PHYSICAL REVIEW D VOLUME 54, NUMBER 10 15 NOVEMBER 1996

Lattice formulation of chiral gauge theories
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We present a method for formulating gauge theories of chiral fermions in lattice field theory. The method
makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in
two ways: The magnitude of the fermion determinant is replaced with the square root of the determinant for a
fermion with vectorlike couplings to the gauge field; a double limit is taken, in which the lattice spacing
associated with the fermion field is sent to zero before the lattice spacing associated with the gauge field. The
method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. We
also present a related technique for computing matrix elements of operators involving fermion fields. Although
the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that the compu-
tational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration.
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I. INTRODUCTION [21]. (Local counterterms are required to restore the chiral
symmetry in the proposal of the Zaragoza grd@g], as

The interaction of chiral spin-1/2 particles with gauge well.) However, unlike the approach of the Rome group, our
fields is a feature of many field-theoretic models, includingmethod does not entail the tuning of counterterm coeffi-
the standard electroweak model. The implementation of chieients. Instead, we implement the counterterms by modifying
ral gauge theories in lattice field theory is, of course, a prethe lattice definitions of the fermion determinant and opera-
requisite to the numerical simulation of such theories, but itor matrix elements.
is also of importance in establishing that chiral theories can The first modification is to replace the magnitude of the
be defined outside of the domain of perturbation theory. fermion determinant with the square root of the determinant

In recent years, a number of proposals for constructingf a fermion with vectorlike couplings to the gauge field
lattice versions of chiral gauge theories have been put forf18-20,23,24 (A related modification of matrix elements of
ward. A review of the present status of many of these lattic@perators involving fermion fields is also introducedhis
chiral-fermion proposals has been given by Shafdil. redefinition of the determinant implements the renormaliza-
Some proposali2—4] have not yet been studied extensively. tion counterterms that are associated with UV divergences in
Others, such as the Eichten-Preskill mo@i8], the Smit- a single fermion loop. After this modification, the fermion
Swift model[6], and the staggered-fermion mod@&|8], ap-  determinant is gauge invariant in the presence of a back-
parently fail to yield a chiral fermion spectrum because ofground gauge field, except for contributions from the Adler-
the coupling of gauge degrees of freedom to the fermiorBardeen-JackimMABJ) anomaly[25]. These violations of
[9,10]. The domain-wall proposal of Kaplaill] and the chiral symmetry cancel, as usual, when one considers a
related overlap formula of Narayanan and Neubefd®  theory containing a suitable complement of physical fermi-
have received a good deal of study, with encouraging resultsns.
[12-14. On the other hand, it has been suggested that both The presence of dynamical gauge fields leads to addi-
of these methods might fail along the lines of the failure oftional ultraviolet divergences and potentially requires the in-
the Smit-Swift model because gauge degrees of freedorroduction of many new counterterms to restore the chiral
couple to the fermion at the boundaries of the regions ofjauge symmetry. We deal with this difficulty by introducing
nonzero gauge fielfl5,16. Given the unsettled status of the separate lattice cutoffs for the fermion fields and gauge fields
proposals that are currently viable, it would seem to bd7,24,26—29 In the double limit in which the fermion cutoff
worthwhile to consider alternative methods for formulatingis removed before the gauge-field cutoff, the violations of
chiral gauge theories. chiral symmetry vanish with at least one power of the ratio

