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Baryon Wilson loop area law in QCD
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Physics Department, University of California, 405 S. Hilgard Avenue, Los Angeles, California 90095-1547
(Received 16 May 1996

There is still confusion about the correct form of the area law for the baryonic WilsonBisfh) of QCD.
Strong-coupling (i.e., finite lattice spacing in lattice gauge theprgpproximations suggest the form
exd —KAy], whereK is theqq string tension and\, is the global minimum area, generically a three-bladed
area with the blades joined along a Steiner liné ¢onfiguration. However, the correct answer is
exg —(K/2) (At Azt Ayl ], where, e.g.Aq, is the minimal area between quark lines 1 andA2 gonfigu-
ration). This second answer was given long ago, based on certain approximations, and is also strongly favored
in lattice computations. In the present work, we derive shtaw from the usual vortex-monopole picture of
confinement, and show that, in any case, because of the 1/2 ik the, this law leads to a larger value for
the BWL (smaller exponentthan does theY law. We show that the three-bladed, strong-coupling surfaces,
which are infinitesimally thick in the limit of zero lattice spacing, survive as surfaces to be used in the
non-Abelian Stokes’ theorem for the BWL, which we derive, and lead via this Stokes’ theorem to the correct
A law. Finally, we extend these considerations, including perturbative contributions, to gauge groups
SU(N), with N>3.[S0556-282(96)02522-2

PACS numbgs): 11.15.Tk, 11.15.Pg, 12.38.Aw

I. INTRODUCTION and the second 5]

QCD is a theory more than twenty years old, yet certain (BWL)=exd —KA,/2]. (5)
guestions of fundamental principle seem still to have no de- . - . ) .
finitive answer. Among these is the question of the correct? Poth Eas.(4) and(5), K is the qq string tension; in Eq..
form of the area law for the baryonic Wilson logBWL) (4), Ay is the three-bladed area running from each quark line
[and its analogue for SW() gauge groups with>3]. to a central _S'Femer line, whlch genenca_llly exists to define
The BWL is defined as the global minimum areésee Fig. 2, and in Eq.(5),

1 Ar=ArtA1ztAgs, (6)
BWL= 6Eabcfa’b’c’u(xay;1)aa’U(Xry;2)bb’U(va;3)cc’v . . . " .
whereA; is the minimal area spanning quark linesand j

1) (see Fig. 3 We call the area law4) the Y law, and Eq.(5)

where the quark lines, labeled 1,2,3, emerge from the poirFPeA law. It is easy to understand the normalization of the

x and rejoin the vacuum at poigt The U’s are defined by, exponent: When lines 1 and 2, say, are made to coincide,
for example then the corresponding quarks act as a single antiquark,

Pexp( fm)dz-A(z))

whereP stands for path ordering, the integral runs fraro
y, andI'(1) is the path fronx to y for quark line 1(see Fig.
1). We define the vector potentidl(z) as

U(va;l)aa’E ’ (2) y

aa’

A= DAl () (3
in terms of the usual component potentA&i[(z) and Gell-
Mann matrices\;; g is the coupling constant.
There are only two contenders for the form of the BWL
area law; both were given early on and continue to be dis-
cussed. The first ig1-5]

(BWL)=exqg —KA] (4)

*Electronic address: Cornwall@physics.ucla.edu FIG. 1. The SU3) BWL.
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y vortices were invoked by 't Hoofi8], and developed on the
lattice by Mack and PetkoV@]. These lattice considerations
are not of the strong-couplindinite lattice spacingtype, to
which we will come in a minute; they are intended to apply
to the weak-coupling or continuum limit of zero lattice spac-
ing. Tomboulis[10] has more recently given some rigorous
1 results on these lattice developmehisfortunately, only for
SU(2), where there is no BW], confirming that confinement
can only come from a condensate of vorti¢da. our argu-
ments for theA law (5), the coefficientk/2 is derived by
simultaneously deriving both theq area law and the BWL
area law from the vortex condensate.

