex dynamics than it is usually antici-
pated for systems with local excitations. The nonlocality of
the monopole loops may be responsible for the observed
effect. On the other hand, we may not yet be asymptotic and
the determination of reliable values for this exponent is no-
toriously difficult.

As a consistency check we also determined autocorrela-
tion times from a fit to an exponential decay and from block-
ing analysis. The resulting values were typically proportional
to those discussed above, although less reliable, i.e., with
large statistical fluctuations. The exponential autocorrelation
time and its dynamical critical exponent are upper bounds to
the integrated autocorrelation time~cf. @62#!.

The statistical errors for all our raw data~i.e., positions
and values of cumulant extrema and positions of the Fisher
zeros! were determined with the jackknife method. From the
original set of valuesE for each configuration we chose 10
different subsets by omitting 10% of the numbers, providing
10 histograms. The Ferrenberg-Swendsen analysis then was
repeated for all these subhistograms and parameters for the
cumulants~peak positions, values, Fisher zeros! were deter-
mined. The distribution of these numbers defined the errors
according to the jackknife procedure. The central values
were taken from the analysis of the complete data. The fits
were performed using these central values and errors.

The simulations on the Cray-YMP have been performed
employing a vectorized version of the shift-register random
number generator, which in its actual implementation uses
XOR operations in between thei and i1103 element to gen-
erate thei1205 element of the sequence. For the programs
on the workstations we used a corrected version ofRCARRY

@63# based on the ‘‘subtract-and-borrow’’ version of a lagged
Fibonacci algorithm.

B. Results: Data and fits

We analyzed the final numbers for the pseudocritical
points ~the extrema positions of the cumulants and the real

FIG. 2. Pseudohistograms as function ofe at g520.2 and for
lattices sizeN54, 5, 6, 7, 8, 9, 10~from left to right! at the respec-
tive peak positions of the specific heat~in Table III! and normalized
to unit maximum value.
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part of the position of the closest Fisher zero!, the extrema
values of the cumulants and the imaginary part of the Fis
zero. The fits were performed both for all lattices sizes
for a subset of lattices withN>6, in order to estimate to
which amount we see asymptotic behavior.

1. Histograms

From the combination of histograms determined for d
ferent values ofb according to the Ferrenberg-Swends
technique we obtain the distribution densitiesr(E;g) in Eq.
~3.3!. A necessary condition for the effectiveness of the
proach is sufficient overlap between the individual his

FIG. 3. Pseudohistograms vse for lattices ~from left to right!
S @12# (g520.5), S @10# (g520.2), andS @10# (g50) at their
respective peak positions of the specific heat and normalized to
maximum.
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grams. From the densities one may construct pseudohisto
grams ~or reweighted histograms! at arbitrary values ofb
~which should be in the domain covered by the individual
histograms!:

h~E;g!5r~E;g!exp~2bE!. ~4.4!

These interpolate the individual histograms but they also
bring together and represent all histogram data.

In Fig. 2 we plot the pseudohistograms forg520.2 for
all lattice sizes studied and determined at the peak positions
of the specific-heat. They are normalized to unity at their
respective maxima. No double-peak structure is observable
In Fig. 3 the pseudohistograms for the largest lattice sizes are
plotted for all three values ofg. ~An individual histogram at
g50 is shown in@3#.! Again, there is no indication of a
discontinuity signal. Such an observation was made already
in the study of theSH lattice ~at g50) in @2#.

Also the individual histograms show no two-peak struc-
ture. Actually, if the statistics are small, spurious signals may
appear, but with increasing statistics they always vanished
~They also were not at consistent positions.! Finally we men-
tion that there are studies at established but weak first-orde
transitions ~the 2D five-state Potts model! on similar
spherelike lattices, where a two-state signal has been ob
served clearly@46#. Therefore we find no indication, that the
particular kind of lattice studied here has a tendency to smea
out weak two-state signals.