In this paper, we present a new method for constructingf cutoffs. The use of this double limit in conjunction with
lattice versions of chiral gauge theories. Our approach makethe modification of the magnitude of the fermion determinant
use of a Wilson masEL7] to remove fermion species dou- has been emphasized previously in R¢2l,26].
blers. The Wilson mass breaks the chiral gauge symmetry. Most of the analysis in this paper is couched in weak-
However, we argue that the violations of chiral symmetrycoupling coupling perturbation theory. However, we are able
that survive in the continuum limit are associated withto show, by exploiting the finite radius of convergence the
ultraviolet- (UV-) divergent amplitudes and that the chiral perturbation expansion of the fermion determinant, that our
symmetry can be partially restored through the addition ofmethod is also valid in the presence of nonperturbative
local renormalization counterterms to the actigi8—20. gauge-field configurations.
The philosophy of using local counterterms to restore the The remainder of this paper is organized as follows. In
chiral symmetry has also been suggested by the Rome grogec. Il we discuss, in general terms, fermion doubling, its
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elimination through the use of a Wilson mass, and the breakene integrates over the gauge degrees of freedom, a chiral
ing and restoration of chiral symmetry. In Sec. Il we intro- gauge theory can become a vectorlike gauge thgboy
duce a lattice implementation of a theory of left-handed fer- In a chiral theory, one cannot completely avoid such a
mions coupled to a non-Abelian gauge field. Although ourbreaking of the gauge symmetry. There are several no-go
specific analyses in subsequent sections of the paper refer toeorems which state, under a variety of assumptions, that
this model, our methods generalize immediately to modelény gauge theory that does not exhibit fermion doubling
that contain right-handed as well as left-handed fermiormust violate chiral symmetry31,32. One can argue this
fields and to models that contain scalar particles. In Sec. Iwery generally on the basis of the properties of the ABJ
we discuss the nature of the violations of gauge invarianc@nomaly. If a lattice theory preserves a chiral symmetry, then
that arise from the introduction of a Wilson mass. Section Vthe corresponding chiral current is conserved. In particular,
contains an analysis of the chiral-symmetry properties of théhe triangle anomaly is zero and remains zero in the con-
fermion determinant in the presence of a background gaugénuum limit. But, according to the proof of Adler and
field. This analysis allows us to derive a modification of theBardeen33], there is no Lorentz-covariant Bose-symmetric
determinant that restores the chiral symmetry in the case afounterterm that removes the anomaly in the triple-chiral-
an anomaly-free theory. In Sec. VI we discuss the difficultiescurrent Green’s function for a theory containing a single
that arise from dynamical gauge fields and present théermion species. That is, there is no UV regulator under
double-limit procedure for dealing with them. In Sec. VIl we which the anomaly vanishes as the regulator is removed.
indicate how the methods used in computing the fermiorHence, a lattice regulator that preserves the chiral symmetry
determinant can also be applied in computing matrix elemust cancel the anomaly through the presence of multiple
ments of operators containing fermion fields. A proof of thefermion species, i.e., doubling. Note that this argument
validity of the methods for computing the fermion determi- leaves open the possibility that one might eliminate the dou-
nant and operator matrix elements in the presence of nonpebling in a way such that the violations of chiral symmetry
turbative gauge fields is sketched in Sec. VIII. Finally, inarisesolelyfrom the ABJ anomaly. Such a result is our goal.
Sec. IX, we summarize our results and discuss various op- In employing continuum perturbative UV regulators, such
tions for implementing our chiral-fermion method. as dimensional regularization, one deals with violations of a
While this paper was in preparation, a paper by Hafna chiral gauge symmetry by adding counterterms order by or-
dez and Sundrunmi30] on the same subject appeared. Theder in perturbation theory so as to restore the chiral symme-
methods that these authors propose for computing the ferniry in selected Green's functions. The remaining violations
ion determinantbut not the matrix elements of fermion op- of the chiral symmetry arise from the ABJ anomaly and can-
erator$ are essentially identical to the ones proposed in the€el when one introduces an appropriate complement of
present paper. Many of the conclusions drawn in the presenthysical fermion species. Such an order-by-order approach
paper and in Ref30] are the same; one exception is noted atis, of course, incompatible with a nonperturbative regulariza-
the end of Sec. VI B 5. However, the details of the proofs intion of the theory. However, one might still hope to effect a
the two papers are, in general, quite different. restoration of the chiral symmetry by introducing local coun-
terterms with appropriate coefficients.
A heuristic argument in support of this idea is the follow-
Il. DOUBLING, WILSON MASSES, AND CHIRAL ing. Suppose that we have introduced a Wilson mass term.
SYMMETRY: GENERAL CONSIDERATIONS Then, the lattice spectrum for the noninteracting theory is
identical to the continuum spectrum in the linait-0. Sup-
pose also that we have fixed to a renormalizable gauge.

cause of the phenomenon of fermion doubling: for each Ieft-rhden’fEe mlagnitude of thi gr;]auge fiel(:. ils T]]UCh less than
or right-handed patrticle in the continuum theory, there ar@rder 1a, unless a source of the gauge leld has momentum
24-T|eft-handed and 2! right-handed particles in the lat- of order 1A. Consequently, for field momenta much less
tice theory, wherel is the dimensionality of space-tini@1]. than 14, the interacting lattice action apprqaches the con-
For the case of QCD, Wilsofil7] suggested that one tinuum action in the limita—0. The conclusion is that the
could remove the doublers by giving them a mass that goe ttice, in this case, is simply a U\./ regulator._ It f.OIIOWS that
to infinity as the lattice spacing goes to zero. Of course, the the differences petvyeen the Iat_tlce regularization and any
introduction of a mass explicitly breaks the chiral symmetry.Otzer va r:egLle\s;mzatlf(])cn ][nﬂSt rhe5|de at loop mr?mde_r;fta on the
However, this is not expected to present a serious problem iRraer O.t € CUtO. of the theory. Hgnce,; € dirrerences
QCD, since the gauge symmetry remains intact. Conseghust arise at short distances / cutoff); that is, they have

quently, the renormalization program is unaffected and onéhe form of local interactions. Therefore, we conclude that, if

should recover the continuum theory as the lattice regulato}'€"€ EXISts a satisfactory UV regularization of a chiral gauge

is removed 64— 0). theory(that is, one that respects the chiral gauge symmetry

In the case of a chiral gauge theory, the introduction of a1hen it must be equivalent to th@Vilson) lattice-regularized

Wilson mass has more serious consequences. For Suchthljleory, plus local counterterms. Furthermore, if we find such

theory, the Wilson mass and, hence, the UV regulator breaR t_heory, it is unique, up to gauge_—invariant counterterms,
the gauge symmetry, thereby jeopardizing the renormalizaWhICh merely renormalize the coupling constant.
tion program and the decoupling of unphysical degrees of
freedom. A failure of the gauge degrees of freedom to de-
couple may lead to an alteration of the low-energy spectrum Now let us discuss the lattice implementation of a specific

of the theory. For example, under such circumstances, whemodel: a left-handed fermion coupled to a non-Abelian