We state our arguments about the BWL and the vortex
condensate in terms of a specific realization of the conden-
sate, based on dynamical and gauge-invariant generation of a
gluon mass, dynamically consistent because the gluon mass
vanishes at short distancéd,11-13. While one might
doubt the accuracy of specific quantitative predictions of any
_ o condensate model, our results concerning the BWL depend
~ FIG. 2. Generic global minimal area of the BWL; the central only on general features of the vortex-condensate picture. It
line is the Steiner line. is merely for concreteness of exposition that we choose to

. _ __use the picture of vortices driven by a dynamical gluon mass.
which must show the usualq area law, based on the mini- Thjs independence of details of the vortex condensate holds
mal areaA spanning line 3 and the effective antiquark. But 35 |ong as the BWL is large, in the sense that all scale lengths
when lines 1 and 2 coincide, the coefficientskofin both of the quark lines in the BWL(|ength, distance of closest
area laws reduce 4. approach to itself or other lines, curvature radius, torsion

The author's previous argumefif] for the A law was |ength, etc). are large compared to the scale length? of
based on a vortex-condensate model discussed below, but@CD, and as long as we are only interested in the area-law
used some approximations which are, in fact, completely unand not perimeter-law corrections. The general features are
necessary and which will not be used here. Furthermoreyg) QCD field strengths are short rangg@) QCD gauge
some vital technical details were omitted, notably concerningyotentials have a pure-gauge, long-range fiithere is no
a non-Abelian Stokes’ theorem for the BWL, which we SUp-|ong_range part, there is no area |aW, On|y a perimeteby]aw
ply and use in the present work. (3) the magnetic fluxes of the vorticéwhich realize points

Given that the early work on the BWL was based oni, 2 abovg lie in the center of the gauge group, atd)
approximations and intuitive insight, can we today say whichpecause of the finite correlation lengtti * of QCD, distinct
of the laws[Egs. (4) or (5)] is correct? We will show here yortices are statistically independent. Indeed, parts of a
that theA law in Eq. (5) is, based on the continuum version single vortex which are separated by a distance large com-
[7] of confinement via a vortex-monopole condensate. Thesgared toA ~* are uncorrelated.

If the BWL is large, then only the long-range, pure-gauge
part of the potential need be taken into account, which
y greatly simplifies the argument. Confinement and the conse-
quent area laws become a matter of counting Gauss-linking
numberg7,12], since both thejq Wilson loop and the BWL
can be expressed in terms of standard Gauss-linking inte-
grals. These integrals can be interpreted by using the non-
Abelian Stokes’ theorem to convert them to integrals count-
1 ing the (signed intersections of the vortices with surfaces
spanning thegq Wilson loop or the BWL. We will discuss
this Stokes’ theorem for the BWL below. Following this line
of thought leads immediately to the for(b) for the BWL
area law.

The alternativeY law in Eq. (4) is usually argued for
[1-5] on the basis of lattice strong-coupling arguments, with
the lattice spacin@ kept finite andO(A ~1), whereA is the
QCD mass scale, or intuitive remarks are made to the effect
that Ay is the minimum area. However, we will show very
easily that whileAy<A, , in fact,

FIG. 3. TheA areas of the BWL; each pair of quark lines is ‘Tomboulis also gives a number of references to other works de-
spanned by an area minimal for the loop formed by the two lines.veloping the vortex picture on the lattice.
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FIG. 4. The three-bladed Stokes’ surface for the BWL non-
Abelian Stokes’ theorem. Also shown: A vortex linked to line 1,
passing through the 1 blade of the Stokes’ surface.

FIG. 5. The same vortex passing through blades 2 and 3.

