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Coupled-cluster expansions for the lattice @3) o model
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The coupled-cluster method with the eigenvalue equations truncated according to the continuum limit is
applied to the Hamiltonian lattice (@ o model. The long wavelength approximation of the vacuum wave
function and mass gaps are calculated up to order 8. The results show general scaling behavior according to the
full B function.[S0556-282096)06720-3

PACS numbdps): 11.15.Ha, 11.10.Lm

I. INTRODUCTION C:=80.0868. . ., (1.9

The nonlinear @) o model in 1+1 dimensions is similar  but, the range of3, for which the lattice model exhibits the
to (3+1)-dimensional non-Abelian gauge theories in manyasymptotic scaling, remains unknown. In REJ], a varia-
respects, such as, asymptotic freedom and the existence tdnal method was used; the results were similar to those in
instanton solutions. In addition, this model seems simple foRef. [1].
testing theoretical ideas on asymptotic freedom. Many differ- In Ref.[10], scaling other than asymptotic scaling in the
ent lattice methods have been applied to the lattice version dd(N) model was studied by W/ expansion in a continuous

this model, but the conclusions differ widely. version. Because the scaling was obtained not by perturba-
In Refs.[1-3], the Monte CarldMC) and MC renormal- tion theory, it was assumed that this scaling is correct for all

ization group(MCRG) measurements on the standdré., 3. In the lattice case, similar work was done and the mass

nearest-neighbomction, gap was evaluated numerically up to 40000 sites[11].
Reference[3] also studied scaling according to the fl

A=-8> SiShi (1.1) function qsing the MC.RG method, anq indicated that there
nu probably is some scaling befog goes into the weak cou-

pling region.

observed asymptotic scaling gt>1.6 (8~1.6 in Ref.[1], In this paper, we use the coupled-cluster meth@E&M)

and>1.6 in Refs[2,3]) and predicted a mass gap to study the model. Our purposes are to test the idea of

scaling according to the fu function[3], and, at the same
time, to test the effectiveness of the method. In the CCM, an
: _ i ; ; essential problem is how to truncate the coupled-cluster
with C+=(110+10) [2,3], wherea is the lattice spacing and equations. Various schemes have been proposae 14,
Here we use the scheme in REE2], that is, to truncate the
52 (1.3 eigenvalue equations according to the continuum limit. In
this scheme, the continuum limit of terms in the eigenvalue

is the asymptotic scaling parameter wigh=0.570 resulting  €duations are preservéti2]. We expect this may soften the
from the three-loop approximation. In Ref], the same Cutoff and resultin rapid convergence. _
model was studied by a collective MC method, and no as- ThiS paper is organized as follows. In Sec. Il, we intro-
ymptotic scaling was observed up g~=1.9. Referencgs] ~ duce the Hamiltonian formalism of the model and the trun-
also reported the absence of asymptotic scaling+®.05 in ca_ted equations. Section Il is devpted to the concrete calcu-
MC simulations. In Ref[6], the model was investigated in lations. In Sec. IV, our conclusions and discussion are
the regiong e (1.4,2.26) with direct mass measurements and’resented.

using different MCRG methods. The results were

mra=CyAja, (1.2

5
1+ =—+0

= —2mB
Alatta 277Be 27TB

Il. THE TRUNCATED EIGENVALUE EQUATIONS
Cr=91+3+1, (1.4 ) .
According to Eq.(1.1), the Hamiltonian is

and the asymptotic scaling emerged in the regi6n )
€(2.14,2.26). A high precision MC simulation in which a H= 9 2
powerful method is used to extrapolate finite volume MC 2an’c=
data to infinite volume was carried out by Caraccietaal.
[7]. The results support asymptotic scaling, but with stillwheren denotes the lattice space sitesb=1,2,3 are the

about 4% deviation from it even at such a large correlatiorindices of group @), g>=1/8 is the lattice coupling con-

1
S Lnevt g (Shea= S0 (2

length asé=10° (8=3.0). stant, ands, is the lattice field satisfiyng
As for the analytical calculation, in Ref8], the exact
mass gap of the model was obtained; that is, S, S=1. (2.19
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Let
[En,G1alEn,Gral=—2+22 [(SySn1)®~ Sy Sne

Eb:EGdeL
n2 n.cd- + Sy Sh+1Sh+1-Sn+ 2]
=—-2+ 2(G2,l_ szz‘i‘ sza).