It is well known that the most straightforward transcrip-
tion of the Dirac operator to the lattice is problematic be-

Ill. A LATTICE CHIRAL-FERMION MODEL
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gauge field. As we have already mentioned, the techniques — 1
that we present are easily generalizable to models containing ~ Swi=a?>, ¢(X)7MPL£{[U#(X)_ 1]p(x+ay,)
right-handed fermions and/or scalar particles. e
We assume that the gauge-field part of ticlidean —[Ul(x—a,)—1]p(x—a,)}, (3.9
action has the standard plaquette form . . .
where Pgy =(1/2)(1* ys), {¥5,7,}=0, and ¥5=1. (In

four dimensionsys= — .) The fermion propagator
T Vs Y1Y27Y3Y4 propag
2922 E U, (0U,(x+a, IS) u(X+a,)U,(x) corresponding to the naive action is

-1

+ H.c, 3.9 SMp)=| (1)) X iy,sin(p,a)| (3.9
M

where, as usual,
wherep is the incoming fermion momentum. The ordgr

U, (x)=exdiagA,(x+a,/2)], (3.29 and ordemy? gauge-field vertices that arise from the gauging
of the naive action are

UT(x)=exd —iagA, (x+a,/2)] (3.2b
g S VNP =TV ()P
are.the lattice link variablgsﬂ,\ﬂ:A‘:‘LTa is the gauge field, _ —igTamPLCOS{(P,ﬁ%'M)a] (3.69
T, is a gauge-group matrix in the fundamental representa-
tion, g is the gauge-field coupling is the lattice spacing, ﬁ’;‘b(p P ):TaTb\/ﬁN(leJz)pL
anda,, is a unit vector in theu direction. Initially, we intro- _
duce the fermion through the “naive” lattice action for a =iag®TaTp0,,7,.PL

Dirac particle: .

P Xsin((p,+ 31, +315,0a],  (3.6D
where thev's are the vertices that arise from the gauging of
the naive lattice action for a theory of fermions with vector-
like couplings to an Abelian gauge field. Hefg,T,, ...

— 1
Si=a"2 vy g lv0cta,) —p(x-a)]. @3

where the y's are Euclidean Dirac matrices satisfying are the gauge-group matrices,b, ... are the gauge-field
{Yu,v0}=28,,. Note that, in contrast with some formula- indices, w,v... are the polarization indices, and
tions of chiral theories, our approach retains both left- andq,l,, ... are the incoming momenta, all of which are asso-

right-handed components in the fermion field. The chiral naciated respectively with the gauge fields. The incoming ferm-
ture of the theory arises from the coupling to gauge fieldsion momentum ig. The vertices of higher order i can be

which involves only the left-handed Dirac component: obtained conveniently from the recursion relation
|
AVASNN ¢+ Rl RPN PR PO T VS ¢ <1 PRSI Iy
vy L) =—08 A = , 3.
:“n+1(p 1 n+1) g PnMnt1 d,un+1(|n+l) ( 7)
|
where o~ o 1
Swi=a’> d(x) 5 {[1-U (0 ]i(x+a,)
d,=(2/)sinsp a. (3.9 o .
+[1-U, (x—a,)]¥(x—a,)}. (3.10

In addition to the usual pole @t=0, the naive propagator
(3.5) has extra poles when one or more momentum compotAs we shall see, it may sometimes be convenient to drop
nents are equal tar/a. It can be seen that half of the poles this coupling of the Wilson term to the gauge figld.
have positive chiral charge and half have negative chiral Now the fermion propagator is
chargg 31]. Thus, this doubling phenomenon leads to gauge- 1
field couplings to both left- and right-handed species; the iSV(p)=1{(1/a)>, iy,sin(p,a)+M(p)
theory, at this stage, is not chiral. 3

We follow the standard approach of eliminating the dou- (3.11
blers by including a Wilson mass terfh7] in the action:

whereM (p) is the Fourier transform of the Wilson mass:

Sw= a"Z e/f(X) a[20() —d(x+a,)—h(x—a,)]. M(p)=(1/a) >, [1—cogp,a)]. (3.12
M

(3.9
The additional vertices that arise from the gauging of the

We can gauge the Wilson term by adding to the action:  Wilson term are
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VM) =T VM (p 1) = —gTasin (p,+31,)al, Y0 —[1+HIPLA)]9(X),
(3.133 o .
o o $(X) = Y[ 1= IPRA(X)]. (4.1b
V J1,10)=T TV a0l i . .
’”‘ab(p 112)=TaTs my (P.l1.12) The Wilson terms, however, are not invariant under the
=ag2TaTb5WyM transformation(4.1). The gauge transformation results in a

\ N change in the action:
xco§(p,+3li,+3l,)al, (3.13b

— i
where the higher-order contributions can again be obtained?(SWJrsWI):adg $(X) E{Z(PL_ PRIA(X)¢(X)
from the recursion relatiof3.7). '