known[17-20, but the author is not familiar with an analo-
gous discussion for the BWL. We give here the non-Abelian
Ay=ZA,. (7) Stokes’ theorem for the BWL, which is a quite elementary
variation on the usual non-Abelian Stokes’ theorem. The in-
teresting feature of the BWL theorem is that the Stokes sur-
This shows that the exponent in E@) is less than that in face is a three-bladed\¢bladed surface for SUB) [SU(N)]
Eg. (4), so any intuitive argument about minimum areasbounded by the BWL, with the blades running from the
should favor theA law.? quark lines to a central line; that is, for ) it is just the
We note that lattice calculations of the BWL have alwaysstrong-coupling surface of Fig. 2. Just as for tfgg Stokes'’
favored theA law [14,15 and the last-cited authors claim theorem, any surface of the proper topological type may be
that there is no evidence for thélaw. used and the BWL is quite independent of the choice of
Given that theA law is correct, what has happened to thesurface, including the choice of the central line where the
strong-coupling surfaces that underlie tfidaw? These sur- blades meet.
vive, in a sense, as mathematical surfaces of infinitesimal At first sight, this last feature is surprising. A simple Abe-
thickness(lattice-space thicknegsvhich are of(color) elec-  lian vortex linked to quark line 1 and penetrating only one
tric character. By this we mean that these surfaces arkeaf of the three-bladed surfatgee Fig. 4 has a link number
bounded by quark Wilson lines. The infinitesimally thick of 1, while if the Steiner line is pulled inside the vortex it has
surfaces are dual to closed magnetic surfaces which comprigelink number of—2 (see Fig. 5. But it turns out that the
the condensate of vortices in the vacuum, magnetic becausmly thing that matters is the link number mod 3, so these
a static vortex has only short-range color magnetic fieldstwo situations are equivalent. Of course, this mod 3 depen-
Confinement for a conventionalj@) Wilson loop is de- dence is to be expected, in view of the fact that confinement
scribed[7,12,9,10 as linkage of the Wilson loop with the involves the center of the group, in this cagg and that
closed surfac.To describe this linkage one needs to use amagnetic fluxes are quantized in units of/3.
non-Abelian version of Stokes’ theorem appropriate for the The next question one might ask is how these results are
BWL, by means of which one converts the line integral ingeneralized to SWIN), N>3. The answer is, as we will in-
the Wilson loop to a surface integral, and notes that the surdicate, that the analogue of telaw holds, with the resufit
face integral is an intersection number of the magnetic sur-
face for the vortex and an electric surface spanning the Wil- (BWLy=exgd —KA,/(N—1)], (8)
son loop. Because of the intimate connection with Stokes’
theorem, we henceforth call these electric surfaces by thgare
name of Stokes’ surfaces. They are precisely the surfaces
invoked in the strong-coupling approximation. The necessary
non-Abelian Stokes’ theorem for thgg loop has been long AAEE Ajj 9)

i<j

2Equality is reached in two dimensions, that is, when all threeand A;; is the minimal area between legsand j. One can
quark lines lie in a plane. also show the analogous inequality to Ed@).

3In dimensiond a Wilson loop can link with a surface of codi-
mension 2, that is, a point in two dimensions, another closed loop in
three dimensions. 40f course, forN even the BWL does not describe a baryon.
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Ax codimension 2; in four Euclidean dimensions, a specific re-
=81 (100 alization of the vortex potential is

where nowAy means the generic minimum Steiner surface, igAM(x)=27rQewaﬁ&,,f do gl Apm(X—=2)—Ag(X=2)],
which hasN—2 Steiner lines where three surfaces meet. (12
Note that for allN the factor of 1/N—1) in the A law (8)

also occurs for lowest-order gluon excharigius radiative |\ here

corrections to the one-gluon potential and certain other two-

body graphj so that the lowest-order, two-body potential is Q=diag 1/3,1/3~ 2/3) (13)
1/(N=1)3;;V;; whereV;; is theqq one-gluon potential: T

_ 9°Ce (11) anddo gz is the element of surface on the surfage, 7):

, o do,s=2,2ydodT (14)
[Here, C is the quark Casimir, oO(N).] Note that these

two-body forces have, so to speak, the topological charact§f, standard notation. In Eq12), A, is a free propagator of

of the A law, as well as its numerical coefficient. Similarly, a massM andA, is a massless free propagator; the ndsis

cross section of the generic Steiner surface reminds one %f dynamicall)? generated ma§g,11,13,12 of 6(/\) This

perturbative graphs withl—2 three-gluon vertices. mass is generated gauge invariantly and without symmetry
In connection with perturbative contributions, where therebreaking, and its kinematical description requires the mass-

. . 5
is interest not only for QCD but also for largé [22,23> |5 term in Eq(12), which is actually a pure-gauge term as
recall that all graphs for the BWL are individually nonlead- 5o can check directly using Stokes' theorem. The normal-

ing at largeN. However, the sum of all possible graphs of aj;a1ion is chosen so that parallel transport around a closed

given type may be leading; for example, there ar€,, (which may link the closed vortex surface but is far
N(N—1)/2 one-gluon exchange graphs, each of strengtiyom jt) gives an element of the gauge group lying in the
g°Cr/(N—1), so that the sum i®(N). But many perturba- X ; ;

