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We present a method for formulating gauge theories of chiral fermions in lattice field theory. The me
makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the th
two ways: The magnitude of the fermion determinant is replaced with the square root of the determinan
fermion with vectorlike couplings to the gauge field; a double limit is taken, in which the lattice spa
associated with the fermion field is sent to zero before the lattice spacing associated with the gauge fie
method applies only to theories whose fermions are in an anomaly-free representation of the gauge gro
also present a related technique for computing matrix elements of operators involving fermion fields. Alth
the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that the
tational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configu
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I. INTRODUCTION

The interaction of chiral spin-1/2 particles with gaug
fields is a feature of many field-theoretic models, includi
the standard electroweak model. The implementation of c
ral gauge theories in lattice field theory is, of course, a p
requisite to the numerical simulation of such theories, bu
is also of importance in establishing that chiral theories c
be defined outside of the domain of perturbation theory.

In recent years, a number of proposals for construct
lattice versions of chiral gauge theories have been put f
ward. A review of the present status of many of these latt
chiral-fermion proposals has been given by Shamir@1#.
Some proposals@2–4# have not yet been studied extensivel
Others, such as the Eichten-Preskill model@5#, the Smit-
Swift model@6#, and the staggered-fermion model@7,8#, ap-
parently fail to yield a chiral fermion spectrum because
the coupling of gauge degrees of freedom to the ferm
@9,10#. The domain-wall proposal of Kaplan@11# and the
related overlap formula of Narayanan and Neuberger@12#
have received a good deal of study, with encouraging res
@12–14#. On the other hand, it has been suggested that b
of these methods might fail along the lines of the failure
the Smit-Swift model because gauge degrees of freed
couple to the fermion at the boundaries of the regions
nonzero gauge field@15,16#. Given the unsettled status of th
proposals that are currently viable, it would seem to
worthwhile to consider alternative methods for formulatin
chiral gauge theories.

In this paper, we present a new method for construct
lattice versions of chiral gauge theories. Our approach ma
use of a Wilson mass@17# to remove fermion species dou
blers. The Wilson mass breaks the chiral gauge symme
However, we argue that the violations of chiral symmet
that survive in the continuum limit are associated wi
ultraviolet- ~UV-! divergent amplitudes and that the chira
symmetry can be partially restored through the addition
local renormalization counterterms to the action@18–20#.
The philosophy of using local counterterms to restore t
chiral symmetry has also been suggested by the Rome gr
5421/96/54~10!/6497~24!/$10.00
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@21#. ~Local counterterms are required to restore the chira
symmetry in the proposal of the Zaragoza group@22#, as
well.! However, unlike the approach of the Rome group, our
method does not entail the tuning of counterterm coeffi-
cients. Instead, we implement the counterterms by modifying
the lattice definitions of the fermion determinant and opera
tor matrix elements.

The first modification is to replace the magnitude of the
fermion determinant with the square root of the determinan
of a fermion with vectorlike couplings to the gauge field
@18–20,23,24#. ~A related modification of matrix elements of
operators involving fermion fields is also introduced.! This
redefinition of the determinant implements the renormaliza
tion counterterms that are associated with UV divergences i
a single fermion loop. After this modification, the fermion
determinant is gauge invariant in the presence of a back
ground gauge field, except for contributions from the Adler-
Bardeen-Jackiw~ABJ! anomaly @25#. These violations of
chiral symmetry cancel, as usual, when one considers
theory containing a suitable complement of physical fermi-
ons.

The presence of dynamical gauge fields leads to add
tional ultraviolet divergences and potentially requires the in-
troduction of many new counterterms to restore the chira
gauge symmetry. We deal with this difficulty by introducing
separate lattice cutoffs for the fermion fields and gauge field
@7,24,26–29#. In the double limit in which the fermion cutoff
is removed before the gauge-field cutoff, the violations of
chiral symmetry vanish with at least one power of the ratio
of cutoffs. The use of this double limit in conjunction with
the modification of the magnitude of the fermion determinant
has been emphasized previously in Refs.@24,26#.

Most of the analysis in this paper is couched in weak-
coupling coupling perturbation theory. However, we are able
to show, by exploiting the finite radius of convergence the
perturbation expansion of the fermion determinant, that ou
method is also valid in the presence of nonperturbative
gauge-field configurations.

The remainder of this paper is organized as follows. In
Sec. II we discuss, in general terms, fermion doubling, its
6497 © 1996 The American Physical Society
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elimination through the use of a Wilson mass, and the brea
ing and restoration of chiral symmetry. In Sec. III we intro
duce a lattice implementation of a theory of left-handed fe
mions coupled to a non-Abelian gauge field. Although o
specific analyses in subsequent sections of the paper refe
this model, our methods generalize immediately to mode
that contain right-handed as well as left-handed fermi
fields and to models that contain scalar particles. In Sec.
we discuss the nature of the violations of gauge invarian
that arise from the introduction of a Wilson mass. Section
contains an analysis of the chiral-symmetry properties of t
fermion determinant in the presence of a background gau
field. This analysis allows us to derive a modification of th
determinant that restores the chiral symmetry in the case
an anomaly-free theory. In Sec. VI we discuss the difficulti
that arise from dynamical gauge fields and present t
double-limit procedure for dealing with them. In Sec. VII w
indicate how the methods used in computing the fermi
determinant can also be applied in computing matrix e
ments of operators containing fermion fields. A proof of th
validity of the methods for computing the fermion determ
nant and operator matrix elements in the presence of nonp
turbative gauge fields is sketched in Sec. VIII. Finally, i
Sec. IX, we summarize our results and discuss various
tions for implementing our chiral-fermion method.

While this paper was in preparation, a paper by Herna´n-
dez and Sundrum@30# on the same subject appeared. Th
methods that these authors propose for computing the fe
ion determinant~but not the matrix elements of fermion op
erators! are essentially identical to the ones proposed in t
present paper. Many of the conclusions drawn in the pres
paper and in Ref.@30# are the same; one exception is noted
the end of Sec. VI B 5. However, the details of the proofs
the two papers are, in general, quite different.

II. DOUBLING, WILSON MASSES, AND CHIRAL
SYMMETRY: GENERAL CONSIDERATIONS

It is well known that the most straightforward transcrip
tion of the Dirac operator to the lattice is problematic be
cause of the phenomenon of fermion doubling: for each le
or right-handed particle in the continuum theory, there a
2d21 left-handed and 2d21 right-handed particles in the lat-
tice theory, whered is the dimensionality of space-time@31#.

For the case of QCD, Wilson@17# suggested that one
could remove the doublers by giving them a mass that go
to infinity as the lattice spacinga goes to zero. Of course, the
introduction of a mass explicitly breaks the chiral symmetr
However, this is not expected to present a serious problem
QCD, since the gauge symmetry remains intact. Con
quently, the renormalization program is unaffected and o
should recover the continuum theory as the lattice regula
is removed (a→0).

In the case of a chiral gauge theory, the introduction of
Wilson mass has more serious consequences. For suc
theory, the Wilson mass and, hence, the UV regulator bre
the gauge symmetry, thereby jeopardizing the renormaliz
tion program and the decoupling of unphysical degrees
freedom. A failure of the gauge degrees of freedom to d
couple may lead to an alteration of the low-energy spectru
of the theory. For example, under such circumstances, wh
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one integrates over the gauge degrees of freedom, a chir
gauge theory can become a vectorlike gauge theory@10#.

In a chiral theory, one cannot completely avoid such a
breaking of the gauge symmetry. There are several no-g
theorems which state, under a variety of assumptions, tha
any gauge theory that does not exhibit fermion doubling
must violate chiral symmetry@31,32#. One can argue this
very generally on the basis of the properties of the ABJ
anomaly. If a lattice theory preserves a chiral symmetry, then
the corresponding chiral current is conserved. In particular
the triangle anomaly is zero and remains zero in the con
tinuum limit. But, according to the proof of Adler and
Bardeen@33#, there is no Lorentz-covariant Bose-symmetric
counterterm that removes the anomaly in the triple-chiral-
current Green’s function for a theory containing a single
fermion species. That is, there is no UV regulator under
which the anomaly vanishes as the regulator is removed
Hence, a lattice regulator that preserves the chiral symmetr
must cancel the anomaly through the presence of multipl
fermion species, i.e., doubling. Note that this argumen
leaves open the possibility that one might eliminate the dou
bling in a way such that the violations of chiral symmetry
arisesolelyfrom the ABJ anomaly. Such a result is our goal.

In employing continuum perturbative UV regulators, such
as dimensional regularization, one deals with violations of a
chiral gauge symmetry by adding counterterms order by or
der in perturbation theory so as to restore the chiral symme
try in selected Green’s functions. The remaining violations
of the chiral symmetry arise from the ABJ anomaly and can-
cel when one introduces an appropriate complement o
physical fermion species. Such an order-by-order approac
is, of course, incompatible with a nonperturbative regulariza
tion of the theory. However, one might still hope to effect a
restoration of the chiral symmetry by introducing local coun-
terterms with appropriate coefficients.

A heuristic argument in support of this idea is the follow-
ing. Suppose that we have introduced a Wilson mass term
Then, the lattice spectrum for the noninteracting theory is
identical to the continuum spectrum in the limita→0. Sup-
pose also that we have fixed to a renormalizable gauge
Then, the magnitude of the gauge field is much less tha
order 1/a, unless a source of the gauge field has momentum
of order 1/a. Consequently, for field momenta much less
than 1/a, the interacting lattice action approaches the con-
tinuum action in the limita→0. The conclusion is that the
lattice, in this case, is simply a UV regulator. It follows that
the differences between the lattice regularization and an
other UV regularization must reside at loop momenta on the
order of the UV cutoff of the theory. Hence, the differences
must arise at short distances (;1/ cutoff); that is, they have
the form of local interactions. Therefore, we conclude that, if
there exists a satisfactory UV regularization of a chiral gauge
theory~that is, one that respects the chiral gauge symmetry!,
then it must be equivalent to the~Wilson! lattice-regularized
theory, plus local counterterms. Furthermore, if we find such
a theory, it is unique, up to gauge-invariant counterterms
which merely renormalize the coupling constant.

III. A LATTICE CHIRAL-FERMION MODEL

Now let us discuss the lattice implementation of a specific
model: a left-handed fermion coupled to a non-Abelian
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gauge field. As we have already mentioned, the techniqu
that we present are easily generalizable to models contain
right-handed fermions and/or scalar particles.

We assume that the gauge-field part of the~Euclidean!
action has the standard plaquette form

SG5
1

2g2(x (
mÞn

TrUm~x!Un~x1am!Um
† ~x1an!Un

†~x!

1 H.c., ~3.1!

where, as usual,

Um~x![exp@ iagAm~x1am/2!#, ~3.2a!

Um
† ~x![exp@2 iagAm~x1am/2!# ~3.2b!

are the lattice link variables,Am5Am
aTa is the gauge field,

Ta is a gauge-group matrix in the fundamental represent
tion, g is the gauge-field coupling,a is the lattice spacing,
andam is a unit vector in them direction. Initially, we intro-
duce the fermion through the ‘‘naive’’ lattice action for a
Dirac particle:

SN5ad(
x,m

c̄~x!gm

1

2a
@c~x1am!2c~x2am!#, ~3.3!

where the g ’s are Euclidean Dirac matrices satisfying
$gm ,gn%52dmn . Note that, in contrast with some formula-
tions of chiral theories, our approach retains both left- an
right-handed components in the fermion field. The chiral na
ture of the theory arises from the coupling to gauge field
which involves only the left-handed Dirac component:
es
ing

a-

d
-
s,

SNI5ad(
x,m

c̄~x!gmPL

1

2a
$@Um~x!21#c~x1am!

2@Um
† ~x2am!21#c~x2am!%, ~3.4!

where PR/L5(1/2)(16g5), $g5 ,gm%50, and g5
251. ~In

four dimensions,g552g1g2g3g4.! The fermion propagator
corresponding to the naive action is

iSF
N~p!5F ~1/a!(

m
igmsin~pma!G21

, ~3.5!

wherep is the incoming fermion momentum. The orderg
and orderg2 gauge-field vertices that arise from the gauging
of the naive action are

V m,a
~1!N~p,l !5TaVm

~1!N~p,l !PL

52 igTagmPLcos@~pm1 1
2 lm!a#, ~3.6a!

V mn,ab
~2!N ~p,l 1 ,l 2!5TaTbVmn

~2!N~p,l 1 ,l 2!PL

5 iag2TaTbdmngmPL

3sin@~pm1 1
2 l 1m1 1

2 l 2m!a#, ~3.6b!

where theVN’s are the vertices that arise from the gauging of
the naive lattice action for a theory of fermions with vector-
like couplings to an Abelian gauge field. HereTa ,Tb , . . .
are the gauge-group matrices,a,b, . . . are the gauge-field
indices, m,n . . . are the polarization indices, and
l 1 ,l 2 , . . . are the incoming momenta, all of which are asso-
ciated respectively with the gauge fields. The incoming ferm-
ion momentum isp. The vertices of higher order ing can be
obtained conveniently from the recursion relation
Vm1•••mn11

~n11! ~p,l 1 , . . . ,l n11!52gdmnmn11

Vm1•••mn

~n! ~p1 l n11 ,l 1 , . . . ,l n!2Vm1•••mn

~n! ~p,l 1 , . . . ,l n!

dmn11
~ l n11!

, ~3.7!
where

dm5~2/a!sin12pma. ~3.8!

In addition to the usual pole atp50, the naive propagator
~3.5! has extra poles when one or more momentum comp
nents are equal top/a. It can be seen that half of the poles
have positive chiral charge and half have negative chir
charge@31#. Thus, this doubling phenomenon leads to gaug
field couplings to both left- and right-handed species; th
theory, at this stage, is not chiral.

We follow the standard approach of eliminating the dou
blers by including a Wilson mass term@17# in the action:

SW5ad(
x,m

c̄~x!
1

2a
@2c~x!2c~x1am!2c~x2am!#.

~3.9!

We can gauge the Wilson term by adding to the action:
o-

al
e-
e

-

SWI5ad(
x,m

c̄~x!
1

2a
$@12Um~x!#c~x1am!

1@12Um
† ~x2am!#c~x2am!%. ~3.10!

~As we shall see, it may sometimes be convenient to drop
this coupling of the Wilson term to the gauge field.!

Now the fermion propagator is

iSF
W~p!5H ~1/a!(

m
igmsin~pma!1M ~p!J 21

,

~3.11!

whereM (p) is the Fourier transform of the Wilson mass:

M ~p!5~1/a!(
m

@12cos~pma!#. ~3.12!

