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We investigate the confinement-Coulomb phase transition in the four-dimen&ki)gbure compact (1)
gauge theory on spherical lattices. The action contains the Wilson coyplargl the double-charge coupling
v. The lattice is obtained from the 4D surface of the 5D cubic lattice by its radial projection onto a 4D sphere,
and made homogeneous by means of appropriate weight factors for individual plaquette contributions to the
action. On such lattices the two-state signal, impeding the studies of this theory on toroidal lattices, is absent
for y=<0. Furthermore, here a consistent finite-size scaling behavior of several bulk observables is found, with
the correlation length exponentin the rangev=0.35-0.40. These observables include Fisher zeros, specific-
heat, and cumulant extrema as well as pseudocritical valugsabffixed yv. The most reliable determination
of v by means of the Fisher zeros gives 0.3658). Thephase transition ay<0 is thus very probably of
second order and belongs to the universality class of a non-Gaussian fixed $0B&6-282(96)00423-7

PACS numbsgs): 11.15.Ha, 02.70.Fj, 05.70.Jk, 64.60.Fr

I. INTRODUCTION the product of W1) link variables around a plaquette. It

was conjectured, that the first-order phase transition changes

into a second-order one at a tricritical point at small negative
The introduction of a space-time lattice for quantum fieldya1yes ofy, but that was never confirmed in actual simula-

theories serves several purposes. It provides a regularizatiqyng aty<0. If there is indeed a second-order transition, its

for the renormalization scheme; it allows us to apply efﬁCientproperties have not been determined up today.

computational methods to perform the functional integra- 5 the other hand, both computational and data analysis

tions; it may be considered a mere approximation scheme Qg \niques have progressed. This provides us with the possi-
the problem in the continuum. Among the four—dlmensmnalbi”ty to perform a thorough FSS study of this model in a

(4D) gauge field theories with Lie groups the one wittllJ 1oy context. Practically all other studies have dealt with the
symmetry at first sight appears to be the simplest to test thigiangard periodic boundary conditions, i.e., hypertorus topol-

approach. It is also of considerable interest as it has manyqy or the lattices. It has, however, been realized that there
features in common with QCD, like a confining strong COU-gre nonlocal excitations in the system — closed monopole

p!ipg phase, topological excita.ti.ons, and gauge b_aIIs. In adroops — that may extend over the whole lattice. Therefore
dItIOI’l' it shpws a phase transition to a phase with a Wea_lfhe essentially local updating algorithms used for gauge
coupll_ng signature, a massless photon_, and a long range heories, together with the boundary conditions, may affect
teraction. In fact it has been the first lattice gauge model with, o malization properties. One expects, that in the thermody-
continuous gauge group to be studied by the computationgiamic |imit the “continuum” properties of the system are
methods that became available in the 1980s independent of the global topology of the system, if this
Below (in Sec. 1B we will discuss the various results pocomes locally flat. For these reasons it was suggested to
obtained since. However, in summary we may say that up Qi ate the model on lattices with spherelike topol¢ay
now there is no definite answer to the critical properties Ofamounting to modified boundary conditions, such that closed
the phase transition. In most simulations a two-state signal %ops are always homotopically equivalent to points. The
the phase transition indicated a first-order transition. On th%pherelike topology allows the monopoles more freedom in
other hand, the critical behavior according to such a transig, ey dynamics without changing the action.
tion has not been confirmed in 'thorough finite-si;g scaling One generally expects that the thermodynamic properties
(FSS studies. The problem persisted when the original Wil-o¢ e hylk phasédefined by the behavior of the free energy
son action containing only cd3g) was extended to include e ynjt volume in the thermodynamic limitre not affected
the double-charge coupling by contributions which grow slower than the total volume.
Boundary contributions are suppress@dl/L) relative to
S=-2, [BcogOp)+ ycog20p)]. (1.1)  the leading term, curvature terms at le@$tl/L?), and there-
P fore they should not change the critical exponents of the bulk
phase. This does not necessarily hold for the ground state.
Here®p e[ 0,27) is the plaquette angle, i.e., the argument of For example, at phase transitions of first order the phase

A. Motivation
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mixture may be different, depending on boundaries or evemgested by the observation that the regions w0 and
one individual spin, or due to an overall external field van-y=0 are connected by the renormalization grgRgs) flows
ishing O(1/LP). A similar influence may come from the cur- [9].

vature, even if thinned out over the volume @(1/L?). Following a brief review of the situation in the(l) pure
However, if the manifold becomes locally flat in the thermo-gauge model we then introduce the spherical lattice in Sec.
dynamic limit the systems universatritical properties !l. (Further technical details are given in the Appendix.

should be independent of the global topological structureSec. lll we present the Monte Carlo simulation and discuss
Otherwise we could hardly assume that we can do reliabléh€ observables in some detail, including the expected FSS
physics on earth without definite knowledge about the topobehavior. The results and their analysis are summarized in
logical details of the universe. Sec. IV, followed by our conclusions.

Whereas in the original stud?] the surface of a 5D cube
was used, we here choose a discretization of the sphere,
where the curvature is distributed more homogeneously over
the lattice. Although the system is nonhomogeneous on the U(1) is the most elementary Lie group that can be used to
scale of the lattice constant, it is homogeneous and isotropiconstruct a quantum gauge field theory. Yet, when formu-
on larger scales. As will be demonstrated here, in this 4Dated on a lattice, the pure (1) gauge theory turned out
system with the topology of the surface of a 5D sphere wainexpectedly to be one of the most intriguing and less un-
find no two-state signal on lattices with up to almost*20 derstood quantum gauge models. The awareness of this fact
points. Of course we cannot exclude the possibility that éhas developed with an accumulation of the numerical expe-
two-state signal reappears for even larger lattices. Howeverience. In this section we give a brief description of this
our FSS analysis leads to consistent results for a phase trahistorical development. We apologize for quoting only a sub-
sition of second-order foy<0. jectively chosen part of a much larger number of valuable

The best measurement of the correlation length criticapapers.
exponentr by means of the FSS behavior of the Fisher zero  Since the introduction of lattice gauge theories by Wilson
gives v=0.3658). Less precise FSS analyses of severa[10], the pure compact (1) theory has been of interest as a
other bulk observables are consistent withvalues in the theory with a rigorously establishéd1,12 phase transition
interval »=0.35-0.40. As we argue i3], due to rigorous between the confinement and the free chaf@eulomb
dual relationships our results imply that also the Coulombphases at zero temperature. One reason was the importance
gas of monopole loopE4] and the noncompact (W) Higgs ~ of topological excitations, the monopoles, for confinement,
model at large negative squared bare nfrezen supercon- as manifested by their prominent role in this phase transition
ductop [5] have a continuum limit described by the same[4,13—17. Another purpose was to study it as a prototype
non-Gaussian fixed point. Some further related models arexample for applications of numerical methods of statistical
discussed if6]. physics in a lattice gauge theory, in particular an investiga-

