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We derive a modified form of the BFKL equation which enables the structure of the gluon emissions to be
studied in smallx deep-inelastic scattering. The equation incorporates the resummation of the virtual and
unresolved real gluon emissions. We solve the equation to calculate the number ok sthealp-inelastic
events containing 0,1,2. . resolved gluon jets, that is, jets with transverse momagntax. We study the jet
decomposition for different choices of the jet resolution parametdiS0556-282(96)04823-(

PACS numbgs): 13.60.Hb, 12.38.Bx, 13.87.Ce

I. INTRODUCTION Q?=Q?2. It has been realized, however, that the intimate
relation between the increase of the cross sections with de-
The advent of the DESY electron-proton collider HERA creasingx and the absence of transverse momentum order-
has opened up the possibility of testing QCD in the new andng, which is the basic property of the BFKL dynamics,
hitherto unexplored smalk regime. The HERA measure- should reflect itself in the properties of the final states in
ments of the proton structure functidiy(x,Q%) show a deep-inelastic lepton scattering. Indeed, several dedicated
striking rise with decreasing which, with the latest data, is measurements have been proposed and are being experimen-
now known with considerable precisi¢f,2]. On the other tally studied at HERA(see, for example, the reviews in Ref.
hand, from the theoretical point of view we know for suffi- [9]).
ciently smallx, such thategIn1/x~1, that it is necessary to The purpose of this paper is to study the detailed proper-
resum the &gInl1/x)" contributions in order to obtain reliable ties of the partonic final state produced by the gluon emis-
perturbative QCD predictions. At leading order this is ac-sions along the BFKL chain. In this way we will gain an
complished by the Balitzkii-Fadin-Kuraev-LipataBFKL)  insight into the BFKL equation, as well as detailing observ-
equation[3]. This equation effectively corresponds to the ables with which to probe the underlying smaltlynamics.
sum of gluon ladder diagrams of the type shown in Fig. 1 inln particular, we calculate the decomposition of thetal)
which the transverse momentg are unordered along the deep-inelastic cross section into componemj$w) which
chain. This should be contrasted with Dokshitzer-Gribov-correspond to the production of a fixed numimeof gluon
Lipator-Altarelli-Parisi (DGLAP) evolution where, in the jets each with transverse momentum> . That is, we
leading IQ? approximation, the transverse momenta arestudy the possible jet configurations in the central region
strongly ordered from the hadronic to the hard sc@& between the current jet and the proton remnants. An interest-
which, in deep-inelastic lepton scattering, is provided by theng feature of BFKL dynamics is the possibility of producing

virtuality of the photon: namely, jets even foru>Q. One of our aims is to quantify the yield
of such jet configurations. That is, our study concerns exclu-
Q%> k$> kﬁT>- e (1) sive jet production and, therefore, complements previous

work [10] on inclusive jet production from the BFKL chain.
Both BFKL and DGLAP evolutions lead to an increase of In the BFKL equation there is a delicate cancellation be-
the deep-inelastic scattering structure functions with decreasween the real gluon emissions and the virtual contributions.
ing x. In fact, it is possible to obtain a satisfactory descrip-Clearly, the cancellation is affected by the resolution
tion of the rise of the structure function, measured in theg;> u that we impose. In particular, we must ensure that the
HERA, small x regime using both approachg$—6]. The appropriate cancellation between the virtual contributions
inclusive nature of the structure functidf, makes it ex- and the “unresolved” real gluon emissions with<<u is
tremely difficult, even with the precise HERA data, to usemaintained throughout the calculation. We must, therefore,
the observed behavior to reveal the underlying dynamics at first derive a modified form of the BFKL equation which will
smallx. This is not surprising. The leading behavior obtainedenable us to quantify the number of energeésolvediets'
from BFKL is anx™* growth, whereas for DGLAP we an- produced along the gluon chain, but in which theual and
ticipate an increase of the double logarithmic form
exp/A[In(t/to)In(1/x)]¥24  where t=In(Q¥A?). However,
these are asymptotic predictions. For instance, subleading'Here, the wordresolvedapplies only togr. In particular, we
In1/x effects will weaken the BFKL growth in the HERA have not imposed any criteria to ensure that the jets can be suffi-
regime[7,8]. Moreover, the DGLAP behavior is dependent ciently kinematically separated so that they could be individually
on the choice of a nonperturbative input form at some scal@entified experimentally.
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For convenience, we have also introduced
2__
kr?=|gr+ kql?. (4)