We see that the propagat(3.11) now has a pole only at —[(1-=Pr)A(X)U ,(X) = (1 =P U ,(x)
p=0. This would seem to leave us, as desired, with a single
Dirac particle with only left-handed couplings to the gauge XA(x+a,)]d(x+ay,)
field. Unfortunately, the Wilson termS,, and S, having —[(1- PR)A(X)UT(x—a )
the Dirac structures of masses, lead to a nonconservation of # "
the left-handed vector current by coupling the right-handed —(1—PL)UL(x—aM)A(x—aM)W(x—aﬂ)}.

component of the Dirac field back into the theory. This im- 4.2
plies that the chiral gauge invariance of the theory is broken. (4.2

Such violations of the chiral gauge symmetry cause serigy Fourier transforming Eq(4.2), one can arrive at the

ous difficulties. Gauge in_vari_ance is an imp(_)rtant _ingrediem:eynman rules for the vertices corresponding to a gauge
in the standard renormalization program. Without it, there is,griation. There is a\ -fermion vertex

an explosion of new counterterms. For example, in the ab-
sence of current conservati.on, the vacuum polarization canmM @ (p,k)=—iT4(1—Pr)M(p)+iT(1—P )M(p+k),
generate a quadratically divergent gauge-boson mass, the (4.39
light-by-light graph requires counterterms, Lorentz- . ) ) ) )
noncovariant counterterms can arise on the lattice, and, ig"d there areA-gauge-field-fermion vertices involving
non-Abelian theories, the gauge-boson—fermion coupling'=1 gauge bosons,

can become different from the triple-gauge-boson coupling. M (p.kl 1)

In order to recover a satisfactory theory of chiral fermions myp gt B L e i

coupled to massless gauge bosons, one would need to tune

——j — (MW
all of these counterterms in such a way as to restore the Ta(1 PR)V"”l"'/”n'al"'an(p’ll’ +-oln)
chiral current conservation. This is required, for example, to FiT (1= Py )Y (W (p+k.| )
obtain a massless gauge boson and to guarantee that ghost a WV g aga(PT KL ln)

fields decouple and that unitarity is preserved. (4.3b

On the other hand, we note that the Wilson mé&42
and verticeg3.13 have the property that they vanish in the Here, T, is the gauge-group matrix associated with the gauge
continuum limita—0 for fixed momenta: They are lattice transformationA, k is the incoming momentum associated
artifacts. Consequently, we expect the violations of thewith the gauge transformatiom is the incoming fermion
gauge symmetry generated by the Wilson mass to vanistmomentum, and thé; are the incoming gauge-field mo-
except when momenta of the order the lattice cutofa are  menta. Note that thé\ vertices(4.3) contain factors ofg
important. That is, we expect that, in the continuum limit, theonly for the gauge fields, not for th& fields.
violations of the chiral gauge symmetry in the Green’s func- If we choose not to gauge the Wilson term, then all of the
tions of the theory will persist only in UV divergent Feyn- gauge variation in the action residesSy :
man diagrams and subdiagrams.

— i
3(Sw)=a"2 ¥(x) 5{2(PL=PRIA(X)#(X)
IV. GAUGE VARIATIONS X,

In order to test this expectation, let us examine in more —[=PrA(X)+ P A(X+a,)]s(x+a,)
detail the nature of the violations of the gauge symmetry that o . B
result from the introduction of a Wilson mass. An infinitesi- [—PrRAC)+PLA(X=2,)]¢(x-a,)}
mal transformation of the gauge field (4.9

U, (0—U () +i AU, () —iU () A(x+a,), In this case, there is a slightly different-fermion vertex,

O(p,k)=iTPrM(p)—iT,PLM(p+k), (4.
UL () — UL +iA(x+a,) Ul () —iUL()A(X) MEPIOZITPMPI TP M, (49
(4.1a9 and there are nad -gauge-field-fermion vertices.

In the analysis to follow, we will frequently make use of
can be compensated, so as to leSye- Sy, unchanged, by a the fact that theories with vectorlike couplings to the gauge
transformation of the left-handed component of the fermiorfield exhibit a gauge invariance, even in the presence of a
field: Wilson mass term. A theory with vectorlike couplings to the
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gauge field can be obtained by settiRg=P, =1 in the (3.11) is of ordera. Here, it is crucial that we have elimi-
action (3.3, (3.4), (3.9, and (3.10. Then, if one sets nated doublers; otherwise, there would be poles in the propa-
Pr=P_ =1 in the gauge transformatiofd.1), the gauge gator for components of the loop momentum of ordéa.
variation (4.2) and theA vertices(4.3) vanish, as expected. An n-gauge-field-fermion vertex is of orda’ !, and aA-
Note, however, that the gauge symmetry is violated if onen-gauge-field-fermion vertex is of orda" . The domain
drops the gauging of the Wilson ter8.10 from the action,  of integration is of ordea ¢ in d dimensions. From this it
as can be seen from examination of E@s4) and(4.5). follows that the region in which the magnitude of the
There is also a property of th& vertices that will be  fermion-loop momentum is of ordet/a gives a contribution
crucial for our subsequent analysis. Thevertices are linear of orderaMs~¢, whereNg is the number of external gauge
combinations of either Wilson masses or Wilson verticesfields. Note that this result is independent of the number of
Consequently, they all vanish in the continuum limit-0 A vertices! We define the degree of divergence of a loop to
for fixed momenta. Thus, the gauge variations can persist ibe
the limit a—0 only if momenta of order the lattice cutoff D=d—N (5.1)
mr/a are important, that is, only in divergent Feynman dia- g9 '

