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Observable jets from the BFKL chain
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We derive a modified form of the BFKL equation which enables the structure of the gluon emissions to be
studied in smallx deep-inelastic scattering. The equation incorporates the resummation of the virtual and
unresolved real gluon emissions. We solve the equation to calculate the number of smallx deep-inelastic
events containing 0,1,2, . . . resolved gluon jets, that is, jets with transverse momentaqT.m. We study the jet
decomposition for different choices of the jet resolution parameterm. @S0556-2821~96!04823-0#
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I. INTRODUCTION

The advent of the DESY electron-proton collider HERA
has opened up the possibility of testing QCD in the new a
hitherto unexplored smallx regime. The HERA measure-
ments of the proton structure functionF2(x,Q

2) show a
striking rise with decreasingx which, with the latest data, is
now known with considerable precision@1,2#. On the other
hand, from the theoretical point of view we know for suffi
ciently smallx, such thataSln1/x;1, that it is necessary to
resum the (aSln1/x)

n contributions in order to obtain reliable
perturbative QCD predictions. At leading order this is a
complished by the Balitzkii-Fadin-Kuraev-Lipatov~BFKL!
equation@3#. This equation effectively corresponds to th
sum of gluon ladder diagrams of the type shown in Fig. 1
which the transverse momentaqT are unordered along the
chain. This should be contrasted with Dokshitzer-Gribo
Lipator-Altarelli-Parisi ~DGLAP! evolution where, in the
leading lnQ2 approximation, the transverse momenta a
strongly ordered from the hadronic to the hard scaleQ2

which, in deep-inelastic lepton scattering, is provided by t
virtuality of the photon: namely,

Q2@kT
2@knT

2 @•••. ~1!

Both BFKL and DGLAP evolutions lead to an increase o
the deep-inelastic scattering structure functions with decre
ing x. In fact, it is possible to obtain a satisfactory descrip
tion of the rise of the structure function, measured in th
HERA, small x regime using both approaches@4–6#. The
inclusive nature of the structure functionF2 makes it ex-
tremely difficult, even with the precise HERA data, to us
the observedx behavior to reveal the underlying dynamics a
smallx. This is not surprising. The leading behavior obtaine
from BFKL is anx2l growth, whereas for DGLAP we an-
ticipate an increase of the double logarithmic form
exp$A@ln(t/t0)ln(1/x)#

1/2% where t5 ln(Q2/L2). However,
these are asymptotic predictions. For instance, sublead
ln1/x effects will weaken the BFKL growth in the HERA
regime@7,8#. Moreover, the DGLAP behavior is dependen
on the choice of a nonperturbative input form at some sc
540556-2821/96/54~11!/6664~10!/$10.00
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2 . It has been realized, however, that the intimate

relation between the increase of the cross sections with de
creasingx and the absence of transverse momentum order-
ing, which is the basic property of the BFKL dynamics,
should reflect itself in the properties of the final states in
deep-inelastic lepton scattering. Indeed, several dedicated
measurements have been proposed and are being experime
tally studied at HERA~see, for example, the reviews in Ref.
@9#!.

The purpose of this paper is to study the detailed proper-
ties of the partonic final state produced by the gluon emis-
sions along the BFKL chain. In this way we will gain an
insight into the BFKL equation, as well as detailing observ-
ables with which to probe the underlying smallx dynamics.
In particular, we calculate the decomposition of the~total!
deep-inelastic cross section into componentssn(m) which
correspond to the production of a fixed numbern of gluon
jets each with transverse momentumqT.m. That is, we
study the possible jet configurations in the central region
between the current jet and the proton remnants. An interest
ing feature of BFKL dynamics is the possibility of producing
jets even form.Q. One of our aims is to quantify the yield
of such jet configurations. That is, our study concerns exclu-
sive jet production and, therefore, complements previous
work @10# on inclusive jet production from the BFKL chain.