Note that the dependence hﬁf makes the angular integra-
tion in d?gy nontrivial. The inhomogeneous contribution
£(©) in Eq. (3) corresponds to the “no-rung” contribution of
Fig. 1. It is the driving term of the equation and has to be
input. We implicitly include under thel®qy integral in Eq.
(3) the product of theta functions,

0(Q7- k%O (ki*-Q3), 5

so that the emitted gluon is constrained to the domain
Q§< k+2< Qf. In the numerical predictions shown below we
takeQ3=1 GeV? andQ?=10" GeV>.
Jet structure is embodied in the BFKL equation via real
gluon emission from the gluon chain prior to its interaction
FIG. 1. The unintegrated gluon distributiof(x,k7), is effec-  with the photon probéwhich takes place through the usual
tively the sum of the ladder diagrams formed by the modulusfysion Subproces$g—>qa. An observed jet is defined by a
squared of such amplitudes. The leadimgnl/x resummation is  resplution parameter. which specifies the minimum trans-
accomplished by the BFKL equation. verse momentum that must be carried by the emitted gluon
unresolvectontributions are treated on an equal footing andfor it to be detected. For realistic observed j.ets in the experi-
are resummed. This is the subject of Sec. II. In Sec. 1l wenents at HERA, the lowest reasonable choice for the resolu-
give an analytic solution for the resummation at low jet reso-ion cutoff parametei. appears to be aboyt=3.5 GeV.
lution, whereas in Sec. IV we consider more realistic valuegiowever, we also present results fio=6 GeV and, so as to
of the resolutionu and solve the modified BFKL equation gain a theoretical insight, for the low values @1 and 2
by iteration to illustrate the jet decomposition of the BFKL GeV.
gluon. At this stage it is still a theoretical study. In Sec. V we If an emitted gluon has transverse momeniyys< u then
use the BFKL gluon and thier-factorization theorerfil1l] to  the radiation is said to be unresolved. The unresolved radia-
predict the jet decomposition of the observable structurgion must be treated at the same level as the virtual correc-
function F, and the deep-inelastic cross section. Section Viions to ensure that the singularities g&—0 cancel in the
contains our conclusions. g% integration. To do this we first rewrite the BFKL equation
(3) in the symbolic form

Il. THE BFKL EQUATION INCORPORATING JET
RESOLUTION gr>t

y
— £(0) ’ ’
In the smallx regime the dominant parton is the gluon. f=r fo dy’Kef(y’), ®)

Since we no longer have strong ordering in transverse mo-

menta along the gluon chain in Fig. 1 we must work in termsyhere ® denotes the convolution ovey;. We divide the

of the gluon distributiorf (x,k%) unintegrated over its trans- real gluon emission contribution into resolved and unre-

verse momentunky. The relation of unintegrated distribu- solved parts using the identity

tion f to the conventional gluon distribution is

L [k O (07— u?)+O(u’—af) =1, Y]

xXg(X, = — f(X,k%). 2 ) -
9x.Q%) f k2 (x.kp) @ where the first term denotes the real resolved emission and

the second the real unresolved emission. We then combine

The unintegrated density satisfies the BFKL equation e ynresolved component with the virtual contributias].
which effectively sums up the leadingsInl/x contributions.  thatis

In integral form it may be writterf12,13

20 _ 0o 12y L= | g d’qy f=f<°)+fydy’(K +Kuy)@f(y") (8)
fy.kp=fy.kp+as| dy e 0 RTTOV ’
T

k% ) ) . where the kerneKy for the resolvedemissions withgr> u
X Ezf(y’,k% )—f(y" . kpO(ki—ap |, () s given by