Then the commutators are
We define these three new clusters as the second order clus-

[ED,SS]=iePSds,, [S2,S5]=0. (2.2 ters. The order of a cluster is defined in this way by iteration
of this operation. Sd&r, can be written as
Eﬁ are the generators of the group, i.e., the rotation operators 3
in three-dimensional group space. Definin
group sp g Ry= 2, €256z, (2.7h
Za . . -
W= ?H, wherec,(s=1,2,3) are coefficients to be determined. The
terms[Eﬁ,Glyﬂ[Eﬁ,Gzys] (s=1,2,3) will produce six new
we have, ignoring irrelevant constants, clusters which are different from those Ry andR,. They

are defined as third order clusters. Higher order clusters can
2a 2 be produced and defined similarly. Af is invariant under
W= —FH=>, E2— > Sy Shaq. (2.3)  space rotation and reflection, the clusters generated in this
9 n 9n way automatically preserve the symmetriesGyf,. There-
. o ) fore, they will be in the same sector with definite quantum
The form Eq.(2.3) is very similar to the lattice form of pympers in the Hilbert space.
SU(N) gauge theories, withS,-S,.; replacing the Now, suppose we exparRl up to Mth order,
“plaquette” variable tiJ,(n). As we mentioned above, the
model possesses many properties similar to MUGauge R~R;+Ry+---+Ry. (2.8
theory, especially, it has instanton solutions, so we suppose L
the same form of the vacuum state as in REf®,14,15;  ~ubstituting it into Eq(2.9), we have

that is M
>, [En.[En,RII+ 2 [Ep RIERR)]
|60)=e%0), (2.4 T
2
where the stat¢0) is defined byEZ|0)=0, andR is a func- — > Sy Shi1=Wo. (2.9
tion of coupled clusters. 9
FromW| o) =Wo| o), We get From the above discussion, we know that generally

b b . .
E ([Eﬁ,[Eﬁ,R]]Jr[Eﬁ,R][Eﬁ,R]) [En,RiI[En,Rj]e (i +])th clusters- lower order clusters,
: so terms with an order higher than will be generated in
2 [Ep, =M RIER, =M, R;]. We have to truncate it. There are
—EE SheSh+1=Wo. (25  many truncation schemes. One of them is to calculate
A [ER,RI[ER,R;] for all i,j<M and discard those clusters

We expandR as a series of clusters which are the variousWlth an order higher thaM [14]. Another scheme is to

b 1TEP P iLi< -
combinations of lattice fiel&,, and with the same symme- computg B, RiJ[Ey,R;] only fori+j<M, so that no clus

try as the ground state. Defining the order of clusters in th(%ers W'.th a’g order bhlgher thakt are produced._ Therefore,
same way as in Ref15], we have erms in[En,Ri][E,,R;] are wholly preservediftj<M)
’ or discardedi(+j>M), while in the former scheme, clusters

are partly preserved for+j>M. In Ref.[12], it was proved

R=R;+R,+Rg+ -, 2.6
and choose [Eﬁ,Ri][Eﬁ,Rj] ~ ordera®+ higher orders.
a—0
(2.103
Rlzcl,12 Sh-Sh+1=€1,1G1 1, (2.7a _ _ b b
n However, if we discard some terms[ig,,R; ][ E,,R;], then
where c;, is a coefficient to be determined. We call part((Ep,R[Ep,R;]) ~ ordera+ordera®
S,-Sh+1 a link connecting siten and siten+1. The first a-0
order clusteiG, ;, which is composed of the sum of one link + higher orders, (2.10bh

over lattice sites, is the simplest cluster with the same sym-
metry as the vacuum. The terfrEﬁ,Gu][Eﬁ,Gl,]] pro-  where part([Eb,Ri][Eb,Rj]) denotes the remainder after
duces new clusters discarding. Because lattice calculation should recover the
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continuum limit by takinga— 0, we think the latter scheme, F=F;+Fy+---+Fy,
where the truncation preserves the continuum limit, may lead _ . _ .
to a more effective approach to scaling. In this scheme, thwe obtain the eigenvalue equation truncated in the scheme

truncated eigenvalue equation of the vacuum state is preserving the continuum limit

M M M M M

2 [ER[ERRI+ X [EDRIELR] 2 [ER[ELFIF 2 [EDRIELRI=Aw2 Fi,

= i+j= = = =

) (2.13
- 32 Sn* Sh+1=Wo. (2.1)  whereAw=w—w,, andw is defined byW| ¢)=w|¢).