grams. which corresponds to the expression in continuum field
theory. If the loop is UV convergent, that is,0f is negative,
V. AMPLITUDES IN A BACKGROUND GAUGE FIELD then the contribution from the region in which the magnitude
of the loop momentum is of order/a vanishes as a power
As a first step in identifying and dealing with the viola- of a in the limit a— 0. In this case, for a loop containing no
tions of gauge symmetry in the Green'’s functions of the chi-A vertices, the contribution from the region in which the
ral theory, let us consider the case of fermion amplitudes ifinagnitude of the loop momentum is much less thata
the presence of background gauge fields in which the mogominates. One can obtain tle-0 limit of this contribu-
mentum of a gauge-field quantum is limited be much less iRjon by replacing the integrand with the continuum expres-

magnitude than the lattice momentum cuteffa. sion. The resulting integral is UV convergent, and so one can
extend the range of integration to infinity with negligible
A. Counting powers ofa error. Hence, th@—0 limit of this contribution is identical

. _ . o i to the continuum amplitude.

First let us consider, in the limia—O0, the size of the We conclude that a fermion loop containingAavertex
contribution from a fermion loop containing zero or one yives a vanishing contribution in the limit—0, unless the
gauge-variation 4) vertices and any number of background gegree of divergence is non-negative. Hence,dfer4, the
gauge-field vertices. We will analyze, in turn, the region of g5, ge variations that persist in the continuum limit arise only
integration in which the magnitude of the loop momentum isgom loops involving aA vertex and four or fewer external
much smaller thanm/a and the region of integration in gauge-field vertices.
which the magnitude of the loop momentum is of order” sing these same arguments, we can also conclude that a
7/a. ) _ . term in a loop amplitude that is proportional to a Wilson

As we have seen, & vertex vanishes in the lima&a—0  mass or vertex gives a contribution that vanishes as a power
unless momenta of order/a are important. Thus, we expect of 4 in the limita— 0, unless the degree of divergence of the
that a loop containing & vertex will receive a vanishing |oop is non-negative. Furthermore, in the case a non-negative
contribution from the region of integration in which the mag- gegree of divergence, the dominant contribution comes from
nitude of the loop momentum is much smaller thafa.  the region of integration in which the loop momentum is of
Since the external gauge-field momenta are assumed t0 Rggers/a. That is, the contribution takes the form of a local
much smaller thanr/a, one can take tha—0 limitin this  jnteraction, with configuration-space size of the order of the

region simply by taking the@—O0 limits of the propagators j,verse of the lattice UV cutofr/a.
and vertices, holding momenta fixed. In this limit, propaga-

tors and naive single-gauge-field vertices go over to con-
tinuum propagators and vertices, which aréndependent,
while multiple-gauge-field naive vertices, Wilson vertices, At this point we could attempt to restore the gauge sym-
and A vertices vanish as at least one poweraofFurther-  metry by adding renormalization counterterms to the theory.
more, since the trace of an odd numberjofnatrices van- Of course, no counterterm can remove violations of the
ishes, aA vertex is always paired with a Wilson vertex or a gauge symmetry that arise from the ABJ anomaly. Partly
Wilson term in a propagator numerator. The volume of inte-because of the absence of full rotational symmetry on the
gration in this region is independentaf Thus, we conclude, lattice, the number of possible counterterms is quite large. In
that a loop that contains A vertex receives a contribution addition to the usual rotationally invariant gauge-field wave-
from this region of integration that vanishes as at least twdunction renormalization, there are counterterms correspond-
powers ofa in the limit a—0. ing to a gauge-field mass, a rotationally noninvariant wave-
Now we consider the region of integration in which the function renormalization, and rotationally invariant and
magnitude of the loop momentum is of ordefa. We can
determine whether this is an important region of integration
by examining the sizes of the propagators, vertices, and the!Since we are concerned only with infinitesimal gauge transfor-
domain of integration(See, for example, Ref34] for fur- mations, we need never consider the case of more thanAone
ther details. Away from its pole at the origin, the propagator vertex.

B. Modifying the fermion determinant
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noninvariant gauge-field—gauge-field scattering amplitudeart of the amplitude corresponds to the term 1/2. Thus the
The tuning of all of these counterterms in a lattice simulationeven-parity part yields a contribution that is exactly half the
would be awkward. Fortunately, there is a trick that can becorresponding contribution in a vectorlike theory.

used to implement the required counterterms automatically Now consider a contribution from a loop amplitude that
[18—20. Motivated by the fact that a theory with vectorlike contains no naive vertices. In this case, there are no projec-
couplings of the fermion to the gauge field is gauge invaritors P, the contribution is entirely even in parity, and it is
ant, we will attempt to rearrange the fermion-loop amplitude€dual to the corresponding contribution in a vectorlike

so that it looks like the loop amplitude for a vectorlike theory. In order to combine it with the even-parity parts of
theory. the contributions containing at least one naive vertex, so as

to obtain a complete vectorlike amplitude, we must discard

write the projectorsP, = (1— vs)/2, which appear only in half. However, since the discarded piece contains no naive

the naive vertices, in terms of the unit matrix apg and vertices, it must contain at least one _\Nllson vertex. As we

expand the expression for the amplitude. The result is a Su”f]?ave z_ilready argued, we can safely_dlscard S.UCh a co_ntnbu-

i . ' 'on, since that act amounts to choosing a particular tuning of

each term of which contains an even or an odd number oEhe coefficients of renormalization counterterms.

