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Fluctuations and entropy indices of QCD parton showers
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The branching processes in parton showers are studied in perturbative QCD for both quark and gluon jets.
The emphasis is on the nature of fluctuations of both the parton multiplicities and the spatial patterns of the
final states. Effective measures of such fluctuations are calculated from the data obtained by Monte Carlo
simulations. The entropy indices are used to characterize chaoticity. Both running and fixed couplings are
considered. The fixed coupling case is used to study the onset of chaos. Implications of the results are
discussed[S0556-282196)01823-1
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I. INTRODUCTION The splitting functions are

The possibility of chaotic behavior of particle production Peoce(2)=2Ny—+——=+2(1-2)|, D
. . - . z 1-z
in branching processes has recently been investiddti
with emphasis on the search for appropriate measures of 1, )
chaoticity. Unlike classical nonlinear dynamics where the Poqaf2)=5[2°+(1-2)7], @
Lyapunov exponenk can be defined to characterize diver- 2 )
gent distances between trajectories, no such conventional de- p (2)= Ne—11+2z &)
scription of chaotic behavior of branching processes exist. a—q6 2N, 1-z’

One of the measures found fifh,2] is the exponenk char- _ _ _

acterizing the exponential dependence of the normalize@nd the running coupling constant is

multiplicity variance on the average multiplicity; another is ) 127 1

the entropy index., . With those two measures it is possible as(q°)= 1IN.—2N; In(qZ/A?)" 4

to distinguish the properties of particle production of non-

Abelian from Abelian dynamics to the extent that one may\we shall choose massless quark numie+ 3, color num-

regard the former as chaotic and the latter not. ber N.=3, and set the QCD scale a&=250 MeV. The
There are two aspects of that investigation that need furapproximations made to treat the infrared and collinear di-

ther extension and exploration. The first is an obvious oneyergences result in the Sudakov form factt8g4] that have

the pure gauge theory of gluons only in the perturbativethe following forms for the gluon and quaior antiquark
QCD branching should be extended to include quarks. Th@ertices, respectively:

other is less obvious. If the QCD dynamics is indeed chaotic,
there is a question rooted in the conventional chaos theory AG(QZ,K2)=exp[ — %In(
that should be asked. That is, at what value of the control
parameter can one identify the onset of chaos? In QCD there

INKZ/A2 dz

€

InQ2/A2) fl*e

is no externally controllable parameter with which one can x[PGHGG(z)JrSPGan(z)]], (5)
tune the dynamics. Since the nonlinearity of the dynamics

that gives rise to branching can be represented perturbatively 2 [INQ¥A2?| [1-e

as a self-coupling term whose strength is parametrized by theAq(Qz,Kz) = exp[ - §In(m f dz Pq_,qG(z)] ,
strong coupling constants, we may regardrg as the con- €

trol parameter. Thus in order to investigate the nature of the (6)

onset of chaos, we shall reconsider the QCD branching protwh — 0202 W ke th f hi
lem by treatinge, as fixed, and then vary it by hand to study whggeq§<g%/91.Ge$/2ta e the end of branching to occur
<Q§= )

the dependences af and .q on as. Since a gluon can now go into a number of channels, the
In Sec. Il we treat the full QCD problem with quarks and _. €ag 10w g o
simulation of a branching into resolvable partons requires the

i i 2
gLu;onssi:rs]Sug\ilgg t:;r:/r;pyﬁsg(?h)e f:)r:ezec. lll the onset of designation of a specific final state. To that end we calculate

the ratio
1-—€
Il. QCD PARTON SHOWERS JE Ps_co(2)dz o
R= , 7
As in[1,2], we follow Odorico’s procedurf3] to develop fl_e
H . . +
the algorithm for Monte Carlo simulation of parton shower B [Pe-66(2) +3P6.qq(2)]dz

of QCD. We shall not repeat here the details of the algorithm

already described if2]. What is new now is the inclusion of and compare it with a random numbd&,e[0,1]. If
quarks in the branching processes, and the consideration 8;<R, then theG— GG channel is chosen. Because of the
guark jets in addition to the gluon jets. divergence of(1) at z=0 and 1,R is very close to 1; it is
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FIG. 3. Normalized variance vs average multiplicityiais in-
creased from 1 td,,,. The dotted lines are for pure gauge theory
without quarks.

FIG. 1. Distributions of the maximum number of generations in
QCD branching processes for qua®)(and gluon G) jets.