A two-peak distribution is an indicator of a possible first-
order transition. However, in order to establish this order one
should also find further signals for coexistence of phases like
FSS consistent withn51/D51/4, correct scaling of the
minimum between the peaks~suppressed due to the 3D in-
terface! in the distribution and tunneling probability

unit
r
TABLE III. Extrema positions of the cumulants and the real part of the positions of the closest Fishe
zeros.

g N b(cV) b(VCLB) b(U4) Re(z0)

0 4 1.0027~3! 0.9990~4! 1.0051~3! 1.0047~4!

6 1.0151~2! 1.0148~1! 1.0156~2! 1.0156~2!

8 1.0179~1! 1.0179~1! 1.0182~1! 1.0182~1!

10 1.0183~1! 1.0183~1! 1.0185~1! 1.0185~1!

-0.2 4 1.1473~6! 1.1422~5! 1.1512~11! 1.1514~12!
5 1.1588~4! 1.1574~5! 1.1607~5! 1.1608~5!

6 1.1640~3! 1.1634~3! 1.1652~7! 1.1650~12!
7 1.1664~4! 1.1662~4! 1.1675~4! 1.1677~2!

8 1.1681~1! 1.1680~1! 1.1685~3! 1.1684~3!

9 1.1688~1! 1.1687~1! 1.1690~1! 1.1690~1!

10 1.1695~1! 1.1695~1! 1.1698~2! 1.1697~2!

-0.5 4 1.4067~7! 1.3987~10! 1.4126~15! 1.4070~42!
5 1.4202~7! 1.4177~8! 1.4239~13! 1.4246~17!
6 1.4270~6! 1.4262~6! 1.4291~5! 1.4292~7!

7 1.4307~4! 1.4304~4! 1.4320~6! 1.4318~5!

8 1.4325~2! 1.4324~2! 1.4328~3! 1.4328~3!

9 1.4340~7! 1.4339~8! 1.4354~22! 1.4353~4!

10 1.4346~2! 1.4345~2! 1.4349~2! 1.4349~2!

12 1.4359~6! 1.4359~6! 1.4366~1! 1.4365~1!
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TABLE IV. Extrema values of the cumulants and the imaginary part of the positions of the closest Fisher
zeros.

g N cV VCLB U4 Im(z0)

0 4 1.85~1! -0.142~1!31022 2.77~1! 0.0300~5!

6 3.93~5! -0.362~5!31023 2.67~2! 0.0066~2!

8 6.75~14! -0.157~3!31023 2.61~3! 0.0024~1!

10 9.47~23! -0.792~20!31024 2.65~2! 0.0013~1!

-0.2 4 1.22~1! -0.982~6!31023 2.83~1! 0.0388~10!
5 1.63~1! -0.395~3!31023 2.81~1! 0.0185~4!

6 2.07~3! -0.201~3!31023 2.82~2! 0.0112~14!
7 2.54~5! -0.117~2!31023 2.80~4! 0.0063~3!

8 3.08~4! -0.755~9!31024 2.80~2! 0.0043~2!

9 3.54~9! -0.503~12!31024 2.75~5! 0.0029~2!

10 4.22~13! -0.371~11!31024 2.71~8! 0.0020~2!

-0.5 4 0.76~1! -0.647~3!31023 2.89~1! 0.0578~32!
5 0.95~1! -0.246~3!31023 2.88~1! 0.0271~11!
6 1.16~1! -0.121~1!31023 2.85~2! 0.0150~11!
7 1.36~1! -0.673~8!31024 2.83~1! 0.0087~2!

8 1.62~6! -0.427~16!31024 2.72~6! 0.0053~4!

9 1.69~5! -0.258~8!31024 2.87~6! 0.0046~5!

10 1.98~8! -0.188~8!31024 2.78~5! 0.0030~2!