Because clusters are independent from each other, the coef- Ill. THE CALCULATION OF THE VACUUM WAVE
ficients of each cluster on both sides of Eg.11) should be FUNCTION AND MASS GAPS
equal. This leads to a set of nonlinear equations for

In this section, we will discuss the detail of calculation.

{Cis,i=1,... M}. {ci s} can be determined by solving ., Eq.(2.7), any vacuum cluster can be written as

these equations.
Now, we return to the mass gap. In the CCM, the excited

states are assumed to be Gi,s:; Slbslb+ksfs(sl)a 3.9
|4)=F(Sn)l o). (212 where fg is an arbitrary scalar function of lattice field.
whereF(S,) is a function of{S,} with appropriate symme- Then, the calculation of E7,Gi sl[En.Gj,] is reduced

try so as to makég) possessing the required quantum num-to  calculate such a quantity with it form as
bers. Expanding® as a series of coupled clusters up to[En.=iS- Sl+k]fs(sl)[E ZmSm* Sm+kr)fr(Sm). Using Eq.
Mth order (2.2, we have

S [ENS - Sk SIER S Sk Jr(Sm) == 2 {(SnviSnek, = S Suei S Snei) (S (Sn)

b,n,I,m
F(Sn—k, " Sn+k, ™ Sn—k,  SnSn- Sh k) Fs(Sn) Fr(Sh-k)
+(Sh-k" Sn—k, ~Sn—k, " ShSn Sa-k ) Fs(Sn-k ) Fr(Sh-k,)
F(Sh—k, Sk, ~ Sn—k," ShSn Shak ) Fs(Sh—k ) Fr(Sp)}. (3.2

The calculation of termEEﬁ ,[Eﬁ ,Gi s]] is similar. We have encoded it in C language.
Evaluating the continuum limit of each clustg s, we get the long wavelength expansion of the vacuum wave function.

Let the lattice spacing— 0, then
2

Sy k=S, TkaAS,+ —a2A28n+ (3.3
Using this, we obtain

R~ A+ (1a%(AS)%+ uyy(A29)%a%+ u, (A9 (AS)%at+ - - -)
n

a—0
LA+ f AX(( 9902+ o P9)2+ uh A9 H 392+ - - ), (3.9
|
where the constarA can be absorbed in the normalization No(k—k')?
constant of the vacuum wave function, and M= E ci,sE —ar (3.9
i,s k=1 .

o= Mod, Mé,lz /'LZ,las! Mé,zz Mz,zasa (3.5

N N2 12
- (ki—kp)“(ka—kz)
with usz Cis 2 : 2 .

s kSkp=1 4

= 2 Here,N is the number of links ifG; 5, andk,k’ the two end
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FIG. 1. The coefficients In{ woB) of vacuum wave function FIG. 2. Calculated values of triplet In;a/B) versus
versusB=1/g. B=1/g%. We also plot the Monte Carlo results in R3] and the

three loop approximation for asymptotic scaling.
point coordinates of a link. Equatio(8.4) gives the long
wavelength vacuum wave function. The coefficient§, Let us turn to the mass gap. It is expected that the above
w1, andu) , describe the long wavelength behavior. Theymentioned fullg scaling emerges in the results if the scaling
are physical, whileu, w1, andpu, , are lattice dimension- actually exists. Considering the singlet masg and triplet
less quantities, computed by E@.6). From Eq.(1.2) and  massmy, the first order cluster approximations are chosen to
Eq. (1.3, we have, in the asymptotic scaling region, be

