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Baryon Wilson loop area law in QCD

John M. Cornwall*
Physics Department, University of California, 405 S. Hilgard Avenue, Los Angeles, California 90095-1547

~Received 16 May 1996!

There is still confusion about the correct form of the area law for the baryonic Wilson loop~BWL! of QCD.
Strong-coupling ~i.e., finite lattice spacing in lattice gauge theory! approximations suggest the form
exp@2KAY#, whereK is theqq̄ string tension andAY is the global minimum area, generically a three-bladed
area with the blades joined along a Steiner line (Y configuration!. However, the correct answer is
exp@2(K/2)(A121A131A23)#, where, e.g.,A12 is the minimal area between quark lines 1 and 2 (D configu-
ration!. This second answer was given long ago, based on certain approximations, and is also strongly favored
in lattice computations. In the present work, we derive theD law from the usual vortex-monopole picture of
confinement, and show that, in any case, because of the 1/2 in theD law, this law leads to a larger value for
the BWL ~smaller exponent! than does theY law. We show that the three-bladed, strong-coupling surfaces,
which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the
non-Abelian Stokes’ theorem for the BWL, which we derive, and lead via this Stokes’ theorem to the correct
D law. Finally, we extend these considerations, including perturbative contributions, to gauge groups
SU(N), with N.3. @S0556-2821~96!02522-2#

PACS number~s!: 11.15.Tk, 11.15.Pg, 12.38.Aw
,
,

I. INTRODUCTION

QCD is a theory more than twenty years old, yet certa
questions of fundamental principle seem still to have no d
finitive answer. Among these is the question of the corre
form of the area law for the baryonic Wilson loop~BWL!
@and its analogue for SU(N) gauge groups withN.3#.

The BWL is defined as

BWL[
1

6
eabcea8b8c8U~x,y;1!aa8U~x,y;2!bb8U~x,y;3!cc8,

~1!

where the quark lines, labeled 1,2,3, emerge from the po
x and rejoin the vacuum at pointy. TheU8s are defined by,
for example,

U~x,y;1!aa8[FPexpS E
G~1!

dz•A~z! D G
aa8

, ~2!

whereP stands for path ordering, the integral runs fromx to
y, andG(1) is the path fromx to y for quark line 1~see Fig.
1!. We define the vector potentialA(z) as

Am~z!5
gl j

2i
Am
j ~z! ~3!

in terms of the usual component potentialAm
j (z) and Gell-

Mann matricesl j ; g is the coupling constant.
There are only two contenders for the form of the BW

area law; both were given early on and continue to be d
cussed. The first is@1–5#

^BWL&5exp@2KAY# ~4!
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and the second is@6#

^BWL&5exp@2KAD/2#. ~5!

In both Eqs.~4! and ~5!, K is theqq̄ string tension; in Eq.
~4!, AY is the three-bladed area running from each quark line
to a central Steiner line, which generically exists to define
the global minimum area~see Fig. 2!, and in Eq.~5!,

AD[A121A131A23, ~6!

whereAi j is the minimal area spanning quark linesi and j
~see Fig. 3!. We call the area law~4! theY law, and Eq.~5!
theD law. It is easy to understand the normalization of the
exponent: When lines 1 and 2, say, are made to coincide
then the corresponding quarks act as a single antiquark

FIG. 1. The SU~3! BWL.
6527 © 1996 The American Physical Society
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which must show the usualqq̄ area law, based on the mini
mal areaA spanning line 3 and the effective antiquark. B
when lines 1 and 2 coincide, the coefficients ofK in both
area laws reduce toA.

The author’s previous argument@7# for the D law was
based on a vortex-condensate model discussed below, b
used some approximations which are, in fact, completely
necessary and which will not be used here. Furthermo
some vital technical details were omitted, notably concern
a non-Abelian Stokes’ theorem for the BWL, which we su
ply and use in the present work.

Given that the early work on the BWL was based o
approximations and intuitive insight, can we today say whi
of the laws@Eqs. ~4! or ~5!# is correct? We will show here
that theD law in Eq. ~5! is, based on the continuum versio
@7# of confinement via a vortex-monopole condensate. Th

FIG. 2. Generic global minimal area of the BWL; the centr
line is the Steiner line.