12 2.26~12! -0.946~49!31025 2.78~12! 0.0019~2!
e

ter
}exp(22sL3). Up to now no consistent observations of tha
kind have been made in the U~1! theory for the toroidal
lattices, where one finds two-state signals.

Within the scope of lattice sizes studied here we are the
fore led to assume a second-order behavior forg<0. The
subsequent scaling analysis leads to results fully support
this assumption.

In Tables III and IV we summarize our results for th
extrema values and positions of the cumulants and of
positions of the closest Fisher zeros. The analysis of the
data is discussed in the subsequent sections.

2. Fisher zeros

The results for the imaginary part of the positionz0 of the
Fisher zero closest to theb axis are given in Table V. Al-
though we tried fits including further background contribu
tions it turned out that the form~3.19! is sufficient.

In Fig. 4 we show individual fits for eachg. Forg50 we
distinguish two lines: the fit to allN and one to data for
N>6. In particular forg50 the N54 data seems to be
outside the overall behavior, indicating that at this lattice si
the asymptotic behavior is not yet seen. According to o
interpretation, we expect the valueg50 to be closest to a
tricritical point, which may explain the larger deviations a

TABLE V. Results forn from individual fits to Imz0 according
to ~3.19!.

g n x2/NDF

0 0.345~3! 4.7
-0.2 0.378~7! 0.3
-0.5 0.368~8! 0.8
t
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compared to the other values ofg.
A joint fit to the data for all threeg-values with universal

n but individual proportionality factors givesn50.354~3! at
a x2/NDF value of 2.7; including only data withN>5 we
obtainn50.368~5! (x2/NDF50.98!. Finally if we restrict the
fit to the data with N>6 we find n50.365~8! at a
(x2/NDF51.05!. This last fit we consider to be the most
reliable determination ofn ~the corresponding plot may be
found in @3#!.

It is interesting to compare the absolute positions of th
zeros for different values ofg in Fig. 5. We find that the
zeros are generally closer to the real axis forg closer to 0.
This indicates, that asymptotic scaling sets in somewhat la

FIG. 4. A log-log plot of Imz0 vs L with individual fits for each
g. At g50 the full line denotes our fit to allN, the dotted line a fit
to data forN>6. Forg,0 no visible difference would be seen.
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~on larger lattices! at more negative values ofg. This corre-
lates with the peak values of the specific heat, as will
discussed below in the discussion of the cumulants.

The results for the real parts of the Fisher zero positio
will be discussed together with the pseudocritical values.

3. Cumulant values

Figures 6 and 7 exhibit̂e& and cV in the pseudocritical
range, and Fig. 8 gives an example for the behavior

FIG. 5. Positions of the closest Fisher zeros for all lattice siz
and allg.

FIG. 6. Values of̂ e& vs b around the pseudocritical points for
the three values ofg and for all lattice sizes:~a! g50,
N54,6,8,10; ~b! g520.2, N54,5,6,7,8,9,10; ~c! g520.5,
N54,5,6,7,8,9,10,12.
e

s

of

VCLB . The inserts in Fig. 7 demonstrate, that the peak values
of the specific heat grow slower than the volume and that
cV /V approaches zero in the thermodynamic limit, indicating
a second-order phase transition.

Our ansatz

cV,max~L !5a~g!1b~g!L2/n~g!24 ~4.5!

for the scaling behavior~3.9! ~with Josephson’s law relating
a with n) allows for a background constant. We performed

s

FIG. 7. Values ofcV vs b around the pseudocritical points for
the considered values ofg and for all lattice sizes:~a! g50,
N54,6,8,10; ~b! g520.2, N54,5,6,7,8,9,10; ~c! g520.5,
N54,5,6,7,8,9,10,12. The insets exhibit the peak valuescV /V vs
1/V demonstrating their approach towards 0 forV→`.