The first-order signal persists — also for the discussedion of the continuum limit at the phase transition. However,
spherelike geometries — at valugs-0.2. Since scaling may the lesson has been that this phase transition provides no
be garbled close to tricritical points we concentrated orsimple exercise.
negative values of the double-charge couplimgin our In the very first numerical investigatiorj4,18-21, re-
study. Scaling and FSS is expected to improve at larger disstricted toy=0 and small lattices, a behavior consistent with
tance from the first-order part of the phase transition linea second-order phase transition@t1 was observed. But
Nevertheless, ay=0 the two-state signal is still absent and this order was questioned by the subsequent observation of a
the scaling behavior is consistent with that foundyat0. two-state signal on larger lattic¢&2]. Such a signal could

Let us add a remark on the extended action consideredmply that the phase transition a=0 is actually of weak
Some time ago it was pointed o{if], that, although the first order, which would prevent taking a continuum limit
Wilson and the heat kernéVillain) action do have reflection there. The question was, and remained to be, whether this
positivity, some actions do not. Positivity is a sufficient, butsignal may be a finite-size effect.
not a necessary condition for unitarity; it guarantees the ex- In the model with extended Wilson actigid.l) it was
istence of a positive definite scalar product and the spectrdbund[23] that the confinement-Coulomb phase transition is
condition, one of the formal conditions for the existence of aclearly of first order fory=0.2, and weakens with decreas-
continuum limit field theory8]. The actions with the param- ing . This suggested that the order of the transition changes
eter valuesy<<0 considered here are not reflection positive.when vy is decreased, presumably at a tricritical point.

They share this property with other actions such as, e.g., the The question at which value of this happens turned out
(Symanzik improved actions. to be very difficult. First, even at large negatiye a two-

On the other hand, if reflection positivity holds on a partstate signal has been observed, e.g.yat—0.5 on the 8
of a critical surface that is in the domain of attraction of alattice [24]. Second, tricritical points are known to cause in-
fixed point of some renormalization group transformation,tricate finite-size effectg25], easily mocking up a false order
we expect that it should be satisfied everywhere in that doef the phase transition.
main on large scales. Unitarity violating states such as ghosts In the hope to clarify the situation, an investigation of the
should then decouple. We therefore find it justified to studystrongly first-order part of the phase transition line at
the action near candidates for critical points even outside the=0.2 was performe@24]. There the latent hedte can be
region y=0, where reflection positivity is respected on the determined reliably even on moderately large lattices. Its in-
scale of the lattice spacing. Unitarity at<0 is also sug- dependence on the lattice size was checked very carefully.

B. Situation of U(1) pure gauge studies
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The extrapolation ofAe to zero with decreasing by means changes the bulk properties of the systg38,40. In that
of the power law case one explores the phase diagram in different regions of
p : A" .
e the space of couplings and the position of the phase transi-
Aex(y—yToF)Pu (1.2 tion in B moves to different values, depending on the extra
couplings. None of these studies has led to phase transitions
suggested that the order of the transition changes at the tri@f Sécond order, though. _ _
ritical point (TCP) with 5"°P=—0.11(5), implying first- However, the cause for the two-state signal on the toroidal
order phase transition at=0. lattice, and of its vanishing on a lattice with the topology of
This extrapolation procedure is an attempt to control® sphere, is not yet fully under_stood. Possibly the tnwal ﬂ_rst
finite-size effects, but it uses the assumption that the powdfoMotopy group of such a lattice allows a smooth vanishing
law behavior(1.2), which the data in the investigated region ©f Winding monopole loops in simulations. But some other
y=0.2—0.5 are consistent with, indeed holds throughout thd €cent results do not seem to support this interpretd#or-
whole interval betweery=0.5 andy=y'“". This assump- 42]. he other hand. f v of th _ imi
tion has remained unverified. Another possible uncertainty irf On't e_%t ir an 'I or a ?tu y % the contmuulm |m|tdon
[24] was the determination dfe at a strong first-order tran- attices with the topology of a sphere, a complete under-

sition, without the more advanced methods of investigatiorst@nding of the dynamics of the two-state signal on a torus is
of such transition§26. not really necessary. What is required is a construction of a

Monte Carlo RG(MCRG) studies[27,28,9,29 did not spherelike lattice which is homogeneous, in order to avoid

confirm this position of the tricritical point at negatiye Of the zo_ssizbly l;e:]a_lteq prorl;JIer_ns \r/]v_ith the FSS arr:alysis, encoun-

course, also the MCRG approach suffers from ambiguitie§ere in[2]. Ac |eV|ngr: a.t in t IS paper, ]:Neh ope tf(.) give a

due to a small number of RG steps and a restricted numb W momentum to the investigation of the confinement-
_oulomb phase transition in the pure compadi)Ugauge

of couplings considered. Therefore also these studies r h he lattice. A . t th " limit
mained inconclusive about the order of the transition arouncﬁ eory on the lattice. A construction of the continuum limi