FIG. 3. TheD areas of the BWL; each pair of quark lines i
spanned by an area minimal for the loop formed by the two line
-
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vortices were invoked by ’t Hooft@8#, and developed on the
lattice by Mack and Petkova@9#. These lattice considerations
are not of the strong-coupling~finite lattice spacing!-type, to
which we will come in a minute; they are intended to apply
to the weak-coupling or continuum limit of zero lattice spac-
ing. Tomboulis@10# has more recently given some rigorous
results on these lattice developments@unfortunately, only for
SU~2!, where there is no BWL#, confirming that confinement
can only come from a condensate of vortices.1 In our argu-
ments for theD law ~5!, the coefficientK/2 is derived by
simultaneously deriving both theqq̄ area law and the BWL
area law from the vortex condensate.

We state our arguments about the BWL and the vortex
condensate in terms of a specific realization of the conden-
sate, based on dynamical and gauge-invariant generation of a
gluon mass, dynamically consistent because the gluon mass
vanishes at short distances@7,11–13#. While one might
doubt the accuracy of specific quantitative predictions of any
condensate model, our results concerning the BWL depend
only on general features of the vortex-condensate picture. It
is merely for concreteness of exposition that we choose to
use the picture of vortices driven by a dynamical gluon mass.
This independence of details of the vortex condensate holds
as long as the BWL is large, in the sense that all scale lengths
of the quark lines in the BWL~length, distance of closest
approach to itself or other lines, curvature radius, torsion
length, etc.! are large compared to the scale lengthL21 of
QCD, and as long as we are only interested in the area-law
and not perimeter-law corrections. The general features are
~1! QCD field strengths are short ranged,~2! QCD gauge
potentials have a pure-gauge, long-range part~if there is no
long-range part, there is no area law, only a perimeter law!,
~3! the magnetic fluxes of the vortices~which realize points
1, 2 above! lie in the center of the gauge group, and~4!
because of the finite correlation lengthL21 of QCD, distinct
vortices are statistically independent. Indeed, parts of a
single vortex which are separated by a distance large com-
pared toL21 are uncorrelated.

If the BWL is large, then only the long-range, pure-gauge
part of the potential need be taken into account, which
greatly simplifies the argument. Confinement and the conse-
quent area laws become a matter of counting Gauss-linking
numbers@7,12#, since both theqq̄Wilson loop and the BWL
can be expressed in terms of standard Gauss-linking inte-
grals. These integrals can be interpreted by using the non-
Abelian Stokes’ theorem to convert them to integrals count-
ing the ~signed! intersections of the vortices with surfaces
spanning theqq̄ Wilson loop or the BWL. We will discuss
this Stokes’ theorem for the BWL below. Following this line
of thought leads immediately to the form~5! for the BWL
area law.

The alternativeY law in Eq. ~4! is usually argued for
@1–5# on the basis of lattice strong-coupling arguments, with
the lattice spacinga kept finite andO(L21), whereL is the
QCD mass scale, or intuitive remarks are made to the effect
that AY is the minimum area. However, we will show very
easily that whileAY<AD , in fact,

1Tomboulis also gives a number of references to other works de-
veloping the vortex picture on the lattice.
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54 6529BARYON WILSON LOOP AREA LAW IN QCD
AY>
1

2
AD . ~7!

This shows that the exponent in Eq.~5! is less than that in
Eq. ~4!, so any intuitive argument about minimum area
should favor theD law.2

We note that lattice calculations of the BWL have alway
favored theD law @14,15# and the last-cited authors claim
that there is no evidence for theY law.

Given that theD law is correct, what has happened to th
strong-coupling surfaces that underlie theY law? These sur-
vive, in a sense, as mathematical surfaces of infinitesim
thickness~lattice-space thickness! which are of~color! elec-
tric character. By this we mean that these surfaces
bounded by quark Wilson lines. The infinitesimally thic
surfaces are dual to closed magnetic surfaces which comp
the condensate of vortices in the vacuum, magnetic beca
a static vortex has only short-range color magnetic field
Confinement for a conventional (qq̄) Wilson loop is de-
scribed@7,12,9,10# as linkage of the Wilson loop with the
closed surface.3 To describe this linkage one needs to use
non-Abelian version of Stokes’ theorem appropriate for th
BWL, by means of which one converts the line integral i
the Wilson loop to a surface integral, and notes that the s
face integral is an intersection number of the magnetic s
face for the vortex and an electric surface spanning the W
son loop. Because of the intimate connection with Stoke
theorem, we henceforth call these electric surfaces by
name of Stokes’ surfaces. They are precisely the surfa
invoked in the strong-coupling approximation. The necessa
non-Abelian Stokes’ theorem for theqq̄ loop has been long

2Equality is reached in two dimensions, that is, when all thre
quark lines lie in a plane.
3In dimensiond a Wilson loop can link with a surface of codi-

mension 2, that is, a point in two dimensions, another closed loop
three dimensions.