— 2
with ag=3ag/ 7. We have chosen to use the rapidity vari- Ko f(v')= (k2 kzj d QTG) 2_ 2 1 f(y! K2
abley=Inl/x instead ofx, and so the integral in E43) has rOT(Y)=as(kpky 792 (Gr—u )k}z (k7

come from the replacement 9
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while Ky, the combinedinresolvedandvirtual part of the  Recall that the original BFKL kerneKr+Kyy, has noy
kernel, satisfies (i.e.,x) dependence. However, upon the resummation of the
unresolved and virtual radiation we generate an expjicit
dependence. In fact, the kerri€lof Eq. (15) is a function of
only the differencey—y’ (i.e., of Ix’/x) and noty andy’
individually, see Eq(17).

uvotty)=aidy [ £ kT2f<y K)O(u?—a3)

—f(y' k3O (k3—g?)|, (10)

Ill. ANALYTICAL SOLUTION AT LOW

with ki?=|gr+ kr|2. These identifications of the kernels fol- I Sec. IV we numerically solve the modified BFKL
low by comparing Eq(8) with Eq. (3). Theg2—0 singular- equation forf(y,k%) and, by iteration, determine the prob-
ity is now canceled between the unresolved and virtual con@bility of the emission o gluon jets withgr> u. However,

tributions, and by working with the combined kermg}, we  first it is informative to derive an approximate form of the
will ensure that the cancellation remains intact. above equation which holds in titheoretical limit of small

We seek a BFKL equation for the real resolved emissiongt/K5 . In this limit it is possible to resum the unresolved
in which the unresolved and virtual contributions have beerfind virtual contributions in a closed analytic form. The cru-
resummed. To do this we write the BFKL equati@ in the  cial observation is that for smalt?/k% we may write
differential form

af | af©
ay | ay

N

+KR®f +Kyy®f, (1) in the integrand for the unresolved real emission term in Eq.

(10). Then Eq.(10) simplifies to become

and treat the expression in parentheses as the inhomogeneous de?
o : L o , -

contribution. We sol_ve the mhomo_geneous equation in the Kuv®@f(y')=as(k3)f(y )J — [O(u2—qd)

standard way. We first find a solution to the homogeneous ar

equation and then we obtain the full solution via an integrat-

2
. . - M
ing factor. The homogeneous version of Efjl) is —0O(k2—gd)]+0 E)
dA
- = Kuv®A (12) k2 2
ay ——as(kT)In< f(y')+0 ) (18)
M k'r
with solution
Thus, the homogeneous solution of the BFKL equatibl)
A(y)=expyKyy), 13 s
and so the integrating factor 8~ *=exp(-yKyy). Hence, A(y)=expyKyy) =exd —yas(k3)In(k3/u?)], (19

the full solution of Eq.(11) is
that is the resummation is given by a simple analytic form.

y ) : e s
fov= | dvAVeA V) ® ) As a consequence, in the smalllimit, the modified BFKL
) fo y'AY) ") ay’ equation(15) becomes
y - _ y
= fo dy’exr{(y—y’)Kuv]®( ——TKr® (Y’ )) f(y,k3)=fO(y,k2)+ ag(k?) fo dy'A(y—y' k%)
(14) dqu . 2
, . : X O(q7—p s zf(y ki?),  (20)
Thus, we have derived a BFKL equation for the gluon dis- g5

tribution f in which the unresolved and virtual terms have " ) o o
been resummed in the exponential factor. The equation is ofhere herek;“=|gr+k¢|?, and the driving term is given by

the form Oy K2)
y'
o oy kb= [(aya-y k=2 @
f(y)=f(°>(y)+f dy’Kef(y’), (15
0
Of course, for the results presented below we do not use the
where the driving term has become low w approximation, although to gain an insight we will
compare the full prediction of Eq16) for f(©) with the ap-
f(o) ; 2712 ; ;
f<0)(y)_f dy’exg (y—y’ Kuv]® (16) proximateO(u</kT) result given in Eq(21).