y=0 in the thermodynamic limitalthough they all observed appears now to be feasible.
clear two-state signals . __Il. SPHERELIKE LATTICES AND LATTICE GEOMETRY
In spite of this, numerous attempts to determine the criti-
cal exponentv provided roughly consistent values in the In an attempt to formulate the theory without modification
range v=0.28-0.42. These studies used various methodsof the locally defined plaquette action and without forbidding
the analytic calculations[30,31], the FSS analysis or hindering the dynamic evolution of monopole loops, the
[18,19,23,32, the scaling of the string tensidi20,33—35, lattice topology was modified. The usual perio¢tic antipe-
and the MCRG method27,28,9,36,28 Three actions, riodic) boundary conditions correspond to the topology of a
Wilson-, extended Wilson-, and Villain-type actions have4D torusT* with the first homotopy groug“. Closed loops
been used. (or networks of loopscannot necessarily be contracted to a
This suggested that the pure compag¢i)Uattice theory  point and the corresponding ground state may be classified
might have an interesting continuum limit at the accordingly. The original motivation to divert from this lat-
confinement-Coulomb phase transition, pondered, e.g., itice structure was to study the possible influence of this prop-
[5,37]. However, the two-state signal, observed on finite lat-erty on the dynamics of the phase transition.
tices even fory<0 [24] as well as for the Villain actiop36], In [2] it was therefore suggested to simulate and study the
hindered the investigations of this possibility. Even if this model on a lattice with spherelike topology, in particular on
signal is only a finite-size effect and the transition in thethe surfaceSHN] of a 5D hypercubic lattice of siz&l®.
infinite volume limit is genuinely of second order, it repre- This lattice may be best visualized in analogy to the 2D
sents a serious impediment for a precise FSS analysis @urface of a 3D cubic lattice. It may also be considered as a
MCRG studies. Because of this the investigation of the pureollection of 10 hypercubic lattices of sin¢, glued together
compact Y1) gauge theory lost its momentum. Until now at their boundaries. This implies that one can expect the
there is no established second-order phase transition with asame critical coupling in the thermodynamic limit as for the
undisputed determination of critical indices in this model. usual torus. This was indeed verified in the Monte Carlo
All the above-mentioned numerical work has been per<calculationg2]. Details and parameters of the geometry are
formed on 4D toroidal lattices. Recently, following earlier listed in the Appendix.
suggestion$38,28,9, two of the present authors speculated The so-defined lattice is locally flat, except at certain
that the two-state signal at<0 may be related to monopole plaquetteg(D —2)-dimensional elemenswhere the curva-
loops winding around the toroidal lattice, and trapped inture is concentrated, a well-known property of Regge skel-
simulations with local update algorithnig]. They used the etons. The unusual features include plaquettes bordering
4D surface of a 5D cubic lattice instead of the torus, andonly three 3D cube&nstead of the usual fourlinks border-
observed that ay=0 the two-state signal vanishes on lat- ing less than six plaquettes and sites with less than eight
tices of all investigated sizes. links. These curvaturelike contributions as we might call
Choosing a spherelike topology provides a way to allowthem in the absence of a strict theory in 4D are suppressed
the monopoles more freedom in their dynamics without af-O(1/N?) relative to the leading terms in the action.
fecting them locally by changing the action. We consider this In an attempt to distribute these local inhomogeneities
as preferable to adding terms to the action that forbid omore uniformly over the lattice we introduced the “almost
restrict the occurrence of monopoles, which producesmooth” spherical latticeS[N]. In the construction we
O(LP) contributions to the total free energy and thusproject sites, links, and plaquettes 8H N] (or its dual



6912 J. JERé/K, C. B. LANG, AND T. NEUHAUS 54

SH'[N]) onto the surface of a concentric 4D sphere and TABLE I. Effective volumes for the studied lattic&H N]. We
introduce weight factors similar to those used#g] in their ~ also give the value of =V"* which would give the base length for

study of random triangulated lattices: a hypertorus lattice with the same volume.
N \% L
S= - 2, Wp[ fcog Op) + yc0d 26)) ] " 251 ”
5 2576.6 7.1
with 6 6268.1 8.9
7 12986.9 10.7
Ap 8 24064.1 12.5
Wo= AL 2D o 41074.6 14.2
Ap . .
10 65837.3 16.0
Here, Ap and A denote the areas of the correspondingl2 147113.8 19.6

plaquette and its dual, respectively, of the projected lattice.
As discussed if43] in the situation of triangulated ran- _ _ ) ) _

dom lattices, one has to distribute the total integration vol-2S the typical size quantity. F&H this would be just the

ume over all contributions to the action, i.e., the plaquettélumber of sites, foE it is very close to this value. A length

terms in our case. This may be done with the help of the duacale may be defined as

lattice, where to each site, link or plaquette there is an asso- Ua

ciated dual 4D cube, 3D cube, or plaquette. The dual lattice L=V (2.3

sites in our situation are constructed from the barycenters of ) ) ) )

the 4D cubes that have been projected to the sp&&réol- Table | summarizes the effective volumes for the lattice sizes

lowed by an adjusting projection of these points to theUSed in our study. . _ _
sphere. Further reasoning according [48] leads to the For strictly asymptotic dependencies as they come up in

weight factorswp in Eq. (2.1). This choice is not unique, but FSS studies it is irrelevant, whether one ubker L. How-
reproduces the usual continuum aCtE’i' in the naive con-  €ver, for moderately sized finite systems a suitable choice
tinuum limit g—0 (8—o) and is thus hVomogeneous in this Improves the approach to the asymptotic behavior. Let us

limit. We study the system at finit@; there slight distortions mention in this context that i44] different lattice geo-

from the regular spherical surface are possible. The value dpetries were compared and it was dgmonstrated, th‘."lt the
scaling curves show best agreement with each other, if one

Beit Might be modified due to the weight factors and thus; X .
does not necessarily agree with that of the torus bi indeed uses — the size derived from the total volume as
opposed to the base lengtth — as size variable. In the

Technically we have to introduce some approximations. : :
Usually the plaquettes — constructed via the projection opresent work we cannot compare with torus results, since for

the sites to the sphere — will not be flat. Plaquette areas alIl%ose the two-state signal obscures the measured values of

therefore determined from the sum of two triangles. Also forne cumulants.

this reason the curvature in this formulation will not be per-

fectly uniformly distributed. In order to achieve this, we ll. SIMULATION METHODS AND STATISTICS

would have to rely on a triangulated lattice. This would im- : .

ply a significant change of the action, which we wanted to, helrne agrgartl\ﬁ;é:;?eizgiV;earsugf :E:t fosreljétc')%?iéypﬁg

avoid. On the other hand, we expect these effects to becomte_0 5 but no such indi?:ations —0 IEor this reagin we

irrelevant in a situation with a large correlation length. The?{_W : t’ died th tiof2.1) of th = h. rical lattics at th

consistency of the found FSS behavior justifies these simpli—0 studied the actiolie..) of the spherical fatlice at the

fications. valueSy_=0, —0.2, —0.5. Preliminary results have been pre-
The connectivity properties &H andS are identical. In sented in{45,48.

the computer programs the geometry is implemented with _ _

tables and the weight factoss, are precalculated. During A. Updating and measuring

the development of the program and in the early stages of the e have worked with lattice§[N] for N ranging be-

analysis we also determined the monopole positi@msthe  tween 4 and 12. The couplings were chosen in the immediate

dual lattice and reproduced them graphically. We observedyeighborhood of the pseudocritical values 8f For the

the expected properties: The monopole loops were alwaygnalysis we determined the histograms of the weighted sum
closed; the smallest loops had lengtlc8rner plaquettes on ¢ plaguette values

the dual latticg they fluctuated freely, appearing and disap-
pearing without noticeable correlation with positions close to
corners. This also served as a check of the consistency of the
connectivity tables.