The additional vertices that arise from the gauging of the
Wilson term are
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V m,a
~1!W~p,l !5TaVm

~1!W~p,l !52gTasin@~pm1 1
2 lm!a#,

~3.13a!

V mn,ab
~2!W ~p,l 1 ,l 2!5TaTbVmn

~2!W~p,l 1 ,l 2!

5ag2TaTbdmngm

3cos@~pm1 1
2 l 1m1 1

2 l 2m!a#, ~3.13b!

where the higher-order contributions can again be obtain
from the recursion relation~3.7!.

We see that the propagator~3.11! now has a pole only at
p50. This would seem to leave us, as desired, with a sin
Dirac particle with only left-handed couplings to the gaug
field. Unfortunately, the Wilson termsSW andSWI , having
the Dirac structures of masses, lead to a nonconservatio
the left-handed vector current by coupling the right-hand
component of the Dirac field back into the theory. This im
plies that the chiral gauge invariance of the theory is brok

Such violations of the chiral gauge symmetry cause se
ous difficulties. Gauge invariance is an important ingredie
in the standard renormalization program. Without it, there
an explosion of new counterterms. For example, in the
sence of current conservation, the vacuum polarization
generate a quadratically divergent gauge-boson mass,
light-by-light graph requires counterterms, Lorent
noncovariant counterterms can arise on the lattice, and
non-Abelian theories, the gauge-boson–fermion coupl
can become different from the triple-gauge-boson coupli
In order to recover a satisfactory theory of chiral fermio
coupled to massless gauge bosons, one would need to
all of these counterterms in such a way as to restore
chiral current conservation. This is required, for example,
obtain a massless gauge boson and to guarantee that g
fields decouple and that unitarity is preserved.

On the other hand, we note that the Wilson mass~3.12!
and vertices~3.13! have the property that they vanish in th
continuum limit a→0 for fixed momenta: They are lattice
artifacts. Consequently, we expect the violations of t
gauge symmetry generated by the Wilson mass to van
except when momenta of the order the lattice cutoffp/a are
important. That is, we expect that, in the continuum limit, th
violations of the chiral gauge symmetry in the Green’s fun
tions of the theory will persist only in UV divergent Feyn
man diagrams and subdiagrams.

IV. GAUGE VARIATIONS

In order to test this expectation, let us examine in mo
detail the nature of the violations of the gauge symmetry t
result from the introduction of a Wilson mass. An infinites
mal transformation of the gauge field

Um~x!→Um~x!1 iL~x!Um~x!2 iUm~x!L~x1am!,

Um
† ~x!→Um

† ~x!1 iL~x1am!Um
† ~x!2 iUm

† ~x!L~x!
~4.1a!

can be compensated, so as to leaveSN1SNI unchanged, by a
transformation of the left-handed component of the fermi
field:
ed
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c~x!→@11 iPLL~x!#c~x!,

c̄ ~x!→c̄~x!@12 iPRL~x!#. ~4.1b!

The Wilson terms, however, are not invariant under the
transformation~4.1!. The gauge transformation results in a
change in the action:

d~SW1SWI!5ad(
x,m

c̄~x!
i

2a
$2~PL2PR!L~x!c~x!

2@~12PR!L~x!Um~x!2~12PL!Um~x!

3L~x1am!#c~x1am!

2@~12PR!L~x!Um
† ~x2am!

2~12PL!Um
† ~x2am!L~x2am!#c~x2am!%.

~4.2!

By Fourier transforming Eq.~4.2!, one can arrive at the
Feynman rules for the vertices corresponding to a gauge
variation. There is aL-fermion vertex

M~0!~p,k!52 iTa~12PR!M ~p!1 iTa~12PL!M ~p1k!,
~4.3a!

and there areL-gauge-field-fermion vertices involving
n>1 gauge bosons,

Mm1•••mn ,a1•••an
~n! ~p,k,l 1 , . . . ,l n!

52 iTa~12PR!V m1•••mn ,a1•••an
~n!W ~p,l 1 , . . . ,l n!

1 iTa~12PL!V m1•••mn ,a1•••an
~n!W ~p1k,l 1 , . . . ,l n!.

~4.3b!

Here,Ta is the gauge-group matrix associated with the gauge
transformationL, k is the incoming momentum associated
with the gauge transformation,p is the incoming fermion
momentum, and thel i are the incoming gauge-field mo-
menta. Note that theL vertices~4.3! contain factors ofg
only for the gauge fields, not for theL fields.

If we choose not to gauge the Wilson term, then all of the
gauge variation in the action resides inSW :

d~SW!5ad(
x,m

c̄~x!
i

2a
$2~PL2PR!L~x!c~x!

2@2PRL~x!1PLL~x1am!#c~x1am!

2@2PRL~x!1PLL~x2am!#c~x2am!%.

~4.4!

In this case, there is a slightly differentL-fermion vertex,

M̃~0!~p,k!5 iTaPRM ~p!2 iTaPLM ~p1k!, ~4.5!

and there are noL-gauge-field-fermion vertices.
In the analysis to follow, we will frequently make use of

the fact that theories with vectorlike couplings to the gauge
field exhibit a gauge invariance, even in the presence of a
Wilson mass term. A theory with vectorlike couplings to the
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gauge field can be obtained by settingPR5PL51 in the
action ~3.3!, ~3.4!, ~3.9!, and ~3.10!. Then, if one sets
PR5PL51 in the gauge transformation~4.1!, the gauge
variation ~4.2! and theL vertices~4.3! vanish, as expected
Note, however, that the gauge symmetry is violated if o
drops the gauging of the Wilson term~3.10! from the action,
as can be seen from examination of Eqs.~4.4! and ~4.5!.

There is also a property of theL vertices that will be
crucial for our subsequent analysis. TheL vertices are linear
combinations of either Wilson masses or Wilson vertic
Consequently, they all vanish in the continuum limita→0
for fixed momenta. Thus, the gauge variations can persi
the limit a→0 only if momenta of order the lattice cuto
p/a are important, that is, only in divergent Feynman d
grams.

V. AMPLITUDES IN A BACKGROUND GAUGE FIELD

As a first step in identifying and dealing with the viol
tions of gauge symmetry in the Green’s functions of the c
ral theory, let us consider the case of fermion amplitude
the presence of background gauge fields in which the
mentum of a gauge-field quantum is limited be much les
magnitude than the lattice momentum cutoffp/a.

A. Counting powers of a

First let us consider, in the limita→0, the size of the
contribution from a fermion loop containing zero or o
gauge-variation (L) vertices and any number of backgrou
gauge-field vertices. We will analyze, in turn, the region
integration in which the magnitude of the loop momentum
much smaller thanp/a and the region of integration in
which the magnitude of the loop momentum is of ord
p/a.

As we have seen, aL vertex vanishes in the limita→0
unless momenta of orderp/a are important. Thus, we expe
that a loop containing aL vertex will receive a vanishing
contribution from the region of integration in which the ma
nitude of the loop momentum is much smaller thanp/a.
Since the external gauge-field momenta are assumed t
much smaller thanp/a, one can take thea→0 limit in this
region simply by taking thea→0 limits of the propagators
and vertices, holding momenta fixed. In this limit, propag
tors and naive single-gauge-field vertices go over to c
tinuum propagators and vertices, which area independent,
while multiple-gauge-field naive vertices, Wilson vertice
andL vertices vanish as at least one power ofa. Further-
more, since the trace of an odd number ofg matrices van-
ishes, aL vertex is always paired with a Wilson vertex or
Wilson term in a propagator numerator. The volume of in
gration in this region is independent ofa. Thus, we conclude
that a loop that contains aL vertex receives a contributio
from this region of integration that vanishes as at least
powers ofa in the limit a→0.

Now we consider the region of integration in which t
magnitude of the loop momentum is of orderp/a. We can
determine whether this is an important region of integrat
by examining the sizes of the propagators, vertices, and
domain of integration.~See, for example, Ref.@34# for fur-
ther details.! Away from its pole at the origin, the propagat
.
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~3.11! is of ordera. Here, it is crucial that we have elimi-
nated doublers; otherwise, there would be poles in the propa-
gator for components of the loop momentum of orderp/a.
An n-gauge-field-fermion vertex is of orderan21, and aL-
n-gauge-field-fermion vertex is of orderan21. The domain
of integration is of ordera2d in d dimensions. From this it
follows that the region in which the magnitude of the
fermion-loop momentum is of orderp/a gives a contribution
of order aNg2d, whereNg is the number of external gauge
fields. Note that this result is independent of the number of
L vertices.1 We define the degree of divergence of a loop to
be

D5d2Ng , ~5.1!

which corresponds to the expression in continuum field
theory. If the loop is UV convergent, that is, ifD is negative,
then the contribution from the region in which the magnitude
of the loop momentum is of orderp/a vanishes as a power
of a in the limit a→0. In this case, for a loop containing no
L vertices, the contribution from the region in which the
magnitude of the loop momentum is much less thanp/a
dominates. One can obtain thea→0 limit of this contribu-
tion by replacing the integrand with the continuum expres-
sion. The resulting integral is UV convergent, and so one can
extend the range of integration to infinity with negligible
error. Hence, thea→0 limit of this contribution is identical
to the continuum amplitude.

We conclude that a fermion loop containing aL vertex
gives a vanishing contribution in the limita→0, unless the
degree of divergence is non-negative. Hence, ford54, the
gauge variations that persist in the continuum limit arise only
from loops involving aL vertex and four or fewer external
gauge-field vertices.

Using these same arguments, we can also conclude that a
term in a loop amplitude that is proportional to a Wilson
mass or vertex gives a contribution that vanishes as a power
of a in the limit a→0, unless the degree of divergence of the
loop is non-negative. Furthermore, in the case a non-negative
degree of divergence, the dominant contribution comes from
the region of integration in which the loop momentum is of
orderp/a. That is, the contribution takes the form of a local
interaction, with configuration-space size of the order of the
inverse of the lattice UV cutoffp/a.

B. Modifying the fermion determinant

At this point we could attempt to restore the gauge sym-
metry by adding renormalization counterterms to the theory.
Of course, no counterterm can remove violations of the
gauge symmetry that arise from the ABJ anomaly. Partly
because of the absence of full rotational symmetry on the
lattice, the number of possible counterterms is quite large. In
addition to the usual rotationally invariant gauge-field wave-
function renormalization, there are counterterms correspond-
ing to a gauge-field mass, a rotationally noninvariant wave-
function renormalization, and rotationally invariant and

1Since we are concerned only with infinitesimal gauge transfor-
mations, we need never consider the case of more than oneL
vertex.
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noninvariant gauge-field–gauge-field scattering amplitud
The tuning of all of these counterterms in a lattice simulati
would be awkward. Fortunately, there is a trick that can
used to implement the required counterterms automatic
@18–20#. Motivated by the fact that a theory with vectorlik
couplings of the fermion to the gauge field is gauge inva
ant, we will attempt to rearrange the fermion-loop amplitu
so that it looks like the loop amplitude for a vectorlik
theory.

Consider an arbitrary fermion-loop amplitude. We ca
write the projectorsPL5(12g5)/2, which appear only in
the naive vertices, in terms of the unit matrix andg5 and
expand the expression for the amplitude. The result is a s
each term of which contains an even or an odd number
factors ofg5.

1. Even-parity part

For those terms that contain an even number ofg5’s,
which we call even-parity terms, we would like to move th
factors ofg5 together and use the identityg5

251 to eliminate
them, thereby obtaining the corresponding expression fo
vectorlike theory. This would amount to a simple algebra
manipulation, were it not for the fact thatg5 anticommutes
with the naive terms in the rationalized-propagator nume
tors and naive vertices, but commutes with the Wilson ter
in the rationalized-propagator numerators and Wilson ve
ces. We would obtain a result that is proportional to t
corresponding expression in a vectorlike theory were we
treatg5 as if it anticommuted with the Wilson terms in th
rationalized-propagator numerators and Wilson vertices.
will follow this procedure. Of course, the resulting expre
sion will differ from the original one, and we must accou
for this difference. However, the difference is always propo
tional to a Wilson mass from a propagator numerator o
Wilson vertex. As we have demonstrated in Sec. V A, a lo
containing a Wilson mass or vertex vanishes as at least
power of a in the limit a→0, unless the degree of diver
gence is non-negative, and then the contribution correspo
to a local interaction. Thus, such contributions have the fo
of renormalization counterterms. We can drop them witho
affecting the nature of the theory: Such a procedure amou
merely to adding renormalization counterterms to the act
and choosing a particular tuning of the counterterm coe
cients. Then, for the terms in the original loop amplitude th
contained an even number ofg5’s we obtain expressions tha
are proportional to the corresponding expressions in a v
torlike theory. We now work out the constants of proportio
ality.

Consider first a contribution from a loop amplitude th
contains at least one naive vertex. We are interested onl
manipulating the terms containing an even number ofg5’s.
However, it is simplest to work out the combinatorics b
moving the complete projectorsPL until they stand next to
each other, treatingg5 as if it commuted with all other fac-
tors in the amplitude. Each projector is separated byN
propagators andN vertices from another, and so, in the pro
cess of moving one projector so that it is adjacent to anoth
the projector flips from aPL to aPR , but always winds up as
a PL in the end. SincePL

25PL , we have just one projecto
PL5(12g5)/2 when the process is finished. The even-par
es.
n
be
lly

ri-
e

n

m,
of

e

r a
ic

ra-
s
ti-
e
to

e
-
t
r-
a
p
one

nds
rm
ut
nts
on
fi-
at

ec-
-

t
in

y

-
er,

ty

part of the amplitude corresponds to the term 1/2. Thus th
even-parity part yields a contribution that is exactly half the
corresponding contribution in a vectorlike theory.

Now consider a contribution from a loop amplitude that
contains no naive vertices. In this case, there are no proje
torsPL , the contribution is entirely even in parity, and it is
equal to the corresponding contribution in a vectorlike
theory. In order to combine it with the even-parity parts of
the contributions containing at least one naive vertex, so a
to obtain a complete vectorlike amplitude, we must discard
half. However, since the discarded piece contains no naiv
vertices, it must contain at least one Wilson vertex. As we
have already argued, we can safely discard such a contrib
tion, since that act amounts to choosing a particular tuning o
the coefficients of renormalization counterterms.

At the end of all of these manipulations, the even-parity
part of a fermion-loop amplitude yields a contribution that is
half the corresponding contribution in a vectorlike theory.
The effective action that one obtains by integrating over the
fermion degrees of freedom is, of course, given by the loop
amplitudes, weighted by 1/Ng . Therefore, the effect of our
manipulations is to replace the even-parity part of the con
tribution to the effective action by one half the effective ac-
tion for a vectorlike theory. Now, the lattice Dirac operator
D, which is defined by

ad(
x

c̄~x!Dc~x!5SN1SNI1SW1SWI , ~5.2!

has the property2 that

Dug5→2g5
5g5D†g5 . ~5.3!

