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Wigner inequalities for a black hole
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Wigner inequalities for the minimum size and maximum running time of a clock are applied to a black hole
They give the Hawking lifetime of a black hole as the maximum time that a black hole could be used t
measure and identify the information content of a black hole.@S0556-2821~96!03022-6#

PACS number~s!: 04.70.Dy, 03.65.Bz
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There is a smallest clock. Wigner@1# was the first to
consider the fundamental limits that govern the mass
size of any physical entity that functions as a time-register
device. The limit is more severe than that imposed by
energy-time form of Heisenberg’s uncertainty principle b
cause it requires that a clock still show proper time af
being read: the quantum uncertainty in its position must
introduce significant inaccuracies in its measurement of ti
over long periods. If a clock of massM has quantum posi-
tion uncertainty ofl then its momentum will have a sprea
\l21, and so after a timeT its position spread will grow to
Dl5l1\TM21l21. If the mass is fixed then this will be a
minimum whenl5(\T/M )1/2. Hence, if the linear spread in
the dimension of the clock isl, and its mass isM , then the
total running time over which it can remain accurate
Tmax, where

l.S \Tmax
M D 1/2. ~1!

This is Wigner’s first clock inequality@1#.
If we are to read the clock repeatedly and reliably then

position uncertainty created by the measurement of ti
must be smaller than the minimum wavelength of the qua
used to read the clock; that isl<cTmin , whereTmin is the
smallest time interval that the clock is capable of resolvin
Hence, the minimum size limit may be reexpressed a
bound on the minimum mass of a clock:

M.
\

c2Tmin
S TmaxTmin

D . ~2!

This is Wigner’s second clock inequality@1#. We recognize
this inequality as Heisenberg’s energy-time uncertainty pr
ciple, but strengthened by the factor (Tmax/Tmin).1. The re-
quirement that repeated measurement not disrupt the c
over the total running timeTmax clearly imposes a stronge
limit on its mass than does a single simultaneous meas
ment of both the energyMc2 and the timeTmin . There have
been several attempts to limit the ultimate capability of co
puters using constraints from fundamental physics@2#, like
the uncertainty principle and finite light speed, but it is i
equalities~1! and ~2! that are likely to provide the stronges
constraints on the ultimate capability of any nanotechno
gies which require accurately time-ordered or synchroniz
activities. As an illustration, we can use Eq.~2! to obtain a
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limit on the power required by any information processor.
we denote the energy byE then Eq.~2! can be rewritten as

ETmax.\S TmaxTmin
D 2. ~3!

The mean power generated by an information processo
P[E/Tmax. Sincen5Tmin

21 is the fastest possible processin
frequency, the maximum number of steps of informati
processing will beTmax/Tmin , and there is a limit on the
frequency of information processing possible with a me
input of powerP:

P.\n2. ~4!

Now suppose we apply Wigner’s size limit~1! to gravitating
systems. If we use a black hole as a clock then the minim
clock size is the Schwarzschild radius

Rg5
2GM

c2
~5!

and so Eq.~1! gives the maximum running time of this grav
tational clock as

Tmax<
MRg

2

\
5
4G2M3

\c4
;

M3

mP4
tP , ~6!

where tP5(G\/c5)1/2 and mP5(c\/G)1/2 are the Planck
units of time and mass. Thus the maximum clock runni
time is the Hawking black hole lifetime@3#. This result is
surprising. If we had not known of the existence of bla
hole evaporation it would have implied that there is a ma
mum lifetime for a black hole state when quantum observ
are introduced. The conventional heuristic derivation of t
Hawking lifetime for black hole evaporation uses the energ
time uncertainty principle on the event horizon scale,Rg ,to
determine a temperature for the black hole which, under
assumption that the black hole is a black body, then allo
one to use Stefan’s law to calculate the lifetime of the bla
hole for complete evaporation of its mass to occur. The
gument leading from Eqs.~1! and~2! to Eq. ~6! is different:
the application of the Wigner inequality to the event horiz
scale predicts the Hawking lifetime directly without the a
sumption that the black hole is a black body radiator. T
black body character could be inferred from the form of E
~6!. The second Wigner inequality tells us that the minimu
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time interval that the black hole can be used to measur
just the light travel time across the black hole’s horizon:

Tmin.S \Tmax
Mc2 D 1/252GM

c3
5
Rg

c
. ~7!

Thus we are led to view the quantum black hole as
information-processing system in which the number of co
putational steps is equal toTmax/Tmin;(M/mP)

2 wheremP is
the Planck mass. This gives the number of bits required
specify the information content of the black hole as the ev
horizon area in Planck units, as expected from the iden
cation of a black hole entropy~see, for example,@4#!.
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These results provoke the speculation that, at the quantu
cosmological level, the conditions under time might be ro-
bustly measured@5# by a hypothetical ‘‘observer’’ may pro-
vide some constraints upon the nature of the Universe or o
the conditions under which the concept of time remains co
herent. Their simplicity reinforces the central importance of
black holes as the simplest and most fundamental construc
of spacetime, linking together our concepts of information,
gravity, and quantum uncertainty.
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