In our discussions we will refer to theffectivelattice  note that this is not the total energy, but just the part corre-
volume sponding to the coupling parametgr it coincides with the
total plaquette energy for the Wilson actiop=0. Any
:} scaling- or two-state signal should be observable in that
V=22 Wp (2.2 _ . :
6F quantity. We also define the density

E=D, wpcoBPp. (3.2
P
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TABLE II. Statistics of the data for the studied values gf  analysis and for the representati@3). For the plots we use
Lattice base lengtN, total numbemn of configurations in multiples  rebinned versions with only 500 bins maximum.

of 1P, range ofg values, maximalr,; values(from a fit to all The total CPU time spent for the calculations on worksta-
values, as discussed in the text; errors are typically 10% of the¢ions and on a Cray-YMP sums up to 6800 h in Cray-YMP
values. units.
Y N i p range Tint max B. Observables and FSS
0 4 1.1 0.98-1.025 12
1. Cumulants
6 1.0 1-1.025 56
) 1.1 1.0125-1.0275 150 We determined the second- and fourth-order cumulants of
10 1.47 1.01-1.025 304 the observabl&. Because of the analogy to the internal en-
ergy (identical toE only for y=0) we call the second-order
-0.2 4 11 1.07-1.2 24 cumulant the specific heat. The specific-heat, the Challa-
5 18 1.15-1.175 63 Landau-Binder cumularf48], and another fourth-order cu-
6 1.6 113-1.21 116 mulant suggested by Bindécf. [49,50) are defined through
7 1.1 1.14-1.175 188
8 1.6 1.155-1.175 272 1 2
9 11 1.1655-1.1715 367 cv(B,L)= g (E—(E), (3.9
10 1.0 1.1635-1.1715 583
0.5 4 48 1.3-1.65 37 Vers(B.L)=— 1 <(E2_<E2>)2>’ 3.6
5 1.8 1.38-1.47 76 3 (B)?
6 2.1 1.35-1.5 149
7 1.9 1.402-1.452 311 ~ {(E=(END
8 15 1.4-1.455 332 Ua(B.L)= (E—(E))??" S
9 1.8 1.42-1.442 480
10 1.55 1.42-1.442 473 The positions and values of their respective extrema are used
12 1.6 1.43-1.44 1565 for the FSS analysis.

From the usual scaling hypothegis1-55 one expects
for the singular part of the free energy density the scaling
behavior

e= E/; wp=E/(6V). (3.2

f(r,L)=L"Pf(7L1" 1), (3.9

We combined the various histograttier fixed y but dif-
ferent 8) with the help of the Ferrenberg-Swendsen multi-
histogram reweighting techniq(i47]. For eachy we thereby
construct the density of statpgE;y). The representation o
the partition function

wherer=(1- B/B.) denotes the reduced coupling ands

a length scale parameter. From this one derives the scaling
f behavior of the cumulants. At a second-order phase transi-
tion we expecifor D=4 anda>0)

Cv,ma L)~ L, (3.9
Z(B,7)=2 p(E;y)ex - BE) (3.3
VCLB,min(L)~La/V74y (3.10)
allows us to determine various observables for continuous
values of through UsmiL)=0(1)+0O(L™ "), (3.11
BC(L)_BCNL_)\- (3-12)

1
n\ — . n
(EN= 755> PEVEeR—FE). (34
For =0 there are logarithmic terms. The asymptotic value
Since we never observed two-state signals we did not implesf U, ,i, depends on the details of the distribution density
ment multicanonical updatini®6]. We used a three-hit Me- p(E) and is 3 for a Gaussian distribution. Mean field values
tropolis update; fory=0 we included an additional overre- are v=1/2 and with Josephson’s law=2—-Dv=0.
laxation step(the autocorrelation length decreased by a We denote bys (L) definitions for pseudocritical points
factor of about 2 For each lattice size at eaghwe typically  like the positions of the extrema in the cumulants. The so-
accumulatedO(10°) updates, which is between %@nd called shift exponenk is for many models equal to &/ but
10* times the integrated autocorrelation length for the obsot necessarily so in general; such an identity is not a nec-
servableE (cf. Table I). essary result of FS&f. the discussion ifi55]). We return to
The histograms had up to 40ins in order to exclude any this issue later. Furthermora priori we know nothing about
possible influence due to binning. In fact, by rebinning wethe absolute size of the multiplicative coefficients in the scal-
found no changes within single precision down@¢500) ing formulas. They depend on the details of the action, the
bins. Due to the fine binning the raw histograms have a noisjattice geometry and the topolo@$5].
appearance, which is irrelevant for the Ferrenberg-Swendsen For first-order transitions one expects the FSS behavior
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1 quality estimator for the critical exponemt (cf. [59] for a
L™Pcy,ma— Z(eo_ed)zu (3.13  recent high statistics study of the 4D Ising model, where it
was possible to identify the logarithmic corrections to scal-

1 (e2—e?)? ing on basis of the Lee-Yang zerf6]). As will be demon-

+0O(L™P), (3.14  strated below this quantity appears to have small corrections
to the leading FSS behavior in our environment; this obser-
vation is analogous to other recent investigations of sphere-

Vel min— — 12 (e,eq)?

-D
Ugmin—1+0(L D), (319 ke lattices in 2D[60,44.
_ From the scaling arguments for the free energy we expect
Be(L) = B=O(LP). (3.16 Jar gy we exp
Heree, andey denote the discontinuous values of the energy |zo(L)— Bc|~L . (3.18

density at the phase transition point.

_As discussed, in the considered lattice geometry there arghjs provides an upper bound for the real and imaginary part
inhomogeneities in the sense that the coordination numbersy 2o, in particular
of some sites, links and plaquettes deviate from the usual

torus numbers. For th8H lattices these may be considered

as lattice inhomogeneities. Their contribution to the total free

energy is suppresse@d(1/N?)=0(V~2?P). In our smoothed

version of that latticeS, the inhomogeneous contribution RQO(L)—ﬁfO(L’l’V). (3.20
should be smaller. There is, however, still a possible contri-