FIG. 4. The three-bladed Stokes’ surface for the BWL no
Abelian Stokes’ theorem. Also shown: A vortex linked to line 1
passing through the 1 blade of the Stokes’ surface.
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known @17–20#, but the author is not familiar with an analo-
gous discussion for the BWL. We give here the non-Abelian
Stokes’ theorem for the BWL, which is a quite elementary
variation on the usual non-Abelian Stokes’ theorem. The in-
teresting feature of the BWL theorem is that the Stokes sur-
face is a three-bladed (N-bladed! surface for SU~3! @SU~N!#
bounded by the BWL, with the blades running from the
quark lines to a central line; that is, for SU~3! it is just the
strong-coupling surface of Fig. 2. Just as for theqq̄ Stokes’
theorem, any surface of the proper topological type may be
used and the BWL is quite independent of the choice of
surface, including the choice of the central line where the
blades meet.

At first sight, this last feature is surprising. A simple Abe-
lian vortex linked to quark line 1 and penetrating only one
leaf of the three-bladed surface~see Fig. 4! has a link number
of 1, while if the Steiner line is pulled inside the vortex it has
a link number of22 ~see Fig. 5!. But it turns out that the
only thing that matters is the link number mod 3, so these
two situations are equivalent. Of course, this mod 3 depen-
dence is to be expected, in view of the fact that confinement
involves the center of the group, in this caseZ3, and that
magnetic fluxes are quantized in units of 2p/3.

The next question one might ask is how these results are
generalized to SU(N), N.3. The answer is, as we will in-
dicate, that the analogue of theD law holds, with the result4

^BWL&5exp@2KAD /~N21!#, ~8!

where

AD[(
i, j

Ai j ~9!

andAi j is the minimal area between legsi and j . One can
also show the analogous inequality to Eq.~7!:
e

in
4Of course, forN even the BWL does not describe a baryon.

-
,

FIG. 5. The same vortex passing through blades 2 and 3.
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AY>
AD

N21
, ~10!

where nowAY means the generic minimum Steiner surfac
which hasN22 Steiner lines where three surfaces mee
Note that for allN the factor of 1/(N21) in theD law ~8!
also occurs for lowest-order gluon exchange~plus radiative
corrections to the one-gluon potential and certain other tw
body graphs!, so that the lowest-order, two-body potential i
1/(N21)S i, jVi j whereVi j is theqq̄ one-gluon potential:

Vi j52
g2CF

4pr i j
. ~11!

@Here,CF is the quark Casimir, ofO(N).# Note that these
two-body forces have, so to speak, the topological charac
of theD law, as well as its numerical coefficient. Similarly, a
cross section of the generic Steiner surface reminds one
perturbative graphs withN22 three-gluon vertices.

In connection with perturbative contributions, where the
is interest not only for QCD but also for largeN @22,23#,5

recall that all graphs for the BWL are individually nonlead
ing at largeN. However, the sum of all possible graphs of
given type may be leading; for example, there a
N(N21)/2 one-gluon exchange graphs, each of streng
g2CF /(N21), so that the sum isO(N). But many perturba-
tive contributions which are formally leading in this sens
vanish identically; in particular, it was shown long ago@6,21#
that in SU~3! the lowest-order graph with one-gluon line o
each leg meeting at one three-gluon vertex vanishes ide
cally for group-theory reasons. We will discuss some
these graphs in Sec. IV forN.3, where we show that for
anyN the generalization of the above graph, with three gl
ons attached to different quark lines and meeting at a thr
gluon vertex, vanishes identically via a simple symmetry a
gument. Some other higher-order perturbative graphs w
three-gluon vertices vanish for the same reasons, and it m
be of interest to note that those gluon-tree graphs with t
topology of a cross section of the generic minimal Stein
surface give zero.