) “-F L . : et . centerZs; of course, only the massless term contributes in
tive contributions which are formally leading in this sensenis transport if the closed path and vortex surface are sepa-
vanish identically; in particular, it was shown long d6021]  r5teq by distances-M L. If the closed path and the vortex
that in SU3) the lowest-order graph with one-gluon line on g, tace’ are not linked only the identity elementz can
each leg meeting at one three-gluon vertex vanishes ident.q ;. Any regular gauge transform of EA.2) is also al-

cally for grou_p—theory reasons. We will discuss some Oflowed, in particular, the diagonal elements@fcan be per-
these graphs in Sec. IV fdd>3, where we show that for ., ied.

any N the generalization of the above graph, with three glu-  consider a Wilson loop which is large in the sense de-
ons attached to different quark lines and meeting at a thregseripeq earlier; for such a loop, the contribution of a vortex
gluon vertex, vanishes identically via a simple symmetry ary, the area law for a vortex which never gets close to the
gument. Some _other hlgher-order perturbative graphs_ wit] op can be found from only tha, term in Eq.(12). The

three-gluon vertices vanish for the same reasons, and it M3y assjve term only contributes to perimeter-law corrections

be of interest to note that those gluon-tree graphs with thg 1 \ortices within a distance! ~* of the Wilson loop. The
topology of a cross section of the generic minimal Ste'nerexpectation value of such a Wilson loop is

surface give zero.

1
II. AREA LAWS <W>= §<TI’PEX[< § dX-A(X) >=(exp:277iL/3]>, (15)

A. Review of the qq Wilson loop

Before considering the BWL area law, we set the stage b)‘/N here

briefly reviewing the vortex-condensate picture of confine-
ment in the usuad|g Wilson loop. The condensate is formed L=> L, (16)
[7,12] from vortices centered on simple closed surfiasfs

is the sum of the Gauss-linking numbers of vorigas given

SLargeN studies of baryons have been modernized recently; ser
Refs.[24—2§ which cite other recent references.

5There are vortices described by nonsimple closed surfaces — 3€ jg ; o
where three blades meet along a line; in(S\) the blades are Li dx, P doap(D €apund Aol x=2(1)]. (17
associated with the Lie-algebra structures ¢i&831/3;-2/3),
diag(1/3,—2/3,1/3, and diag—2/3,1/3,1/3, one for each blade, Converting thex integral to a surface integral by Stokes’
generalizing Eq(12) below. Note that the sum of these generatorstheorem shows that this linking number is an intersection
is zero. Ind=3 the simplest such vortex looks just like the BWL of number of the vortex surface with a surface bounded by the
Fig. 1 itself. Although these truly non-Abelian vortices may lead to Wilson loop; which particular surface is chosen is immate-
interesting knot-classification problems, they add nothing new tdial. The total numbeiN of vortices linked to the loop is
our discussion of confinemefit]. clearly proportional to some aréaassociated with the loop,
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and the coefficient of proportionality is the density of vorti-  We can just as easily define the notion of a vortex with a
cesp per unit areaN = pA. Since variation of the areacan  simple link to, e.g., line 1, as in Fig. dgnore the Stokes’
lead to no change W), this area must be the minimum surfaces of this figure for nowin which casdJ(1) will not
spanning area. be the same dd(2) andU(3), butthese latter twdJ's have

Now, we invoke the above-stated assumption that thehe same valueS. As one’s intuition suggests, this is the
linking numbersL; of distinct vortices are independent of same configuration as a vortex linked to lines 2 and 3, but
one another. Because the are#s large,N is also large and with the opposite link numbeftwo quarks equal an anti-
we invoke the central limit theorem to conclude thatthe  quark, in the BWL. To show this, use a variant of E(R2)
sum of a large number of independent random variableo find [7]
L;, has a Gaussian distribution with average valug=0 1
and that geabcfa’b'c’saa'sbb’ = Sc/t (23
(exg 2miL/3])=exd — 3(27/3)2pA(L?) = KA, (18

so we do not need a separate definition of a simple vortex

whereK is the mesonic string tension. link to two lines.

