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The coupled-cluster method with the eigenvalue equations truncated according to the continuum limit
applied to the Hamiltonian lattice O~3! s model. The long wavelength approximation of the vacuum wave
function and mass gaps are calculated up to order 8. The results show general scaling behavior according t
full b function. @S0556-2821~96!06720-3#
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I. INTRODUCTION

The nonlinear O~3! s model in 111 dimensions is similar
to ~311!-dimensional non-Abelian gauge theories in man
respects, such as, asymptotic freedom and the existence
instanton solutions. In addition, this model seems simple f
testing theoretical ideas on asymptotic freedom. Many diffe
ent lattice methods have been applied to the lattice version
this model, but the conclusions differ widely.

In Refs.@1–3#, the Monte Carlo~MC! and MC renormal-
ization group~MCRG! measurements on the standard~i.e.,
nearest-neighbor! action,

A52b(
n,m

SnSn1m , ~1.1!

observed asymptotic scaling atb.1.6 (b;1.6 in Ref.@1#,
andb.1.6 in Refs.@2,3#! and predicted a mass gap

mTa5CTL latta, ~1.2!

with CT5(110610) @2,3#, wherea is the lattice spacing and

L latta52pbe22pbF11
d

2pb
1OS 1b2D G ~1.3!

is the asymptotic scaling parameter withd50.570 resulting
from the three-loop approximation. In Ref.@4#, the same
model was studied by a collective MC method, and no a
ymptotic scaling was observed up tob51.9. Reference@5#
also reported the absence of asymptotic scaling tob52.05 in
MC simulations. In Ref.@6#, the model was investigated in
the regionbP(1.4,2.26) with direct mass measurements an
using different MCRG methods. The results were

CT5916361, ~1.4!

and the asymptotic scaling emerged in the regionb
P(2.14,2.26). A high precision MC simulation in which a
powerful method is used to extrapolate finite volume MC
data to infinite volume was carried out by Caraccioloet al.
@7#. The results support asymptotic scaling, but with sti
about 4% deviation from it even at such a large correlatio
length asj5105 ~b53.0!.

As for the analytical calculation, in Ref.@8#, the exact
mass gap of the model was obtained; that is,
542821/96/54~10!/6521~6!/$10.00
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CT580.08638 . . . , ~1.5!

but, the range ofb, for which the lattice model exhibits the
asymptotic scaling, remains unknown. In Ref.@9#, a varia-
tional method was used; the results were similar to those i
Ref. @1#.

In Ref. @10#, scaling other than asymptotic scaling in the
O(N) model was studied by 1/N expansion in a continuous
version. Because the scaling was obtained not by perturba
tion theory, it was assumed that this scaling is correct for al
b. In the lattice case, similar work was done and the mas
gap was evaluated numerically up to 4003400 sites@11#.
Reference@3# also studied scaling according to the fullb
function using the MCRG method, and indicated that there
probably is some scaling beforeb goes into the weak cou-
pling region.

In this paper, we use the coupled-cluster method~CCM!
to study the model. Our purposes are to test the idea o
scaling according to the fullb function @3#, and, at the same
time, to test the effectiveness of the method. In the CCM, an
essential problem is how to truncate the coupled-cluste
equations. Various schemes have been proposed@12–14#.
Here we use the scheme in Ref.@12#, that is, to truncate the
eigenvalue equations according to the continuum limit. In
this scheme, the continuum limit of terms in the eigenvalue
equations are preserved@12#. We expect this may soften the
cutoff and result in rapid convergence.

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian formalism of the model and the trun-
cated equations. Section III is devoted to the concrete calcu
lations. In Sec. IV, our conclusions and discussion are
presented.

II. THE TRUNCATED EIGENVALUE EQUATIONS

According to Eq.~1.1!, the Hamiltonian is

H5
g2

2a (
n,c,b

Ln,cb
2 1

1

2ag2(n ~Sn112Sn!
2, ~2.1!

wheren denotes the lattice space sites,c,b51,2,3 are the
indices of group O~3!, g251/b is the lattice coupling con-
stant, andSn is the lattice field satisfiyng

Sn•Sn51. ~2.1a!
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Let

En
b5

1

2
ebcdLn,cd .

Then the commutators are

@En
b ,Sm

c #5 i ebcdSn
ddmn , @Sn

b ,Sm
c #50. ~2.2!

En
b are the generators of the group, i.e., the rotation opera

in three-dimensional group space. Defining

W[
2a

g2
H,

we have, ignoring irrelevant constants,

W5
2a

g2
H5(

n
En
22

2

g4(n Sn•Sn11 . ~2.3!