FIG. 8. VCLB vs b for all lattices sizes studied atg520.2. For
first-order phase transitions the values at the minima should asymp-
totically approach a nonzero constant.
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various fits restricting the coefficients in different ways.
turned out that one should not omit the background const
a(g). If one does, then the fits become size dependent a
have worsex2 if all lattice sizes are included and better i
one omits the small lattices. We therefore allow for such
background parameter and include all lattices sizes in
fits.

If we leavea, b, andn to beg dependent we get consis-
tent results withn varying between 0.361 and 0.404~cf.
Table VI!. If we enforce ag-independent value ofn we find
n50.378(4) and the reasonablex252.2 but different values
for the background parameters.

Figure 9 is a log-log plot forcV and the results of the fits
~Table VI!. The increase of the value forn with decreasing
g indicates that the behavior ofcV is not yet asymptotic. We
observed already in the discussion of the Fisher zero t
scaling appears to be retarded towards more negative va
of g. Below ~in Sec. IVB5! we try to correct for this fact by
introducing a phenomenological scaling variable. Indeed w
find a consistent scaling behavior of the specific-heat ma
mum corresponding to a value ofn as determined in Sec.
IV B 2.

For the CLB cumulant we found that a fit to the FS
behavior in the form

VCLB,min~L !5@a~g!1b~g!L2/n~g!24#L24, ~4.6!

in the spirit of the correction term in the specific heat~4.5!,
appears to be suitable. Figure 10 and Table VII show o
result. The consistency with the results forcV is remarkable.

The values ofVCLB clearly tend to vanish in the thermo-
dynamic limit as expected for second-order transitions.

TABLE VI. Results of the fit tocV according to Eq.~4.5!.

g n a(g) b(g) x2/NDF

0 0.361~6! 0.07~18! 0.136~34! 2.3
-0.2 0.374~6! 0.35~9! 0.090~20! 0.3
-0.5 0.404~9! 0.10~10! 0.132~44! 1.0

FIG. 9. A log-log plot of specific-heatcV vs L together with the
fit results to form Eq.~4.5! and parameter values from Table VI.
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was unexpected that the scaling analysis led to sensible re-
sults in good agreement with the results for the specific heat.
~Note that the CLB cumulant is a fourth-order moment and
therefore in principle much more error prone. For the, in
comparison to spin model simulations, low statistics one can-
not put too much confidence in this quantity.!

If we omit lattice sizesN,6 the x2 improves, but the
values ofn do not change much. As for the specific heat, we
notice an increase ofn fit values with more negativeg which
we interpret as due to the retarded FSS.

The data forU4 show too little size dependence~or have
too large errors! to produce a trustworthy fit to the expected
leading scaling behavior~3.11!:

U4,min~L !5a~g!1b~g!L422/n. ~4.7!

A joint fit to all data (x2/NDF51.1! gives n50.35(3) and
values ofa52.60(3), 2.79(2), 2.81(2) which are, however,
clearly different from the value 1 expected at a first-order
phase transition.

4. Pseudocritical values

Let us denote our four definitions for pseudocritical val-
ues bybc

( i )(L) ~where i51, . . . ,4stands for the peak posi-
tions of cV , VCLB , U4 , and Rez0, respectively!. In the fits
we allow for the form

bc
~ i !~L !5bc1aiL

2l. ~4.8!

FIG. 10. A plot of ln(2VCLB) vs lnL for all three values ofg,
comparing with the fit according to Eq.~4.6!.

TABLE VII. Results for the fit ofVCLB,min according to Eq.
~4.6!.

g n a(g) b(g) x2/NDF

0 0.361~6! -0.23~1! -0.071~19! 2.3
-0.2 0.365~6! -0.41~5! -0.034~9! 0.3
-0.5 0.396~9! -0.22~5! -0.054~19! 1.1



of

On
er

to
the

nd

of

is-

me
ns

lly
-

a

ncy

s
e

-

e

s

6920 54J. JERSA´ K, C. B. LANG, AND T. NEUHAUS
For eachg we fit simultaneously to all typesi for a unique
bc andl but individual valuesai . We find that allowing for
another termO(L22) — as it is motivated from the possible
contribution of the curvature or lattice inhomogeneities a
as it seemed to be necessary for the analysis of theSH re-
sults in @2# — does not improve thex2 significantly.