In the BFKL equation there is a delicate cancellation be-
tween the real gluon emissions and the virtual contributions.
Clearly, the cancellation is affected by the resolution
qT.m that we impose. In particular, we must ensure that the
appropriate cancellation between the virtual contributions
and the ‘‘unresolved’’ real gluon emissions withqT,m is
maintained throughout the calculation. We must, therefore,
first derive a modified form of the BFKL equation which will
enable us to quantify the number of energeticresolvedjets1

produced along the gluon chain, but in which thevirtual and

1Here, the wordresolvedapplies only toqT . In particular, we
have not imposed any criteria to ensure that the jets can be suffi-
ciently kinematically separated so that they could be individually
identified experimentally.
6664 © 1996 The American Physical Society
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54 6665OBSERVABLE JETS FROM THE BFKL CHAIN
unresolvedcontributions are treated on an equal footing an
are resummed. This is the subject of Sec. II. In Sec. III w
give an analytic solution for the resummation at low jet res
lution, whereas in Sec. IV we consider more realistic valu
of the resolutionm and solve the modified BFKL equation
by iteration to illustrate the jet decomposition of the BFK
gluon. At this stage it is still a theoretical study. In Sec. V w
use the BFKL gluon and thekT-factorization theorem@11# to
predict the jet decomposition of the observable structu
functionF2 and the deep-inelastic cross section. Section
contains our conclusions.

II. THE BFKL EQUATION INCORPORATING JET
RESOLUTION qT>µ

In the smallx regime the dominant parton is the gluon
Since we no longer have strong ordering in transverse m
menta along the gluon chain in Fig. 1 we must work in term
of the gluon distributionf (x,kT

2) unintegrated over its trans-
verse momentumkT . The relation of unintegrated distribu-
tion f to the conventional gluon distribution is

xg~x,Q2!5EQ2dkT
2

kT
2 f ~x,kT

2!. ~2!

The unintegrated densityf satisfies the BFKL equation
which effectively sums up the leadingaSln1/x contributions.
In integral form it may be written@12,13#

f ~y,kT
2!5 f ~0!~y,kT

2!1āSE
0

y

dy8E d2qT
pqT

2

3F kT2kT82 f ~y8,kT8
2!2 f ~y8,kT

2!Q~kT
22qT

2!G , ~3!

with āS[3aS /p. We have chosen to use the rapidity var
abley5 ln1/x instead ofx, and so the integral in Eq.~3! has
come from the replacement

FIG. 1. The unintegrated gluon distribution,f (x,kT
2), is effec-

tively the sum of the ladder diagrams formed by the modul
squared of such amplitudes. The leadingaSln1/x resummation is
accomplished by the BFKL equation.
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0

y

dy8.

For convenience, we have also introduced

kT8
2[uqT1kTu2. ~4!

Note that the dependence onkT8
2 makes the angular integra-

tion in d2qT nontrivial. The inhomogeneous contribution
f (0) in Eq. ~3! corresponds to the ‘‘no-rung’’ contribution of
Fig. 1. It is the driving term of the equation and has to be
input. We implicitly include under thed2qT integral in Eq.
~3! the product of theta functions,

Q~Qf
22kT8

2!Q~kT8
22Q0

2!, ~5!

so that the emitted gluon is constrained to the domain
Q0
2,kT8

2,Qf
2 . In the numerical predictions shown below we

takeQ0
251 GeV2 andQf

25104 GeV2.
Jet structure is embodied in the BFKL equation via real

gluon emission from the gluon chain prior to its interaction
with the photon probe~which takes place through the usual
fusion subprocessgg→qq̄). An observed jet is defined by a
resolution parameterm which specifies the minimum trans-
verse momentum that must be carried by the emitted gluon
for it to be detected. For realistic observed jets in the experi-
ments at HERA, the lowest reasonable choice for the resolu
tion cutoff parameterm appears to be aboutm53.5 GeV.
However, we also present results form56 GeV and, so as to
gain a theoretical insight, for the low values ofm51 and 2
GeV.

If an emitted gluon has transverse momentumqT,m then
the radiation is said to be unresolved. The unresolved radia
tion must be treated at the same level as the virtual correc
tions to ensure that the singularities asqT

2→0 cancel in the
qT
2 integration. To do this we first rewrite the BFKL equation

~3! in the symbolic form

f5 f ~0!1E
0

y

dy8K^ f ~y8!, ~6!

where ^ denotes the convolution overqT . We divide the
real gluon emission contribution into resolved and unre-
solved parts using the identity

Q~qT
22m2!1Q~m22qT

2!51, ~7!

where the first term denotes the real resolved emission an
the second the real unresolved emission. We then combin
the unresolved component with the virtual contribution@14#.
That is

f5 f ~0!1E
0

y

dy8~KR1KUV! ^ f ~y8!, ~8!

where the kernelKR for the resolvedemissions withqT.m
is given by

KR^ f ~y8!5āS~kT
2!kT

2E d2qT
pqT

2 Q~qT
22m2!

1

kT8
2 f ~y8,kT8

2!,

~9!
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while KUV , the combinedunresolvedandvirtual part of the
kernel, satisfies

KUV^ f ~y8!5āS~kT
2!E d2qT

pqT
2 F kT2kT82 f ~y8,kT8

2!Q~m22qT
2!