For purposes of studying the BWL area law we do not At this point it is convenient, but not necessary, to return
need to know the density of vortices or how exactly thisto the model of vortices described in connection with the

density is related t&; we simply need to know that usual Wilson loop, and described in E¢$2)—(14). We eas-
ily find
(W)= (exd 2miL/3]y=exd —constx(L?)] (19 Y
1
and that BWL:Eeabcfa’b’c’{eXF[Zﬂ'iQA(1)]}aa’
<Lz>:<z L$> A 20 < {ex{ 2mQA (2) Thop (X 2 QA (3) oo
1 2i
We now go on to the BWL. =385 (A +A(2)-2A3)} | +ep., (29
B. The BWL area law where theA’s are defined as Abelian path integrals, possibly

It is not apparent at first glance that the BWL area law carpath dependent.

be expressed in terms of standard Gauss linkages, because

there are no obvious directed closed loops of the standard A()= | dx-A(x) (25)

Wilson loop-type. If the problem were Abelian there would ro

indeed be no simple solution, but of course it is not. Noneand c.p. stands for cyclic permutations.

theless, we can define a concept of linkage and, in fact, re- |t js clear from Eq.(24) that each term of this equation

duce the problem to one of standard Gauss link numbers. can be written in terms of conventional loop integrals:
We begin by observing that, because we save only the

pure-gauge part of the vortices, we can define the notion of . .

linking a vortex with the BWL. Consider the open line inte- A =A()=l= ﬁ(i)_rmdx-A(x) (26)

gral U(x,y;1) from x to y (see Fig. 1 for quark line 1, as

defined in Eq.(2). When the vector potential is pure gauge with the contoud’(i)—I'(j) oriented to run in the direction

U can be expressed in the form shown in the figures on line but in the opposite direction to
. the figures on ling. In other words, one has a conventional
U(x,y;1)=V(x)V"(y), (21)  qgq contour. Of course, each integilg is a Gauss link inte-

) , . gral, so we have achieved the purpose of expressing the
whereV is a local SU3) matrix. We now say that a vortexis g in terms of such integrals:

unlinked to the BWL ifV(x)V~1(y) is the same for all three

quark lines. IfV were a regular gauge transformation this 1 .

would be automatic, sincg in Eq. (21) would then be path BWL = zex (2mi/3)(115+ 23]+ C.p. (27)
independent. For the singular gauge parts we encounter in

vortices this is not so, because parallel transport around a We now define link numbers for elementary linkages in a
closed path can lead to a nontrivial elementZaf which  slightly different way from usual. The link numbers so de-
might be different for different lines; it is clear from the fined are called.(i), where thd refers to the quark line, not
above discussion of the usual Wilson loop that this is howany particular vortex. The first step in the definition is to
linkage numbers are generated. But when all three lines giverite

the same value fod, the elementary identity

1 _ _ "This notation is to be distinguished frolm introduced in Eq.
Eeabcea’b'c’uaa’ubb’ucc'_deu =1 (22) (16), which refers to the link number of a single vortex; for the

BWL, L(i) refers to the sum of all vortex link numbers for the
shows that there is no contribution from such a vortex to theyuark linei. L(i) is a sum of a large number of link numbers of
BWL area law. statistically independent individual vortices.
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Lij=L(i)—L(j). (28)  and finally by comparing to the usual Wilson loop area law
in Egs.(19), and(20), we find the final result

A vortex has an elementary linkage to linéf (1) the other
two lines can be continuously deforméstill with ends at (BWL)=exf — (K/2)(Appt Arzt Az) ] (36)
x andy in the figure$ to coincide with each other without
ever crossing the vortex, arf@) the vortex is then linked to
the effectiveqq vortex formed by linei and the other two
lines, with the orientation determined by that of linelrhen,
the elementary link numbel (i), with sign, is defined as
usual. For example, the vortex in Fig. 4 has link numipdr
with line 1. More complicated linkages can, in general, b
reduced to simple linkages by reconnecting the vortex itself . A (i
without changing the so-defined link numbers, that is, with- AaitAoj=Aij (1#]). (37)
out changind; , and in such a way that the elementary link Add these three equations, divide by two, and use the defi-
numbers are statistically independent, even if coming from &jtion (6) of A, plusAy=3 Ay, to find the needed inequality.
single vortex with various twists and writhes along its length.

With this definition, we have for the BWL: lll. NON-ABELIAN STOKES' THEOREM FOR THE BWL

which is theA law claimed in Eqs(5) and (6).