~0.8 even fore=0.3. Thus the self-reproduction of gluons
is a far more dominant process thaq pair creation. By this
fact alone we do not expect the gluon jet to change too muc

by the inclusion of quarks. However, the quark jets are very, .. choosd . to be at the peaks d®(i,,,). More spe-

different from the gluon jets, as we shall show. cifically, we seti =6 and 11 forQ and G jets, respec-

We first show in Fig. 1 our result on the distribution of _. :
. ) . tively, at Q/Qqy=10%, andi mq=11 and 22 aR/Q,=10°.
maximum number of generationg(imad, for both the For each fixed <i, there is a distribution of multiplici-

gluqniinitiatted g_r;é)wert(e jlet) an(: .q!:_arlk-i.nitiatﬁd sr_llf)r\]/ver tiesn; at thati. That distributionP(n;) is shown in Fig. 2 for
fj'Qt]%) t‘f" wo di %rterj \éa uf(is %Lcém Ial virtuali yQ | ted the case oQ/Q,=10° and for the values=6 and 11. It is
IStributions ‘are obtained arer -1samples are simuiated. ¢ o5 that(n;) for G jet is greater than that fdD jet for both

ghgrtebare Ies;generatlzns c(;jf_ branching @Iqae;tt_him mfta i values. The fluctuations fronin;) are measured by the
jet becauseP_.4c(2) has divergence only a@=1 (so normalized variance

gluon limit), while Pg_,sc(2) diverges at botlz=0 and 1.
Thus the highly reproductive gluons are generally produced (n?)—(m;)?
with low momenta(and consequently low virtualitigsre- Vi:W' (8)
sulting in less multiplicities for th€ jet. For the purpose of
In Fig. 3 are showrV; vs (n;) for the various cases of jet

studying multiplicity fluctuations at different generations of
ranching, it is meaningful to consider only the subset of all
howers that have the same maximum generatigps, We
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FIG. 2. Multiplicity distributions ati=6 and 11 for quark and
gluon jets. FIG. 4. Single-particle distribution ig= —log;X.
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type andQ/Qg. The most striking revelation one sees in that  Our attempt to extract the scaling behavior in E9). is
figure is that the general features of f@eandG jets do not motivated by the desire to find some aspect of the production
differ by very much. Focusing o®/Q,=10° we see that characteristics that is similar to the divergence of the dis-
their V; values reach about the same peak value even thoughnce functiond(t), between nearby trajectories in classical
the correspondingn;) are different for theQ and G jets.  chaotic systems, as described byt)=<eM, N being the
That small difference, however, accounts for a difference irLyapunov exponent. In Eq9) « would play the role of, if
the value ofx defined by the timet is to be represented by (Im;), an association
Vioe(ng)x, (99  Which we have no independent method to ascertain. We
therefore cannot make any firm conclusion about the signifi-
Straight line fits to the linear portions for the log-log plots for cance ofx at the same level as. Parenthetically, we remark

the Q/Q,=10° case yield that, just asd(t) saturates after an exponential growth in
0.62 (Q jet, 10<(n;)<50), classical chaotic systemg; may well saturate with increas-
K= (10 ing (n;), as is suggested by the simulated results in Fig. 3.

0.29 (G jet, 20<(n;)<70). The above result may be regarded as the characteristics of

the temporal behaviors of the branching processes, when

This difference in the values of distinguishes thed jet (n;) is interpreted as an analogue of the time elapsed in a
from theG jet. It is a quantitative measure of the differences} !’ P 9 ) ap:
classical trajectory2]. For a more effective description of

exemplified by the thin and thick solid lines in Fig. 2. The the fluctuations. we now examine the spatial patterns in
dotted lines in Fig. 3 represent the results of pure gauge - o snace af the end of branchin an% studp how the
theory withN;=0. Note that they are indistinguishable from P P 9 y y

the new results fofs jet with quarks included.

40 T T T T T T
2 T T T T
351 E
30F g
1.5 e
25+ E
- gk _
1~ |
15 -
10 e
0.5 E
5 - -
0 1 1 I 1 1 I
0 ) | 0 005 0.1 0.15 02 025 03 0.35
1 2 3 4 5 6 A

FIG. 7. The dependence g2 on the fixed couplingy, where
FIG. 6. Entropy indices. for quark and gluon jets. iPekis the value oOfi ma at the peak of the distributioR (i may -
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FIG. 8. V; vs (n;) for various values of fixedy;.

fluctuate from event to event. In terms of the final-state mo-
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M
fGM)=M"12 ni(n=1)---(ny=q+1). (12

The spatial pattern for theth event at resolutiord is then
described by

Fg=f§/(f§)q. (13
The fluctuation ong from event to event is a dynamical
property of QCD branching that results in the loss of infor-
mation about the final state. Thus it is important to quantify
the degree of that fluctuation, which we do by taking the
moments ofF g :

Cp,q: <(F§)p>/<F§>pa

where(- - -) means averaging over all events. The exponent
p can be any real number, not necessarily an integer. Since
Fg deviates more from 1 whefiis smaller, we search for the
power-law behavior irM, i.e.,

(14

mentum fractiorx of a parton, where=11,z; , the inclusive Cp.q(M)oxcMYa(P), (15
distribution p(x) is highly nonuniform in the interval ) ) !