II. AREA LAWS

A. Review of theqq̄ Wilson loop

Before considering the BWL area law, we set the stage
briefly reviewing the vortex-condensate picture of confin
ment in the usualqq̄Wilson loop. The condensate is formed
@7,12# from vortices centered on simple closed surfaces6 of

5Large-N studies of baryons have been modernized recently; s
Refs.@24–26# which cite other recent references.
6There are vortices described by nonsimple closed surfa

where three blades meet along a line; in SU~3!, the blades are
associated with the Lie-algebra structures diag~1/3,1/3,22/3!,
diag~1/3,22/3,1/3!, and diag~22/3,1/3,1/3!, one for each blade,
generalizing Eq.~12! below. Note that the sum of these generato
is zero. Ind53 the simplest such vortex looks just like the BWL o
Fig. 1 itself. Although these truly non-Abelian vortices may lead
interesting knot-classification problems, they add nothing new
our discussion of confinement@7#.
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codimension 2; in four Euclidean dimensions, a specific re-
alization of the vortex potential is

igAm~x!52pQemnab]nE dsab@DM~x2z!2D0~x2z!#,

~12!

where

Q5diag~1/3,1/3,22/3! ~13!

anddsab is the element of surface on the surfacez(s,t):

dsab5 ż[azb]8 dsdt ~14!

in standard notation. In Eq.~12!, DM is a free propagator of
massM andD0 is a massless free propagator; the massM is
a dynamically generated mass@7,11,13,12# of O(L). This
mass is generated gauge invariantly and without symmetry
breaking, and its kinematical description requires the mass-
less term in Eq.~12!, which is actually a pure-gauge term as
one can check directly using Stokes’ theorem. The normal-
ization is chosen so that parallel transport around a closed
path ~which may link the closed vortex surface but is far
from it! gives an element of the gauge group lying in the
centerZ3; of course, only the massless term contributes in
this transport if the closed path and vortex surface are sepa-
rated by distances@M21. If the closed path and the vortex
surface are not linked only the identity element ofZ3 can
occur. Any regular gauge transform of Eq.~12! is also al-
lowed, in particular, the diagonal elements ofQ can be per-
muted.

Consider a Wilson loop which is large in the sense de-
scribed earlier; for such a loop, the contribution of a vortex
to the area law for a vortex which never gets close to the
loop can be found from only theD0 term in Eq.~12!. The
massive term only contributes to perimeter-law corrections
from vortices within a distanceM21 of the Wilson loop. The
expectation value of such a Wilson loop is

^W&5
1

3 K TrPexpS R dx•A~x! D L 5^exp@2p iL /3#&, ~15!

where

L5( Li ~16!

is the sum of the Gauss-linking numbers of vortexi , as given
by

Li5 R dxm R dsab~ i !eabmn]nD0@x2z~ i !#. ~17!

Converting thex integral to a surface integral by Stokes’
theorem shows that this linking number is an intersection
number of the vortex surface with a surface bounded by the
Wilson loop; which particular surface is chosen is immate-
rial. The total numberN of vortices linked to the loop is
clearly proportional to some areaA associated with the loop,
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54 6531BARYON WILSON LOOP AREA LAW IN QCD
and the coefficient of proportionality is the density of vor
cesr per unit area:N5rA. Since variation of the areaA can
lead to no change in̂W&, this area must be the minimum
spanning area.

Now, we invoke the above-stated assumption that
linking numbersLi of distinct vortices are independent o
one another. Because the areaA is large,N is also large and
we invoke the central limit theorem to conclude thatL, the
sum of a large number of independent random variab
Li , has a Gaussian distribution with average value^L&50
and that

^exp@2p iL /3#&5exp@2 1
2 ~2p/3!2rA^Li

2&#[e2KA, ~18!

whereK is the mesonic string tension.
For purposes of studying the BWL area law we do n

need to know the density of vortices or how exactly th
density is related toK; we simply need to know that

^W&5^exp@2p iL /3#&5exp@2const3^L2&# ~19!

and that

^L2&5 K( Li
2L ;A. ~20!

We now go on to the BWL.

B. The BWL area law

It is not apparent at first glance that the BWL area law c
be expressed in terms of standard Gauss linkages, bec
there are no obvious directed closed loops of the stand
Wilson loop-type. If the problem were Abelian there wou
indeed be no simple solution, but of course it is not. Non
theless, we can define a concept of linkage and, in fact,
duce the problem to one of standard Gauss link numbers

We begin by observing that, because we save only
pure-gauge part of the vortices, we can define the notion
linking a vortex with the BWL. Consider the open line inte
gral U(x,y;1) from x to y ~see Fig. 1! for quark line 1, as
defined in Eq.~2!. When the vector potential is pure gaug
U can be expressed in the form

U~x,y;1!5V~x!V21~y!, ~21!

whereV is a local SU~3! matrix. We now say that a vortex is
unlinked to the BWL ifV(x)V21(y) is the same for all three
quark lines. IfV were a regular gauge transformation th
would be automatic, sinceU in Eq. ~21! would then be path
independent. For the singular gauge parts we encounte
vortices this is not so, because parallel transport aroun
closed path can lead to a nontrivial element ofZ3, which
might be different for different lines; it is clear from th
above discussion of the usual Wilson loop that this is h
linkage numbers are generated. But when all three lines g
the same value forU, the elementary identity