IV. JET DECOMPOSITION OF THE BFKL GLUON
and the new kernel

~ The BFKL equation was expressed in fodb) specifi-
K=exd (y—y")Kyv]®Kg. (17) cally so that we can decompose the unintegrated gluon dis-
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tribution f into the sum of contributions with different num- Q? )
bers of resolved gluon jets with transverse momenta \\

gt>p. That is,
\ 9

f(y)=§o f(y), (22)

wheref" denotes the contribution to the unintegrated gluon
distribution f arising fromn resolved jets in the chain, each
with gt> u, see Fig. 2. Tha-jet contributionf™ obviously
depends on the resolutign, whereas the sunfi does not.
Using Eq.(15) we have

y ~
f”(y)=f dy'Ke " (y"), (23
0
where the 0-jet contributiof®= () of Eq. (16) and where d

K is the full resummed kernel of Ed17). For the initial
nonperturbative input(®) in Eq. (16) we take

fO(y)=3N(1—eY)%xp(—k3/QP), (24)

where the normalizatioiN is fixed so that the gluon, inte-
grated over the regiok?>Q3, carries half the momentum
of the proton. We seQSzl GeV?. The above shape of the J
input 1) in y=In(1/x) is based on the conventional param-

etrization of the nonperturbative gluon distributiagf® FIG. 2. The modulus squared of this diagram gives the compo-
which is related td® through Eq.(2); that is, it is assumed nentF! of the proton structure functioR; which arises from the

to have a I “soft” Pomeron behavior ax—0 and to sat- contribution f” to the gluon distributionf in which there aren

isfy the spectator counting rules gs-1. Thek-%— dependence resolvedgluon jets emitted along the BFKL chain, thatrisgluons

of £() reflects the usual nonperturbative falloff with increas-with gr>u. The black circles are to indicate the presence of both
ing k2. This guarantees that the nonperturbative integratedfirtual and unresolved gluon emissions. The compoifighis cal-
gluon distributiong(o) exhibits Bjorken scaling for suffi- culatednby thek;-factorization theorem, which has the symbolic
ciently largeQ?. form, F'=F}92f", see Eqs(27) and (32).

Although the sumf(y) of Eqg. (22) is independent oju,
the individual contributions"(y) are u dependent. Recall
that® stands for an integration ovel‘gy [see Eqs(9) and
(10)], and thatf is a function ofk? as well as ofy. In Figs.

3, 4, and 5 we show the decomposition ﬂfy,k%) for
kr=2, 5, and 10 GeV, respectively, in each case taking thre

smaller values ok with increasingn. This maximum is a
straightforward consequence of virtual corrections which, for
low w, are not entirely compensated lynresolved real
radiation. The maximum disappears for laygeand we have
this structure for all values d{; .

diff lues for th L _ d € Some insight into the behavior can be obtained from the
ifferent values for the resolution, namely=1, 2, and 3.5 analytic form presented in Sec. lll, which applies when

GeV. t‘)l;hedgluotln dﬁﬂs'tyha.”d Its derc]:omposn(ljon, a;e nott Obﬁ2/k$ is small. In this limit the virtual and unresolved real
servable directly. The choices we have made foare, at o |cadt0 a suppression factor

this stage, solely to gain insight into the structure of the

BFKL gluon. The results show the following features. A(y)=e A, (25)
(i) Gluon jets with u>k; occur; their probability in-
creases ax decreases. where A= agn(Ké/u?). Thus, from Eq.(21) we obtain the

(ii) The lower the value of., the greater the number of zero-jet contribution
resolved jets, that is, the greater the preponderance of multi-
jet configurations.