0<x<1. Even in terms of the{ variable, where "€ entropy index is defined 2]

{=—log, X, the distributions appear Gaussian, as shown in d

Fig. 4. Apart from the heights afn/d¢ it appears that there Mqu—plﬁq(p) : (16)
is little difference between th® andG jets. However, those p=1

are only single-particle distributions. To see spatial patterns The simulated data we use for this part of the analysis are

it is necessary to study the normalized factorial moments,; rastricted. as was done for the study\Gf where the
Fq in small bins. To that end we must first use a spatialy,avimum number of generations, ,,, was chosen at the

variableX in terms of whichp(X) is uniform. Adopting the
cumulative variabld1,2,5,q9 defined by

14 14
xm:L p<§'>d§'/ sz@')dg',

where/, , are the extrema of th¢ range in Fig. 4, we have
p(X)=const for O<=X=<1. It is this unit interval inX space
that we partition intoM bins of width §=1/M.

For an evene let n; be the multiplicity of partons in bin

11

peak of P(iha- In the study of spatial patterns that change
from event to event, we consider all events whateiygk
may be. After simulating T0events we calculat€,, 4(M),

the results for which are shown in Fig. 5 f@randG jets at
Q/Qy=1C%. Evidently, those moments are much larger for
Q jet than forG jet; thus the former has much larger spatial
fluctuations. The entropy indices provide a more efficient
way of describing that property, as shown by the plots in Fig.
6. The values ofu for the G jet are not significantly differ-

j at the end of branching so that the factorial moment for thaent from the ones determined [i]], whereN;=0. But they

event is

are much smaller thap, for the Q jet. This difference is
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G jet

FIG. 10. Same as Fig. 9 for gluon jets.

one of the important findings in this work. It could not have and then examine how those properties dependan
been inferred by examining the single-particle distributions With a4 not running, the Sudakov form factors in E¢S)
such as those shown in Fig. 4. Because of the differencesnd (6) lose one degree of log each and become
betweenP,_, ,c andP¢s_ ¢g, the evolution, the multiplicity,

and the d?stﬁbution of, are all different for theQ jet, as 2 2 as Q° [1-e

compared to thé jet. If the branching dynamics for th@ As(Q7K )—ex% ZWInKZJ dZPc-cc(2)

jet is chaotic, then it is even more so for tQejet.

+3PGan<z>]] , (17)
Il. VARYING THE FIXED COUPLING

As we have found ifi1,2], the non-Abelian QCD dynam- as Q2 [1-e
ics is different from the Abeliary model in thatx>0 and Aq(QZ,K2)=eXD[ - ﬂlnﬁf dz PqéqG(Z)]- (18
iq are larger. Whether or not it means that the former is €

indeed chaotic is not certain, since we lack a definitive cri-A ¢ his ch he simulati ¢ h .
terion for chaoticity in problems where no trajectory can be part from this change the simulation of parton showers is
st as in Sec. Il. We shall fiQ/Q, at 1¢, and letas vary

defined unambiguously and where the number of degrees &

freedom increases with evolution. One way of investigating?Ve the range 0.05 to 0.3, which roughly covers the running

further the nature of possible chaotic behavior in QCD is to@19€ as the virtuality degrades fra@ to Q,. At the low

. 2 .
examine the onset of chaos. Sinegcontrols the strength of €nd 0fas (near 0.0 the correspondin®” value is unreal-
the nonlinearity in the problem, it is reasonable to proposéSt'C hlgh, but is nevertheless considered here because of our
that o, be varied in order to find the threshold of the chaotic!Nt€rest in the problem at the very smadl.
behavior. Of course, it means that we must firstdixand For fixed a4 the distributions of 5, have shapes that are