Table VIII gives the fit values for the pseudocritica
points and 1/l. It is not generally true, thatl51/n ~cf. the
discussion in@55#! and indeed a recent study indicated
different value for the 2D Ising model on spherelike lattic
@44#. Accepting thiscaveatwe still find numbers of similar
size. If we allow for a correction termO(L22) due to the
background curvature of our lattices and fixl51/0.37~i.e.,
at a value 1/n suggested from the other data! the fit is of
comparable quality with compatible values forbc(g) and the
fit curves in the plots are indistinguishable by eye.

Altogether the errors on the pseudocritical points a
larger but the fits are not very satisfying~cf. Fig. 11 as an
example; the data and fits for the otherg values look simi-
lar!. The value ofl is not stringently determined by the dat
~or the theory!.

5. Scaling consistency

At finite lattices there are always corrections to FSS, d
pending on size, geometry, topology, and of course details
the action and the observables. Since Imz0 gives the cleanest
FSS signal, we use it as a phenomenological scaling varia

x[Imz0 ~4.9!

TABLE VIII. Results of the fits to the finite-size dependence
the four definitions of pseudocritical points according to Eq.~4.8!.

g bc 1/l x2/NDF

0 1.0190~1! 0.321~7! 5.8
-0.2 1.1709~2! 0.386~10! 1.6
-0.5 1.4381~1! 0.472~12! 2.5

FIG. 11. Fits to the data~for g520.2) for the pseudocritical
points ~according to the four different definitions described!. We
use the abscissa variableL21/n ~for the preferred valuen50.365) in
order to emphasize the nontrivial dependence.
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and study in this section the other observables as functions
x. ~Notice thatx is defined from the data.! That provides us
on the one hand with a consistency check for our results.
the other hand this assumption allows us to bring togeth
and combine results from different values ofg.

Assuming the FSS relationx;L21/n ~i.e., for Imz0) we
expect, e.g., for the specific heat the behavior@cf. Eq. ~3.9!#

cV,max~L !.a1b8L2/n24.a1bx22L24, ~4.10!

where we, as discussed, allow for the additive constant
represent the unknown background. Figure 12 shows
peak values of the specific heat for the data vsx22L24 to-
gether with the result of a linear fit to the data forN>5. For
this fit we had to assume different values of the backgrou
constant a50.22, 0.55, 0.40 for differentg50, 20.2,
20.5. The plot demonstrates the consistency of the FSS
the specific-heat values with that of Imz0. This is not surpris-
ing, since these quantities have a close relationship as d
cussed in Sec. III B 2.

6. Summary of the fit results

The cleanest and most consistent results on FSS co
from the imaginary part of the closest Fisher zero positio
and suggest a valuen50.365(8).

The peak values of the various cumulants are genera
consistent withn.0.35, . . . ,0.40 although they seem to pre
fer larger values ofn towards more negative values ofg; this
may be explained by later onset of scaling. Allowing for
smooth background~in the neighborhood of the peak! like a
constant added to the specific heat improves the consiste
of the scaling.

Even the pseudocritical positions — although with les
predictive power due to the uncertainty of the relation of th
shift exponentl to the inverse critical exponent 1/n — show
scaling with values of 1/l at least roughly of the same mag
nitude.

In general we find better scaling behavior than for th
more ‘‘edgy’’ lattices typesSH studied in@2#. Corrections to

of

FIG. 12. A plot of the peak values of the specific heat~all g, all
lattices sizes! vs 1/(x2L4) (x is the phenomenological scaling vari-
able defined in Eq.~4.9!; the corresponding error bars are shown a
well. The line represents a linear fit.
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FSS due to the curvature@which may be ofO(L22)# do not
seem to be necessary.