(iii) As x decreases, the greater the diffusion iq%lrs;o
that ann-jet configuration first increases in probability and

~ y ,
f0=fO0(y,k?)= e—Ayf dy’e”V' 3Nexp( —k3/Q3)
0

then decreases as higher-jet configurations take over. d —y'\5
(iv) The higher the value ok? the sooner inx (as x ><d—y,(1—e ), (26)
decreaseswill a given multijet configuration go through this
rise and fall. that is, thek; dependence df® is essentially the same as the
(v) As k3/u? increases the 0-jet contribution drops rap-kr dependence of the driving terff® of Eq. (24). This
idly to zero. explains the origin of featurév), that the O-jet contribution

The results for low values of the resolution parameter falls rapidly to zero with increasing?. Figure 6 compares
show that the function§” have a maximum which shifts to the analytic approximation with the full result fqu?=1
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FIG. 3. Then-jet contributions to the unintegrated gluon distri- FIG. 4. The same as Fig. 2 but fef=5 GeV.

bution f(x,k2) for three different values of the jet resolution param- __ . . S
eteru and fork;=2 GeV. Fig. 7. To carry out the integration over the quark line in Fig.

7 we express its four-momenta in terms of the Sudakov

GeV2 andk=4 GeV2. We see that the analytic form re- Variables
produces the shape of the numerical solution, but fails in the k=ap—Bq’ +
normalization. Also, the peak in the numerical prediction T

Shlfts Sllghtly to smalleix. Th.US, the analyt?cal appl’OX.ima' Whereq’:q+xp andp are the basic ||ght||ke momenta(
tion cannot be used as a valid representation for the jet conndp are the four-momenta of the virtual photon and proton,

tributions, even for a resolution as low as 1 GeV respectively. The variablex is fixed by the quark mass-shell
constraint, leaving integrations ov@ and «;. Evaluating
V. JET DECOMPOSITION OF F;(x,Q%) AT SMALL x the box contributions, Eq27) then become§l15]

We are now in a position to estimate the probability of the ) 5 Q? dk% 1 . X
different multijet configurations in the small observables ~ Fr(x,Q%)=22 quJKZFL dﬂf dxrasf| S7 .k
that are driven by the BFKL gluon. The most relevant pro- a o T

cess to study is deep-inelastic scattering at HERA. Using the K% rer- (rer—kq)
results of Sec. IV, we calculate the jet decomposition of the x[ [B2+(1-B)?)| —— ————
proton structure functiong;(x,Q?). In other words, we de- D1 D1D>
termine what fraction of events that make up the inclusive m2  m?
measurement of;(x,Q?) contains no jets, 1 jet, 2 jets, etc. g P J (28)
as a function ofx,Q? and the jet resolution parametgr. D1 Dib»
Recall that our jets are gluons emitted with transverse mo- 9 42 (1
mentuqu>,u. 2\ 2% T 204 o2

From knowledge of the BFKL gluof we can determine FLx.Q _qu: K 477Jkg k# J’o B B (1-p)
the behavior of the structure functions via the
k-factorization theorem, see Fig. 2. For the transverse and < | a2t et X K 1 _ 1
longitudinal functions we have TESH x0T Ef DD, |’

p (X A x 29
Frx.Q )_L 7[ k_ﬁf x K [FELC ke, Q). where the denominators
(27)

Dy=xf+B(1-B)Q%+m,
where, to lowest order, photon-gluon fusibf® is given by ) s
the quark box@and crossed boxcontributions, as shown in D,=|ser—kq|*+ B(1- B)Q*+ my,
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FIG. 5. The same as Fig. 2 but flag=10 GeV.

and wherext=kr—(1—B)ks. The x’ integration of Eq.
(27) is implicit in thed?«} andd integrations. Indeed’ is
fixed in terms ofx; and g,

12 2 k2 -1
T P T (30)
X - 1
BL-BQ Q°
which ensures that the requirement @’ <1 is satisfied. Of
course, the integration regions of E¢88) and(29) must be
constrained by the condition

X' (B, k57 K ,Q%)>x

so that the argumerg=x/x" of f satisfies the requirement
z<1. In Egs.(28) and(29) we sum over the quark flavors;
we take the masses to be,=0 for u,d,s quarks and

m.=1.5 GeV for the charm quark. The argumentf is

taken to bex}?+m3, which allows integration over the en-
tire region of K-,|—2. For the light quarks we takeng=1
GeV?; the results are not very sensitive to variationsmgf

(31
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FIG. 6. The comparison of the analytic and numerical solutions
for the 0-jet contribution‘o(x,k$) to the unintegrated gluon distri-
bution.