2 f ~y8,kT
2!Q~kT

22qT
2!G , ~10!

with kT8
2[uqT1kTu2. These identifications of the kernels fo

low by comparing Eq.~8! with Eq. ~3!. TheqT
2→0 singular-

ity is now canceled between the unresolved and virtual c
tributions, and by working with the combined kernelKUV we
will ensure that the cancellation remains intact.

We seek a BFKL equation for the real resolved emissio
in which the unresolved and virtual contributions have be
resummed. To do this we write the BFKL equation~8! in the
differential form

] f

]y
5S ] f ~0!

]y
1KR^ f D 1KUV^ f , ~11!

and treat the expression in parentheses as the inhomogen
contribution. We solve the inhomogeneous equation in
standard way. We first find a solution to the homogeneo
equation and then we obtain the full solution via an integr
ing factor. The homogeneous version of Eq.~11! is

]D

]y
5KUV^ D ~12!

with solution

D~y!5exp~yKUV!, ~13!

and so the integrating factor isD215exp(2yKUV). Hence,
the full solution of Eq.~11! is

f ~y!5E
0

y

dy8D~y! ^ D21~y8! ^ S ] f ~0!

]y8
1KR^ f ~y8! D

5E
0

y

dy8exp@~y2y8!KUV# ^ S ] f ~0!

]y8
1KR^ f ~y8! D .

~14!

Thus, we have derived a BFKL equation for the gluon d
tribution f in which the unresolved and virtual terms hav
been resummed in the exponential factor. The equation is
the form

f ~y!5 f̂ ~0!~y!1E
0

y

dy8K̂^ f ~y8!, ~15!

where the driving term has become

f̂ ~0!~y!5E
0

y

dy8exp@~y2y8!KUV# ^
] f ~0!

]y8
~16!

and the new kernel

K̂5exp@~y2y8!KUV# ^KR . ~17!
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Recall that the original BFKL kernel,KR1KUV , has noy
~i.e., x) dependence. However, upon the resummation of th
unresolved and virtual radiation we generate an explicity
dependence. In fact, the kernelK̂ of Eq. ~15! is a function of
only the differencey2y8 ~i.e., of lnx8/x) and noty and y8
individually, see Eq.~17!.

III. ANALYTICAL SOLUTION AT LOW µ

In Sec. IV we numerically solve the modified BFKL
equation forf (y,kT

2) and, by iteration, determine the prob-
ability of the emission ofn gluon jets withqT.m. However,
first it is informative to derive an approximate form of the
above equation which holds in the~theoretical! limit of small
m2/kT

2 . In this limit it is possible to resum the unresolved
and virtual contributions in a closed analytic form. The cru-
cial observation is that for smallm2/kT

2 we may write

kT8
2[uqT1kTu2'kT

2

in the integrand for the unresolved real emission term in Eq
~10!. Then Eq.~10! simplifies to become

KUV^ f ~y8!5āS~kT
2! f ~y8!E dqT

2

qT
2 @Q~m22qT

2!

2Q~kT
22qT

2!#1OS m2

kT
2 D

52āS~kT
2!lnS kT2m2D f ~y8!1OS m2

kT
2 D . ~18!

Thus, the homogeneous solution of the BFKL equation~11!
is

D~y!5exp~yKUV!5exp@2yāS~kT
2!ln~kT

2/m2!#, ~19!

that is the resummation is given by a simple analytic form.
As a consequence, in the smallm limit, the modified BFKL
equation~15! becomes

f ~y,kT
2!5 f̂ ~0!~y,kT

2!1āS~kT
2!E

0

y

dy8D~y2y8,kT
2!

3E d2qT
pqT

2 Q~qT
22m2!

kT
2

kT8
2 f ~y8,kT8

2!, ~20!

where herekT8
25uqT1kTu2, and the driving term is given by

f̂ ~0!~y,kT
2!5E

0

y

dy8D~y2y8,kT
2!