To close this section we give the simple proof, just a
triangle inequality for areas, that,=A,/2. In Fig. 4, define
the areash,;, i=1,2,3 as the areas spanning quark line
and the central line 0. The areAg are minimal for the loops

eformed from quark line$ andj, so

1 . Let us interpret some of the steps of the above discussion
BWL= §exp[(2m/3)[L(1)+ L(2)-2L(3)]}+c.p. (29 in light of the non-Abelian Stokes’ theore(MAST) for the
BWL, proven below. This theorem states that in the BWL
However, becausk(i) is an integer, we may write this as expression(1) eachU occurring there can be replaced by an

integral of the typde.g., for line 3
BWL=exp2#i/3)[L(1)+L(2)+L(3)] (30)

which shows, as expected, the symmetry under exchange ofU(x,y;l)—>Pex;{ L o do,,,(2)U(x2)G,, U™ (x2) |,
the quark lines. on (39)
Now, we invoke the assumed independence of the linking
numbers from distinct vorticegafter the above-mentioned where 3(01) is any surface spanning quark line 1 and a
process of vortex reconnection, if necesgaily forming the  central line running frony to x which we call line O(the
expectation valu¢BWL) as an average over vortex configu- dotted line in Fig. 4 Any set of three surfaces and corre-
rations: sponding central line may be used. Thes are parallel-
S . transport integrals of a type discussed below, @nd is the
(LL3)y=(L()?) &, (D ysual field strength. For the special vortex whose explicit
1 form is given in Eqgs.(12)—(14), theseU’s commute with
<BWL>=exr{ — E(277/3)22 (L(i)z) . (32 G,, but that is not the point here; the point is the nature of
the three-bladed Stokes’ surface shown in Fig. 4. The inter-
pretation of the loop integrals in E€R6) as linking numbers
depends on using Stokes’ theorem for such a surface. The
explicitly written term in Eqg.(27) contains, in this sense,
contributions from surfaces spanning quark lines 1 and 3,
and lines 2 and 3, but not lines 1 and 2. This is consistent

It only remains to compare this result with that for the
qq loop formed on lines (going up, as in the figurg¢sand
j (going down) as given in terms of link numbers in E@.8),
where the link number calleti there is precisely thg; of

Eq. (26): with the NAST for the BWL, by choosing the central line of
N\ _1 2 NIy the Stokes’ surface to coincide with line 3. Similarly, the
(Wijy=exp{—z(2m/3)%([L(I)—L(J) D} other two contributions in Eq27) have the central line cho-
=exf — 2(27/3)%(L(i)%+ L(j)z)]=exr{—KA”-], sen to coincide with line 1 or line 2.

First, recall the NAST for the usual Wilson loop
[16—20.8 It says that the Wilson loop

where in the second equality we used the assumption of in- 1
dependence as in E{B1) and in the last equality we have W= —TrPex;{ % dx-A(x)) (39
made use of Eq20) which states that the total link number 3
is proportional to the minimal ared;; spanning quark

(33

can be written

lines i and j. By adding the three equations
[(I11)2(112)1(113)1(213)1 1 J - A
W= -TrP d U(02)G, U~ . (40
(L(H?)+(L()))=consi Ay, (34 3 exp( 47 BUOD Gy (OZ)) 49
we find

ABHaIpern[16] shows how to fix the gauge so that the line integrals

1 . . .
N2\ U in Eq. (38) can be replaced by unity, thereby reducing the NAST
L(i)%)=const = (A,+ Azt A 35
E (L 2( 12+ Asat Aza) (35) to its Abelian counterpart.
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6 5
- <€ y
7y Y A
A 4 A
——=
X
> -
A
Y A 3
8 A ' A FIG. 7. A BWL composed of three square contours.
- whereU(78) is the line integral along the central line from

o _ y to x, but the originalU (x,y;i) can be expressed as surface
integrals in the limit of infinite subdivision into plaquettes.
Once again, we use a determinantal argument of the type
given in Egs.(22) and (23):

FIG. 6. A Wilson loop(lines 1-8 and its decomposition into
four plaquettegsee Ref[20]). €arp'c'U(78)gar U(78) ey U(78) 1/ = €qet (43