Now, the effective action is given by

Seff5 ln~detD!. ~5.4!

Since detg551, we see from Eq.~5.3! that

1
2 @Seff6~Seffug5→2g5

!#5 1
2 ~Seff6Seff

† !. ~5.5!

That is, the even-parity~odd-parity! part of the effective ac-
tion is the real~imaginary! part of the effective action. Fur-
thermore, Eq.~5.4! implies that the real~imaginary! part of
the effective action corresponds to the magnitude~phase! of
the fermion determinant.

Therefore, we conclude that our manipulations amount to
the prescription that the magnitude of the chiral fermion
determinant be replaced by the square root of the fermion
determinant for a vectorlike theory.3 This prescription has

2This property also holds if one drops the gauging of the Wilson
termSWI on the right side of Eq.~5.2!.
3There is no ambiguity in the sign of the square root. We are

identifying the square root with themagnitudeof the fermion de-
terminant, and so we always take the positive sign. The sign amb
guity associated with the Witten anomaly@35# is carried by the
phase of the determinant. Since the low-energy spectrum is un
changed by our modifications of the determinant, the Witten
anomaly is unaffected. In particular, the Witten anomaly is absen
in this lattice implementation of the standard electroweak model.
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been discussed previously in the case of continuum theo
@23# and in the case of lattice theories@20,24#; an equivalent
formulation involving auxiliary fermion species has als
been presented@18,19#. If one adopts this prescription, the
the magnitude of the fermion determinant and, correspo
ingly, the real part of the effective action have an exa
gauge invariance.

We note that, since these manipulations amount to
addition of renormalization counterterms to the theory, th
do not affect unitarity. This is obvious at the level of th
action, since, in Minkowski space, it is Hermitian even wi
the addition of counterterms. It is also easy to see diagra
matically: A cut of a diagram can never pass through a sho
distance loop~momenta of order the UV cutoff!, because the
on-shell conditions and energy-momentum conservation c
strain the components of the momenta of the cut lines
have magnitudes much smaller than the UV cutoff.

Of course, as we have already argued at the diagramm
level, the manipulations that we have made do not affect
low-energy behavior of the theory. It is easy to see this
rectly from the action. The even-parity part of the effectiv
action generated by a fermion with left-handed couplings
the gauge field is equal to one half the effective action ge
erated by two fermions, one with left-handed couplings a
one with right-handed couplings. The continuum limit of th
action for such a complement of fermions is given by

lim
a→0

(
x

@c̄1~x!Dc1~x!1c̄2~x!~Dug5→2g5
!c2~x!#

5(
x

@c̄~x!~]•g1 igA•g!c~x!1c̄1~x!]•gPRc1~x!

1c̄2~x!]•gPLc2~x!#, ~5.6!

where c5PLc11PRc2. Here, in taking the continuum
limit, we have assumed that the momenta associated with
Fourier transforms of the fields are all fixed to be much le
than the UV cutoff, so that one can take the ‘‘naive’’a→0
limit of operators. We conclude that the even-parity part
the effective action goes, at low momentum and in the co
tinuum limit, to one-half the effective action generated by
fermion with vectorlike couplings to the gauge field, plu
noninteracting degrees of freedom.

2. Odd-parity part

Now we turn to the terms in the loop amplitude that co
tain an odd number ofg5’s, which we call the odd-parity
part. The manipulations of the preceding section, whi
bring g5’s together and useg5

251 to eliminate them, can
never succeed in converting the odd-parity parts to a vec
like amplitude: There will always be oneg5 left over in the
end. Thus, we must deal in another way with the violatio
of the gauge symmetry in the odd-parity parts that persis
the limit a→0.

Let us specialize, for the moment, to four dimensions.
we have seen in Sec. V A, the gauge variations that are n
vanishing asa→0 are contained in the fermion-loop ampl
tudes involving oneL field and four or fewer gauge fields
Then, one can see that the nonvanishing gauge variat
correspond to the ABJ anomaly. An explicit calculation
ries
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presented in the Appendix. Here we give a general argumen
that the gauge variations are zero, provided that one choose
a theory in which the complement of physical fermions sat-
isfies the anomaly-cancellation condition

Tr~Ta$Tb ,Tc%!50. ~5.7!

As we have argued in Sec. V A, a loop containing aL
vertex receives a nonvanishing contribution in the limit
a→0 only from the region of integration in which the mag-
nitude of the loop momentum is of orderp/a. That means
that the nonvanishing gauge variations all have the form of
local interactions. In four dimensions, the odd-parity,
local operators of dimension 4 or less that are invariant
under lattice rotations and involve aL field and gauge
fields are of the form Tr@LemnrsAmAnArAs# and
Tr@Lemnrs(]mAn)ArAs#, or Tr@Lemnrs(]mAn)(]rAs)#.
These all vanish if the anomaly-cancellation condition~5.7!
is satisfied. There remains the possibility that subleading
contributions from this region of integration could give rise
to violations of gauge invariance that vanish as powers of
a. However, there are no lattice-rotationally invariant, odd-
parity, local operators of dimension 5 involving aL field and
gauge fields. Hence, the violations of gauge invariance from
the region of integration in which the magnitude of the loop
momentum is of orderp/a vanish at least asa2 in the limit
a→0.

Similar arguments show that, in two dimensions, the
gauge variations of the odd-parity part of a loop also vanish
asa2 in the limit a→0, provided that the anomaly is can-
celed. In two dimensions one can achieve cancellation of the
anomaly in a nontrivial theory by introducing left-handed
and right-handed fermions such that the sum of Tr(TaTb) for
the left-handed fermions is equal to the sum of Tr(TaTb) for
the right-handed fermions.

We emphasize that, in contrast with the modified even-
parity loop amplitudes, the odd-parity loop amplitudes do not
possess an exact gauge invariance, even if Eq.~5.7! is satis-
fied. There are violations of the gauge symmetry that vanish
only in the limit a→0. We have just seen that such viola-
tions can arise from the region of integration in which the
fermion-loop momentum is of orderp/a. In Sec. V A, we
noted that violations of gauge invariance can also arise from
the region of integration in which the magnitude of the
fermion-loop momentum is much less thanp/a, even in UV-
convergent diagrams. In both of these cases, the violations o
gauge invariance vanish asa2 in the limit a→0.

The odd-parity amplitudes themselves are finite in the
limit a→0. This follows from the fact that there are no odd-
parity renormalization counterterms involving only gauge
fields. In four dimensions, the lattice-rotationally invariant,
odd-parity, local operators of dimension 4 or less involving
gauge fields have the forms Tr@emnrsAmAnArAs#,
Tr@emnrs(]mAn)ArAs#, and Tr@emnrs(]mAn)(]rAs)#. When
one symmetrizes under cyclic permutations of the gauge
fields, the first operator vanishes, and the second and thir
operators are total derivatives. It can be seen in a simila
fashion that corresponding operators in two-dimensional
theories vanish. Since the gauge variation of an odd-parity
amplitude vanishes asa2 in the limit a→0, we can conclude
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that the deviation of an odd-parity amplitude from a gaug
invariant expression also vanishes asa2.

Finally, we mention that the analysis of the gauge var
tions of the odd-parity parts of loops in this section does n
depend on the gauging of the Wilson term. The analy
relies only on the power-counting rules and the general str
ture of the local interactions, neither of which are affected
the presence or absence of Eq.~3.10! in the action.

VI. DYNAMICAL GAUGE FIELDS

We wish to generalize the discussion of Sec. V to inclu
the possibility that the gauge fields are dynamical, rath
than simply external background fields. The important d
tinction is that the gauge-field momentum can now contai
loop momentum, and so its magnitude can range up to
lattice cutoffp/a. Now we can have divergent loop integra
tions involving gauge-field propagators as well as fermi
propagators, and the results for the counting of powers oa
must be generalized from those derived in Sec. V.

The even-parity parts of fermion loops can again be re
dered exactly gauge invariant by making use of theg5 trick
of Sec. V B 1 to replace the fermion loop by one-half th
corresponding loop for a fermion with vectorlike interaction
with the gauge field. We have already seen that this repla
ment does not alter the low-energy behavior of amplitud
Therefore, it amounts to a change of UV regulator, which
equivalent to the addition of counterterms to the theory.
the case of a background gauge field with momentum mu
smaller in magnitude than the UV cutoffp/a, the required
counterterms were those generated by a single fermion lo
In the present case, counterterms can also be generate
multiloop subdiagrams, including loops involving gaug
fields. Fortunately, we do not need to implement these co
terterms explicitly: They are provided automatically b
modification of the fermion-loop amplitude.

The case of the odd-parity parts of fermion loops is mo
complex and requires some further analysis.

A. Counting powers of a

We wish to study the gauge variations of the odd-par
parts of fermion loops in the limita→0. That is, we wish to
study the behavior of a diagram or a subdiagram contain
exactly oneL vertex in that limit. As we argued in Sec. V
contributions involving aL vertex are suppressed by at lea
one power ofa in the limit a→0 unless a momentum enter
ing theL vertex has a magnitude of orderp/a. Thus, we
wish to study the region of integration in which the loo
momenta have magnitudes of orderp/a. We might as well
take all the loop momenta in a subdiagram to have mag
tudes of orderp/a, since we can always study the case wh
only a subset of the loop momenta have magnitudes of or
p/a by considering a smaller subdiagram. For purposes
the discussion in this subsection only, we assume that
gauge field has been fixed to a renormalizable gauge.

Now we use the facts that, in the region in which a
momenta have magnitudes of orderp/a, an
n-gauge-field-fermion vertex is of orderan21, a L-
n-gauge-field-fermion vertex is of orderan21, a fermion
propagator is of ordera, a gauge-field propagator is of orde
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a2, ann-gauge-field vertex is of orderan24, and each loop
integration has a range of order (1/a)d in d dimensions.
From these facts, it is easy to see that a single-particle-
irreducible ~1PI! diagram or subdiagram withNf external
fermion legs,Ng external gauge-field legs, andL loops is of
ordera2D, where the degree of divergenceD is given by4

D542Ng2
3
2Nf1L~d24!. ~6.1!

Any 1PI subdiagram that contains aL vertex and has a
non-negative degree of divergence can potentially lead to a
violation of the gauge symmetry that survives in the limit
a→0. As we have already argued, the even-parity parts of
fermion loops in such a subdiagram can be rendered exactly
gauge-invariant by replacing the fermion loop with one-half
the corresponding loop for a fermion with vectorlike interac-
tions with the gauge field. However, in the case of the odd-
parity part of a loop, aL vertex inside a radiative correction
can give a nonvanishing contribution in four dimensions.
~An example of such a contribution is shown in Fig. 1.!
Hence, there are violations of the gauge symmetry in four
dimensions.

One might hope that it would be possible to restore the
gauge symmetry by tuning the limited number of renormal-
ization counterterms that are associated with divergent radia
tive corrections@18–20#. Unfortunately, this turns out not to
be the case. For example, in four dimensions, the diagram o
Fig. 2 has an overall degree of divergenceD52. Thus, the
contribution that arises from the odd-parity parts of the ferm-
ion loops yields violations of the gauge symmetry, even
though the individual fermion loops have a negative degree
of divergence. In particular, the diagram generates a gauge
field mass, and so would require a mass counterterm, even i
gauge-field-mass generation has been eliminated at the one
loop level by modifying the even-parity parts of loops as
described in Sec. V B 1. On examining other multiloop dia-
grams, one reaches the conclusion that that all possible
renormalization counterterms consistent with the cubic lat-
tice symmetry appear.

4Ghost loops, which appear with certain choices of gauge, do not
affect these conclusions.

FIG. 1. An example of a gauge variation whose odd-parity part
is nonvanishing in the continuum limit in four dimensions. The
circle represents the fermion loop, the dashed line represents the
L field, and the curly lines represent the gauge fields.
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B. Double-limit procedure

We would like to restore the gauge invariance of th
theory without resorting to the tuning of counterterms. If w
could limit the momenta in loops involving gauge fields t
be much less than the fermion-loop UV cutoff, then the a
guments of Sec. V would apply. One way to achieve this
to introduce two different lattice spacings,ag for the gauge
field andaf for the fermion field, and take the limitaf→0
with ag fixed before taking the limitag→0. Such a double-
limit procedure is similar in spirit to the UV regulator em
ployed in proving the anomaly-no-renormalization theore
@36#. A double-limit procedure has also been discussed p
viously in the context of lattice theories@7,24,26–29#. The
use of a double limit along with the modification of the mag
nitude of the fermion determinant has been discussed pre
ously in Refs.@24,26#.

1. Interpolation of the gauge fields: General considerations

In computing the double limit, we assume that the gaug
field links that reside on the gauge-field latticeUgm are the
dynamical variables, i.e., the variables over which one in
grates in the path-integral expressions for amplitudes. Th
are the quantities that appear in the pure gauge-field act
~3.1!. The interactions of the gauge fields with fermion field
are obtained by inserting gauge-field linksUm , which reside
on the fermion lattice, into the fermion action as in~3.3!,
~3.4!, ~3.9!, and~3.10!. These gauge-field links that reside o
the fermion lattice are not the dynamical variablesUgm . We
must obtain them by an interpolation of the dynamic
gauge-field links.

It is often convenient to discuss the interpolation in term
of the gauge fieldsAm , which are related to the plaquette
through Eq.~3.2!. One can use the Hamilton-Cayley theorem
to express the logarithm of anm3m group matrix~link!, as
a linear combination of the unit matrix and the firstm21
powers of the matrix. The ambiguity in the phase of th
coefficients can be resolved by requiring that matrices th
are close to the unit matrix have logarithms that are close
zero. This is equivalent to the requirement proposed by
Hooft @27# that the eigenvalues ofagAgm and the eigenvalues
of afAfm lie on the interval (2p,p#.

For simplicity, we will assume thatag /af5R is an inte-
ger and that the fermion lattice subdivides the gauge-fie
lattice, so that they coincide everyR sites. For each gauge-
field-lattice site y, there are Rd fermion-lattice sites
x5y1m, wherem is vector whose components are intege
satisfying

FIG. 2. A contribution to the gauge-field self energy that lead
to a violation of the gauge symmetry in four dimensions. The vi
lation arises from the odd-parity parts of the loops.
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0<mn<~R21!. ~6.2!