V. CONCLUSION

After 17 years@1# of development it has now been pos
sible to obtain a consistent picture of the scaling behavior
the pure compact U~1! lattice gauge theory at the
confinement-Coulomb phase transition. Using a radica
new kind of finite lattices, modern FSS methods and subst
tial computer power we have found a consistent picture
the scaling behavior of several bulk observables. Within t
limits of numerical evidence, our analysis strongly sugges
the existence of a non-Gaussian fixed point withn distinctly
different from 1/2~Gaussian value! or 1/4 ~first-order transi-
tion!. Its universality class extends in theb–g plane along
the phase transition line at negativeg at least unitlg520.5,
but includes also the Wilson action,g50.

This implies that using RG methods, one can construc
unitary continuum field theory in 4D which is neither asymp
totically free nor trivial. As we point out in@3#, this holds
also for several theories related to the U~1! lattice theory by
duality transformations. Thus rather than being an exerc
ground for lattice QCD, the pure compact U~1! lattice gauge
theory at its phase transition defines a sort of quantum fi
theory in 4D which is not used either in the standard mod
nor in its presently known extensions.

The natural question is whether these novel features of
U~1! lattice theory might be related to the difficulties en
countered in its numerical investigation. The strongly inte
acting monopole loops are an obvious candidate for conce
The previous studies using the surface of the 5D cubic latt
@2#, as well as our present results, suggest that the topolo
of the finite lattice is crucial. Forg<0 the two-state signal
vanishes on lattices with spherelike topology. However, th
fact alone does not yet confirm the speculations that t
winding monopole loops are the culprits. More detailed in
formation about the field configurations and more experien
with various lattices and boundary conditions are required
could be that the question is indeed more than technical a
its pursuit might lead to a deeper understanding of the no
Gaussian fixed point.
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APPENDIX: LATTICE DETAILS

The lattice typesSH@N# ~the surface of anN5 hypercube!
andS@N# have the same link connectivity structure. The lat
tice is built from plaquettes with four links each. Not all sites
have eight links, not all links are bordering six plaquettes
and not all plaquettes are faces of exactly four 3D cubes,
it is the case for the hypertorus. All 3D cubes are borderin
exactly four 4D cubes.

Let us denote the total number of sites byns , and the
number of sites withi links by ns,i . A corresponding nota-
tion holds for the links and plaquettes. We have the follow
ing:

sites: ns510(N21)4120(N21)212,
ns,5532,
ns,6580(N21)280,
ns,7580(N21)22160(N21)180,
ns,8510(N21)4260(N21)2180(N21)230,

links: nl540(N21)4140(N21)2,
nl ,4580(N21),
nl ,55160(N21)22160(N21),
nl ,6540(N21)42120(N21)2180(N21),

plaquettes: np560(N21)4120(N21)2,
np,3580(N21)2,
np,4560(N21)4260(N21)2,

3D cubes: n3c540(N21)4,
4D cubes: n4c510(N21)4.

For example, for N512 one has ns5148 832
.(19.64).V.

The number of plaquettes with just three 3D cubes~as
well as the corresponding numbers for links and sites! is
suppressed relative to the leading terms inO(1/N2). This is
typical for contributions due to curvature. We may say tha
the lattice becomes locally flat withO(1/N2).

Contrary to the usual hypercubic torus this lattice is no
self-dual. Possible monopole loops live on the dual lattic
SH8, which does have a few (np,3) plaquettes of three links
in addition to the usual ones.

Euler’s relation for spherelike lattices~of the type dis-
cussed, i.e., without further holes! is

ns2nl1np2n3c1n4c52 ~A1!

~whereas it is zero for the torus!.
The latticeSH, in analogy to the 2D situation, may be

imagined as an ensemble of 10 hypercubic lattices, glu
together at their boundaries. The latticeS is constructed by a
projection ofSH from its center onto the concentric unit
sphereS4.
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