] f ~0!~y8,kT
2!

]y8
. ~21!

Of course, for the results presented below we do not use th
low m approximation, although to gain an insight we will
compare the full prediction of Eq.~16! for f̂ (0) with the ap-
proximateO(m2/kT

2) result given in Eq.~21!.

IV. JET DECOMPOSITION OF THE BFKL GLUON

The BFKL equation was expressed in form~15! specifi-
cally so that we can decompose the unintegrated gluon dis
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tribution f into the sum of contributions with different num
bers of resolved gluon jets with transverse moment
qT.m. That is,

f ~y!5 (
n50

`

f n~y!, ~22!

where f n denotes the contribution to the unintegrated glu
distribution f arising fromn resolved jets in the chain, eac
with qT.m, see Fig. 2. Then-jet contributionf n obviously
depends on the resolutionm, whereas the sumf does not.
Using Eq.~15! we have

f n~y!5E
0

y

dy8K̂^ f n21~y8!, ~23!

where the 0-jet contributionf 05 f̂ (0) of Eq. ~16! and where
K̂ is the full resummed kernel of Eq.~17!. For the initial
nonperturbative inputf (0) in Eq. ~16! we take

f ~0!~y!53N~12e2y!5exp~2kT
2/Q0

2!, ~24!

where the normalizationN is fixed so that the gluon, inte
grated over the regionkT

2.Q0
2 , carries half the momentum

of the proton. We setQ0
251 GeV2. The above shape of the

input f (0) in y[ ln(1/x) is based on the conventional param
etrization of the nonperturbative gluon distributiong(0)

which is related tof (0) through Eq.~2!; that is, it is assumed
to have a 1/x ‘‘soft’’ Pomeron behavior asx→0 and to sat-
isfy the spectator counting rules asx→1. ThekT

2 dependence
of f (0) reflects the usual nonperturbative falloff with increa
ing kT

2 . This guarantees that the nonperturbative integra
gluon distributiong(0) exhibits Bjorken scaling for suffi-
ciently largeQ2.

Although the sumf (y) of Eq. ~22! is independent ofm,
the individual contributionsf n(y) arem dependent. Recal
that ^ stands for an integration overd2qT @see Eqs.~9! and
~10!#, and thatf is a function ofkT

2 as well as ofy. In Figs.
3, 4, and 5 we show the decomposition off (y,kT

2) for
kT52, 5, and 10 GeV, respectively, in each case taking th
different values for the resolution, namely,m51, 2, and 3.5
GeV. The gluon density, and its decomposition, are not
servable directly. The choices we have made form are, at
this stage, solely to gain insight into the structure of t
BFKL gluon. The results show the following features.

~i! Gluon jets with m.kT occur; their probability in-
creases asx decreases.

~ii ! The lower the value ofm, the greater the number o
resolved jets, that is, the greater the preponderance of m
jet configurations.

~iii ! As x decreases, the greater the diffusion in lnqT
2 so

that ann-jet configuration first increases in probability an
then decreases as higher-jet configurations take over.

~iv! The higher the value ofkT
2 the sooner inx ~as x

decreases! will a given multijet configuration go through this
rise and fall.

~v! As kT
2/m2 increases the 0-jet contribution drops ra

idly to zero.
The results for low values of the resolution parameterm

show that the functionsf n have a maximum which shifts to
-
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smaller values ofx with increasingn. This maximum is a
straightforward consequence of virtual corrections which, fo
low m, are not entirely compensated by~unresolved! real
radiation. The maximum disappears for largem and we have
this structure for all values ofkT .

Some insight into the behavior can be obtained from th
analytic form presented in Sec. III, which applies whe
m2/kT

2 is small. In this limit the virtual and unresolved real
terms lead to a suppression factor

D~y!5e2Ay, ~25!

whereA[āSln(kT
2/m2). Thus, from Eq.~21! we obtain the

zero-jet contribution

f 05 f̂ ~0!~y,kT
2!5e2AyE

0

y

dy8eAy83Nexp~2kT
2/Q0

2!