which, when substituted in Eq(42), shows that the
U(78)’s do not contribute.
It is clear that the choice of central line and spanning
- z surfaces is immaterial to the value of the BWL, just as for
U(oz):exp( f dX-A(X)) (41)  the usual Wilson loop. Written in continuum form, the BWL
° NAST has already been given in E@8), where the paths
involved in constructing th&) path integrals can be read off
is integrated along lines originating at any pomton the  from Fig. 8.
loop and ending at the surface pomtThe appropriate paths
and the ordering prescription can be written explicitly, but |\ N > 3 AND PERTURBATIVE CONTRIBUTIONS
for our purposes it is enough to consult the kind of figure
drawn by Fishbane, Gasiorowicz, and Kd4a§] and shown Perhaps the main reason for studyiNg>3 is to make
here as Fig. 6. The original square Wilson loop is formedcontact with largeN argument§22—-24.
from eight segmentglabeled 1-8 each segment corre-  For N>3, the BWL is of the form(1) with N U’s going
sponding to a parallel-transport integral along that segmenfrom x to y as in Fig. 1, ande symbols of appropriate di-
The original square is subdivided into four, the first step inmensionality. The NAST for the BWL has one central line,
dividing the loop into infinitesimal plaquettes, and the origi- as in Figs. 4 or 8, and the obvious analogue of &®) for
nal path is replaced by the one shown in Fig. 6. It is easy t&U(3) holds; the Stokes’ surface is théhbladed, with the
see that all the added line integrals cancel each other, so
there is no change in the value of the Wilson loop. By con-
tinuing this process of plaquette development, the original
line integral is turned into a surface integral of the type),
with the U’s defined by reference to Fig. 6 and its further
subdivision into plaquettes.

Now, consider the corresponding process for the BWL, a
square version of which is shown in Fig. 7. We wish to
subdivide each three-legged segment into plaquettes, much
as in Fig. 6. To do so, introduce a central lili@beled O in
Fig. 4, or 7 to 8 in Fig. 8and subdivide the three squares so
formed just as in Fig. 6, and shown in Fig. 8. All the extra
line integrals cancel as before, except for the three lines
marked 7 and 8, running from to x. As a result, the BWL
takes the form

Here,

A

\ ]

BWL=2% €apc€arbc’U(X,Y; 1) agU(X,Y;2)peU(X,y;3
8 €avcear'crU(XYi Dadl (6Yi2)peU (XYi3) e FIG. 8. Dividing the BWL into plaquettes with a central line
XU(78)qarU(78) ey U(78)5cr, (42 (the 0 line of Fig. 4.
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blades meeting along the central line. Note that this is not the
same as the generic minimal surface, which s 2
Steiner lines where three surfaces meet.

There are two candidat@sy andA, for the area law, as
given in Eqgs.(8)—(10), which we repeat for convenience:

(BWL)=exd —KAy], (44
(BWL)=exg —KA,/(N—1)], (45)

<
- FIG. 9. A cross section of the=4 BWL, with the quark-line
In Eq. (43), Ay stands for the global minimum area, generi- cross sections shown as the numbered points, and the global mini-
cally that of a surface withN—2 Steiner lines where three mum surface cross section as the lines; the poit8 are cross
surfaces meet. As fa=3, the normalization is set by the Sections of Steiner lines.
requirement that wheiN—1 quark lines coincide they act
like an antiquark and the resulting area law is @string  Adding these inequalities and dividing by three yields, for
tension. N=4,
We derive theA law with the vortex-condensate picture,
as before. The vortex-condensate argument is essentially un-
changedwith substitution ofN for 3 in various placesup to Av= LE A (52)
Eq. (34), which relates the link numbets(i) to the minimal YUN-15 T
areasA;; spanning quark lines andj; these lines need not

be adjacent. The proof for generaN is similar. In consequence, an intui-

(L(i )2>+ (L(j )2> = CONSK A . (47) tive minimal-area argument selects thdaw over theY law.
Now we consider some perturbative contributions. Our
There areN(N—1)/2 of these equations, and the sum offesults are a minor sharpening of previous wék1,23
them all contains eactlL(i)?) N—1 times. Then, this sum both forN=3 and forN>3, showing how a large class of
divided byN—1 yields graphs with three-gluofand sometimes four-glugwertices
vanishes identically. In particular, those graphs formed by
- 1 attaching anN-leg-connected gluon tree witN—2 three-
2(L(i) )=const><m; Ajj - (48 gluon vertices taN quark lines in a baryon, such that only
. one gluon is attached to each quark line, vanish; these are the
The factorN— 1 in this equation enters the law (45) justas ~ Ones with the topology of the generic minimal Steiner sur-

in Sec. Il. face, and we will call them Steiner graphs for short. Figure 9,
We show that with the lines interpreted as gluon lines attached to the num-
bered quarks, is an example fir=4.
A, It is well known[23] that each individual Feynman graph
Av= N7 (49 in a baryon is nonleading at larg¥, but the number of

graphs is such that the sum of all possible insertions of a

explicitly for N=4; the idea will then become clear for all given graph structure on thé¢ quark lines isO(N). More-
N. Figure 9 shows a cross section ofldr4 BWL, with the ~ Over, the contribution of simple one-gluon exchange between
cross section of the quark lines shown as numbered poinf¥/0 quark§ is 1/ —1) times one-gluon exchange incay
connected by a Steiner surface, whose cross section is theop. But it was shown long agf6,21] that for SU3) the
lines shown, and two Steiner lines, B. Then, the global 9raph of Fig. 10 vanishes identically, for symmetry reasons.