bution of the total curvature to the free energy, which isaithough in some cases the angle, under which the zeros
suppressed with the same ordef. also the discussion for approach the real axiglefined as the angle of a line connect-
the 2D Ising mode[44]). Thus, in principle, we also may ing the two closest zerpds known (e.g., #/2 for the 2D
expect “surface” corrections 0O(V~2P) in all FSS rela- Ising model in the Onsager solutigh7], =/4 in the mean
tions. Indeed such contributions have been observed for thg|q solution for the 4D¢* model[61], both on cubic lat-
SH lattices[2]. I_t turns out that they are much smaller in our ices with torus topology there is no FSS theory for this
present study, in fact too small to study them. angle of approach with regard to the size Depending on
details of the model, the geometry and the topology réat
part — which by analogy to the cumulants we call a pseud-
Equation(3.3) defines implicitly an analytic continuation ocritical value — may approach the asymptotic value faster,
to complex values of3 not too far away from the real axis. i.e., with a shift exponenh larger than 1# [55]. Such a
Therefore it is possible to determine the nearby zeros of theehavior has been observed in a recent study of the 2D Ising
partition function[56] in the complexs plane, the so-called model[44].
Fisher zero$57] (cf. [58]). We also mention here that the position of the closest
One should add a warning concerning technical aspect$zisher zero is related to the peak position and value of the
The histograms are binned, having both, upper and lowespecific heat. Since the partition function may be expressed
limits for En.x and En, as well as a hin size by the Vieta product of all its zerdg;}, the specific heat is
A=(Emax— Emin) X104 The representation(3.3) for  proportional to
B=Br+ipB, therefore is a discrete Fourier transformation. It
will induce a periodicity inB, due to the bin size and an 1
effective grid with grid spacing 2/(Emax— Emin) (although D (3.2
the values of the partition functiod are well defined even T (B2)
between the grid points, they carry no additional informa-
tion). and therefore the leading contribution Y¥Xc,, near the
Usually the distribution is similar to a Gaussian distribu- phase transition is proportional to () ~2. The peak posi-
tion; let us for the sake of the argument assume such a foriion is in leading order given by Rg. Of course there are
further contributions due to the other zeros and a possible
p(E)exp — BrE)=exd —c(E—Eg)?]. (3.1  background from an entire function.
Also these observables may in principle exhibit correc-

From Eq.(3.3) one then expects an oscillatory behavior of ions to FSS due to curvature and topology as discussed
Z proportional to exp(3Eg). This is indeed observed in the 55y

calculation. In the search for partition function zeros one
starts with an identification of sign changes ofnand
ReZ. The rapidly oscillating phase factor may confuse the IV. RESULTS AND DATA ANALYSIS
pattern and one has to work with a very fine resolution and to
carefully combine the sign-change analysis with a search in
|Z|. Also the grid structure may interfere with these oscilla- ~ For all individual runs we determined the integrated auto-
tions and one has to proceed with care. correlation for the observablg,

S(_) real and imaginary parts of the clqsest Flsh_er ze_tos 1 (EoE.)— (E)?
provide further(even observables. In particular the imagi ==t D _ 4.1)
nary part of the zero closest to the real axis provides a high mET2 (E9—(E)

Imzo(L)=0(L ™), (3.19

2. Fisher zeros

A. Autocorrelation and error analysis

n>0
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FIG. 1. The maximum values of the integrated autocorrelation F'CG- 2. PS_GUdOhiStOQramS as functioneoét y=—0.2 and for
length for the energy observable together with the fit to an expolattices sizeN=4,5,6, 7,8, 9, 1@from left to righy at the reslPeCd'
nential dependence on the lattice size. tive peak positions of the specific héat Table Ill) and normalize

to unit maximum value.

(Here the index indicates th&th configuration measured in That value is substantially larger than the vahse?2 ex-
the Markov process.The inverse value provided us with a pected for the random walk dynamics of local algorithms and
weight factor of the corresponding data sample in the multidemonstrated for Gaussian models. This behavior is indica-
histogram analysis. tive of a more complex dynamics than it is usually antici-
For the maximum values of the autocorrelation lengths weyated for systems with local excitations. The nonlocality of
produced two sets of values. One was the maximal observaie monopole loops may be responsible for the observed
values ofr, ¢ for all samples for the given lattice size. The effect. On the other hand, we may not yet be asymptotic and
other resulted from a fit to the values of(3) to a peak the determination of reliable values for this exponent is no-
shaped curve which has its peak position where the specifi@riously difficult.
heat(see the discussion below of the analysis for the cumu- As a consistency check we also determined autocorrela-
lantg assumes its maximum. In the subsequent analysis wgon times from a fit to an exponential decay and from block-
discuss only the results due to the first set. The second set lealy analysis. The resulting values were typically proportional
to similar results. to those discussed above, although less reliable, i.e., with
The maximum values of;; ¢ (cf. Table I)) increase from |arge statistical fluctuations. The exponential autocorrelation
values of =12 for y=0,L=4 up to =1600 for time and its dynamical critical exponent are upper bounds to
y=-0.5,L=12. This demonstrates the necessity to workthe integrated autocorrelation tintef. [62]).
with large samples of several A@onfigurations for each The statistical errors for all our raw datae., positions
value of B, at least for the large lattices. and values of cumulant extrema and positions of the Fisher
At second-order phase transitions the maximum values aferos were determined with the jackknife method. From the
the integrated autocorrelation time provides an estimate fooriginal set of value€ for each configuration we chose 10

the corresponding dynamical critical exponeptthrough different subsets by omitting 10% of the numbers, providing
10 histograms. The Ferrenberg-Swendsen analysis then was
Tin,e=min(L,&)% (4.2 repeated for all these subhistograms and parameters for the

cumulants(peak positions, values, Fisher zeregere deter-
(where ¢ denotes the correlation lengthat first-order tran-  mined. The distribution of these numbers defined the errors
sitions one expects that the autocorrelation length grows exaccording to the jackknife procedure. The central values
ponentially=expcL® ). In Fig. 1 a log-log plot shows that were taken from the analysis of the complete data. The fits
the size dependence is indeed compatible with(Bg). We  were performed using these central values and errors.
assume that the peak values correspond to the point where The simulations on the Cray-YMP have been performed

employing a vectorized version of the shift-register random

Tint.£( Bpea = C( y)LZE. 4.3 number generator, which in its actual implementation uses

XOR operations in between thieandi + 103 element to gen-
A simultaneous fit to all three data séfer the three values ~erate thei +205 element of the sequence. For the programs
of y) gives for the dynamical critical exponent ON the workstations we used a corrected ver§|0R¢7iRRY
ze=2.856). The coefficients grow fromc(0)=0.12 up to [53] baseq on the “subtract-and-borrow” version of a lagged
c(—0.5)=0.32. The results foy=0 were obtained with an Fibonacci algorithm.
additional overrelaxation step in the Metropolis updating.
Although the absolute value of the autocorrelation lengths
decreased by a factor of about 2, the dynamical critical ex- We analyzed the final numbers for the pseudocritical
ponent appears not to be affected. points (the extrema positions of the cumulants and the real

B. Results: Data and fits
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T T T T T T grams. From the densities one may construct pseudohisto-

12 1=0.5 1e0.2 720 | grams (or reweighted histogramsat arbitrary values of3
L s[12] s[10] s[10] ] (which should be in the domain covered by the individual
c histogramg
8 i h(E; y)=p(E;y)exp — BE). (4.9
6 7 These interpolate the individual histograms but they also
i T bring together and represent all histogram data.
A T In Fig. 2 we plot the pseudohistograms fgr= —0.2 for
r 1 all lattice sizes studied and determined at the peak positions
2r . of the specific-heat. They are normalized to unity at their
respective maxima. No double-peak structure is observable.
0 . ' In Fig. 3 the pseudohistograms for the largest lattice sizes are

plotted for all three values of. (An individual histogram at

v=0 is shown in[3].) Again, there is no indication of a

) ) ] discontinuity signal. Such an observation was made already

FIG. 3. Pseudohistograms ‘esfor lattices (from left to rlghl). in the study of theSH lattice (at y=0) in [2].