3
d

dy8
~12e2y8!5, ~26!

that is, thekT dependence off
0 is essentially the same as the

kT dependence of the driving termf (0) of Eq. ~24!. This
explains the origin of feature~v!, that the 0-jet contribution
falls rapidly to zero with increasingkT

2 . Figure 6 compares
the analytic approximation with the full result form251

FIG. 2. The modulus squared of this diagram gives the comp
nentFi

n of the proton structure functionFi which arises from the
contribution f n to the gluon distributionf in which there aren
resolvedgluon jets emitted along the BFKL chain, that isn gluons
with qT.m. The black circles are to indicate the presence of bot
virtual and unresolved gluon emissions. The componentFi

n is cal-
culated by thekT-factorization theorem, which has the symbolic
form, Fi

n5Fi
gg

^ f n, see Eqs.~27! and ~32!.
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GeV2 and kT
254 GeV2. We see that the analytic form re-

produces the shape of the numerical solution, but fails in t
normalization. Also, the peak in the numerical predictio
shifts slightly to smallerx. Thus, the analytical approxima-
tion cannot be used as a valid representation for the jet c
tributions, even for a resolution as low as 1 GeV2.

V. JET DECOMPOSITION OF F i„x,Q
2
… AT SMALL x

We are now in a position to estimate the probability of th
different multijet configurations in the smallx observables
that are driven by the BFKL gluon. The most relevant pro
cess to study is deep-inelastic scattering at HERA. Using
results of Sec. IV, we calculate the jet decomposition of t
proton structure functionsFi(x,Q

2). In other words, we de-
termine what fraction of events that make up the inclusi
measurement ofFi(x,Q

2) contains no jets, 1 jet, 2 jets, etc
as a function ofx,Q2 and the jet resolution parameterm.
Recall that our jets are gluons emitted with transverse m
mentumqT.m.

From knowledge of the BFKL gluonf we can determine
the behavior of the structure functions via th
kT-factorization theorem, see Fig. 2. For the transverse a
longitudinal functions we have

FT,L~x,Q
2!5E

x

1dx8

x8
E dkT

2

kT
4 f S xx8 ,kT2DFT,L

gg ~x8,kT
2 ,Q2!,

~27!

where, to lowest order, photon-gluon fusionFgg is given by
the quark box~and crossed box! contributions, as shown in

FIG. 3. Then-jet contributions to the unintegrated gluon distri
bution f (x,kT

2) for three different values of the jet resolution param
eterm and forkT52 GeV.
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Fig. 7. To carry out the integration over the quark line in Fig.
7 we express its four-momentak in terms of the Sudakov
variables

k5ap2bq81kT ,

whereq85q1xp andp are the basic lightlike momenta (q
andp are the four-momenta of the virtual photon and proton,
respectively!. The variablea is fixed by the quark mass-shell
constraint, leaving integrations overb and kT . Evaluating
the box contributions, Eq.~27! then becomes@15#

FT~x,Q
2!52(

q
eq
2Q

2

4pEk02
dkT

2

kT
4 E

0

1

dbE d2kT8aSf S xx8 ,kT2D
3H @b21~12b!2#F kT

2

D1
2 2

kT•~kT2kT!

D1D2
G

1
mq
2

D1
2 2

mq
2

D1D2
J ~28!

FL~x,Q
2!52(

q
eq
2Q

4

4pEk02
dkT

2

kT
4 E

0

1

db b2~12b!2

3E d2kT8aSf S xx8 ,kT2D H 1

D1
2 2

1

D1D2
J ,

~29!

where the denominators

D15kT
21b~12b!Q21mq

2,

D25ukT2kTu21b~12b!Q21mq
2,

-
-

FIG. 4. The same as Fig. 2 but forkT55 GeV.
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and wherekT85kT2(12b)kT . The x8 integration of Eq.
~27! is implicit in thed2kT8 anddb integrations. Indeed,x8 is
fixed in terms ofkT8 andb,

x85F11
kT8

21mq
2

b~12b!Q2 1
kT
2

Q2G21

, ~30!

which ensures that the requirement 0,x8,1 is satisfied. Of
course, the integration regions of Eqs.~28! and~29! must be
constrained by the condition

x8~b,kT8
2 ,kT

2 ,Q2!.x ~31!

so that the argumentz5x/x8 of f satisfies the requiremen
z,1. In Eqs.~28! and ~29! we sum over the quark flavors
we take the masses to bemq50 for u,d,s quarks and
mc51.5 GeV for the charm quark. The argument ofaS is
taken to bekT8

21m0
2 , which allows integration over the en

tire region of kT8
2 . For the light quarks we takem051

GeV2; the results are not very sensitive to variations ofm0
about this value. For the charm quark contribution we
m0
25mc

2 . Also, we setk0
251 GeV2.