factors of ys. At the end of all of these manipulations, the even-parity

part of a fermion-loop amplitude yields a contribution that is

half the corresponding contribution in a vectorlike theory.
For those terms that contain an even numberygs,  The effective action that one obtains by integrating over the

which we call even-parity terms, we would like to move the fermion degrees of freedom is, of course, given by the loop

factors ofys together and use the identifg=1 to eliminate ~amplitudes, weighted by Wj,. Therefore, the effect of our

them, thereby obtaining the corresponding expression for gnanipulations is to replace the even-parity part of the con-

vectorlike theory. This would amount to a simple algebraictribution to the effective action by one half the effective ac-

manipulation, were it not for the fact that, anticommutes tion for a vectorlike theory. Now, the lattice Dirac operator

with the naive terms in the rationalized-propagator numeraD, which is defined by

tors and naive vertices, but commutes with the Wilson terms

in the rationalized-propagator numerators and Wilson verti- a0 _

ces. We would obtain a result that is proportional to the a Ex: YOIDY) =S+ Sut SwtSwi, 62

corresponding expression in a vectorlike theory were we to

treat ys as if it anticommuted with the Wilson terms in the has the properfythat

rationalized-propagator numerators and Wilson vertices. We _ T

will follow this procedure. Of course, the resulting expres- Dlyg—ys=75D" 5.

sion will differ from the original one, and we must account

for this difference. However, the difference is always propor-

tional to a Wilson mass from a propagator numerator or a _

Wilson vertex. As we have demonstrated in Sec. V A, a loop Serr=In(detD). 5.4

containing a W|Isor_1 mass or vertex vanishes as at Ieast ONSince deys=1, we see from Eq(5.3) that

power ofa in the limit a— 0, unless the degree of diver-

gence is non-negative, and then the contribution corresponds 5[ Sefr= (Se yo—yg) 1= 1(Seir=Sky). (5.5

to a local interaction. Thus, such contributions have the form

of renormalization counterterms. We can drop them withoutrhat is, the even-parityodd-parity part of the effective ac-

affecting the nature of the theory: Such a procedure amountigon is the realimaginary part of the effective action. Fur-

merely to adding renormalization counterterms to the actionhermore, Eq(5.4) implies that the realimaginary part of

and choosing a particular tuning of the counterterm coeffithe effective action corresponds to the magnit(ulease of

cients. Then, for the terms in the original loop amplitude thathe fermion determinant.

contained an even number 9f's we obtain expressions that  Therefore, we conclude that our manipulations amount to

are proportional to the corresponding expressions in a veahe prescription that the magnitude of the chiral fermion

torlike theory. We now work out the constants of proportion-determinant be replaced by the square root of the fermion

ality. determinant for a vectorlike theofyThis prescription has
Consider first a contribution from a loop amplitude that

contains at least one naive vertex. We are interested only i———

manipulating the terms containing an even numberyg$. 2This property also holds if one drops the gauging of the Wilson
However, it is simplest to work out the combinatorics by terms,,, on the right side of Eq(5.2).

moving the complete projectof®_ until they stand next to  3There is no ambiguity in the sign of the square root. We are
each other, treatings as if it commuted with all other fac- identifying the square root with theagnitudeof the fermion de-
tors in the amplitude. Each projector is separatedNby terminant, and so we always take the positive sign. The sign ambi-
propagators antll vertices from another, and so, in the pro- guity associated with the Witten anomdl$5] is carried by the
cess of moving one projector so that it is adjacent to anothephase of the determinant. Since the low-energy spectrum is un-
the projector flips from &, to aPg, but always winds up as changed by our modifications of the determinant, the Witten
a P, in the end. Sincesz P_, we have just one projector anomaly is unaffected. In particular, the Witten anomaly is absent
P_=(1- y5)/2 when the process is finished. The even-parityin this lattice implementation of the standard electroweak model.

Consider an arbitrary fermion-loop amplitude. We can

1. Even-parity part

(5.3

Now, the effective action is given by
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been discussed previously in the case of continuum theorigwesented in the Appendix. Here we give a general argument
[23] and in the case of lattice theorif20,24); an equivalent that the gauge variations are zero, provided that one chooses
formulation involving auxiliary fermion species has also a theory in which the complement of physical fermions sat-
been presentedl8,19. If one adopts this prescription, then isfies the anomaly-cancellation condition

the magnitude of the fermion determinant and, correspond-
ingly, the real part of the effective action have an exact
gauge invariance.