calculate the fluctuation properties of the parton showersSimilar to those in Fig. 1 for runningys. The peak of
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FIG. 11. uq vs q for variousas. FIG. 12. uq Vs as for variousq.
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P(imay, denoted byi &e;(kincreases witheg for both Q and ~ averages are very large. That is what measures. Since
G jets, as shown in Fig. 7. It is important to recognize thatchaos implies unpredictability of the final state of a parton
the number of generations in a branching process is verghower, our results indicate that a parton shower is more
small at lowas. That is because the survivability of a parton chaotic at lowas than at highas. Thus our conclusion here
without emitting a resolvable gluon or creatingjg pair is IS thatas cannot be treated as a control parameter, useful for
nearly 1 at very smalk, as is evident in Eqg17) and(18).  tuning out chaos. Perturbative QCD is such an intricate non-
That is quite unlike the running(q?) case, wherer,(q?) linear dynamics that it cannot be rendered approximately lin-

of P at smallas is particularly acute for the jet, since the nonlinear coupling there is no evolution, no particle pro-
nfluction, and no linear dynamics.

when a gluon is emitted by a quark, the gluon momentu
and virtuality are suppressed, thus depriving @hget a rich
source of parton generations. This property of low multiplic- IV. CONCLUSIONS
ity at low ¢ will be recalled later to explain other features to
be uncovered.

From the simulated events we calculdeas before and

Our study of the full QCD branching problem that has
both quarks and gluons has revealed several properties of the
i ) s parton showers. The gluon jet with quarks included is not
find the dependence ofm;) as shown in Fig. 8. Evidently, ey gifferent from the case of pure gauge thefy2]. But
there is a universality in how; depends or(n;). The in- 6"quark jet exhibits more fluctuatiotelative to the aver-
crease ofxg me_rely extend; the range. There. isa benq in th%ge) than the gluon jet. The measures used to quantify the
rise ofV; for G jet, but the rise seems to persist for @get,  ctyations arev; for the temporal behavior and,, for the

a phenomenon that we have already encountered in Fig. 3patial behavior. They both possess features that are charac-
From Fig. 8 we gain no insight on the development of chaosyaistic of chaotic behavior.

if indeed the temporal behavior is chaotic, since there is no

g i In the fixed coupling case we have found that the results
value of a4 that we can identify as the onset of chaos.

- - on fluctuations are roughly the same as in the runnigg
Next, for the fluctuations of spatial patterns we Show,ohiem, provided that the fixeds is not set at a very low
Cpq(M) in Figs. 9 and 10 foQ and G jets, respectively. \qiye, outside the range of the running. However, in at-
The deneral features are similar to Fig. 5 for runningiempting to learn about the onset of chaos we have treated
as(q%), but there are important differences. It helps to focus, a5 3 control parameter and examined the parton showers
on a fixedp and examine the dependence @n While the \\ith _ being allowed to approach a very small value. The
scaling behaviors for;=0.15 anpl Q.25 are rather S|m|Ia_lr, IN hope was to see how the chaotic behavior would grow as
some cases even hard to distinguish, the behavior fof, i increased. What we have found is that the QCD branch-
as=0.05 stands out markedly different. That g (p)| is ing processes are more chaotic at very lew Unlike clas-
much larger at smalks than at largeras. This feature is  gjca| nonlinear dynamics, the nonlinearity in the non-Abelian
most pronounced fo6 jet at =2, where the only curves g5,,ge theory cannot be turned off without causing the sys-
significantly different from O are forrs=0.05. Comparing  tem to lose the mechanism for temporal evolution through
the vertical scales of the two figures, one can also see that ”B?anching. A small amount of nonlinearity leads to large

Q jet has larger magnitudes of ldg,  than theG jet. These  fiyctuations relative to the mean number of partons pro-
features are both related to the fact that the parton multiplicyced. resulting in more unpredictable final states.
ity is low for small a5 and especially so for th@ jet. Fluc- The measure by which these properties can be described
tuations are usually large when the averages are small. g the entropy indey, . We have seen how, has emerged
The characteristics of Figs. 9 and 10 are represented igs g highly effective description of the degree of fluctuations
capsule form by the entropy indicgs, . In Fig. 11 we show  of spatial patterns. It is our opinion that the method of analy-
uq for various values ofas, while in Fig. 12 the depen- sjs employed here is not only suitable for the study of parton
dences orxs are shown for fixed]. For @s>0.15, uq @p-  showers, but also for all problems that involve changing spa-

proaches independence ag, but asa, decreases toward 0, tja| patterns, including the conventional problems in classical
iq increases sharply. This behavior has not been anticipateghaos.

and is opposite to what is expecteddf is to play the role of
a control parameter that can turn on chaotic behavior as it is ACKNOWLEDGMENT
increased from a small enough value.
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