in the lower plots we demang;>6 GeV. Figures 8 and 9
correspond tdQ?=10 and 20 GeV, respectively. For these
choices of jet resolution it can be seen that the 0-jet configu-
ration dominates. That is, most of the emission from the
BFKL ladder is in the form of unresolved and virtual gluon
radiation. As expected, thejet configurations first become
important (with decreasingx) for the lower resolution,
w=3.5 GeV, and for the highe®? value, Q>=20 Ge\?,

and begin to compete with the 0-jet rate fo£ 10 °. In fact,

the 4-j§t rate becomes comparable with the O-jet rate for
x~10""°.

Although, the 0-jet configuration dominates in the HERA
kinematic regime, there is still a non-negligible contribution
from resolved jets. For example, &°=10 GeV? and
x=2X10*4, the 1- and 2-jet contributions are each approxi-
mately 3 of the O-jet rate, and even the 3- and 4-jet configu-
rations occur at a reasonable rate. Also, notice the production
of resolvable jets with.>=Q? is important, this is a straight-
forward consequence of diffusion k¥.

about this value. For the charm quark contribution we set

ma=mZ. Also, we seki=1 GeV?.

The jet decomposition of | t are simply obtained by
substituting then jet unintegrated distributiori” into Egs.
(28) and (29). In this way, we can break down the observ-
ables into their componemt-jet contributions, for example,
for F,=F +F; we have

Fo=>, FJ. (32
n=0
Figures 8 and 9 show the componeftyx,Q?) for deep-

inelastic events containing observed jets, where in the up-
per plots we require the jets to hagge>3.5 GeV, whereas

Q?

RN

3
I
200009Q9Q
000000
T000000

FIG. 7. The quark box and crossed box diagrams describing
photon-gluon fusiorF"? in Eq. (27).
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g8 T Ty for consistency of the results. This characteristic difference
21| 4=3.5 GeV = Qs should hopefully be seen in the measurement of the indi-
“ 1.4 F QF=100CeV* e 2jets

H#=6 GeV
Q*=10 GeV?

107t 10

vidual jet structure functions.
The cross section for deep-inelastic scattering is readily
calculated fromF+ | . We have

d dQ?
0':47Tt1’2f YXJ Q—Q4{y2XF1(X,Q2)+(1_Y)F2(X,Q2)},
(33

where, as usual,y=Q?%xs, Fr=2xF;, and F =F,
—2xF;. Here, we present results for the component cross
sectionso” for deep-inelastic events containimgjets with
dr>u, again for two choices of resolution=3.5 and 6
GeV. We take\s=300 GeV and integrate over the inter-

val 0.0l<y<0.5 so as to approximately reproduce the
HERA domain. Figures 10-13 show, respectively, the 0-, 1-,
2-, and 3-jet cross sections integrated oxemndQ? bins of
size Ax=2x10 % and AQ?=10 GeV?, where the two en-
tries in each bin correspond to a gluon jet with resolution
©=3.5 and 6 GeV, respectively. We see that there are an

FIG. 8. The decomposition of the proton structure functiongppreciable number of identifiable jets. For example, if we

F,(x,Q?) into contributions coming from different numbers of re- take a resolved jet to be one withi>3.5 GeV and an inte-

solved gluon jets for experimentally accessible values of the resograted luminosityC=10 pb ™%, then in the bin defined by

lution pare_lmetelzL:3.52 and 6 GeV. The decomposition is shown 0.8X10 3<x<10"3 and 15 Q2<25 GeVZ, we predict

as a function ok for Q*=10 GeV*. 2686, 2097, 1093 events containing 1, 2, 3 jets as compared
to 12506 events with no identifiable jet.