1

6
eabcea8b8c8Uaa8Ubb8Ucc85detU51 ~22!

shows that there is no contribution from such a vortex to
BWL area law.
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We can just as easily define the notion of a vortex with a
simple link to, e.g., line 1, as in Fig. 4~ignore the Stokes’
surfaces of this figure for now!, in which caseU(1) will not
be the same asU(2) andU(3), butthese latter twoU ’s have
the same valueS. As one’s intuition suggests, this is the
same configuration as a vortex linked to lines 2 and 3, bu
with the opposite link number~two quarks equal an anti-
quark, in the BWL!. To show this, use a variant of Eq.~22!
to find @7#

1

6
eabcea8b8c8Saa8Sbb85Sc8c

21 ~23!

so we do not need a separate definition of a simple vorte
link to two lines.

At this point it is convenient, but not necessary, to return
to the model of vortices described in connection with the
usual Wilson loop, and described in Eqs.~12!–~14!. We eas-
ily find

BWL5
1

6
eabcea8b8c8$exp@2p iQL~1!#%aa8

3$exp@2p iQL~2!#%bb8$exp@2p iQL~3!#%cc8

5
1

3
expF2p i

3
$L~1!1L~2!22L~3!%G1c.p., ~24!

where theL ’s are defined as Abelian path integrals, possibly
path dependent:

L~ i !5E
G~ i !

dx•A~x! ~25!

and c.p. stands for cyclic permutations.
It is clear from Eq.~24! that each term of this equation

can be written in terms of conventional loop integrals:

L~ i !2L~ j ![I i j[ R
G~ i !2G~ j !

dx•A~x! ~26!

with the contourG( i )2G( j ) oriented to run in the direction
shown in the figures on linei , but in the opposite direction to
the figures on linej . In other words, one has a conventional
qq̄ contour. Of course, each integralI i j is a Gauss link inte-
gral, so we have achieved the purpose of expressing th
BWL in terms of such integrals:

BWL5
1

3
exp@~2p i /3!~ I 131I 23!#1c.p. ~27!

We now define link numbers for elementary linkages in a
slightly different way from usual. The link numbers so de-
fined are calledL( i ), where thei refers to the quark line, not
any particular vortex.7 The first step in the definition is to
write

7This notation is to be distinguished fromLi introduced in Eq.
~16!, which refers to the link number of a single vortex; for the
BWL, L( i ) refers to the sum of all vortex link numbers for the
quark line i . L( i ) is a sum of a large number of link numbers of
statistically independent individual vortices.
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I i j[L~ i !2L~ j !. ~28!

A vortex has an elementary linkage to linei if ~1! the other
two lines can be continuously deformed~still with ends at
x and y in the figures! to coincide with each other without
ever crossing the vortex, and~2! the vortex is then linked to
the effectiveqq̄ vortex formed by linei and the other two
lines, with the orientation determined by that of linei . Then,
the elementary link numberL( i ), with sign, is defined as
usual. For example, the vortex in Fig. 4 has link number11
with line 1. More complicated linkages can, in general, b
reduced to simple linkages by reconnecting the vortex its
without changing the so-defined link numbers, that is, wit
out changingI i j , and in such a way that the elementary lin
numbers are statistically independent, even if coming from
single vortex with various twists and writhes along its lengt

With this definition, we have for the BWL:

BWL5
1

3
exp$~2p i /3!@L~1!1L~2!22L~3!#%1c.p. ~29!

However, becauseL( i ) is an integer, we may write this as

BWL5exp~2p i /3!@L~1!1L~2!1L~3!# ~30!

which shows, as expected, the symmetry under exchange
the quark lines.

Now, we invoke the assumed independence of the linki
numbers from distinct vortices~after the above-mentioned
process of vortex reconnection, if necessary!, in forming the
expectation valuêBWL& as an average over vortex configu
rations:

^L~ i !L~ j !&5^L~ i !2&d i j , ~31!

^BWL&5expF2
1

2
~2p/3!2( ^L~ i !2&G . ~32!