We will also assume that, in the interpolation, the fermion
lattice linksUm depend only on the gauge-lattice linksUgn

that form the edges of the surrounding hypercube. That i
we assume that the linksUm(y1maf) depend only on the
links Ugn„y1mg(n)ag…, wheremg(n) is a vector with inte-
ger components satisfying

mgr~n!50 for r5n,

~6.3!

mgr~n!50 or 1 for rÞn.

Similarly, the fermion-lattice fieldsAm(y1mmaf1
1
2afm) de-

pend only on the gauge-field-lattice fields
Agn„y1mg(n)ag1

1
2agm….

The Fourier transform of the fermion-lattice field is given
by

Ãm~ l !5~af !
d(

x
Am~x1 1

2afm!exp@2 i ~x1 1
2afm!• l #

[~ag!
d(

y
exp@2 i ~y1 1

2agm!• l #Ām~ l ,y1 1
2agm!,

~6.4!

where

Ām~ l ,y1 1
2agm!5exp~ i

2 agm• l !R
2d

3(
m

Am~y1maf1
1
2afm!

3exp@2 i ~maf1
1
2afm!• l #. ~6.5!

Note that, if Ām( l ,y1 1
2agm) were equal toAgm(y1 1

2agm),
then Ãm( l ) would be equal toÃgm( l ), where

Ãgm~ l 8!5~ag!
d(

y
Am~y1 1

2agm!exp@2 i ~y1 1
2agm!• l 8#

~6.6!

is the Fourier transform of the field on the gauge-field lattice
We express the deviation ofÃm( l ) from Ãgm( l ) in terms of a
‘‘regulating factor’’ Fm( l ):

Ãm~ l !5Fm~ l !Ãgm~ l !. ~6.7!

Many different interpolations of the gauge fields are pos
sible. However, if the interpolation is to lead to a gauge
invariant theory in the double limit, then certain minimal
requirements must be met: The interpolation must lead t
correct tree-level amplitudes in the continuum limit, the in-
terpolation must provide a UV cutoff of orderp/ag on
gauge-field momenta, and the interpolation must relate
gauge transformation of the fields on the gauge-field lattic
to a gauge transformation of the fields on the fermion lattice
We now enumerate a set of sufficient conditions for meetin
these requirements.
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~a! Locality. The interpolation must be local in the sens
that gauge fields on the fermion lattice cannot depend
gauge fields on the gauge-field lattice that are separated
an arbitrarily large number of gauge-field-lattice sites. If o
were to employ a nonlocal interpolation, then the gaug
field-fermion interactions would not go to the continuum~lo-
cal! form in the limit ag→0. The interpolation need not be
strictly local; it can depend on gauge fields that are separa
by a finite number of gauge-field-lattice sites. However,
dependence of the interpolation on widely separated gau
field-lattice sites would lead to large orderag errors in the
limit ag→0. We have assumed a local form for the interp
lation in Eq.~6.3!.

~b! Smoothness.We take as a smoothness requirement t
continuity of fields inside hypercubes on the gauge-fie
lattice.5 That is, we require that, for a giveny, the fields
Am(y1afm1 1

2af) differ on adjacent fermion lattice sites b
quantities of orderaf . There can, depending on the interpo
lation, be discontinuities along certain directions at t
boundaries between the gauge-field hypercubes. Howe
the size of these discontinuities is independent ofaf .

The smoothness requirement leads to a UV cutoff on
gauge-field momentum, since it guarantees that the Fou
transform~6.4! vanishes asaf

n if n components ofl are of
orderp/af . We can see this by making use of the eleme
tary properties of Fourier transforms. Consider the on
dimensional Fourier transform

Ãm~ l n!5af(
xn

Am~x1 1
2afm!exp@2 i ~xn1 1

2afm!l n#

~no sum overn). ~6.8!

From Eq.~6.8! it follows that

af(
xn

u¹n
1Am~x1 1

2afm!u2

5E
2p/af

p/af dln
2p

~4/af
2!sin2~ 1

2 l nafn!uÃm~ l n!u2, ~6.9!

where

¹n
6 f ~x!56~1/af !@ f ~x6am!2 f ~x!# ~6.10!

are the forward and backward lattice derivatives. Smoothn
requires that the lattice derivative of the field¹nAm be of
order af

0 except possibly at gauge-field-lattice hypercu
boundaries, where it may be of orderaf

21 . Since the number
of boundaries does not grow with decreasingaf , the left-
hand side of Eq.~6.9! is at most orderaf

21 . This implies
that, on the right-hand side of Eq.~6.9!, Ãm( l n) can be at
most of orderaf over a range ofl n that is of orderp/af .

Smoother interpolations than we consider here lead to
ditional suppression of the Fourier transform of the interp
lated field at large momentum. One can derive relations si
lar to Eq.~6.9!, but involving higher derivatives. From these
it can be seen that, if, along then direction, the (r21)st

5Such a criterion has been discussed in Refs.@27,29,37#.
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derivative ofAm(x1 1
2afm) is continuous and ther th deriva-

tive is continuous except at hypercube boundaries, the
Ãm( l n) can be at most orderaf

r11 over a range ofl n of order
p/af . It should be noted, however, that as an interpolation
becomes smoother, it becomes increasingly less local, in
volving more widely separated sites on the gauge-field lat
tice. Therefore, such interpolations, in general, increase th
size of the orderag errors in the limitag→0.

The smoothness requirement, coupled with locality, also
guarantees that one recovers the correct tree-level amplitud
in the continuum limit. That is, it guarantees, that

lim
agl→0

Ãm~ l !5Ãgm~ l !. ~6.11!

This follows immediately from the fact that, because of con-
tinuity,

lim
agl→0

Ām~ l ,y1 1
2agm!5R2d(

m
Am~y1afm1 1

2afm!

~6.12!

can differ fromAgm(y1 1
2agm) only by a quantity of order

Raf5ag . Here we are making use of the fact that the gauge
fields associated with the tree amplitudes are continuous o
the gauge-field lattice.

Therefore, we conclude that the smoothness requiremen
leads to the properties

Fm~ l !;af
n if n components ofl are of orderp/af

~6.13a!

and

Fm~ l !'1 for l!p/ag . ~6.13b!

As we have already mentioned, smoother interpolations re
sult in additional suppression ofFm( l ) when components of
l are large. For example, if the interpolation ofAm is ‘‘trans-
versely continuous,’’ i.e., continuous along directionsnÞm
at the boundaries of the gauge-field-lattice plaquettes, the
there is an additional power ofaf on the right-hand side of
Eq. ~6.13a! for each componentl n that is of orderp/af .

~c! Gauge covariance.We require that, for every gauge
transformationL8 of the gauge-field-lattice linksUgm , the

interpolation of the gauge-transformed linksUgm
L8 must yield

a set of fermion-lattice linksUm
L , whereL denotes a gauge

transformation of the fermion-lattice linksUm @37#. This re-
quirement allows one to infer, from the gauge invariance o
the fermion sector of the theory on the fermion lattice, that
the complete theory on the gauge-field lattice is gauge invari
ant.

One might imagine that one could meet this gauge-
invariance requirement by fixing to a particular gauge before
carrying out the interpolation. However, gauge fixing is a
nonlocal procedure and, therefore, violates the requiremen
that the interpolation be local.

The interpolations that we will consider have the property
that the gauge fieldAm is constant along fermion-lattice links
Um that lie along gauge-field lattice linksUgm . For these
links, Am is chosen to be equal toAgm . This implies that
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Ugm~y!5)
mm

Um~y1mmaf !5@Um~y!#R. ~6.14!

In solving Eq.~6.14! for Um , we choose the branch cut o
theRth root in accordance with the definition of the gaug
fields discussed earlier in this section. That is, we take t
branch cut such that, ifUgm is near unity, thenUm is near
unity.

The property ~6.14! is compatible with the gauge-
covariance requirement. In order to see that this is so, c
sider a gauge transformationL8(y) on the gauge-field lat-
tice. Each linkUgm is transformed according to

Ugm~y!→exp@ iL8~y!#Ugm~y!exp@2 iL8~y1agm!#.
~6.15!

Thus, according to Eq.~6.14!, the fermion-field links change
as follows:

Um~y1mmaf !5@Ugm~y!#1/R→$exp@ iL8~y!#Ugm~y!

3exp@2 iL8~y1agm!#%1/R. ~6.16!

A gauge transformationL on the fermion-lattice links that
reproduces the right-hand side of~6.16! can be obtained by
the following procedure. First, set

L~y!5L8~y! for all y. ~6.17!

Then, each linkUm(y1mmaf) can be brought into agree-
ment with the right-hand side of Eq.~6.16! by suitable
choice ofL(y1mmaf1afm), where the choices can be mad
by a sequential algorithm, starting at the first link and wor
ing toward the last link. At the last link, the choice o
L(y1mmaf1afm)5L(y1agm) must not conflict with Eq.
~6.17!. However,

)
mm

$exp@ iL~y1mmaf !#Um~y1mmaf !

3exp@2 iL~y1mmaf1agm!#%

5exp@ iL~y!#)
mm

@Ugm~y1mmaf !#exp@2 iL~y1agm!#,

~6.18!

and so the choice ofL(y1agm) that is required by Eq.
~6.14! is

L~y1agm!5L8~y1agm!, ~6.19!

which agrees with Eq.~6.17!.
Recently, Shamir@1# has pointed out that there is a poten

tial difficulty in maintaining the smoothness and the gaug
covariance of the interpolation procedure. He has shown t
the interpolating field differs from a smooth field by a gaug
transformation that is, in general, topologically nontrivia
and, hence, singular. These difficulties do not appear in
Abelian theory with a noncompact gauge-field action. It
possible that they might be avoided by fixing to a suitab
gauge on the gauge-field lattice. However, this issue has
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to be resolved. In the analyses to follow, we indicate thos
parts of the arguments that may be affected by these cons
erations.

2. Abelian interpolation

As an example, let us consider an interpolation that sati
fies the required properties in the case of an Abelian theor
In an Abelian theory, the gauge transformation~6.15! is
equivalent to

Agm~y1agm/2!→Agm~y1agm/2!1~1/ag!

3@L8~y!2L8~y1agm!#. ~6.20!

If the interpolation of theL8-dependent part of Eq.~6.20!
has a vanishing lattice curl, then it can be written as th
lattice gradient of a potential on the fermion lattice. Then Eq
~6.20! is equivalent to a gauge transformation on the
fermion-lattice fields@of the same form as Eq.~6.20!#. It is
easy to see that a simple linear interpolation of the gaug
field @37# has this property. Hence, it is gauge covariant un
der infinitesimal gauge transformations~although not under
the large gauge transformations of Ref.@1#!. To be explicit,
one takes

Am~y1 1
2afm1maf !

5 (
mg~m!

Agm„y1 1
2agm1agmg~m!…

3 )
nÞm

$~12mn /R!@12mgn~m!#

1~mn /R!mgn~m!%. ~6.21!

Clearly, this interpolation satisfies the locality and smooth
ness requirements. We have, for this interpolation,

Ām~ l ,y1 1
2agm!5Agm~y1 1

2agm!
sin~ 1

2af lmR!

Rsin~ 1
2af lm!

3 )
nÞm

F sin2~ 1
2af l nR!

R2sin2~ 1
2af l n!

G , ~6.22!

which implies that the regulating factor is given by

Fm~ l !5
sin~ 1

2af lmR!

Rsin~ 1
2af lm!

)
nÞm

F sin2~ 1
2af l nR!

R2sin2~ 1
2af l n!

G . ~6.23!

We see explicitly that the properties~6.13! hold, as expected
from our general arguments.

3. Non-Abelian interpolation

In the case of non-Abelian gauge fields, simple linear in
terpolations of the sort discussed in the last section do n
satisfy the gauge-covariance requirement. However, ’t Hoo
@27# has proposed a more intricate interpolation method tha
does. Here we discuss a variant of ’t Hooft’s method that wa
suggested by Herna´ndez and Sundrum@30#.
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The first step in the method is to fix the interpolation fo
fermion-lattice links that lie along gauge-field-lattice link
according to Eq.~6.14!. As we have already shown, this ste
is consistent with the gauge-covariance requirement.

The next step is to determine the interpolation for t
fields Am that lie on the two-dimensional surface of an e
ementary plaquette, where herem is either one of the two
directions that define the plaquette. The interpolation is giv
by the field configuration that minimizes the two
dimensional action for a pure gauge-field theory on the fer
ion lattice,6 subject to the boundary conditions on the field
on the links bounding the plaquette. To obtain a unique
lution to the minimization condition, one must fix the gaug
A convenient choice is the two-dimensional Lorentz gaug

(
m51

d

¹m
2Am50. ~6.24!

One can argue that the solution is unique as follows. T
minimization condition implies that the field configuration
satisfy the gauge-field equations of motion. If we negle
terms of higher order inaf , then the equation of motion is

~¹m
22 igAm!Fmn50, ~6.25!

where

Fmn5¹m
1An2¹n

1Am2 ig@Am ,An#, ~6.26!

and we have rescaled the fields byg. In the Lorentz gauge,
the equation of motion becomes

¹m
2¹m

1An2 ig¹m
2@Am ,An#1g2~ i @Am ,An#!250.

~6.27!

If one setsg50 in Eq. ~6.27!, then one recovers Laplace’
equation, which, with the given boundary conditions, has
unique solution. One can obtain a solution to all orders
g by iteration, treating the orderg and orderg2 terms as
source terms and using the solution to Laplace’s equation
a starting point. Hence, in the continuum limit, the interp
lated field configuration that is continuously connected to t
g50 solutions is unique.

In order to see that the gauge fields derived through t
interpolation procedure satisfy the smoothness requirem
suppose the opposite, that a gauge field has a discontin
Then, for at least one pointx, the first term on the left-hand
side of Eq.~6.27! is of orderaf

22 , whereas the remaining
terms are of orderaf

21 or smaller.~Here we are assuming
that the interpolated gauge field is bounded, which may
be true in the presence of singularities of the type discus
by Shamir @1#.! Therefore, in the case of a discontinuou
gauge field, the equations of motion cannot be satisfied in
continuum limit, and one concludes that the gauge field d
not satisfy minimization criterion in the continuum limit.

In four dimensions, there are two more steps in the int
polation method. The third step is to determine the fie
inside the cubes bounded by the elementary plaquettes.

6This action is given by Eq.~3.1!, but in two dimensions and on
the fermion lattice.
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does this by seeking a field configuration that minimizes the
three-dimensional pure gauge-field action, subject to the
boundary conditions along the elementary plaquettes and the
three-dimensional Lorentz-gauge condition. The last step is
to determine the fields inside the four-dimensional hyper-
cubes bounded by the three-dimensional cubes. One mini-
mizes the four-dimensional pure gauge-field action, using the
fields on the cubes as boundary conditions and fixing to the
four-dimensional Lorentz gauge. It is easy to see, by gener-
alizing the preceding arguments, that these last two steps
result in fields that satisfy the smoothness requirement.