The form Eq. ~2.3! is very similar to the lattice form o
SU(N) gauge theories, withSn•Sn11 replacing the
‘‘plaquette’’ variable trUp(n). As we mentioned above, th
model possesses many properties similar to SU(N) gauge
theory, especially, it has instanton solutions, so we supp
the same form of the vacuum state as in Refs.@12,14,15#;
that is

uf0&5eRu0&, ~2.4!

where the stateu0& is defined byEn
bu0&50, andR is a func-

tion of coupled clusters.
FromWuf0&5w0uf0&, we get

(
n

~†En
b ,@En

b ,R#‡1@En
b ,R#@En

b ,R# !

2
2

g4(n Sn•Sn115w0 . ~2.5!

We expandR as a series of clusters which are the vario
combinations of lattice fieldSn , and with the same symme
try as the ground state. Defining the order of clusters in
same way as in Ref.@15#, we have

R5R11R21R31•••, ~2.6!

and choose

R15c1,1(
n

Sn•Sn11[c1,1G1,1, ~2.7a!

where c1,1 is a coefficient to be determined. We ca
Sn•Sn11 a link connecting siten and siten11. The first
order clusterG1,1, which is composed of the sum of one lin
over lattice sites, is the simplest cluster with the same s
metry as the vacuum. The term@En

b ,G1,1#@En
b ,G1,1# pro-

duces new clusters
tors
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@En
b ,G1,1#@En

b ,G1,1#52212(
n

@~Sn•Sn11!
22Sn•Sn12

1Sn•Sn11Sn11•Sn12#

[2212~G2,12G2,21G2,3!.

We define these three new clusters as the second order clus
ters. The order of a cluster is defined in this way by iteration
of this operation. SoR2 can be written as

R25(
s51

3

c2,sG2,s , ~2.7b!

wherec2,s(s51,2,3) are coefficients to be determined. The

terms @En
b ,G1,1#@En

b ,G2,s# (s51,2,3) will produce six new
clusters which are different from those inR1 andR2. They
are defined as third order clusters. Higher order clusters can
be produced and defined similarly. AsH is invariant under
space rotation and reflection, the clusters generated in this
way automatically preserve the symmetries ofG1,1. There-
fore, they will be in the same sector with definite quantum
numbers in the Hilbert space.

Now, suppose we expandR up toM th order,

R'R11R21•••1RM . ~2.8!

Substituting it into Eq.~2.5!, we have

(
i51

M

†En
b ,@En

b ,Ri #‡1(
i , j

@En
b ,Ri #@En

b ,Rj #

2
2

g4( Sn•Sn115w0 . ~2.9!

From the above discussion, we know that generally

@En
b ,Ri #@En

b ,Rj #P~ i1 j !th clusters1 lower order clusters,

so terms with an order higher thanM will be generated in
@En

b ,( i51
M Ri #@En

b ,( j51
M Rj #. We have to truncate it. There are

many truncation schemes. One of them is to calculate
@En

b,Ri #@En
b ,Rj # for all i , j<M and discard those clusters

with an order higher thanM @14#. Another scheme is to
compute@En

b ,Ri #@En
b ,Rj # only for i1 j<M , so that no clus-

ters with an order higher thanM are produced. Therefore,
terms in @En

b ,Ri #@En
b ,Rj # are wholly preserved (i1 j<M )

or discarded (i1 j.M ), while in the former scheme, clusters
are partly preserved fori1 j.M . In Ref. @12#, it was proved
that

@En
b ,Ri #@En

b ,Rj # ;
a→0

ordera31higher orders.

~2.10a!

However, if we discard some terms in@En
b ,Ri #@En

b ,Rj #, then

part~@En
b ,Ri #@En

b ,Rj # ! ;
a→0

ordera1ordera3

1higher orders, ~2.10b!

where part(@En
b ,Ri #@En

b ,Rj #) denotes the remainder after
discarding. Because lattice calculation should recover the
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continuum limit by takinga→0, we think the latter scheme
where the truncation preserves the continuum limit, may le
to a more effective approach to scaling. In this scheme,
truncated eigenvalue equation of the vacuum state is

(
i51

M

†En
b ,@En

b ,Ri #‡1 (
i1 j52

M

@En
b ,Ri #@En

b ,Rj #

2
2

g4( Sn•Sn115w0 . ~2.11!

Because clusters are independent from each other, the c
ficients of each cluster on both sides of Eq.~2.11! should be
equal. This leads to a set of nonlinear equations
$ci ,s ,i51, . . . ,M %. $ci ,s% can be determined by solving
these equations.