The experiments at HERA show that ttieclusive struc- Recall that the predictions are obtained by numerically
ture functionF, rises asx decreases. How is this rise made solving the BFKL equation for the gluon. The normalization
up from the various multijet configurations? First, we look atis dependent on the choice of the cutoff. Here, we have taken
the results for the lower jet resolutiop,=3.5 GeV. Al-  the cutoff to be 1 Ge¥, which was found to give a satisfac-
though the 0-jet rate dominates, its increase with decreasingry description of the inclusivé&, distribution. However,

X is relatively weak compared to the data. The riseFof  the fraction of events containing 0,1,2 . identifiable gluon
comes from the increasing importance of the higher-jet conjets is independent of the choice of the cutoff. For example,
figurations. On the other hand, at the higher resolutionfor the above fAx,AQ?) bin and for the lower-jet resolution
n=6 GeV, the 0-jet configuration is even more dominantof 4, =3.5 GeV we find 69% of the cross section contains no
and shows a steeper rise over the samenge, as is required observable jet and that 1, 2, and 3 jets occur 14%, 10%, 5%
of the time, respectively. Only 2% of the events contain
more than 3 jets. For the higher-jet resolutionof 6 GeV

F(x,Q%)
o

=6 GeV
Q@*=20GeV*  =meeee

FIG. 9.

The same as Fig. 8 but fQ?=20 Ge\~.

we predict that the BFKL chain will give 88% of the events

Frand T T ] T
3 sk 4=3.5GeV —— Ojets 3 with no observable jet, leaving only 12% of the total to be
=& N Q=20 GeV* 1 let

split between 1-,2-. .. jetevents.

We see from Figs. 11 and 12 that the 2-jet rate is compa-
rable to the 1-jet rate and, moreover, that the 2-jet/1-jet ratio
increases with increasing resolutign This type of behavior
is consistent with the expectations of the conservation of
transverse momentum.

VI. SUMMARY AND CONCLUSIONS

In this paper we have formulated a modified form of the
BFKL equation which allows an exclusive analysis of the
multijet yields in deep-inelastic lepton scattering in the small
X regime. The jets are defined as gluon emissions from the
BFKL chain which have transverse momentagreater than
a specified resolutiop.. We first solved the modified BFKL
equation to determine the jet decomposition of the uninte-
grated gluon distributionf(x,k%). We then used the
kr-factorization theorem to determine the jet decomposition
of the structure functiorF,(x,Q?) and of the total deep-
inelastic cross section in the HERA smallegime. We pre-
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FIG. 10. The cross sectidim pb) for deep-inelastic scattering in
which there are no resolved gluon jets shown in diffese@? bins

in the region accessible at HERA. The width of the bins are. . _
AQ?=10 Ge\? and Ax=2x10"4. The upper and lower values 'S & function ofu. Indeed, for unrealistically low values of

correspond to the resolution parameter 3.5 and 6 GeV, respec- * we derived, for pedagogic purposes, the analytic form of
tively. they dependence of the kernel, see EtQ). For the more
realistic numerical solutions that we present the correlation

sented the jet decompositions as a function of the kinematifetween the« dependence of the-jet cross sections and the

variables and for different choices of the jet resolution pa-€Solution parametes is apparent.
rameters. The behavior of the-jet contribution to the gluor, or to

The modified BFKL equation is shown symbolically in F2. exhibits a characteristic behavioraslecreases, rising to
Eq. (15 and the kernekK in Eq. (17). Equation(15) embod- a maximum and then falling back to zero. The hlgher the
ies a resummation of the virtual contributions together withVa/ue ofn the lower the value ok at which the maximum
the unresolvedreal gluon emissions witly;< x. As a con- occurs. In the HERA. smatk regime the behavior is only
sequence, the kernil has an explicity=1In1/x dependence, apparent for low choices of the parameey for example,

. i ~1 GeV, see Figs. 3-5. For experimentally realistic val-
which depends on the amount of unresolved radiation and Sfjdes of the resolution paramet@say u=3.5 or 6 GeV, the

FIG. 12. The same as Fig. 10 but for two resolved gluon jets.
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FIG. 11. The same as Fig. 10 but from the contribution in which
there is one, and only one, gluon resolved jet vejih> w. FIG. 13. The same as Fig. 10 but for three resolved gluon jets.
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maxima shift to very small values of. The dominant con- where f;(y) are the values of (y,k3) at the k3); nodes
tribution in the HERA range then comes from events with noobtained from
resolved gluon jets emitted from the BFKL chain. Neverthe-
less, the 1-,2-,3- .. jetrates are still significant. An inter- (k9 [ Qf\7
esting feature of the multijet cross sections is that they are Q:Qo = Q_o
non-negligible even ijx>Q. The existence of such jets with
gt>Q is a straightforward consequence of the characteristigvith 7; defined by
Ink?r diffusion along the BFKL gluon chain.