Finally, there is the question of whether this interpolation
method satisfies the gauge-covariance requirement. Suppos
that we have obtained a field configuration on the fermion
lattice by the interpolation method. Then suppose that we
make a gauge transformation on the gauge-field lattice. The
links bounding the elementary plaquettes will be changed in
value, and a reapplication of the interpolation procedure will
result in a new field configuration on the fermion lattice. We
wish to show that this new field configuration can be ob-
tained by a gauge transformation on the fermion lattice of the
original fermion-lattice field configuration. Here, we para-
phrase the argument presented in Ref.@30#.

We have already shown that there is a gauge transforma-
tion that does this for the gauge fields that lie on the links
bounding the elementary plaquettes on the gauge-field lat-
tice. Such a gauge transformation will not, in general, leave
the gauge fields that lie inside the plaquettes in the two-
dimensional Lorentz gauge. However, we can always make a
gauge transformation on theinterior of a plaquette that re-
turns the fields to the Lorentz gauge, without changing the
fields on the links that bound the plaquette. Similarly, we can
find a gauge transformation on the interior of a three-
dimensional cube that returns the fields inside the cube to the
three-dimensional Lorentz gauge and a gauge transformation
on the interior of a four-dimensional hypercube that returns
the fields inside the hypercube to the four-dimensional Lor-
entz gauge. Since the pure gauge-field actions are invariant
under these transformations, the resulting configuration still
satisfies the minimization criteria. Hence, it is identical to the
field obtained by applying the interpolation method to the
gauge-transformed gauge-field-lattice links. Here we are as-
suming the uniqueness of the interpolated field configuration.

4. Feynman rules

By considering the Fourier transform of the lattice action,
one can easily derive the Feynman rules for the double-limit
procedure.

The Feynman rules for the gauge-field propagators and
vertices are the same as those for a theory with lattice spac-
ing ag . Momenta in propagators and vertices range from
2p/ag to p/ag , and momentum is conserved modulo
2p/ag . Hence, pure gauge-field loop integrations range
from 2p/ag to p/ag .

The Feynman rules for fermion propagators, gauge-field-
fermion vertices, andL-fermion vertices are determined by
considering the Fourier transform of the fermionic part of the
action. Momenta in propagators and vertices range from
2p/af to p/af and momentum is conserved modulo
2p/af . Hence, pure fermionic loop integrations range from
2p/af to p/af .
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When a gauge-field line attaches to a fermion line, o
must consider the effect of the interpolation in working o
the Fourier transform of the gauge field on the fermion l
tice, as in Eq.~6.4!. The interpolation introduces a regulatin
factor Fm( l ) for each connection of a gauge-field line to
fermion line. The gauge-field momentuml , which appears in
the Fourier transform of the gauge field on the fermion l
tice ~6.4!, can be written as

l5 l 81~2p/ag!q, ~6.28!

whereq takes on values from (2R11)/2 to (R21)/2 in
integer steps and2p/ag< l 8,p/ag . We can think of the
integration overl from2p/af to p/af as an integration over
l 8 from2p/ag to p/ag and a sum overq from (2R11)/2
to (R21)/2. There is an integration overl 8 and a sum over
q for each attachment of a gauge-field orL line to a fermion
line. The quantityl 8 may be interpreted as the gauge-fie
momentum variable in the Fourier transform of the gau
field on the gauge-field lattice~6.6!. Only l 8 appears in
gauge-field propagators and pure gauge-field vertices; t
are insensitive to the value ofq because, as can be seen fro
Eq. ~6.6!, they are periodic, with period 2p/ag . In a Feyn-
man diagram, integrations over variables of the typel 8 are
constrained by the fact that the total of the gauge-field m
mentum, including the variables of the typel 8, is conserved,
modulo 2p/ag , in everypropagator and vertex. Thus, th
gauge-field-momentum variables, including those of the ty
l 8, can be reorganized, in the usual way, into independ
loop momenta, which range from2p/ag to p/ag , and ex-
ternal momenta. In general, the fermion propagators, gau
field-fermion vertices, andL vertices depend on the value o
q, as well as on the value ofl 8. The sums over variables o
the typeq are constrained only by momentum conservatio
modulo 2p/af , along each fermion line. Aside from thi
constraint, there is an independent sum overq for each at-
tachment of a gauge-field line to a fermion line.

Using these Feynman rules and Eq.~6.13b!, we see that,
in the limit ag→0, for momenta much less than the cuto
p/ag , the Feynman rules for the fermion become the co
tinuum Feynman rules. Therefore, we recover the requi
low-energy behavior of the tree-level amplitudes.

5. Counting powers of af

In this section we will demonstrate, for an open fermi
line or for the odd-parity part of a closed fermion line, th
contributions that arise when gauge-field~or L-field! mo-
menta of orderp/af enter the line vanish in the limit
af→0 with ag fixed. We call momenta of orderp/af
‘‘large’’ momenta. In the arguments to follow, we assum
that the even-parity parts of fermion loops have been mo
fied as in Sec. V B 1 to render them exactly gauge invaria
One consequence of this assumption is that all of the ga
variations must arise from the odd-parity parts of loops. T
argument that we present holds in two and four dimensio
We proceed by counting the powers ofaf associated with a
contribution in which large gauge-field~orL-field! momenta
enter a fermion line.

In the initial discussion, we assume that the fermion-lo
momentum associated with a closed fermion line is not lar
Since momentum is conserved, modulo 2p/af , along a
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fermion line, if one gauge-field momentum entering a ferm-
ion line is large, at least one other gauge-field momentum
entering a fermion line must be large. We assume, initially,
that exactly two gauge-field momenta entering a fermion line
are large.

Powers ofaf arise from the fermion propagators, gauge-
field-fermion vertices, andL vertices through which the
large momentum flows. It is easy to see, by making use of
the power-counting rules of Sec. V A, that the minimum
number of factors ofaf arises if the large gauge-field mo-
mentum flows through at most one fermion propagator.

Inverse powers ofaf can arise from the sum over vari-
ables of the typeq in Eq. ~6.28!. If two gauge-field momenta
entering a fermion line are large, there is only one indepen-
dent sum, the other sum being constrained by momentum
conservation. The range of the sum contributes a factor of
orderR;af

21 for each component of the momentum that is
large.

There is a regulator factorF associated with each of the
points at which the two large momenta enter the fermion
line. From Eq.~6.13a!, we see that each regulator factor con-
tributes a factoraf for each component of the momentum
that is large. Hence, the minimum number of powers ofaf is
obtained by taking only one component of the momentum to
be large.

By way of illustration, let us consider the case in which
the large gauge-field momentum flows through exactly one
fermion propagator. As we have already noted, this case
gives the minimum number of powers ofaf . The fermion
propagator contributes a factor of orderaf

1 The large mo-
mentum also flows through two gauge-field-fermion vertices
or a gauge-field-fermion vertex and aL vertex. The gauge-
field-fermion vertices contribute factors of orderaf

0 and the
L vertex contributes a factor of orderaf

21 . Hence, the
propagators and vertices contribute a factor of orderaf

1 in the
amplitude andaf

0 in the gauge variation. If we take one com-
ponent of the gauge-field momentum to be large, the range of
the sum overq gives af

21 and the regulator factors give
af
2 . We conclude that, in this example, the contribution to
the amplitude from the factors associated with the large
gauge-field momenta is of orderaf

2 . The contribution to the
gauge variation is larger, of orderaf

1 . This is a consequence
of the fact that the large momentum associated with theL
field contributes an additional dimensionful factor of 1/af to
the gauge variation. Since the contributions to the amplitude
itself from this momentum region vanish asaf

2 , we can still
conclude that the amplitude differs from a gauge-invariant
expression by terms of orderaf

2 .
Now let us relax the assumption that only two of the

gauge-field momenta entering the fermion line are large. For
each additional large momentum, there is at least one factor
af for the propagators and vertices through which it flows, a
factor af

21 for the associated sum overq, and a factoraf
from the associated regulator factor. Hence, contributions in-
volving more than two large gauge-field momenta are sup-
pressed by at least one additional power ofaf .

We can also relax the assumption that the fermion-loop
momentum associated with a closed fermion line is not large.
Suppose that the loop momentum is large. Then, the entire
contribution of the loop, including the sums over variables of
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the typeq and the regulator factors, arises from short di
tances and can be expressed in terms of local operators
the gauge-field lattice.

Consider first the case of loops containing gauge var
tions (L vertices!. All of the gauge variations arise from
odd-parity loops. As we have already discussed in S
V B 2, the lattice-rotationally invariant, odd-parity, local op
erators of dimensiond or less involving aL field are of the
form of the ABJ anomaly.~In the present case, continuum
derivatives must be replaced by lattice derivatives on t
gauge-field lattice, since we are really discussing the effe
tive theory on the gauge-field lattice.! These all vanish if the
anomaly-cancellation condition~5.7! is satisfied. There are
no such operators of dimensiond11. Hence, the contribu-
tions to the gauge variations from the regions of integrati
in which both the gauge-field momenta and the fermion-lo
moment are large are of orderaf

2 , possibly times logarithms
of af .

Now consider the odd-parity parts of loop amplitude
Recalling our arguments of Sec. V B 2~and again replacing
continuum derivatives by derivatives on the gauge-field la
tice!, we note that the lattice-rotationally invariant, loca
odd-parity operators of dimensiond or less involving only
gauge fields all vanish under Bose symmetrization. Furth
more, there are no lattice-rotationally invariant, odd-parit
local operators of dimensiond11 involving only gauge
fields. Hence, the contributions to the odd-parity loop amp
tudes from the regions of integration in which both gaug
field momenta and the fermion-loop moment are large are
orderaf

2 , possibly times logarithms ofaf .
Finally, we consider the even-parity parts of loop ampl

tudes. Because the even-parity parts of loops are exa
gauge invariant, only gauge-invariant local operators c
contribute. Thereis a lattice-rotationally invariant, gauge-
invariant, Bose-symmetric operator of dimensiond, namely,
the one that renormalizes the gauge-field wave functio
Hence, there could, in principle, be contributions, in whic
large gauge-field momenta flow into the even-parity parts
loops, that go asaf

0 , possibly times logarithms ofaf . Of
course, we need not show that such contributions vanish
order to establish the gauge invariance of the double-lim
procedure. Furthermore, their behavior is no worse than t
of the even-parity parts of fermion loops in the absence
large gauge-field momenta, which is also logarithmic
af .

We must also consider the possibility that, in a Feynm
diagram, inverse powers ofaf could arise from a fermion
loop other than the fermion line under consideration, a
thereby lead to contributions from regions of large gaug
field momenta that are nonvanishing asaf→0. We have al-
ready seen that such inverse powers ofaf cannot arise when
gauge-field momenta entering the loop are large and or wh
both gauge-field momenta and the fermion-loop momentu
are large. The local-operator argument given for the lat
case also applies when only the fermion-loop momentum
large. Therefore, no inverse powers ofaf can arise from a
fermion loop.

Let us summarize these results. We have found that, in
double limit, contributions in which a large gauge-field mo
mentum enters a fermion loop containing a gauge variati
vanish asaf times logarithms ofaf . This result, combined
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with the analysis of Sec. V, allows us to conclude that the
odd-parity parts of fermion loops can be rendered gauge in-
variant by taking the double limit and by requiring the ferm-
ion to be in a representation of the gauge group that satisfies
the anomaly-cancellation condition. We assume that the
even-parity parts of fermion loops have been rendered ex-
actly gauge invariant by replacing them with one-half the
corresponding loop for a fermion with a vectorlike coupling
to the gauge field. Therefore, we have achieved our goal of
making all the amplitudes in the theory gauge invariant. We
have also found that contributions associated with the odd-
parity parts of loops are finite in the limitaf→0. This im-
plies that the phase of the fermion determinant is finite in this
limit. Furthermore, we have seen that the contributions in
which a large gauge-field momentum enter the odd-parity
part of a fermion loop vanish asaf

2 , possibly times loga-
rithms of af . This result, together with the analysis of Sec.
V B 2, implies that the phase of the fermion determinant dif-
fers from a gauge-invariant expression by terms of order
af
2 , possibly times logarithms ofaf , in the limit af→0.
It should be noted that the detailed power-counting rules

we have presented in this subsection are specific to interpo-
lations of the gauge fields that are discontinuous in at least
one direction at the boundaries of the gauge-field hyper-
cubes. One might devise smoother interpolations in which
the gauge fields~or their higher derivatives! are continuous.
For such interpolations, the regulating factorFm( l ) and,
hence, the contributions to the amplitudes and gauge varia-
tions would be suppressed by additional factors ofaf when
gauge-field-fermion-loop momenta are of orderp/af .

It may be useful to contrast our results with those of Ref.
@30#. In that work, the authors make the additional assump-
tion that the interpolation is transversely continuous.~That
assumption is valid for the interpolations that we have pre-
sented.! They are then able to show that the all the contribu-
tions in which a large gauge-field momentum enters a ferm-
ion loop are suppressed by powers ofaf . Their proof applies
to the even-parity parts of loops, as well as to the odd-parity
parts of loops and to loops containingL vertices. They con-
clude, as we do, that contributions in which large gauge-field
momenta enter the odd-parity parts of loops vanish asaf

2 .
However, they also conclude that gauge variations vanish as
af
2 . This last result seems to be at odds with our explicit
example.

6. Options for computing the determinant

In the last section we demonstrated that there exists a
satisfactory procedure for computing the fermion determi-
nant. There are actually several variants of this procedure
that one can employ, and some may be more efficient than
others in practical calculations. We now discuss some of
these computational options.

Once one has replaced the magnitude of the fermion de-
terminant with the square root of the determinant for a ferm-
ion with vectorlike couplings to the gauge field, the magni-
tude of the fermion determinant has an exact gauge
invariance. Therefore, one can evaluate the modified magni-
tude of the determinant without employing the double-limit
procedure, and still obtain a gauge-invariant result. That re-
sult will be equivalent to the one obtained through the
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doubling-limit procedure, since the effective action i
unique, aside from gauge-invariant counterterms, which c
always be absorbed into a redefinition of the coupling co
stant.