The jet decomposition ofFL,T are simply obtained by
substituting then jet unintegrated distributionf n into Eqs.
~28! and ~29!. In this way, we can break down the obser
ables into their componentn-jet contributions, for example,
for F25FL1FT we have

F25 (
n50

`

F2
n . ~32!

Figures 8 and 9 show the componentsF2
n(x,Q2) for deep-

inelastic events containingn observed jets, where in the up
per plots we require the jets to haveqT.3.5 GeV, whereas

FIG. 5. The same as Fig. 2 but forkT510 GeV.
t
;

-

set

v-

-

in the lower plots we demandqT.6 GeV. Figures 8 and 9
correspond toQ2510 and 20 GeV2, respectively. For these
choices of jet resolution it can be seen that the 0-jet configu-
ration dominates. That is, most of the emission from the
BFKL ladder is in the form of unresolved and virtual gluon
radiation. As expected, then-jet configurations first become
important ~with decreasingx) for the lower resolution,
m53.5 GeV, and for the higherQ2 value,Q2520 GeV2,
and begin to compete with the 0-jet rate forx&1025. In fact,
the 4-jet rate becomes comparable with the 0-jet rate for
x;1026.

Although, the 0-jet configuration dominates in the HERA
kinematic regime, there is still a non-negligible contribution
from resolved jets. For example, atQ2510 GeV2 and
x5231024, the 1- and 2-jet contributions are each approxi-
mately 1

3 of the 0-jet rate, and even the 3- and 4-jet configu-
rations occur at a reasonable rate. Also, notice the production
of resolvable jets withm2*Q2 is important, this is a straight-
forward consequence of diffusion inkT

2 .

FIG. 6. The comparison of the analytic and numerical solutions
for the 0-jet contributionf 0(x,kT

2) to the unintegrated gluon distri-
bution.

FIG. 7. The quark box and crossed box diagrams describing
photon-gluon fusionFgg in Eq. ~27!.
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The experiments at HERA show that the~inclusive! struc-
ture functionF2 rises asx decreases. How is this rise mad
up from the various multijet configurations? First, we look
the results for the lower jet resolution,m53.5 GeV. Al-
though the 0-jet rate dominates, its increase with decreas
x is relatively weak compared to the data. The rise ofF2
comes from the increasing importance of the higher-jet co
figurations. On the other hand, at the higher resolutio
m56 GeV, the 0-jet configuration is even more domina
and shows a steeper rise over the samex range, as is required

FIG. 8. The decomposition of the proton structure functio
F2(x,Q

2) into contributions coming from different numbers of re
solved gluon jets for experimentally accessible values of the re
lution parameterm53.5 and 6 GeV. The decomposition is show
as a function ofx for Q2510 GeV2.

FIG. 9. The same as Fig. 8 but forQ2520 GeV2.
e
at

ing

n-
n,
nt

for consistency of the results. This characteristic difference
should hopefully be seen in the measurement of the ind
vidual jet structure functions.

The cross section for deep-inelastic scattering is readil
calculated fromFT,L . We have

s54pa2E dx

x E dQ2

Q4 $y2xF1~x,Q
2!1~12y!F2~x,Q

2!%,

~33!

where, as usual,y5Q2/xs, FT52xF1, and FL5F2
22xF1. Here, we present results for the component cros
sectionssn for deep-inelastic events containingn jets with
qT.m, again for two choices of resolutionm53.5 and 6
GeV. We takeAs5300 GeV and integrates over the inter-
val 0.01,y,0.5 so as to approximately reproduce the
HERA domain. Figures 10–13 show, respectively, the 0-, 1-
2-, and 3-jet cross sections integrated overx andQ2 bins of
sizeDx5231024 andDQ2510 GeV2, where the two en-
tries in each bin correspond to a gluon jet with resolution
m53.5 and 6 GeV, respectively. We see that there are a
appreciable number of identifiable jets. For example, if we
take a resolved jet to be one withqT.3.5 GeV and an inte-
grated luminosityL510 pb21, then in the bin defined by
0.831023,x,1023 and 15,Q2,25 GeV2, we predict
2686, 2097, 1093 events containing 1, 2, 3 jets as compare
to 12506 events with no identifiable jet.