We note that, since these manipulations amount to the
addition of renormalization counterterms to the theory, they As we have argued in Sec. V A, a loop containing\a
do not affect unitarity. This is obvious at the level of the vertex receives a nonvanishing contribution in the limit
action, since, in Minkowski space, it is Hermitian even with a—0 only from the region of integration in which the mag-
the addition of counterterms. It is also easy to see diagramjtude of the loop momentum is of order/a. That means
matically: A cut of a diagram can never pass through a shortthat the nonvanishing gauge variations all have the form of
distance loogmomenta of order the UV cutoffbecause the |ocal interactions. In four dimensions, the odd-parity,
on-shell conditions and energy-momentum conservation corocal operators of dimension 4 or less that are invariant
strain the components of the momenta of the cut lines tqinder lattice rotations and involve A field and gauge
have magnitudes much smaller than the UV cutoff. fields are of the form Ti\e,,,,AAAA,] and

Of course, as we have already argued at the diagrammatipr[AEMVPU(%AV)APAJ], or  THAe€,,,0(9,A,)(0,A,)].
level, the manipulations that we have made do not affect thehese all vanish if the anomaly-cancellation conditisti)
low-energy behavior of the theory. It is easy to see this diis satisfied. There remains the possibility that subleading
rectly from the action. The even-parity part of the effective contributions from this region of integration could give rise
action generated by a fermion with left-handed couplings tao violations of gauge invariance that vanish as powers of
the gauge field is equal to one half the effective action geng. However, there are no lattice-rotationally invariant, odd-
erated by two fermions, one with left-handed couplings ancharity, local operators of dimension 5 involving\afield and
one with right-handed couplings. The continuum limit of the gauge fields. Hence, the violations of gauge invariance from

Tr(Ta{Ty, Tep)=0. (5.7

action for such a complement of fermions is given by the region of integration in which the magnitude of the loop
L o momentum is of ordetr/a vanish at least aa? in the limit
lim % [ () D (X) + Yo X) (Dl ) (%) a-0.
a0 X L 1 Ve |75 ) ¥2X)] Similar arguments show that, in two dimensions, the
gauge variations of the odd-parity part of a loop also vanish
_ —_— 2 . . . . .

_ ) (- v+igA.- X)+ 91 (X)d- vP X asa‘ in the limit a—0, provided that the anomaly is can-

Ex: (YOO Y FIgA- 7)Y X) + 41 ()7 YRy (X) celed. In two dimensions one can achieve cancellation of the

— anomaly in a nontrivial theory by introducing left-handed
T o(X) - yPL(X)], (5.0 and right-handed fermions such that the sum of [, for

. . , the left-handed fermions is equal to the sum ofTELT},) for
where =P ¢+ Pgriy,. Here, in taking the continuum the right-handed fermions.

limit, we have assumed that the momenta associated with the We emphasize that, in contrast with the modified even-

Fhouriehr transformfsf of thﬁ fields are all Izixeﬂ to be much less,5 ity 100p amplitudes, the odd-parity loop amplitudes do not
than the UV cutoff, so that one can take the "naiva™ possess an exact gauge invariance, even if(E@) is satis-

limit of operators. We conclude that the even-parity part offiey There are violations of the gauge symmetry that vanish
the effective action goes, at low momentum and in the Conbnly in the limit a—0. We have just seen that such viola-

tinuqm Iim.it, to one-half the effective action gener_ated bY ions can arise from the region of integration in which the
fermion with vectorlike couplings to the gauge field, plus fermion-loop momentum is of order/a. In Sec. V A, we

noninteracting degrees of freedom. noted that violations of gauge invariance can also arise from
the region of integration in which the magnitude of the
fermion-loop momentum is much less thafa, even in UV-

Now we turn to the terms in the loop amplitude that con-convergent diagrams. In both of these cases, the violations of
tain an odd number ofys’s, which we call the odd-parity gauge invariance vanish a$ in the limit a—0.
part. The manipulations of the preceding section, which The odd-parity amplitudes themselves are finite in the
bring ys's together and use2=1 to eliminate them, can limit a—0. This follows from the fact that there are no odd-
never succeed in converting the odd-parity parts to a vectomparity renormalization counterterms involving only gauge
like amplitude: There will always be ong; left over in the fields. In four dimensions, the lattice-rotationally invariant,
end. Thus, we must deal in another way with the violationsodd-parity, local operators of dimension 4 or less involving
of the gauge symmetry in the odd-parity parts that persist igauge fields have the forms [E,,,,A,AAA,],
the limit a—0. Trl€,,p0(0,A)AAL]L and Tl e, p0(d,A,)(d,A,)]. When

Let us specialize, for the moment, to four dimensions. Asone symmetrizes under cyclic permutations of the gauge
we have seen in Sec. V A, the gauge variations that are norfields, the first operator vanishes, and the second and third
vanishing asa—0 are contained in the fermion-loop ampli- operators are total derivatives. It can be seen in a similar
tudes involving oneA field and four or fewer gauge fields. fashion that corresponding operators in two-dimensional
Then, one can see that the nonvanishing gauge variatioribeories vanish. Since the gauge variation of an odd-parity
correspond to the ABJ anomaly. An explicit calculation isamplitude vanishes & in the limit a—0, we can conclude

2. Odd-parity part
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that the deviation of an odd-parity amplitude from a gauge-
invariant expression also vanishesads

Finally, we mention that the analysis of the gauge varia-
tions of the odd-parity parts of loops in this section does not
depend on the gauging of the Wilson term. The analysis
relies only on the power-counting rules and the general struc-
ture of the local interactions, neither of which are affected by
the presence or absence of E8.10 in the action.