Now, we return to the mass gap. In the CCM, the excit
states are assumed to be

uf&5F~Sn!uf0&, ~2.12!

whereF(Sn) is a function of$Sn% with appropriate symme-
try so as to makeuf& possessing the required quantum num
bers. ExpandingF as a series of coupled clusters up
M th order
,
ad
the

oef-

for

ed

-
to

F5F11F21•••1FM ,

we obtain the eigenvalue equation truncated in the schem
preserving the continuum limit

(
i51

M

†En
b ,@En

b ,Fi #‡1 (
i1 j52

M

@En
b ,Fi #@En

b ,Rj #5Dw(
i51

M

Fi ,

~2.13!

whereDw5w2w0, andw is defined byWuf&5wuf&.

III. THE CALCULATION OF THE VACUUM WAVE
FUNCTION AND MASS GAPS

In this section, we will discuss the detail of calculation.
From Eq.~2.7!, any vacuum cluster can be written as

Gi ,s5(
b,l

Sl
bSl1ks

b f s~Sl !, ~3.1!

where f s is an arbitrary scalar function of lattice field.
Then, the calculation of@En

b ,Gi ,s#@En
b ,Gj ,r # is reduced

to calculate such a quantity with its form as
@En

b ,( lSl•Sl1ks
# f s(Sl)@En

b ,(mSm•Sm1kr# f r(Sm). Using Eq.
~2.2!, we have
n.
(
b,n,l ,m

@En
b ,Sl•Sl1ks

# f s~Sl !@En
b ,Sm•Sm1kr

# f r~Sm!52(
n

$~Sn1ks
•Sn1kr

2Sn•Sn1ks
Sn•Sn1kr

! f s~Sn! f r~Sn!

1~Sn2kr
•Sn1ks

2Sn2kr
•SnSn•Sn1ks

! f s~Sn! f r~Sn2kr
!

1~Sn2ks
•Sn2kr

2Sn2kr
•SnSn•Sn2ks

! f s~Sn2ks
! f r~Sn2kr

!

1~Sn2ks
•Sn1kr

2Sn2ks
•SnSn•Sn1kr

! f s~Sn2ks
! f r~Sn!%. ~3.2!

The calculation of terms@En
b ,@En

b ,Gi ,s## is similar. We have encoded it in C language.
Evaluating the continuum limit of each clusterGi ,s , we get the long wavelength expansion of the vacuum wave functio

Let the lattice spacinga→0, then

Sn1k5Sn1kaDSn1
k2

2!
a2D2Sn1•••. ~3.3!

Using this, we obtain

R ;
a→0

A1(
n
„m0a

2~DS!21m2,1~D2S!2a41m2,2~DS!2~DS!2a41•••…

→A1E dx„m08~]S!21m2,18 ~]2S!21m2,28 ~]S!2~]S!21•••…, ~3.4!
where the constantA can be absorbed in the normalizati
constant of the vacuum wave function, and

m085m0a, m2,18 5m2,1a
3, m2,28 5m2,2a

3, ~3.5!

with

m052(
i ,s

ci ,s(
k51

N
~k2k8!2

2
,

on
m2,15(

i ,s
ci ,s(

k51

N
~k2k8!4

4!
, ~3.6!

m2,25(
i ,s

ci ,s (
k1.k251

N
~k12k18!2~k22k28!2

4
.

Here,N is the number of links inGi ,s , andk,k8 the two end
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point coordinates of a link. Equation~3.4! gives the long
wavelength vacuum wave function. The coefficientsm08 ,
m2,18 , andm2,28 describe the long wavelength behavior. Th
are physical, whilem0, m2,1, andm2,2 are lattice dimension
less quantities, computed by Eq.~3.6!. From Eq.~1.2! and
Eq. ~1.3!, we have, in the asymptotic scaling region,

a5
CT

mT
2pbe22pb[C02pbe22pb,

where we have neglected the three or more loop correcti
Hence,

m0b→
m08

C02p
e2pb,

m2,1b
3→

m2,1

C0
38p3e

6pb, as a→0, ~3.7!

m2,2b
3→

m2,2

C0
38p3e

6pb.

For orderM54,5,6,7,8, we solve Eq.~2.11!. The num-
bers of clusters in these cases are 31,86,276,866,2886
simplicity, we present only the results ofm0. Figure 1 shows
the results. The various order curves show obviously
trend of convergency, particularly in the regionb<1.4, Al-
though asymptotic scaling is not reached in this region,
eighth order curve for ln(2m0b) should exhibit the scaling
sccording to the fullb function as described in Ref.@3#. We
will return to this point later.