Recall that the predictions are obtained by numerically
solving the BFKL equation for the gluon. The normalization
is dependent on the choice of the cutoff. Here, we have take
the cutoff to be 1 GeV2, which was found to give a satisfac-
tory description of the inclusiveF2 distribution. However,
the fraction of events containing 0,1,2, . . . identifiable gluon
jets is independent of the choice of the cutoff. For example
for the above (Dx,DQ2) bin and for the lower-jet resolution
of m53.5 GeV we find 69% of the cross section contains no
observable jet and that 1, 2, and 3 jets occur 14%, 10%, 5%
of the time, respectively. Only 2% of the events contain
more than 3 jets. For the higher-jet resolution ofm56 GeV
we predict that the BFKL chain will give 88% of the events
with no observable jet, leaving only 12% of the total to be
split between 1-,2-, . . . jet events.

We see from Figs. 11 and 12 that the 2-jet rate is compa
rable to the 1-jet rate and, moreover, that the 2-jet/1-jet rati
increases with increasing resolutionm. This type of behavior
is consistent with the expectations of the conservation o
transverse momentum.

VI. SUMMARY AND CONCLUSIONS

In this paper we have formulated a modified form of the
BFKL equation which allows an exclusive analysis of the
multijet yields in deep-inelastic lepton scattering in the smal
x regime. The jets are defined as gluon emissions from th
BFKL chain which have transverse momentaqT greater than
a specified resolutionm. We first solved the modified BFKL
equation to determine the jet decomposition of the uninte
grated gluon distribution f (x,kT

2). We then used the
kT-factorization theorem to determine the jet decomposition
of the structure functionF2(x,Q

2) and of the total deep-
inelastic cross section in the HERA smallx regime. We pre-

n
-
so-
n
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sented the jet decompositions as a function of the kinem
variables and for different choices of the jet resolution p
rameterm.

The modified BFKL equation is shown symbolically i
Eq. ~15! and the kernelK̂ in Eq. ~17!. Equation~15! embod-
ies a resummation of the virtual contributions together w
the unresolvedreal gluon emissions withqT,m. As a con-
sequence, the kernelK̂ has an explicity5 ln1/x dependence,
which depends on the amount of unresolved radiation and

FIG. 10. The cross section~in pb! for deep-inelastic scattering in
which there are no resolved gluon jets shown in differentx,Q2 bins
in the region accessible at HERA. The width of the bins a
DQ2510 GeV2 and Dx5231024. The upper and lower values
correspond to the resolution parameterm53.5 and 6 GeV, respec-
tively.

FIG. 11. The same as Fig. 10 but from the contribution in whi
there is one, and only one, gluon resolved jet withqT.m.
atic
a-

n

ith

so

is a function ofm. Indeed, for unrealistically low values of
m we derived, for pedagogic purposes, the analytic form of
the y dependence of the kernel, see Eq.~19!. For the more
realistic numerical solutions that we present the correlation
between thex dependence of then-jet cross sections and the
resolution parameterm is apparent.

The behavior of then-jet contribution to the gluonf , or to
F2, exhibits a characteristic behavior asx decreases, rising to
a maximum and then falling back to zero. The higher the
value ofn the lower the value ofx at which the maximum
occurs. In the HERA smallx regime the behavior is only
apparent for low choices of the parameterm, for example,
m;1 GeV, see Figs. 3–5. For experimentally realistic val-
ues of the resolution parameter~saym53.5 or 6 GeV!, the

re

ch

FIG. 12. The same as Fig. 10 but for two resolved gluon jets.

FIG. 13. The same as Fig. 10 but for three resolved gluon jets.
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maxima shift to very small values ofx. The dominant con-
tribution in the HERA range then comes from events with
resolved gluon jets emitted from the BFKL chain. Neverth
less, the 1-,2-,3-, . . . jet rates are still significant. An inter-
esting feature of the multijet cross sections is that they
non-negligible even ifm.Q. The existence of such jets with
qT.Q is a straightforward consequence of the characteri
lnkT

2 diffusion along the BFKL gluon chain.
To sum up, we have made an exploratory study of a fo

of the BFKL equation which allows the final state jet co
figurations to be determined in a consistent manner.
solved the equation and presented sample results to illus
the properties of these gluon jets which occur in dee
inelastic scattering at smallx as a result of BFKL dynamics
Of course, the normalization is dependent on the choice
input f (0) and the cutoffQ0