There are several advantages in calculating the magnit
of the fermion determinant without making use of th
double-limit procedure. There is the obvious advantage th
one would not be faced in a numerical simulation with th
computational burden of taking the limitaf→0 for each
gauge-field configuration. Another advantage follows fro
the fact that, in four dimensions, the magnitude of the det
minant is divergent in the limitaf→0. The divergence arises
from the diagram with two external gauge fields, which ge
erates the logarithm ofaf that is associated with the gauge
field wave-function renormalization. In the double-limit pro
cedure, one would need to add a wave-functio
renormalization counterterm, which has the effect
replacing lnaf with lnag , to obtain the correct renormaliza-
tion of the gauge-field-fermion coupling and to obtain a fini
result. This counterterm can be determined from a one-lo
calculation, since radiative corrections to the fermion loo
with two external gauge fields are suppressed in the lim
af→0. However, it is simpler to bypass the double lim
altogether in the case of the magnitude of the determinan

One must, of course, make use of the double-limit proc
dure in computing the phase of the determinant. Fortunate
in two and four dimensions, the phase is finite in the lim
af→0, because, as we have seen, there are no odd-pa
Bose-symmetric renormalization counterterms.

There is one advantage in using the double-limit proc
dure to compute the magnitude of the determinant. The v
torlike gauge symmetry of the magnitude of the determina
does not preclude the generation of a mass for the ferm
field. In general, the unrenormalized fermion mass will b
nonzero. However, it is easy to see that fermion self-ener
diagrams are suppressed in the double-limit procedure.

In the absence of the double-limit procedure, one mu
tune a counterterm~i.e., the hopping parameterk) to make
the renormalized mass of the fermion with vectorlike co
plings vanish. In practical terms, this procedure is somewh
tricky because we wish to maintain the positivity of Wilson
Dirac determinant, so that its square root is real. Of course
is well known, from studies of theories with vectorlike inter
actions, how to determine the critical value of the hoppin
parameter,kcritical , at which the renormalized fermion mas
vanishes. There are several procedures at one’s disposal.
example, one can use the vanishing of mass corrections
the Ward-Takahashi identities, the vanishing of th
Goldstone-boson~meson! mass, or the first occurrence of a
zero eigenvalue of the Wilson-Dirac operator as definitio
of kcritical . These approaches are equivalent in the infin
volume limit. In determiningkcritical by any of these meth-
ods, one averages over an ensemble of gauge configurati
A given gauge configuration may yield a value ofkcritical that
differs from the ensemble average. Therefore, if one fix
k to be slightly below the ensemble-average value
kcritical , one may encounter ‘‘exceptional’’ gauge-field con
figurations, such that the lowest eigenvalue of the Dirac o
erator is negative and the fermion determinant is negati
On the other hand, we expect an average of the determin
over an ensemble of gauge configurations to be positive
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the thermodynamic limit of an infinite number of configura-
tions. To the extent that the thermodynamic limit is equiva-
lent to the infinite-volume limit, the number of ‘‘excep-
tional’’ gauge-field configurations should become
vanishingly small as the volume is taken to infinity.

We note that it is straightforward to reduce the size of the
gauge-variant contributions that arise from the odd-parity
parts of fermion loops in the region of integration in which
the fermion-loop momentum and gauge-field momenta all
have magnitudes much less thanp/af . These contributions
are a consequence of orderaf deviations of the tree-level
lattice fermion action from the tree-level continuum fermion
action. Such deviations are easily removed by employing an
improved tree-level action@39,40#. To reduce the size of the
gauge variations that arise from the low-momentum region,
it is necessary only to improve the Wilson term in the tree-
level action.

Similarly, one can eliminate the leading gauge-variant
contributions that arise from the odd-parity parts of loops in
the region of integration in which the gauge-field momenta
entering a loop are large, but the fermion-loop momentum
itself is small. As we have seen, these contributions arise
from subdiagrams in which the factors along the fermion line
are the same as in a one-loop fermion self-energy diagram
In particular, the leading contribution comes from the terms
corresponding to a fermion-mass renormalization. Mass gen
eration is precluded if the action is invariant under a constan
shift of the fermion field@38#. If we drop the gauging of the
Wilson term~3.10!, then the action exhibits this symmetry.7

In the case of the odd-parity parts of loops, all of the argu-
ments in both this section on dynamical gauge fields and in
Sec. V on background gauge fields are independent o
whether the gauging of the Wilson term~3.10! is retained or
not. Hence, we are free to drop the gauging of the Wilson
term in computing the phase of the determinant.~In comput-
ing the magnitude of the determinant, one must retain the
gauging of the Wilson term in order to maintain the vector-
like gauge symmetry.!

Unfortunately, the two improvement schemes that we
have mentioned are of no use unless one can also reduce t
size of the violations of gauge invariance that arise from the
regions of integration in which both gauge-field momenta
and fermion-loop momenta are of orderp/af . This probably
would require the use of smoother interpolations, which, as
we have already argued, ultimately require nonlocality and
lead to increased errors of orderag .

Although the violations of gauge invariance vanish as
powers ofaf , a sufficiently large gauge transformation could
make the coefficient of the gauge variation impractically

7It is easy to understand diagrammatically why mass generation
cannot occur. If the Wilson term is not gauged, then there are no
Wilson vertices, only naive vertices. Each of these contains a
g matrix and a factorPL . Consider a fermion-self-energy diagram.
A Wilson mass from a rationalized propagator numerator vanishes
when sandwiched between two naive vertices, because of the pro
jectorsPL . The remaining terms in the propagator numerators yield
contributions with an odd number ofg matrices, and so they do not
have the form of a mass term.
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large for numerical work. Therefore, it is probably advant
geous to fix the interpolating field to a smooth gauge, such
one of the renormalizable gauges. Then one would at le
avoid the spurious, large, ‘‘pure gauge’’ contributions to th
gauge field that are known to arise from UV divergences.

VII. MATRIX ELEMENTS OF FERMION OPERATORS

Since a chiral-fermion action@for example, the sum of
Eqs. ~3.3!, ~3.4!, ~3.9!, and ~3.10!# is not invariant under
gauge transformations, if one computes matrix elements
operators involving fermion fields straightforwardly usin
such an action, the result is not, in general, gauge invaria
In this section, we discuss a method for computing matr
elements of fermion operators that yields a gauge-invaria
result. The method that we present is related, but not iden
cal, to the approach that we used in computing the fermi
determinant.

In analyzing the matrix elements of fermion operators, w
assume that any fermions in the initial and final states ha
been removed by the Lehmann-Symanzik-Zimmerma
~LSZ! reduction. We also assume that the total number
c ’s is equal to the total number ofc̄ ’s, so that the fermion
operators can be Wick contracted to form interacting prop
gators.

A. General procedure

We begin by employing theg5 trick of Sec. V B 1 to
move all the factorsPL to the end points of the interacting
fermion propagators, treatingg5 as if it anticommuted with
all Wilson masses and vertices. If each interacting propag
tor’s end points are separated by a fixed amount in config
ration space, then there is no fermion-loop UV divergen
associated with the propagator. In this case, the rearran
ment changes the expression by terms of orderaf and by
terms corresponding to the renormalization counterterms
sociated with radiative corrections to the propagators a
operator vertices. If the interacting propagator’s end poin
are separated by a distance that vanishes asa→0, then there
is a fermion-loop UV divergence associated with the prop
gator. In this case, the rearrangement also changes the
pression by terms corresponding to the renormalizati
counterterms associated with the fermion loop. Once w
have completed this rearrangement, all of the factorsPL are
associated with the fermion operators. Of course,PL

25PL ,
and so there is at most one such factor associated with
left-hand side and one such factor associated with the rig
hand side of each operator.

If the operators themselves are independent of the ga
field, then the modified matrix element is exactly gauge i
variant, since the fermion now has only vectorlike intera
tions with the gauge field along its propagators. Therefore,
this case, we can compute the modified matrix element wi
out recourse to the double-limit procedure.

If an operator involves gauge fields, for example, throug
a gauge-covariant derivative, then, with the modification th
we have described, the even-parity part of the express
associated with that operator is still exactly gauge invaria
but the odd-parity part is not. Therefore, we can compute t
even-parity part without making use of the double-limit pro
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cedure. For the-odd parity part, we must invoke the double-
limit procedure to ensure gauge invariance. If an interacting
propagator’s end points are separated by a distance that van-
ishes asa→0, then nonvanishing gauge variations can arise
from the associated fermion-loop divergence. In this case, as
was discussed in Sec. V B 2, we must also impose the
anomaly-cancellation condition~5.7! in order to ensure
gauge invariance.8

The power-counting arguments that we have given previ-
ously also apply to the operator matrix elements. In particu-
lar, we expect the violations of gauge invariance arising from
odd-parity operator loops to vanish asaf

1 , and we expect the
deviations of the odd-parity loops from a gauge-invariant
expression to vanish asaf

2 .

B. Example: Violation of baryon-number conservation

As an example of the procedure for computing matrix
elements of operators involving fermion fields, let us con-
sider the matrix element of the baryon-number current

Jm
B~x!5c̄B~x!gmcB~x! ~7.1!

in the presence of dynamical gauge fields plus an external
source of background gauge-field quanta. We assume that
cB is part of a larger column vectorc such that the gauge
group of the complete fieldc satisfies the anomaly-
cancellation condition~5.7!, but the subgroup associated
with cB does not.

A matrix element ofJm
B is given by a weighted average

over gauge-field configurations of

Fm5(
x
TrgmSchiral

B ~x,x!, ~7.2!

whereSchiral
B (x,x8) is the interacting baryon propagator, with

configuration-space end pointsx andx8. The subscript ‘‘chi-
ral’’ indicates that the interactions of the baryons with the
gauge field are left handed. Now,Fm is gauge variant. How-
ever, we can modify the definition of the matrix element so
as to render it gauge invariant. We apply theg5 trick of Sec.
V B 1 to move all of the projectorsPL in Schiral

B on the right-
hand side of Eq.~7.2! to the factorgm . The terms that we
discard in this procedure all vanish in the limitaf→0 or
have the the forms of renormalization counterterms. The re-
sult is thatFm is replaced by

F̃m5(
x
TrgmPLSvector

B ~x,x!, ~7.3!

whereSvector
B is the interacting propagator for baryons with

vectorlike couplings to the gauge field. The expression~7.3!

8Since we have applied theg5 trick here to the odd-parity part as
well as to the even-parity part, the anomaly takes on a somewhat
different form than in the Appendix. However, the conclusion—that
the gauge variations in the presence of a background field can be
removed by imposing the anomaly cancellation condition~5.7!—is
unchanged.
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has an exact~vectorlike! gauge invariance. Consequently, w
can compute it without recourse to the double-limit proc
dure.

Now F̃m corresponds to the matrix element of a le
handed baryon current

J̃m
B~x!5c̄B~x!gmPLc

B~x! ~7.4!

in a theory in which the baryons have vectorlike interactio
with the gauge field. As is well known, in four dimension
in a theory with vectorlike couplings,J̃m

B is not conserved: Its
divergence is given by the ABJ anomaly, which is nonzero
the presence of background gauge fields with nonzero w
ing number. Thus, we have recovered the familiar result th
once one has added such renormalization counterterms a
required to render its matrix elements gauge invariant,
baryon-number current is not conserved@41#.

Of course, one could also compute the violation
baryon-number conservation directly, by examining amp
tudes that have unequal numbers of incoming and outgo
baryons. Such amplitudes can be computed in the stan
way by considering the contributions to the path integral
the zero modes of the Dirac operator@42#. As we have ar-
gued in Sec. V B 1@see, in particular, Eq.~5.6!#, the manipu-
lations of the fermion determinant that we advocate do
affect the low-energy modes in the continuum limit. Ther
fore, the lattice and continuum calculations yield the sa
result.

VIII. BEYOND PERTURBATION THEORY

The analyses that we have presented so far have b
given in terms of weak-coupling perturbation theory. In th
section, we will argue that, in the presence of an arbitr
background gauge field, the perturbation expansions for
fermion determinant and interacting fermion propagators
tually determine these quantities completely, except at
zero modes of the Dirac operator. This is not to imply th
one can analyze the complete theory through the use of
turbative techniques. The gauge-field sector of the theory
course, exhibits effects that are not amenable to a pertu
tive analysis.

Throughout this section, we will assume that the gau
field configuration defined on the gauge-field lattice~and im-
plicitly on the fermion lattice! is bounded. Of course, there i
no universal bound that applies to all of the gauge-field c
figurations in the path integral. Therefore our conclusio
may not hold when one sums over all configurations. A
other potential loophole arises from the fact that, configu
tion by configuration, the gauge fields on the fermion-fie
lattice may become unbounded because of singularitie
the interpolating field of the type discussed by Shamir@1#.

A. Finite volume and fixed lattice spacing

In the arguments to follow, the convergence properties
the perturbation series are crucial. Ultimately, we wish
study these properties in the case of infinite volume and
the limit af→0. However, it is illuminating to consider firs
the behavior of the perturbation series for the somewhat s
pler case of finite volume and fixed lattice spacing.
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We begin by noting that the determinant of the lattice
Dirac operatorD can be written as

detD5det@]1~D2]!#5det] det@11~1/]!~D2]!#

5det] exp$Tr ln@11~1/]!~D2]!#%, ~8.1!

where ] is the free Dirac operator (D evaluated atg50).
The perturbation expansion for the effective action
ln(detD) is obtained by expanding the logarithm in Eq.~8.1!
in powers ofg.

As an intermediate step in analyzing the perturbation se-
ries, let us examine the series in 1/](D2]), introducing a
parameterz as the coefficient of 1/](D2]) in Eq. ~8.1!. At
fixed lattice spacing in a finite volume,D and] are just finite
matrices. Therefore, the logarithm can be considered to be a
matrix-valued function with matrix argument. Furthermore,
its expansion in powers ofz(1/])(D2]) has a finite radius
of convergence. Letl be an eigenvalue of 1/](D2]). Then
the radius of convergence of the logarithm as a matrix-
valued function ofz is1/ulmaxu, wherelmax is thel with the
largest magnitude. There is a branch-point singularity in the
matrix-valued function wheneverzl521.

Now, (D2]) is an analytic function ofg through the link
variablesU. Since (D2]) vanishes as at least one power of
g asg→0, the perturbation series has a finite radius of con-
vergence ing. The branch points atzl521 correspond to
isolated branch points in the complexg plane. Consequently,
one can determine detD almost everywhere in the complex
g plane by analytic continuation ing. Of course, there are
ambiguities because of the cuts that arise from the branch
points. However, the ambiguity associated with a cut has no
effect on the determinant, since it leads to shifts of the argu-
ment of the exponential by 2p in, wheren is an integer.9 The
branch points themselves correspond to zero modes of the
Dirac operator. As we have argued in Sec. V B 1, the proce-
dure that we use to rearrange the determinant leaves the zer
modes unaffected; they are given, in the limitaf→0, by the
zero modes of the continuum Dirac operator.