:§n‘, S,-S,.q for mg, Flzzn‘, s for my,
(3.8

where we have neglected the three or more loop correctlong"hereb 1,2,3 is the index of the groupny is degenerate
Hence, for b. Higher order clusters are generated by recursion. Solv-

ing Eqg. (2.13, we get the lattice dimensionless quantities
, Awg(B) andAw+(B). Equation(1.2) leads to

C
a= —2mBe 2"F=Cy2mBe 2"F,
My

Y 2w
Ko~ C02’7Te g mra  Awgr a
|n7—|n2—[)’2~>|nCT+|ﬂ7,
Mo, 1'83 8 366”B, as a—0, (37) as a—0, (39)
s |AWs |c:+|Aa
n—— =In=— —INCg+In—-
K22 6ap B 28 B

Ha, B~ C§8 The curves of Infhra/B) and In(msa/B8) againstB are plot-

ted in Figs. 2 and 3 respectively. Strong evidence of conver-

For orderM =4,5,6,7,8, we solve Eq2.11). The num- gence is shown in Fig. 2 for the triplet mass. We also plot the
bers of clusters in these cases are 31,86,276,866,2886. RdC result taken from Ref.3]. Our result is reasonably con-
simplicity, we present only the results pf,. Figure 1 shows sistent with this MC result in the regioB=<1.4, confirming
the results. The various order curves show obviously thehe existence of scaling according to the f8ifunction.(The
trend of convergency, particularly in the regi@=1.4, Al-  MC result is for the Lagrangian formulation, the Hamiltonian
though asymptotic scaling is not reached in this region, theesult is slightly lower than the MC result as discussed in
eighth order curve for In{ weB) should exhibit the scaling Ref.[16].)
sccording to the full3 function as described in R€f3]. We For comparison, we also plot the three loop approxima-
will return to this point later. tion for asymptotic scaling
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FIG. 4. The eighth order results efmyu}, versusg= 1/g? and
FIG. 3. The mass gap In{;a/B) versusp= 1/g°. —mgug versusB= 1/g2.
mra S IV. CONCLUSIONS AND DISCUSSION
In(— =In 2’7TCT(1+—) - 27, ) o o
B 27 Despite the apparent simplicity of the® o model, it is

rather hard to obtain asymptotic scaling because it emerges

with the exact valueC+=_80.08638 taken from Ref8]. In  only in a deep weak coupling region. This is in contrast with
spite of not reaching the asymptotic scaling region, our re{2+1)-dimensional W1) lattice theory for which asymptotic
sults in Fig. 2 are not inconsistent with it. scaling occurs at a much earlier std@8]. These results are

The convergence of the curves in Fig. 3 for the scalaronsistent with conclusions from Monte Carlo calculations.
mass is not as rapid as that for the triplet mass. This can b®ur results, though not showing the asymptotic scaling, give
accounted for by the higher singlet mass, which requirestrong evidence for the convergence of the truncation
higher order calculations to attain good convergence. Sincmethod. All the quantities we calculate show the trend of
good convergence fang has not been reached in our calcu- convergence, especially for Imga/g) in Fig. 2 andyg in
lations, we cannot give a reliable estimate of the parameterig. 1.

C, for the singlet mass. _ Our results also show some trace of asymptotic scaling. In
To give more direct evidence to support the idea of fullFig. 2, the seventh and eighth order curves bend downward
B scaling, let us calculatmug . The full 8 scaling is for B=1.4 to make the slope tending t02r, and in Fig. 1,

the slope of the eighth order curve begins to increase obvi-
ously wheng>2.
Perhaps the most important conclusion is that our results
)- (3.10  verify the idea of “full B8 scaling” [3]. In the regionB
€(0.8,1.2), the results of, and m; show this scaling be-

o havior (see Figs. 1, 2, and)4We obtain
From Eq.(1.2) and Eq.(3.5), we knowmyu is independent

of B and should be a constant in the full scaling region. In mruo=—0.18.
Fig. 4, the eighth order plot of- myu( againstg is pre-

€ (0.8,1.2) and we obtain that mg is larger thanmy. It is expected that higher order

calculations will exhibit the full3 scaling and eventually the
asymptotic scaling.

A =2mpe” *"P1(B)
1

. 0.57
with f(8) ~ +=—+0 22

B—ol 278

Aw
—mT/.L(,):—,LLOﬁZO.l& (3.11
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