To sum up, we have made an exploratory study of a form -=005{ ( i }) w/N} (Ad)
of the BFKL equation which allows the final state jet con-
figurations to be determined in a consistent manner. We
solved the equation and presented sample results to illustra@®d N the number of terms in the Chebyshev polynomial.
the properties of these gluon jets which occur in deepTheké-dependent function§; are obtained from the Cheby-
inelastic scattering at smatlas a result of BFKL dynamics. shev polynomial functions
Of course, the normalization is dependent on the choice of
input f©© and the cutoffQ3. Our choice is such that the
predictions for the totally inclusiv&, are compatible with
the measurements at HERA. On the other hand, the shape in
x of the individual jet contributions, and the predicted values o N
of the jet ratios are much less sensitive to the input. In addi- Ci(N==2 v Ta(DTa(7), (A6)
tion, there are In¥ and fixed-order QCD jet contributions to Ni=1
consider. These may modify the predictions in the HERA o
regime, but with decreasing the BFKL behavior should wherevn—l forn>1, andv,= 3. A good approximation for
become increasingly domlnant One nonleading effect is théhe k% dependence of is obtained with typicallyN = 20.
imposition of the constraing?,<x,k3/x (in the notation of The expansionA2) is then substituted into the BFKL
Fig. 1) which follows from the requirement that the virtuality equation(15) to give the discretizegsymbolig form
of the gluon links is dominated by k2 [7,8]. If this were , N
done we find that it would limit the available phase space for ) — £(0) , (! ,
multijet production and, as a consequence, reduce the yield iy =1 (y)+ fody 21 Kiy=y)ly"), (A7)
of multijet events.

(A3)

T,(7)=cog narccosr) ] (A5)

and are given by

where the full kerne(17) now becomes
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The substitution of Eq(A2) into Egs.(7) and (8) gives the

explicit form of the kernelK g andKyy, respectively. The

BFKL equation (A7) is a Volterra-type integral equation,

which we solve iteratively for thé;(y)’s. The gluon distri-
Here, we briefly describe the numerical method that webution f(y, k2) is then reconstructed from EGA2).

used to solve the BFKL equatidid5). The starting point is We also use a Chebyshev interpolation to calculate the

the Chebyshev polynomial expansion of the unintegrated’=y—y’ dependence of the matrix elements of exponential

gluon distribution f(y,k%) in which we map the region matrix in Egs.(A8) and (A9). For convenience, we denote

Q5<k3<Q? into the interval (1,1) in terms of the vari- the matrix elements

able 7 defined by

APPENDIX: NUMERICAL TECHNIQUES
USED TO SOLVE THE BFKL EQUATION

[e"Kuv]  =M(Y); k. (A10)
r(kT) ) In( k2 ) / In (Qf) (A1) As before, we expand in terms of Chebyshev polynomials
QtQo Q5 J
M(Y)i= 2, Cir(Y)IMI . (A11)

We expand the gluon distributiohin the polynomial form

whereM! are the values of1(Y) at the node¥;. Here, we
f(y,k2 2)= E C [T(k )Ifi(y (A2) takeiz 10. We map the r(_elevant region Y <Y nax, where
Y max=IN(1/Xmin)» into the interval—1<7<1 by choosing
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7(Y)=(2Y = Yma! Y max- (A12) oM.

V) _3
oy "2 KoMy, (ALY

The C; is given by Eq.(A6) [together with Eqs(A4) and
(A5)] with i replaced byj. It remains to calculatd(Y) at  using the Runge-Kutta method with the boundary condition

the nodesy=Y;. We do this by solving M (Y=0)=1; .
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