Similarly, we can write the interacting propagator as

D215@]1~D2]!#215]21@11~D2]!~1/]!#21.
~8.2!

The expansion of the right-hand side of Eq.~8.2! in powers
of (D2]) has a finite radius of convergence. Therefore, the
perturbation expansion ofD21 in powers ofg has a finite
radius of convergence. By analytic continuation, the pertur-
bation series determines the interacting propagator every-
where except at the zero modes of the Dirac operator.

9In computing the square root of the determinant of the Wilson-
Dirac operator, we choosek,kcritical . This implies that we are to
the right of the cut in detD5exp(Tr lnD), and so there is no am-
biguity in the square root.
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B. Infinite volume and the limit af˜0

Now let us take up the infinite-volume case. Here it
most convenient to examine the convergence properties
the perturbation series, using the momentum-space Feynm
rules. We are ultimately interested in the limitaf→0.

In order to demonstrate that our perturbative analys
hold for arbitraryg, we need to prove two properties: that th
perturbation series for the effective action~logarithm of the
fermion determinant! and the interacting fermion propagato
have finite radii of convergence, and that one can take
limit af→0 term by term in the perturbation series. To prov
the first property, we need to show only that the perturbati
series is absolutely convergent. To prove the second pr
erty, we must show that the perturbation series is uniform
convergent asaf→0. We will demonstrate this by showing
that the series can be majorized. That is, we will show th
for everyaf in a neighborhood ofaf50, the absolute value
of each term in the perturbation series is bounded by
af-independent series that converges. Thus, the proof of
uniform convergence of the series also demonstrates the
solute convergence of the series. We will assume that
first few terms in the perturbation series of ordergd or less
have been removed, so that we do not have to deal w
individual terms in the determinant that are divergent
af→0. Obviously, subtracting a finite number of terms doe
not affect the convergence of the series.

First we analyze the region of integration in which all th
gauge-field momenta, and the fermion-loop momentum
the case of the effective action, have magnitudes much l
thanp/af . Consider the contribution to a term of ordergn

that contains only single-gauge-field-fermion verticesV (1).
The magnitude of each vertex is bounded by a
af-independent constant timesg. We can obtain a bound on
the magnitude each fermion propagator by dropping the W
son term and replacing (1/af)sin(pmaf) by a finite constant of
order unity timespm . Thus, the magnitude of each propaga
tor is bounded by anaf-independent constant times 1/upu.
Since we are assuming, in the case of contributions to
effective action, that the fermion momentum is much le
than p/af , the volume of the integration is an
af-independent constant. Thus, each such contribution to
interacting fermion propagator is bounded byC(gA/k)n, and
each such contribution to the effective action is bounded
(1/n)C(Ag/k)n, whereC is anaf-independent constant,A is
the maximum magnitude of the gauge field,10 and k is the
minimum of the magnitudes of the gauge-field moment
Here, we assume that the momentum of the gauge field is
off in the infrared by physical effects or by application of a
explicit infrared regulator. We also assume that one can n
glect the regions of integration in which sums of gauge-fie
momenta nearly vanish or, in the case of the interacti

10Here we are assuming that the gauge-field configuration in m
mentum space is bounded. In fact, the gauge field may be sing
in momentum space. However, if the gauge field is bounded
configuration space, then these singularities are integrable. He
one could eliminate any such singularities by smearing t
momentum-space gauge field over a small fraction of the range
the gauge-field momentum integration.
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propagator, sums of gauge-field momenta and the fermio
momentum nearly vanish.11

Suppose that we include the possibility of multiple-gauge
field-fermion vertices. The effect of these is to replace propa
gator factors by powers ofaf . Therefore, we can bound any
propagator factor by@C1af1(C2 /k)#, whereC1 andC2 are
af-independent constants. This implies that the contribution
to the interacting propagator are bounded by
(Ag)n@C1af1(C2 /k)#

n and the contributions to the effec-
tive action are bounded by (1/n)(Ag)n@C1af1(C2 /k)#

n.
Thus, we see that, forg small enough, these contributions are
bounded by the terms in a convergent geometric series that
independent ofaf .

Now consider the region of integration in which some of
the gauge-field momenta are of orderp/af . As we have seen
in Sec. VI B 5, such contributions are suppressed by power
of af . If a gauge-field momentum of orderp/af passes
through a fermion propagator, then the propagator is
bounded by a constant timesaf . Thus, we can again bound
the propagator factors by@C1af1(C2 /k)#. There are addi-
tional powers ofaf from the regulating factorsF associated
with the vertices. Otherwise, the bounds on vertices are un
changed. The powers ofaf in the regulating factors more
than compensate for inverse powers ofaf associated with the
ranges of the sums over the gauge-field-momentum variable
q in Eq. ~6.28!. Therefore, the contributions to the interacting
propagator and the effective action are again bounded b
(Ag)n@C1af1(C2 /k)#

n and (1/n)(Ag)n@C1af1(C2 /k)#
n,

respectively. Forg small enough, these quantities are, in
turn, bounded by the terms in a convergent geometric serie
that is independent ofaf .

Finally, we consider contributions to the effective action
from the region of integration in which the fermion-loop
momentum is of orderp/af . We see from Eq.~5.1! and the
surrounding discussion that, for gauge-field momenta with
magnitudes much less thanp/af , such contributions are
bounded by anaf-independent constant times (Ag)naf

n2d .
The argument of the preceding paragraph shows that contr
butions from gauge-field momenta of orderp/af do not
change this bound. Again, forg small enough, the contribu-
tions are bounded by the terms in anaf-independent, conver-
gent geometric series.

We conclude that the perturbation series for the interact
ing propagator and the effective action have finite radii of
convergence and are uniformly convergent in the limit
af→0. Therefore, the perturbation series determine th
propagator and the fermion determinant by analytic continu
ation, except at singularities. Furthermore, we can take th
limit af→0 term by term. In this limit, the singularities cor-
respond to the zero modes of the continuum Dirac operato

o-
ular
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11Suppose that we constrainr momentum integrations so that each
component of momentum has a range of sizee relative its uncon-
strained range. There aren!/ @(n2r )! r ! # ways to do this. The vol-
ume of integration of each of ther momenta is reduced by a factor
ed. At most r propagators are enhanced by a factor 1/e. Therefore,
the net effect of constraining momenta is to multiply the bounds we
have obtained by (ed2111)n<Cn, whereC is anaf-independent
constant.
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Therefore, the conclusions that we have reached throug
perturbative analysis of the fermion determinant and intera
ing propagator apply for arbitraryg. In particular, we can
conclude that, in the continuum limit, the prescriptions w
have given for computing the fermion determinant and t
matrix elements of fermion operators give the correct low
energy amplitudes and yield gauge-invariant expressions

IX. SUMMARY AND DISCUSSION

We have presented a general procedure for construct
gauge-invariant lattice formulations of theories of chiral fe
mions interacting with gauge fields. The procedure involv
three key ingredients:~1! The fermions must be in an
anomaly-free representation of the gauge group;~2! one
must replace the magnitude of the fermion determinant w
the square root of the determinant for a fermion that h
vectorlike couplings to the gauge field, but that is otherwi
identical to the original fermion; and~3! one must implement
the gauge-field action on a lattice with spacingag and the
interacting fermion-field action on a lattice with spacin
af , define a suitable interpolation of the gauge field to th
fermion-field lattice, and take the limitaf→0 before taking
the limit ag→0.12 In four dimensions, all three of these con
ditions are required to ensure the gauge invariance of
formulation. In this procedure, the magnitude of the determ
nant is exactly gauge invariant. The gauge variations of t
phase of the determinant vanish asaf

1 , and the deviations of
the phase of the determinant from a gauge-invariant expr
sion vanish asaf

2 , possibly times logarithms ofaf . ~We note
that the result of Ref.@30# for the power behavior of the
gauge variations seems to differ from the one derived in th
paper.!

We have also presented a closely related method for
fining, in a gauge-invariant fashion, matrix elements of ferm
ion operators in chiral theories. As was shown in Sec. VII B
the application of this method to the baryon-number curre
leads to the familiar conclusion that that current is not co
served.

The analysis of these methods is couched in wea
coupling perturbation theory. In analyzing the properties of
UV regulator, of which the lattice is an example, we ar
concerned with the behavior of the theory near the cuto
Hence, one might hope, in the case of asymptotically fr
theories, that the perturbation expansion would be a relia
guide to that behavior.

Furthermore, as we have argued in Sec. VIII, in the pre
ence of a given gauge-field configuration, the perturbati
series defines the interacting fermion propagator and
fermion determinant everywhere except at zero modes of
Dirac operator. The convergence of the series is uniform
af , so that one can analyze the continuum limit term b
term. Hence, the methods for computing the determinant a
propagator are valid in the presence of a nonperturbat
gauge-field configuration. We have not addressed the is

12A typical fermion action is given by the sum of Eqs.~3.3!, ~3.4!,
~3.9!, and~3.10!. The corresponding action for a fermion with vec
torlike couplings is obtained by settingPR5PL51.
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of the summation over gauge-field configurations outside of
the perturbative analysis.

Shamir@1# has presented an argument that potentially un-
dermines these analyses. He observes that, if an interpolation
of the gauge field is gauge covariant, then the interpolating
field is related to a smooth field by a gauge transformation
that is, in general, topologically nontrivial. Hence, the inter-
polating field may possess singularities. Such singular fields
violate the smoothness requirement for gauge fields on the
fermion-field lattice that was used in the power-counting
analyses of Sec. VI B 5 and also violate the assumption of
the boundedness of the gauge fields that was made in Sec
VIII. It is possible that one might avoid these difficulties by
fixing to a suitable gauge on the gauge-field lattice. How-
ever, this is an open question.

Putting aside questions of principle, it is not yet clear that
the procedure presented will be tractable in practical numeri-
cal calculations. The obvious stumbling block is the double-
limit procedure foraf andag , which could lead to comput-
ing requirements that are much greater than in the case of a
single lattice-spacing limit.

In computing themagnitudeof the fermion determinant,
one has two distinct options. One can apply the double-limit
procedure. Then one must tune a counterterm that renormal-
izes the gauge-field wave function in order to keep the mag-
nitude of the determinant finite in the limitaf→0 and to
obtain the correct renormalization of the gauge-field-fermion
coupling. The coefficient of this counterterm is readily com-
puted in perturbation theory, since it is generated only by the
diagram with a single fermion loop and two external gauge
fields.

On the other hand, the magnitude of the fermion determi-
nant is exactly gauge invariant, once one has replaced it with
the square root of the determinant for a fermion with vector-
like interactions. Therefore, one can compute the magnitude
of the determinant by takingaf5ag . Since a vectorlike
gauge symmetry does not preclude the generation of a ferm-
ion mass, one must also tune a mass counterterm~hopping
parameter!, so as to keep the fermion massless.13 ~In prac-
tice, it may be a challenging problem to approach the critical
value of the hopping parameter in such a way that the posi-
tivity of the determinant is maintained. See the discussion in
Sec. VI B 6.! In this single-limit procedure, all other renor-
malization counterterms can be absorbed into a redefinition
of the coupling constant. Hence, only the fermion mass and
the coupling constant need be tuned in taking the continuum
limit.

It seems possible that one would need to compute only the
magnitude of the fermion determinant in updating gauge-
field links, computing the phase of the determinant as an
expectation value once equilibrated lattices had been gener-
ated. If this turns out to be the case, then the use of a single-
limit procedure for the magnitude of the determinant would
result in an even greater relative reduction of the computing
time.

In computing the phase of the fermion determinant one

-

13The diagrams that generate fermion masses are suppressed i
the double-limit procedure, and so no mass counterterm is required
in that case.
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mustemploy the double-limit procedure. This computation
mitigated somewhat in two and four dimensions by the fa
that, owing to the absence of odd-parity counterterms in
anomaly-free theory, the phase is actually finite in the lim
af→0. Therefore, one can carry out a straightforward e
trapolation to obtain the limit.

One source of error in the extrapolation is easily reduc
As we have seen in Sec. VI, order-af

2 deviations of the phase
of the determinant from a gauge-invariant expression ar
from the region of integration in which the gauge-field m
menta and the fermion-loop momentum associated with
given fermion loop are much smaller in magnitude th
p/af . In this region, the deviations from the limiting resu
come from the deviations of the tree-level lattice action fro
the tree-level continuum action. The order inaf of these
deviations can readily be increased through the use of
proved actions@39,40#. Similarly, one can eliminate the
order-af

2 gauge-variant contributions to the phase of the d
terminant that arise from the region of integration in whic
gauge-field momenta are large and the associated ferm
loop momentum is small. One can accomplish this by dro
ping the gauging of the Wilson term~3.10! in computing the
phase of the fermion determinant~but not the magnitude!.
Then there is a symmetry under constant shifts of the fer
ion field @38# that precludes the generation of fermion-ma
terms, which give the largest gauge-variant contributions

Unfortunately, such improvement programs are of limit
utility, since errors also arise from the region of integratio
in both gauge-field momenta and fermion-loop momenta
of orderp/af . As we showed in Sec. VI B 5, when one use
an interpolation in which the gauge field is discontinuo
along least one direction at the boundaries of the gauge-fi
lattice hypercubes, these errors are of orderaf

2 The use of a
smoother interpolation, in which the gauge fields~or higher
derivatives! are continuous, would, in general, suppress the
errors by additional factors ofaf . However, such interpola-
tions are necessarily less local. In general, the orderag errors
increase as one increases the distance on the gauge-fiel
tice between the sites that enter in the interpolation.

Although gauge-variant contributions ultimately vanish
af→0, the presence of large, ‘‘pure gauge’’ contributions
gauge-field configurations might make the approach to t
limit problematic in numerical work. It is probably sensible
therefore, to fix the interpolating field to a smooth gaug
such as one of the renormalizable gauges, to ensure at
that the known, spurious, ‘‘pure gauge’’ contributions a
absent.

In testing the ideas of this paper in numerical simulation
it would be most efficient, computationally, to consider tw
dimensional theories. Then, anomaly cancellation can
achieved by introducing both left- and right-handed ferm
ons, such that the sum of Tr(TaTb) for the left-handed fer-
mions is equal to the sum of Tr(TaTb) for the right-handed
fermions @43#. Strictly speaking, two-dimensional theorie
do not require the double-limit procedure. That is because
can be seen from Eq.~6.1!, the only divergent subdiagram i
a fermion loop with exactly two external gauge fields; the
are no divergent subdiagrams containing gauge-field pro
gators. However, the odd-parity part of a fermion loop wi
two external gauge fields is zero by virtue of the anoma
cancellation condition~5.7!. Therefore, the violations of
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gauge invariance that arise from the odd-parity parts of ferm-
ion loops vanish in limitaf5ag→0. Nevertheless, one could
use the two-dimensional theories as a testing ground for
methods of extrapolating to the limitaf→0 with ag fixed.
One could check the gauge invariance of the fermion deter-
minant and also compare the results for various physical
quantities, such as the mass spectrum, with analytic results.