It only remains to compare this result with that for th
qq̄ loop formed on linesi ~going up, as in the figures! and
j ~going down! as given in terms of link numbers in Eq.~18!,
where the link number calledL there is precisely theI i j of
Eq. ~26!:

^Wij &5exp$2 1
2 ~2p/3!2^@L~ i !2L~ j !2#&%

5exp@2 1
2 ~2p/3!2^L~ i !21L~ j !2&#5exp@2KAi j #,

~33!

where in the second equality we used the assumption of
dependence as in Eq.~31! and in the last equality we have
made use of Eq.~20! which states that the total link numbe
is proportional to the minimal areaAi j spanning quark
lines i and j . By adding the three equations
@( i , j )5(1,2),(1,3),(2,3)#,

^L~ i !2&1^L~ j !2&5const3Ai j , ~34!

we find

( ^L~ i !2&5const3
1

2
~A121A131A23! ~35!
e
elf
h-
k
a

h.

of

ng

-

e

in-

r

and finally by comparing to the usual Wilson loop area law
in Eqs.~19!, and~20!, we find the final result

^BWL&5exp@2~K/2!~A121A131A23!# ~36!

which is theD law claimed in Eqs.~5! and ~6!.
To close this section we give the simple proof, just a

triangle inequality for areas, thatAY>AD/2. In Fig. 4, define
the areasA0i , i51,2,3 as the areas spanning quark linei
and the central line 0. The areasAi j are minimal for the loops
formed from quark linesi and j , so

A0i1A0 j>Ai j ~ iÞ j !. ~37!

Add these three equations, divide by two, and use the de
nition ~6! of AD plusAY5SA0i to find the needed inequality.

III. NON-ABELIAN STOKES’ THEOREM FOR THE BWL

Let us interpret some of the steps of the above discussio
in light of the non-Abelian Stokes’ theorem~NAST! for the
BWL, proven below. This theorem states that in the BWL
expression~1! eachU occurring there can be replaced by an
integral of the type~e.g., for line 1!

U~x,y;1!→PexpS E
S~01!

dsmn~z!Û~xz!GmnÛ
21~xz! D ,

~38!

where S(01) is any surface spanning quark line 1 and a
central line running fromy to x which we call line 0~the
dotted line in Fig. 4!. Any set of three surfaces and corre-
sponding central line may be used. TheÛ ’s are parallel-
transport integrals of a type discussed below, andGmn is the
usual field strength. For the special vortex whose explic
form is given in Eqs.~12!–~14!, theseÛ ’s commute with
Gmn but that is not the point here; the point is the nature o
the three-bladed Stokes’ surface shown in Fig. 4. The inte
pretation of the loop integrals in Eq.~26! as linking numbers
depends on using Stokes’ theorem for such a surface. T
explicitly written term in Eq.~27! contains, in this sense,
contributions from surfaces spanning quark lines 1 and 3
and lines 2 and 3, but not lines 1 and 2. This is consisten
with the NAST for the BWL, by choosing the central line of
the Stokes’ surface to coincide with line 3. Similarly, the
other two contributions in Eq.~27! have the central line cho-
sen to coincide with line 1 or line 2.

First, recall the NAST for the usual Wilson loop
@16–20#.8 It says that the Wilson loop

W[
1

3
TrPexpS R dx•A~x! D ~39!

can be written

W5
1

3
TrPexpS E

S
dsmn~z!Û~oz!GmnÛ

21~oz! D . ~40!

8Halpern@16# shows how to fix the gauge so that the line integrals
Û in Eq. ~38! can be replaced by unity, thereby reducing the NAST
to its Abelian counterpart.
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Here,

Û~oz!5expS E
o

z

dx•A~x! D ~41!

is integrated along lines originating at any pointo on the
loop and ending at the surface pointz. The appropriate paths
and the ordering prescription can be written explicitly, b
for our purposes it is enough to consult the kind of figu
drawn by Fishbane, Gasiorowicz, and Kaus@20# and shown
here as Fig. 6. The original square Wilson loop is form
from eight segments~labeled 1–8!, each segment corre
sponding to a parallel-transport integral along that segme
The original square is subdivided into four, the first step
dividing the loop into infinitesimal plaquettes, and the orig
nal path is replaced by the one shown in Fig. 6. It is easy
see that all the added line integrals cancel each other
there is no change in the value of the Wilson loop. By co
tinuing this process of plaquette development, the origi
line integral is turned into a surface integral of the type~40!,
with the Û ’s defined by reference to Fig. 6 and its furthe
subdivision into plaquettes.

Now, consider the corresponding process for the BWL
square version of which is shown in Fig. 7. We wish
subdivide each three-legged segment into plaquettes, m
as in Fig. 6. To do so, introduce a central line~labeled 0 in
Fig. 4, or 7 to 8 in Fig. 8! and subdivide the three squares s
formed just as in Fig. 6, and shown in Fig. 8. All the ext
line integrals cancel as before, except for the three lin
marked 7 and 8, running fromy to x. As a result, the BWL
takes the form

BWL5 1
6 eabcea8b8c8U~x,y;1!adU~x,y;2!beU~x,y;3!c f

3U~78!da8U~78!eb8U~78! f c8, ~42!