FIG. 1. The coefficients ln(2m0b) of vacuum wave function
versusb51/g2.
ey
-

ons.

. For

the

the

Let us turn to the mass gap. It is expected that the above
mentioned fullb scaling emerges in the results if the scaling
actually exists. Considering the singlet massms and triplet
massmT , the first order cluster approximations are chosen to
be

F1
s5(

n
Sn•Sn11 for ms , F1

T5(
n

Sn
b for mT ,

~3.8!

whereb51,2,3 is the index of the group.mT is degenerate
for b. Higher order clusters are generated by recursion. Solv-
ing Eq. ~2.13!, we get the lattice dimensionless quantities
Dws(b) andDwT(b). Equation~1.2! leads to

ln
mTa

b
5 ln

DwT

2b2→ lnCT1 ln
La

b
,

as a→0, ~3.9!

ln
msa

b
5 ln

Dws

2b2→ lnCs1 ln
La

b
.

The curves of ln(mTa/b) and ln(msa/b) againstb are plot-
ted in Figs. 2 and 3 respectively. Strong evidence of conver-
gence is shown in Fig. 2 for the triplet mass. We also plot the
MC result taken from Ref.@3#. Our result is reasonably con-
sistent with this MC result in the regionb<1.4, confirming
the existence of scaling according to the fullb function.~The
MC result is for the Lagrangian formulation, the Hamiltonian
result is slightly lower than the MC result as discussed in
Ref. @16#.!

For comparison, we also plot the three loop approxima-
tion for asymptotic scaling

FIG. 2. Calculated values of triplet ln(mTa/b) versus
b51/g2. We also plot the Monte Carlo results in Ref.@3# and the
three loop approximation for asymptotic scaling.
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lnSmTa

b D5 lnF2pCTS 11
d

2pb D G22pb,

with the exact valueCT580.08638 taken from Ref.@8#. In
spite of not reaching the asymptotic scaling region, our
sults in Fig. 2 are not inconsistent with it.

The convergence of the curves in Fig. 3 for the sca
mass is not as rapid as that for the triplet mass. This can
accounted for by the higher singlet mass, which requi
higher order calculations to attain good convergence. Si
good convergence forms has not been reached in our calc
lations, we cannot give a reliable estimate of the param
Cs for the singlet mass.

To give more direct evidence to support the idea of f
b scaling, let us calculatemTm08 . The full b scaling is

L latta52pbe22pb f ~b!

with f ~b! ;
b→`1

1
0.57

2pb
1OS 1b2D . ~3.10!

From Eq.~1.2! and Eq.~3.5!, we knowmTm08 is independent
of b and should be a constant in the full scaling region.
Fig. 4, the eighth order plot of2mTm08 againstb is pre-
sented. The results show nice scaling in the regionb
P(0.8,1.2) and we obtain

2mTm0852m0

DwT

2b
50.18. ~3.11!

For comparison, we also plot the eighth order result
2msm08 againstb in Fig. 4. No scaling is exhibited in the
curve as we expected.

FIG. 3. The mass gap ln(msa/b) versusb51/g2.
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IV. CONCLUSIONS AND DISCUSSION

Despite the apparent simplicity of the O~3! s model, it is
rather hard to obtain asymptotic scaling because it emerge
only in a deep weak coupling region. This is in contrast with
~211!-dimensional U~1! lattice theory for which asymptotic
scaling occurs at a much earlier stage@15#. These results are
consistent with conclusions from Monte Carlo calculations.
Our results, though not showing the asymptotic scaling, give
strong evidence for the convergence of the truncation
method. All the quantities we calculate show the trend of
convergence, especially for ln(mTa/b) in Fig. 2 andm08 in
Fig. 1.

Our results also show some trace of asymptotic scaling. In
Fig. 2, the seventh and eighth order curves bend downwar
for b>1.4 to make the slope tending to22p, and in Fig. 1,
the slope of the eighth order curve begins to increase obv
ously whenb.2.

Perhaps the most important conclusion is that our result
verify the idea of ‘‘full b scaling’’ @3#. In the regionb
P(0.8,1.2), the results ofm08 andmT show this scaling be-
havior ~see Figs. 1, 2, and 4!. We obtain

mTm08520.18.

This scaling is not obvious in Fig. 3. We think the reason is
thatms is larger thanmT . It is expected that higher order
calculations will exhibit the fullb scaling and eventually the
asymptotic scaling.
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