minimum area is L_et us gen_era_lize this to _arf)d>3. ansider the graph_ o_f
Fig. 11, which is characterized by having a gluon line joining
Av=AiatAsn+Azgt+ A+ Aps- (50 quark lines 1 and Zfor example, with a single three-gluon

vertex going somewhere elgeeither to line 1 nor to 2 The
There are six inequalities expressing the fact that the areagoup-theoretic factor of this graph is
A;; are minimal areas for quark linesj:

A1A+A2A2A12, A2A+A3B+AAB>A23’ etc. (51) //m
S >
%0One can guess at many more candidates; for example, Witten
[23] has speculated ol surfaces meeting along a single line,

which is, in fact, the Stokes surface for gendxalBut this sort of

configuration neither comes from the vortex-condensate picture nor
from an argument about minimal areas. FIG. 10. Lowest-order, three-gluon graph for an(S)baryon.
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FIG. 12. A gluon-disconnected baryon graph.

(2) The A area is weighted with I§—1) in the BWL
area law relative to the unit weight of the Steiner afga
_ This is, as it must be, consistent with the argument that if
FIG. 11. A baryon graph for S®) with a three-gluon vertex. N —1 quark lines are collapsed into an antiquark, the result-
ant area law is theq law.
ie Cewnrer (N aw (B Fager e, (53) (3) The weight(_adA_ area is less than the_global minimum
NI “abc--Fa’bre aa bb ABC areaA (anda fortiori any other area spanning the BWIso
even an intuitive argument based only on minimization, that
where \*,\® are group generators arfdgc the structure s, maximizing(BWL), selects the\ law.
constants. It is clear that everything in this expression except (4) Certain perturbative graphs with three-gluon vertices
the structure constant is symmetric on the exchange of quarkanish by a simple symmetry argument; these are graphs
lines 1 and 2, or equivalently, on the exchangeAodindB;  contributing to 3. .. ,N-body forces in a baryon. Among
since fagc is totally antisymmetric, the whole expression them are the lowest-order graphs with the topology of a
vanishes. Steiner surface cross section.

One can construct this way many graphs which vanish, in  (5) In the two-body sector, the sum of theadiatively
particular, Steiner graphs. By collapsing a gluon line at-corrected one-gluon potential and the area law potential is
tached to two three-gluon vertices, one can also find graphg/(N—1) times the correspondingq potential.
with four-gluon vertices which also vanish. One can also What can one make of these results? Unfortunately, QCD
show by the same symmetry argument that the gluontheory (as opposed to computer simulatiprigas not pro-
disconnected graphs containing a graph which would vanisgressed to the point where it is possible to distinguish the
by itself and one which would ndsee Fig. 12also vanish. A Jaw from theY law in a practical way, but of course, one

A simple variant of the group structure in E®3) allows  optimistically hopes that this can be done some day. There
one to calculate the group-theoretic coefficient of a class ofould conceivably be some effect in using théaw in, e.g.,
two-body graphs, especially one-gluon exchange and radigragmentation models, but one is far from seeing such ef-
tive corrections thereto. This iS as mentioned in Connectiomects In the absence of meaningfu| theoretical approaches to
with Eq. (11), 1/(N—1) times the factors associated with the baryon, it might still be useful to do more precise com-
one-gluon exchange in theq loop. This same coefficient puter simulations to verify the above claims. The fact that
applies to any two-body graph for which the matiék,.»  one-gluon perturbative exchange has a structure analogous to
replacingX ;- in Eq. (53) occurring on either quark line is the A law for areas, and no contribution to the structure
traceless. analogous to the&¥ (or generic minimal surfagdaw, may

help to interpret these lattice calculations, where it is, of
V. CONCLUSIONS course, impossible to separate perturbative and nonperturba-

) i tive contributions to the BWL.
In this paper we have shown several things, based on the

usual vortex condensate and confinement by vortex-Wilson
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