S[12] (y=-05),S[10] (y=—-0.2), andS [10] (y=0) at their A5 the individual histograms show no two-peak struc-

respective peak positions of the specific heat and normalized to unjf, o “Actally, if the statistics are small, spurious signals may

maximum. appear, but with increasing statistics they always vanished.
» ) (They also were not at consistent positigrisnally we men-

part of the position of the closest Fisher Zerthe extrema  +jon that there are studies at established but weak first-order

values of the cumulants and the imaginary part of the Fishefansitions (the 2D five-state Potts modelon similar

zero. The fits were performed both for all lattices sizes a“dspherelike lattices, where a two-state signal has been ob-
for a subset of lattices wittN=6, in order to estimate t0 geryved clearly46]. Therefore we find no indication, that the
which amount we see asymptotic behavior. particular kind of lattice studied here has a tendency to smear
out weak two-state signals.

A two-peak distribution is an indicator of a possible first-

From the combination of histograms determined for dif- order transition. However, in order to establish this order one
ferent values ofB according to the Ferrenberg-Swendsenshould also find further signals for coexistence of phases like
technique we obtain the distribution densitig€;y) in Eq. FSS consistent withv=1/D=1/4, correct scaling of the
(3.3). A necessary condition for the effectiveness of the apminimum between the peaKsuppressed due to the 3D in-
proach is sufficient overlap between the individual histo-terface in the distribution and tunneling probability

1. Histograms

TABLE Ill. Extrema positions of the cumulants and the real part of the positions of the closest Fisher

Zeros.

Y N B(cy) B(VcLe) B(Uy) Re(zo)

0 4 1.00273) 0.999@4) 1.00513) 1.00474)
6 1.01512) 1.01481) 1.01542) 1.01562)
8 1.01791) 1.01791) 1.01821) 1.01821)
10 1.01831) 1.01831) 1.01851) 1.01851)

0.2 4 1.147%) 1.14225) 1.151211) 1.151412)
5 1.15884) 1.15745) 1.16075) 1.16085)
6 1.164@3) 1.16343) 1.16527) 1.165@12)
7 1.16644) 1.16624) 1.167%4) 1.16772)
8 1.16811) 1.168Q1) 1.168%3) 1.16843)
9 1.16881) 1.16871) 1.169G1) 1.169@1)
10 1.169%1) 1.169%1) 1.16982) 1.16972)

-0.5 4 1.40677) 1.398710) 1.412615) 1.407@42)
5 1.42027) 1.41778) 1.423913) 1.424617)
6 1.427@6) 1.42626) 1.42915) 1.42927)
7 1.43074) 1.43044) 1.43206) 1.43185)
8 1.4325%2) 1.43242) 1.43283) 1.43283)
9 1.434Q7) 1.43398) 1.435422) 1.43534)
10 1.43462) 1.434%2) 1.43492) 1.43492)
12 1.43596) 1.43596) 1.436Q1) 1.436%1)
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TABLE IV. Extrema values of the cumulants and the imaginary part of the positions of the closest Fisher

Zeros.

Y N Cv Veis U, Im(z)

0 4 1.851) -0.1421)x 107 ? 2.772) 0.030G5)
6 3.935) -0.3625)x 103 2.6702) 0.00662)
8 6.7514) -0.1573)x 1073 2.61(3) 0.00241)
10 9.4723) -0.79220)x 104 2.652) 0.00131)

-0.2 4 1.221) -0.9826)x 103 2.831) 0.038810)
5 1.631) -0.3953)x 103 2.81(1) 0.01854)
6 2.013) -0.2013)x 103 2.822) 0.011214)
7 2.545) -0.1172)x 1073 2.804) 0.00633)
8 3.084) -0.7559)x 10" * 2.8012) 0.00432)
9 3.549) -0.50312)x 1074 2.7505) 0.00292)
10 4.2213) -0.37%11)x 1074 2.71(8) 0.002G2)

-0.5 4 0.761) -0.6473)x 1073 2.891) 0.057832)
5 0.951) -0.2463)x 1073 2.84911) 0.027111)
6 1.161) -0.121(1)x 1073 2.852) 0.015@11)
7 1.341) -0.6738)x 104 2.831) 0.00872)
8 1.626) -0.42716)x 104 2.726) 0.00534)
9 1.695) -0.2588)x 104 2.876) 0.00465)
10 1.988) -0.1848)x10™* 2.7405) 0.003@2)
12 2.2612) -0.94649)x 10°° 2.7912) 0.00192)

xexp(—20L3%). Up to now no consistent observations of thatcompared to the other values of

kind have been made in the(l) theory for the toroidal A joint fit to the data for all threey-values with universal

lattices, where one finds two-state signals. v but individual proportionality factors gives=0.3543) at
Within the scope of lattice sizes studied here we are therea x*/Npg value of 2.7; including only data withN=5 we

fore led to assume a second-order behavioryfst0. The  obtainy=0.3685) (x*/Npe=0.99. Finally if we restrict the

subsequent scaling analysis leads to results fully supportintit to the data with N=6 we find »=0.3658) at a

this assumption. (x?/Npe=1.05. This last fit we consider to be the most
In Tables Il and IV we summarize our results for the reliable determination of (the corresponding plot may be

extrema values and positions of the cumulants and of théound in[3]).

positions of the closest Fisher zeros. The analysis of these It is interesting to compare the absolute positions of the

data is discussed in the subsequent sections. zeros for different values of in Fig. 5. We find that the
zeros are generally closer to the real axis focloser to 0.
2. Fisher zeros This indicates, that asymptotic scaling sets in somewhat later

The results for the imaginary part of the positigyof the
Fisher zero closest to the axis are given in Table V. Al-
though we tried fits including further background contribu-
tions it turned out that the forrB.19 is sufficient.

In Fig. 4 we show individual fits for each. For y=0 we
distinguish two lines: the fit to alN and one to data for
N=6. In particular fory=0 the N=4 data seems to be
outside the overall behavior, indicating that at this lattice size
the asymptotic behavior is not yet seen. According to our
interpretation, we expect the value=0 to be closest to a
tricritical point, which may explain the larger deviations as

TABLE V. Results forv from individual fits to Inz, according
to (3.19.