FIG. 6. A Wilson loop~lines 1–8! and its decomposition into
four plaquettes~see Ref.@20#!.
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whereU(78) is the line integral along the central line from
y to x, but the originalU(x,y; i ) can be expressed as surface
integrals in the limit of infinite subdivision into plaquettes.
Once again, we use a determinantal argument of the typ
given in Eqs.~22! and ~23!:

ea8b8c8U~78!da8U~78!eb8U~78! f c85ede f ~43!

which, when substituted in Eq.~42!, shows that the
U(78)’s do not contribute.

It is clear that the choice of central line and spanning
surfaces is immaterial to the value of the BWL, just as for
the usual Wilson loop. Written in continuum form, the BWL
NAST has already been given in Eq.~38!, where the paths
involved in constructing theÛ path integrals can be read off
from Fig. 8.

IV. N > 3 AND PERTURBATIVE CONTRIBUTIONS

Perhaps the main reason for studyingN.3 is to make
contact with large-N arguments@22–26#.

ForN.3, the BWL is of the form~1! with N U’s going
from x to y as in Fig. 1, ande symbols of appropriate di-
mensionality. The NAST for the BWL has one central line,
as in Figs. 4 or 8, and the obvious analogue of Eq.~43! for
SU~3! holds; the Stokes’ surface is thenN bladed, with the

FIG. 7. A BWL composed of three square contours.

FIG. 8. Dividing the BWL into plaquettes with a central line
~the 0 line of Fig. 4!.
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blades meeting along the central line. Note that this is not
same as the generic minimal surface, which hasN22
Steiner lines where three surfaces meet.

There are two candidates,9 Y andD, for the area law, as
given in Eqs.~8!–~10!, which we repeat for convenience:

^BWL&5exp@2KAY#, ~44!

^BWL&5exp@2KAD /~N21!#, ~45!

AD[(
i, j

Ai j . ~46!

In Eq. ~43!, AY stands for the global minimum area, gene
cally that of a surface withN22 Steiner lines where three
surfaces meet. As forN53, the normalization is set by the
requirement that whenN21 quark lines coincide they ac
like an antiquark and the resulting area law is theqq̄ string
tension.

We derive theD law with the vortex-condensate picture
as before. The vortex-condensate argument is essentially
changed~with substitution ofN for 3 in various places! up to
Eq. ~34!, which relates the link numbersL( i ) to the minimal
areasAi j spanning quark linesi and j ; these lines need no
be adjacent:

^L~ i !2&1^L~ j !2&5const3Ai j . ~47!

There areN(N21)/2 of these equations, and the sum
them all contains eacĥL( i )2& N21 times. Then, this sum
divided byN21 yields

S^L~ i !2&5const3
1

N21(i, j
Ai j . ~48!

The factorN21 in this equation enters theD law ~45! just as
in Sec. II.

We show that

AY>
AD

N21
~49!

explicitly for N54; the idea will then become clear for a
N. Figure 9 shows a cross section of anN54 BWL, with the
cross section of the quark lines shown as numbered po
connected by a Steiner surface, whose cross section is
lines shown, and two Steiner linesA, B. Then, the global
minimum area is

AY5A1A1A2A1A3B1A4B1AAB . ~50!

There are six inequalities expressing the fact that the ar
Ai j are minimal areas for quark linesi , j :

A1A1A2A>A12, A2A1A3B1AAB>A23, etc. ~51!

9One can guess at many more candidates; for example, Wi
@23# has speculated onN surfaces meeting along a single line
which is, in fact, the Stokes surface for generalN. But this sort of
configuration neither comes from the vortex-condensate picture
from an argument about minimal areas.
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Adding these inequalities and dividing by three yields, for
N54,

AY>
1

N21(i, j
Ai j . ~52!

The proof for generalN is similar. In consequence, an intui-
tive minimal-area argument selects theD law over theY law.

Now we consider some perturbative contributions. Our
results are a minor sharpening of previous work@6,21,23#
both forN53 and forN.3, showing how a large class of
graphs with three-gluon~and sometimes four-gluon! vertices
vanishes identically. In particular, those graphs formed by
attaching anN-leg-connected gluon tree withN22 three-
gluon vertices toN quark lines in a baryon, such that only
one gluon is attached to each quark line, vanish; these are th
ones with the topology of the generic minimal Steiner sur-
face, and we will call them Steiner graphs for short. Figure 9
with the lines interpreted as gluon lines attached to the num
bered quarks, is an example forN54.