More stringent tests of the methods presented here could
be obtained in four dimensions. Again, one could test the
convergence of the extrapolation toaf50 and the gauge
invariance of the determinant. Also, in weak coupling, one
could compare results for physical quantities in the standard
electroweak model with calculations in weak-coupling per-
turbation theory.

It is clear that the fermion determinant we have described
corresponds to a complex effective action. This is a general
property of chiral gauge theories that would be expected to
hold regardless of the lattice formulation chosen: The effec-
tive action receives imaginary contributions that areindepen-
dentof the UV regularization from finite odd-parity parts of
fermion loops. It remains an open question as to whether one
can devise practical means for handling such complex ac-
tions in numerical simulations.
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APPENDIX: COMPUTATION OF THE ANOMALY

In this appendix we present a calculation of the gauge
variation of the odd-parity parts of fermion loops in the pres-
ence of a background gauge field in four dimensions@44#.
For simplicity, we restrict ourselves to the case in which the
Wilson term has not been gauged. If one includes the gaug-
ing of the Wilson term~3.10!, then one must consider addi-
tional contributions to the gauge variation involving
L-gauge-field-fermion vertices.

We will use repeatedly the fact that a trace containing an
odd number ofg5’s is nonvanishing only if it contains four
factors that are linearly independent combinations of the the
matricesg1, g2, g3, and g4. These linearly independent
combinations can come from three sources: theg matrices
associated with naive vertices in the loop, theg matrices
associated with external momenta in propagators, and theg
matrices associated with the loop momentum in propagators.

In order to expose the external momenta, we expand the
propagators and vertices in a Taylor series in the external
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momenta times the lattice spacinga. We can use the result
derived in Sec. V A, that a loop containing aL vertex re-
ceives a nonvanishing contribution in the limita→0 only
from the region of integration in which the magnitude of th
loop momentum is of orderp/a. In this region, it is easy to
see, from the discussion in Sec. V A and the fact that
external momenta are assumed to be much smaller in m
nitude than the cutoffp/a, that thenth term in the Taylor
expansion has a relative suppression factoran. Thus, for a
loop with degree of divergenceD, terms in the Taylor ex-
pansion containing more thanD factors of the external mo-
menta do not receive a nonvanishing contribution from t
region of large loop momentum in the limita→0. Therefore,
we retain only the firstD terms in the Taylor expansion. Fo
these terms, it can be seen, from the discussion in Sec. V
that the region of integration in which the magnitude of th
loop momentum is much less thanp/a gives a negligible
contribution. Thus, we can extend the range of the integ
tion to the entire Brillouin zone.

We also note that theg matrices associated with the loo
momentum can never contribute the required linearly ind
pendent factors: If a term contains an odd number
g-matrix factors associated with the loop momentum,
gives a vanishing contribution because the integrand is
odd function of the loop momentum; if a term contains a
even number ofg-matrix factors associated with the extern
momentum, these factors can be brought together by us
the anticommutation relations and eliminated by usi
(g•a)25a2.

Armed with these facts, let us consider in turn the vario

FIG. 3. Diagrams that contribute to the ABJ anomaly in fo
dimensions.
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contributions up to those containing four external gaug
fields.

The contribution involving oneL vertex and no external
gauge fields vanishes by Abelian charge-conjugation sym
metry.

Next consider the contribution involving oneL vertex
and one external gauge field. If the gauge-field vertex is
naive vertex, it can contribute one of the linearly indepen
dentg-matrix factors. The one independent external momen
tum can contribute another. However, that is not enough t
saturate a trace containing an odd number ofg5’s.

In the contribution involving oneL vertex and two exter-
nal gauge fields, we can have at most two factors of extern
momentum in the Taylor expansion and still obtain a nonva
nishing contribution in the limita→0. Then, in order to
obtain a nonvanishing trace, we must take all of the gaug
field-fermion vertices to be of the typeV(1), which involves a
single gauge field, and we must retain terms proportional t
the external momentum only in the Taylor expansions of th
propagators. The nonvanishing contribution then comes fro
the diagram of Fig. 3~a!, whose amplitude we denote by
A(2), plus the diagrams obtained by permuting the gaug
fields. That contribution is given by

lim
a→0

@Amn
~2!~ l 1 ,m,b; l 2 ,n,c!1 perm~ l 1 ,m,b; l 2 ,n,c!#

5g2E
2p

p d4p

~2p!4
TrH iTag5M ~p!F ]

]~apr!
SF
W~p!G

3~ l 11 l 2!raVn
~1!N~p!

3F ]

]~aps!
SF
W~p!G l 1s aVm

~1!N~p!SF
W~p!J

odd

1 perm~ l 1 ,m,b; l 2 ,n,c!

5g2Imnrs
~2! l 2rl 1s~1/2!Tr~Ta$Tb ,Tc%!

1 perm~ l 1 ,m,b; l 2 ,n,c!. ~A1a!

Here, sums over repeated indices are understood. The su
script ‘‘odd’’ on the trace means that we retain only those
terms that contain an odd number ofg5’s, and ‘‘perm’’
means permutations of the symbols separated by semicolo
i.e., permutations of the gauge fields. In the last line we hav
used the fact, which follows from the computation of the
trace, thatImnrs

(2) is proportional toemnrs .
A similar analysis shows that the nonvanishing contribu

tion involving oneL vertex and three external gauge fields is
given in the limita→0 by the diagram of Fig. 3~b!, whose
amplitude we denote byA(3), plus the diagrams obtained by
permuting the gauge fields. In this case,D51, and so we
retain only one power of the external momentum in the Tay
lor expansion. The result is

ur
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lim
a→0

@Amnr
~3! ~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d!1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d!#

5g3E
2p

p d4p

~2p!4
TrH iTag5M ~p!F ]

]~aps!
SF
W~p!G~ l 11 l 21 l 3!s aVr

~1!N~p!SF
W~p!Vn

~1!N~p!SF
W~p!Vm

~1!N~p!SF
W~p!

1 iTag5M ~p!SF
W~p!Vr

~1!N~p!F ]

]~aps!
SF
W~p!G~ l 11 l 2!s aVn

~1!N~p!SF
W~p!Vm

~1!N~p!SF
W~p!

1 iTag5M ~p!SF
W~p!Vr

~1!N~p!SF
W~p!Vn

~1!N~p!F ]

]~aps!
SF
W~p!G l 1s aVm

~1!N~p!SF
W~p!J

odd

3Tr~TaTbTcTd!1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d!

5g3Imnrs
~3! ~ l 11 l 21 l 3!sTr~TaTbTcTd!1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d!

5g3Imnrs
~3! @ l 1s~1/4!Tr~Ta$Tb ,@Tc ,Td#%!1 l 3s~1/4!Tr~Ta$Td ,@Tb ,Tc#%!1 l 2s~1/2!Tr~Ta$Tb ,@Tc ,Td#%

1Ta$Td ,@Tb ,Tc#%1Ta$Tc ,@Tb ,Td#%!#1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d!. ~A1b!

Here, we have used the facts that only the first Dirac trace is nonzero and that it is proportional toemnrs .
It is easily seen that the contribution involving oneL vertex and four external gauge fields is given in the limita→0 by

the diagram of Fig. 3~c!, whose amplitude we denote byA(4), plus the diagrams obtained by permuting the gauge fields. In this
case,D50, and so we set the external momenta equal to zero. The result is

lim
a→0

@Amnrs
~4! ~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d; l 4 ,s,e!1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d; l 4 ,s,e!#

5g4E
2p

p d4p

~2p!4
Tr@ iTag5M ~p!SF

W~p!Vs
~1!N~p!SF

W~p!Vr
~1!N~p!SF

W~p!Vn
~1!N~p!SF

W~p!Vm
~1!N~p!SF

W~p!#odd

3Tr~TaTbTcTdTe!1perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d; l 4 ,s,e!

5@g4Imnrs
~4! ~1/8!Tr~Ta$@Tb ,Tc#,@Td ,Te#%!1 perm~ l 1 ,m,b; l 2 ,n,c; l 3 ,r,d; l 4 ,s,e!#. ~A1c!
Again we have used the fact that the Dirac trace is propo
tional to emnrs . In fact, direct computation of the trace
shows that

Imnrs
~4! 50. ~A2!

We see that the odd-parity contributions from the fermio
loops all vanish in the limita→0 if the anomaly-cancellation
condition ~5.7! is satisfied.

Now let us sketch a method by which the calculation o
I (2) andI (3) can be completed. If we drop the color factors in
Eq. ~A1!, then the resulting expressions correspond to th
calculation of the gauge variations in an Abelian theory
SinceI (2) and I (3) are symmetric under cyclic permutations
of the gauge fields, we can compute them by consideri
cyclic permutations of the Abelian expressions for the gaug
variations.

Consider the quantityG̃amn•••
(n) , which is the Abelian am-

plitude associated with the odd-parity part of a particular s
of diagrams involving a fermion loop,n gauge fields~with
indicesamn•••), and noL vertices. We include inG̃(n) the
diagram with no multiple-gauge-field-fermion vertices an
the diagram with a single two-gauge-field-fermion vertex in
volving the gauge fields with indicesa andm. We note the
following relation between the Abelian gauge variation an
G̃(n):
r-

n

f

e
.

ng
e

et

d
-

d

2~ i /g!da~k!@G̃amn•••
~n! ~ l 1 ,l 2 ,l 3 , . . . ,l n21!

1 cyclic perm~ l 1 ,m; l 2 ,n; . . . !#

5Ãmn•••
~n21!~ l 1 ,l 2 , . . . ,l n21!

1 cyclic perm~ l 1 ,m; l 2 ,n; . . . !, ~A3!

where the tildes denote the Abelian case,

k52 (
i51

n21

l i , ~A4!

andda is defined in Eq.~3.8!. This relation follows from the
fact that the left-hand side of Eq.~A3! is the gauge variation
that one obtains by taking

Am~x1am/2!→Am~x1am/2!1~1/ag!@L~x!2L~x1am!#,
~A5!

which is equivalent to Eq.~4.1a! in an Abelian theory, and
absorbing the transformation of the fermion fields~4.1b! into
a change of variables in the path integral.@One Fourier trans-
forms Eq.~A5! with respect to the coordinate of the gauge
field to obtain the left-hand side of Eq.~A3!.# At a graphical
level, the relation~A3! is obtained by applying repeatedly
the Feynman identity
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da~k!@V~1!N~p,k!1V~1!W~p,k!#52@ iSF
W~p1k!#21PL

1PR@ iSF
W~p!#212~12PL!M ~p1k!1~12PR!M ~p!,

~A6!

as in textbook demonstrations of gauge invariance at
Feynman-graph level. TheM terms, of course, give theL
vertices on the right-hand side of Eq.~A3!. For the inverse
propagator terms, one does not find the simple pairwise c
cellation that occurs in the continuum theory because
lattice vertices are momentum dependent. It follows from
recursion relation~3.7! that this momentum dependence
compensated by the contributions that one obtains by c
tractingdm(k) with the two-gauge-field vertices. The resu
is a complete cancellation of the inverse propagator term14

Now, G̃(n) receives no contributions from the region o
integration in which the magnitude of the loop momentum
of orderp/a. This follows from the fact, discussed in Se
VI B 5, that the odd-parity parts of loops have no renorm
ization counterterms that are invariant under cyclic permu
tions of the gauge fields. It can also be seen by expand
G̃(n) in a Taylor series in the external momenta. The fi
52n terms in the expansion have a vanishing trace un
cyclic permutations of the gauge fields; the remainder in
expansion is suppressed by powers ofa when the magnitude
of the loop momentum is of orderp/a. We conclude that we
can evaluateG̃(n) ~including all permutations of the gaug
fields! by taking the limita→0 in the propagators and ver
tices. The result is just the continuum expression. Thus,

14If we had gauged the Wilson term in the action, then the
would be Wilson vertices in the amplitudes, as well as naive ve
ces. The cancellation of the inverse propagator terms would fa
the presence of the Wilson vertices because they commute ra
than anticommute with theg5’s in the inverse-propagator terms i
Eq. ~A6!. Consequently, a more complicated identity than Eq.~A3!,
involving L-gauge-field-fermion vertices, would be obtained.
the
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lim
a→0

Ãmn•••
~n21!~ l 1 ,l 2 , . . . ,l n21!1 cyclic perm~ l 1 ,m; l 2 ,n; . . . !

52~ i /g!ka@G̃amn•••
~n!cont~ l 1 ,l 2 ,l 3 , . . . ,l n21!

1 cyclic perm~ l 1 ,m; l 2 ,n; . . . !#. ~A7!

The right-hand side of Eq.~A7! is just the continuum expres-
sion for the ABJ anomaly. We can evaluate it by considering
the gauge variation of the continuum action in the presenc
of a UV regulator. If we impose a Pauli-Villars regulator,
then we obtain expressions that are identical to those in Eq
~A1a! and ~A1b!, except that there are no color factors, the
Wilson massM (p) is replaced everywhere by the Pauli-
Villars mass, the limita→0 is taken in the remaining terms
in the propagators and vertices, and there is a minus sig
because one subtracts the massive Pauli-Villars-regulat
contribution. The results are

Imnrs
~2! 52 i /~24p2!emnrs , ~A8a!

Imnrs
~3! 5 i /~48p2!emnrs , ~A8b!

which, upon continuation to Minkowski space, can be see
to be in agreement with previous calculations of the gaug
~consistent! anomaly@45#.

This result is actually independent of the choice of UV
regulator. As we have already mentioned, if one assume
symmetry under cyclic permutations of the gauge fields, the
there are no renormalization counterterms for the odd-parit
parts of the ordinary fermion-loop amplitudes~those associ-
ated with diagrams that do not containL vertices!. The ab-
sence of counterterms guarantees that the amplitudes the
selves are regulator independent. Furthermore, the anoma
can be obtained from the amplitudes by varying the gaug
fields according to Eq.~4.1a! and absorbing the transforma-
tion of the fermion fields~4.1b! into a change of variables in
the path integral, as was discussed explicitly for the Abelian
case in reference to Eq.~A3!. Therefore, the anomaly is also
regulator independent. In particular, we would have obtaine
the result~A8! had we chosen to retain the gauging of the
Wilson term in the action.
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