Y 4 x*INpe

0 0.345%3) 4.7

-0.2 0.3787) 0.3 FIG. 4. A log-log plot of Ingg vs L with individual fits for each
-0.5 0.3688) 0.8 y. At y=0 the full line denotes our fit to aM, the dotted line a fit

to data forN=6. For y<0 no visible difference would be seen.
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(on larger latticesat more negative values of. This corre- FIG. 7. Values ofcy vs 8 around the pseudocritical points for
lates with the peak values of the SpeCIfIC heat, as will bqhe considered values of and for all lattice sizes(a) y=0,

discussed below in the discussion of the cumulants. N=4,6,8,10; (b) y=-0.2, N=4,5,6,7,8,9,10; (c) y=-0.5,
The results for the real parts of the Fisher zero positionN=4,5,6,7,8,9,10,12. The insets exhibit the peak valugh/ vs
will be discussed together with the pseudocritical values. 1N demonstrating their approach towards 0 Yo .
3. Cumulant values Veig. The inserts in Fig. 7 demonstrate, that the peak values
of the specific heat grow slower than the volume and that
0]c\,/V approaches zero in the thermodynamic limit, indicating
a second-order phase transition.
Our ansatz

Cvmad L) =a() +b(y)LZ 74 4.9

for the scaling behaviof3.9) (with Josephson’s law relating
a with v) allows for a background constant. We performed

Figures 6 and 7 exhibite) andcy in the pseudocritical
range, and Fig. 8 gives an example for the behavior

<e>

o_ ................................................................................ -
— ==
VoL | o T
> \—/
.58 -
-.0005 g

<e>

-.001

FIG. 6. Values of e) vs 8 around the pseudocritical points for
the three values ofy and for all lattice sizes:(a) y=0,
N=4,6,8,10; (bh) y=-0.2, N=4,5,6,7,8,9,10; (c) y=-0.5,
N=4,5,6,7,8,9,10,12.

FIG. 8. V¢ g vs B for all lattices sizes studied gt=—0.2. For
first-order phase transitions the values at the minima should asymp-
totically approach a nonzero constant.
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TABLE VI. Results of the fit tocy, according to Eq(4.5).

y v a(y) b(7) x?/Npr

0 0.3616) 0.0718) 0.13634) 2.3

0.2 0.3746) 0.359) 0.09020) 0.3 .
05 0.4049) 0.1010) 0.13344) 1.0

various fits restricting the coefficients in different ways. It
turned out that one should not omit the background constant
a(y). If one does, then the fits become size dependent and
have worsey? if all lattice sizes are included and better if
one omits the small lattices. We therefore allow for such a
background parameter and include all lattices sizes in the
fits.

If we leavea, b, andv to be y dependent we get consis-
tent results withy varying between 0.361 and 0.4Q4f.
Table VI). If we enforce ay-independent value af we find
v=0.378(4) and the reasonahyé= 2.2 but different values
for the background parameters. . ] )

Figure 9 is a log-log plot foc, and the results of the fits Was gnexpected that the spalmg analysis led to serjslble re-
(Table VI). The increase of the value for with decreasing sults in good agreement with t_he results for the specific heat.
y indicates that the behavior of, is not yet asymptotic. we (Note that the CLB cumulant is a fourth-order moment and
observed already in the discussion of the Fisher zero thdferefore in principle much more error prone. For the, in
scaling appears to be retarded towards more negative valuég@Mmparison to spin model simulations, low statistics one can-
of . Below (in Sec. IVB 5 we try to correct for this fact by NOt put too much confidence in this qzuant)ty.
introducing a phenomenological scaling variable. Indeed we !f we omit lattice sizesN<6 the x“ improves, but the
find a consistent scaling behavior of the specific-heat maxivalues ofv do not change much. As for the specific heat, we
mum corresponding to a value of as determined in Sec. notice an increase of fit values with more negative which

1nL

FIG. 10. A plot of In(=V¢.g) vs InL for all three values ofy,
comparing with the fit according to E¢4.6).

IVB 2. we interpret as due to the retarded FSS.
For the CLB cumulant we found that a fit to the FSS  The data for, show too little size dependencer have
behavior in the form too large errorsto produce a trustworthy fit to the expected

leading scaling behavidi3.11):
Vergmn(L)=[a(y) +b(y)L?*V74L74, (4.6

in the spirit of the correction term in the specific h¢415), Ugmin(L)=a(y)+b(y)L*2". 4.7
appears to be suitable. Figure 10 and Table VII show our

result. The consistency with the results toris remarkable. joint fit to all data (y%Npe=1.1) gives »=0.35(3) and

e e oot waraons e oa=2 613).2792). 251(2) whch are, Towever
y P " “clearly different from the value 1 expected at a first-order

phase transition.

X 3 T T T
g 4. Pseudocritical values
>
2 7=0 Let us denote our four definitions for pseudocritical val-
~ Ll ] ues byB{)(L) (wherei=1, ... 4stands for the peak posi-
tions ofcy, Ve, Us, and Reg, respectively. In the fits
7=-0.2 we allow for the form
s 1 .
B(L)=Bc+al ™ (4.8
v=-0.5
ol N TABLE VII. Results for the fit of V¢ g min according to Eqg.
(4.6).
PR W S S NN ST VAU WA TR [N SO Y S Y R S S
1.5 2 . 2.5 3 3.5 y v a(y) b(y) X2 Npg
inL 0 0.3616) -0.231) -0.07119) 2.3
-0.2 0.36%6) -0.415) -0.0349) 0.3
FIG. 9. A log-log plot of specific-heat,, vs L together with the  -0.5 0.3969) -0.225) -0.05419) 1.1

fit results to form Eq(4.5 and parameter values from Table VI.
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TABLE VIIl. Results of the fits to the finite-size dependence of
the four definitions of pseudocritical points according to Eg8).

Y Be )N x*INpe
0 1.01901) 0.3217) 5.8
-0.2 1.17092) 0.38610) 1.6
-0.5 1.43811) 0.47312) 25

For eachy we fit simultaneously to all typeisfor a unique
Bc and\ but individual values; . We find that allowing for
another termrO(L %) — as it is motivated from the possible

contribution of the curvature or lattice inhomogeneities and

as it seemed to be necessary for the analysis oStHee-
sults in[2] — does not improve thg? significantly.

Table VIl gives the fit values for the pseudocritical
points and IA. It is not generally true, that =1/v (cf. the

discussion in[55]) and indeed a recent study indicated a
different value for the 2D Ising model on spherelike lattices

[44]. Accepting thiscaveatwe still find numbers of similar
size. If we allow for a correction terr®(L ~?) due to the
background curvature of our lattices and %ix 1/0.37 (i.e.,
at a value I¥ suggested from the other datthe fit is of
comparable quality with compatible values f&¢(y) and the
fit curves in the plots are indistinguishable by eye.
Altogether the errors on the pseudocritical points ar
larger but the fits are not very satisfyirigf. Fig. 11 as an
example; the data and fits for the othgwalues look simi-
lar). The value of\ is not stringently determined by the data
(or the theory.