It is well known @23# that each individual Feynman graph
in a baryon is nonleading at largeN, but the number of
graphs is such that the sum of all possible insertions of a
given graph structure on theN quark lines isO(N). More-
over, the contribution of simple one-gluon exchange betwee
two quarks is 1/(N21) times one-gluon exchange in aqq̄
loop. But it was shown long ago@6,21# that for SU~3! the
graph of Fig. 10 vanishes identically, for symmetry reasons
Let us generalize this to anyN>3. Consider the graph of
Fig. 11, which is characterized by having a gluon line joining
quark lines 1 and 2~for example!, with a single three-gluon
vertex going somewhere else~neither to line 1 nor to 2!. The
group-theoretic factor of this graph is

tten
,

nor

FIG. 9. A cross section of theN54 BWL, with the quark-line
cross sections shown as the numbered points, and the global min
mum surface cross section as the lines; the pointsA, B are cross
sections of Steiner lines.

FIG. 10. Lowest-order, three-gluon graph for an SU~3! baryon.
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1

N!
eabc•••ea8b8c8•••~lA!aa8~lB!bb8••• f ABC•••, ~53!

where lA,lB are group generators andf ABC the structure
constants. It is clear that everything in this expression exc
the structure constant is symmetric on the exchange of qu
lines 1 and 2, or equivalently, on the exchange ofA andB;
since f ABC is totally antisymmetric, the whole expressio
vanishes.

One can construct this way many graphs which vanish
particular, Steiner graphs. By collapsing a gluon line a
tached to two three-gluon vertices, one can also find gra
with four-gluon vertices which also vanish. One can al
show by the same symmetry argument that the gluo
disconnected graphs containing a graph which would van
by itself and one which would not~see Fig. 12! also vanish.

A simple variant of the group structure in Eq.~53! allows
one to calculate the group-theoretic coefficient of a class
two-body graphs, especially one-gluon exchange and ra
tive corrections thereto. This is, as mentioned in connect
with Eq. ~11!, 1/(N21) times the factors associated wit
one-gluon exchange in theqq̄ loop. This same coefficient
applies to any two-body graph for which the matrixMaa8
replacinglaa8 in Eq. ~53! occurring on either quark line is
traceless.

V. CONCLUSIONS

In this paper we have shown several things, based on
usual vortex condensate and confinement by vortex-Wils
loop linking.

~1! For all SU(N), N.3, the BWL area law is of the
D form given in Eqs.~45! and ~46!, and not of theY ~or
Steiner! form based on the generic minimum area.

FIG. 11. A baryon graph for SU~N! with a three-gluon vertex.
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~2! The D area is weighted with 1/(N21) in the BWL
area law relative to the unit weight of the Steiner areaAY .
This is, as it must be, consistent with the argument that if
N21 quark lines are collapsed into an antiquark, the result-
ant area law is theqq̄ law.

~3! The weightedD area is less than the global minimum
areaAY ~anda fortiori any other area spanning the BWL!, so
even an intuitive argument based only on minimization, that
is, maximizing^BWL&, selects theD law.

~4! Certain perturbative graphs with three-gluon vertices
vanish by a simple symmetry argument; these are graphs
contributing to 3, . . . ,N-body forces in a baryon. Among
them are the lowest-order graphs with the topology of a
Steiner surface cross section.

~5! In the two-body sector, the sum of the~radiatively
corrected! one-gluon potential and the area law potential is
1/(N21) times the correspondingqq̄ potential.

What can one make of these results? Unfortunately, QCD
theory ~as opposed to computer simulations! has not pro-
gressed to the point where it is possible to distinguish the
D law from theY law in a practical way, but of course, one
optimistically hopes that this can be done some day. There
could conceivably be some effect in using theD law in, e.g.,
fragmentation models, but one is far from seeing such ef-
fects. In the absence of meaningful theoretical approaches to
the baryon, it might still be useful to do more precise com-
puter simulations to verify the above claims. The fact that
one-gluon perturbative exchange has a structure analogous to
the D law for areas, and no contribution to the structure
analogous to theY ~or generic minimal surface! law, may
help to interpret these lattice calculations, where it is, of
course, impossible to separate perturbative and nonperturba-
tive contributions to the BWL.
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FIG. 12. A gluon-disconnected baryon graph.
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