2. Our choice is such that the
predictions for the totally inclusiveF2 are compatible with
the measurements at HERA. On the other hand, the shap
x of the individual jet contributions, and the predicted valu
of the jet ratios are much less sensitive to the input. In ad
tion, there are ln1/x and fixed-order QCD jet contributions t
consider. These may modify the predictions in the HER
regime, but with decreasingx the BFKL behavior should
become increasingly dominant. One nonleading effect is
imposition of the constraintqnT

2 ,xnkT
2/x ~in the notation of

Fig. 1! which follows from the requirement that the virtualit
of the gluon links is dominated by2kT

2 @7,8#. If this were
done we find that it would limit the available phase space
multijet production and, as a consequence, reduce the y
of multijet events.
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APPENDIX: NUMERICAL TECHNIQUES
USED TO SOLVE THE BFKL EQUATION

Here, we briefly describe the numerical method that
used to solve the BFKL equation~15!. The starting point is
the Chebyshev polynomial expansion of the unintegra
gluon distribution f (y,kT

2) in which we map the region
Q0
2,kT

2,Qf
2 into the interval (21,1) in terms of the vari-

ablet defined by

t~kT
2!52 lnS kT

2

QfQ0
D Y lnSQf

2

Q0
2D . ~A1!

We expand the gluon distributionf in the polynomial form

f ~y,kT
2!5(

i51

N

Ci@t~kT
2!# f i~y!, ~A2!
no
e-

are

stic

rm
n-
We
trate
p-
.
of

e in
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ge
.
or
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2
2-

we

ted

where f i(y) are the values off (y,kT
2) at the (kT

2) i nodes
obtained from

~kT
2! i

QfQ0
5SQf

Q0
D t i

, ~A3!

with t i defined by

t i5cosF S i2 1

2Dp/NG , ~A4!

andN the number of terms in the Chebyshev polynomial.
ThekT

2-dependent functionsCi are obtained from the Cheby-
shev polynomial functions

Tn~t!5cos@narccos~t!# ~A5!

and are given by

Ci~t!5
2

N(
n51

N

nnTn~t!Tn~t i !, ~A6!

wherenn51 for n.1, andn15
1
2 . A good approximation for

the kT
2 dependence off is obtained with typicallyN520.

The expansion~A2! is then substituted into the BFKL
equation~15! to give the discretized~symbolic! form

f i~y!5 f i
~0!~y!1E

0

y

dy8(
i51

N

K̂i ,k~y2y8! f k~y8!, ~A7!

where the full kernel~17! now becomes

K̂ i ,k5(
l

@exp$~y2y8!KUV%# i ,lKl ,k
R ~A8!

and the input distributionf̂ i
(0)(y) of Eq. ~16! is

f i
~0!~y!5E

0

y

dy8(
k

@exp$~y2y8!KUV%# i ,k
] f k

~0!~y8!

]y8
.

~A9!

The substitution of Eq.~A2! into Eqs.~7! and ~8! gives the
explicit form of the kernelsKR andKUV , respectively. The
BFKL equation ~A7! is a Volterra-type integral equation,
which we solve iteratively for thef i(y)’s. The gluon distri-
bution f (y,kT

2) is then reconstructed from Eq.~A2!.
We also use a Chebyshev interpolation to calculate the

Y[y2y8 dependence of the matrix elements of exponential
matrix in Eqs.~A8! and ~A9!. For convenience, we denote
the matrix elements

@eYKUV# i ,k[M ~Y! i ,k . ~A10!

As before, we expand in terms of Chebyshev polynomials

M ~Y! i ,k5(
j51

J

Cj„t~Y!…Mi ,k
j , ~A11!

whereM j are the values ofM (Y) at the nodesYj . Here, we
takeJ510. We map the relevant region 0,Y,Ymax, where
Ymax5ln(1/Xmin), into the interval21,t,1 by choosing
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t~Y!5~2Y2Ymax!/Ymax. ~A12!

The Cj is given by Eq.~A6! @together with Eqs.~A4! and
~A5!# with i replaced byj . It remains to calculateM (Y) at
the nodesY5Yj . We do this by solving
]Mi ,k~Y!

]y
5(

j51

J

~KUV! i , jM j ,k~Y!, ~A13!

using the Runge-Kutta method with the boundary condition
Mi ,k(Y50)5I i ,k .
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