5. Scaling consistency

€
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FIG. 12. A plot of the peak values of the specific hedt vy, all
lattices sizegvs 1/(x2L%) (x is the phenomenological scaling vari-
able defined in Eq4.9); the corresponding error bars are shown as
well. The line represents a linear fit.

and study in this section the other observables as functions of
X. (Notice thatx is defined from the dataThat provides us
on the one hand with a consistency check for our results. On
the other hand this assumption allows us to bring together
and combine results from different values naf

Assuming the FSS relation~L %" (i.e., for Imzy) we
expect, e.g., for the specific heat the behayadr Eq. (3.9)]

CumadL)=a+Db' L2 4=a+bx 2L~ 4

(4.10

where we, as discussed, allow for the additive constant to

At finite lattices there are always corrections to FSS, derepresent the unknown background. Figure 12 shows the
pending on size, geometry, topology, and of course details gbeak values of the specific heat for the dataxv$L ~* to-
the action and the observables. Sincejmives the cleanest gether with the result of a linear fit to the data fé=5. For

FSS signal, we use it as a phenomenological scaling variab

x=Imz, (4.9

! ' '
117k 7
a | 2
116 T
115 o :B(Re(zy)) -~ 7
s :B(cy)
Poox ‘B(Veg)
v :B(U,) .
1.14F ¢ S
i L L
0 .005 .01
1/|_1/o.3¢s.s

FIG. 11. Fits to the datéfor y=—0.2) for the pseudocritical
points (according to the four different definitions descripeWe
use the abscissa varialile *¥ (for the preferred value=0.365) in
order to emphasize the nontrivial dependence.

ks fit we had to assume different values of the background
constant a=0.22, 0.55, 0.40 for differenty=0, —0.2,
—0.5. The plot demonstrates the consistency of the FSS of
the specific-heat values with that of zg This is not surpris-

ing, since these quantities have a close relationship as dis-
cussed in Sec. Il B 2.

6. Summary of the fit results

The cleanest and most consistent results on FSS come
from the imaginary part of the closest Fisher zero positions
and suggest a value=0.3658).

The peak values of the various cumulants are generally
consistent withv=0.35,. . . ,0.40 although they seem to pre-
fer larger values of towards more negative values gfthis
may be explained by later onset of scaling. Allowing for a
smooth backgrounéin the neighborhood of the pepkke a
constant added to the specific heat improves the consistency
of the scaling.

Even the pseudocritical positions — although with less
predictive power due to the uncertainty of the relation of the
shift exponeni to the inverse critical exponentil/— show
scaling with values of W at least roughly of the same mag-
nitude.

In general we find better scaling behavior than for the
more “edgy” lattices typesSH studied in[2]. Corrections to
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FSS due to the curvatufevhich may be ofO(L~2)] do not APPENDIX: LATTICE DETAILS

seem to be necessary. The lattice typeSH N] (the surface of alN® hypercubg

andS[N] have the same link connectivity structure. The lat-
tice is built from plaquettes with four links each. Not all sites
After 17 years[l] of deve'opment it has now been pos- have EIght |inkS, not all links are bordering () p|aquettes,
sible to obtain a consistent picture of the scaling behavior irnd not all plaquettes are faces of exactly four 3D cubes, as
the pure compact u) lattice gauge theory at the it is the case for the hypertorus. All 3D cubes are bordering
confinement-Coulomb phase transition. Using a radicallyexactly four 4D cubes.
new kind of finite lattices, modern FSS methods and substan- Let us denote the total number of sites by, and the
tial computer power we have found a consistent picture ofiumber of sites with links by ns;. A corresponding nota-
the scaling behavior of several bulk observables. Within thdion holds for the links and plaquettes. We have the follow-
limits of numerical evidence, our analysis strongly suggesténg:
the existence of a non-Gaussian fixed point wittistinctly

V. CONCLUSION

different from 1/2(Gaussian valueor 1/4 (first-order transi- sites: ng=10(N—1)*+20(N—1)*+2,
tion). Its universality class extends in thg-vy plane along Ns5=32,
the phase transition line at negatiyeat least unitly=—0.5, Ns6=80(N— 1)2_ 80,
but includes also the Wilson actioy=0. Ns7=80(N—1)"~160(N—1)+80,
This implies that using RG methods, one can construct a nsg=10(N—1)*—60(N—1)?+80(N—1)-30,
unitary continuum field theory in 4D which is neither asymp-  links: n=40(N—1)*+40(N—1)?,
totically free nor trivial. As we point out i3], this holds N 4=80(N—-1),
also for several theories related to thélUlattice theory by N s=160(N—1)*—160(N—1),
duality transformations. Thus rather than being an exercise N 6=40(N—1)*—120(N—1)*+80(N—1),
ground for lattice QCD, the pure compactll lattice gauge plaquettes: ny,=60(N—1)*+20(N—1)?,
theory at its phase transition defines a sort of quantum field Np3=80(N—1)?,
theory in 4D which is not used either in the standard model Np4=60(N—1)*—60(N—1)2,
nor in its presently known extensions. 3D cubes: ng=40(N—1)%,

The natural question is whether these novel features of the 4D cubes: n,.=10(N—1)*.
U(1) lattice theory might be related to the difficulties en- g, example, for N=12 one has n,=148 832
countered in its humerical investigation. The strongly inter-=(19_64):v_
acting monopole loops are an obvious candidate for concem. Tthe number of plaguettes with just three 3D cultes
The previous studies using the surface of the 5D cubic latticgq|| a5 the corresponding numbers for links and 3ites

[2], as well as our present results, suggest that the t°p°|09é/uppressed relative to the leading term©ifL/N?). This is

of the finite lattice is crucial. Foy=<0 the two-state signal ypical for contributions due to curvature. We may say that
vanishes on lattices with spherelike topology. However, thisha |attice becomes locally flat witB(1/N3).

fact alone does not yet confirm the speculations that the congrary to the usual hypercubic torus this lattice is not
winding monopole loops are the culprits. More detailed in-ge|t_qual. Possible monopole loops live on the dual lattice

formation about the field configurations and more experience ' \wnich does have a fewng 5) plaquettes of three links
with various lattices and boundary conditions are required. If, aéldition to the usual ones.

could be that the question is indeed more than technical and Euler's relation for spherelike lattice®f the type dis-
its pursuit might lead to a deeper understanding of the NONsyssed, i.e., without further holeis
Gaussian fixed point.

Ng— N+ Np—Nge+ Ny =2 (A2)
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