VI. DYNAMICAL GAUGE FIELDS

We wish to generalize the discussion of Sec. V to include
the possibility that the gauge fields are dynamical, rather
than simply external background fields. The important dis- FIG. 1. An example of a gauge variation whose odd-parity part
tinction is that the gauge-field momentum can now contain as nonvanishing in the continuum limit in four dimensions. The
loop momentum, and so its magnitude can range up to theircle represents the fermion loop, the dashed line represents the
lattice cutoffr/a. Now we can have divergent loop integra- A field, and the curly lines represent the gauge fields.
tions involving gauge-field propagators as well as fermion
propagators, and the results for the counting of powers of a?, ann-gauge-field vertex is of ordea” *, and each loop
must be generalized from those derived in Sec. V. integration has a range of order &)Y in d dimensions.
The even-parity parts of fermion loops can again be renfFrom these facts, it is easy to see that a single-particle-
dered exactly gauge invariant by making use of tharick  irreducible (1P]) diagram or subdiagram withN; external
of Sec. VB 1 to replace the fermion loop by one-half thefermion legsN, external gauge-field legs, ahdloops is of
corresponding loop for a fermion with vectorlike interactionsordera™P, where the degree of divergenEeis given by
with the gauge field. We have already seen that this replace- s
ment does not alter the low-energy behavior of amplitudes. D=4-Ng—3N¢+L(d—4). (6.)
Therefore, it amounts to a change of UV regulator, which is
equivalent to the addition of counterterms to the theory. In  Any 1PI subdiagram that contains/a vertex and has a
the case of a background gauge field with momentum muchon-negative degree of divergence can potentially lead to a
smaller in magnitude than the UV cutoff/a, the required violation of the gauge symmetry that survives in the limit
counterterms were those generated by a single fermion loop.—0. As we have already argued, the even-parity parts of
In the present case, counterterms can also be generated fgymion loops in such a subdiagram can be rendered exactly
multiloop subdiagrams, including loops involving gauge gauge-invariant by replacing the fermion loop with one-half
fields. Fortunately, we do not need to implement these courthe corresponding loop for a fermion with vectorlike interac-
terterms explicitly: They are provided automatically by tions with the gauge field. However, in the case of the odd-

modification of the fermion-loop amplitude. parity part of a loop, a\ vertex inside a radiative correction
The case of the odd-parity parts of fermion loops is morecan give a nonvanishing contribution in four dimensions.
complex and requires some further analysis. (An example of such a contribution is shown in Fig) 1.
Hence, there are violations of the gauge symmetry in four
dimensions.

A. i f . . .
Counting powers ofa One might hope that it would be possible to restore the

We wish to study the gauge variations of the odd-paritygauge symmetry by tuning the limited number of renormal-
parts of fermion loops in the limi— 0. That is, we wish to  jzation counterterms that are associated with divergent radia-
study the behavior of a diagram or a subdiagram containingive correctiond18—20. Unfortunately, this turns out not to
exactly oneA vertex in that limit. As we argued in Sec. V, be the case. For example, in four dimensions, the diagram of
contributions involving a\ vertex are suppressed by at leastFig. 2 has an overall degree of divergeride=2. Thus, the
one power ofa in the limita—0 unless a momentum enter- contribution that arises from the odd-parity parts of the ferm-
ing the A vertex has a magnitude of ordera. Thus, we ion loops yields violations of the gauge symmetry, even
wish to study the region of integration in which the loop though the individual fermion loops have a negative degree
momenta have magnitudes of ordefa. We might as well  of divergence. In particular, the diagram generates a gauge-
take all the loop momenta in a subdiagram to have magnifield mass, and so would require a mass counterterm, even if
tudes of ordefr/a, since we can always study the case whengauge-field-mass generation has been eliminated at the one-
only a subset of the loop momenta have magnitudes of orddoop level by modifying the even-parity parts of loops as
7r/a by considering a smaller subdiagram. For purposes oflescribed in Sec. V B 1. On examining other multiloop dia-
the discussion in this subsection only, we assume that thgrams, one reaches the conclusion that that all possible
gauge field has been fixed to a renormalizable gauge. renormalization counterterms consistent with the cubic lat-

Now we use the facts that, in the region in which all tice symmetry appear.
momenta have magnitudes of orderm/a, an
n-gauge-field-fermion vertex is of ordea" ! a A-
n-gauge-field-fermion vertex is of ordea" !, a fermion 4Ghost loops, which appear with certain choices of gauge, do not
propagator is of ordes, a gauge-field propagator is of order affect these conclusions.
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os=m,<(R-1). (6.2

We will also assume that, in the interpolation, the fermion-
lattice linksU ,, depend only on the gauge-lattice linkk,

that form the edges of the surrounding hypercube. That is,
we assume that the linkd ,(y+mas) depend only on the
links Ug,(y+mg(v)ay), wheremy(v) is a vector with inte-
ger components satisfying

FIG. 2. A contribution to the gauge-field self energy that leads
to a violation of the gauge symmetry in four dimensions. The vio-
lation arises from the odd-parity parts of the loops. (6.3

my,(v)=0 for p=v,

m,,(v)=0 or 1 for p#v.
B. Double-limit procedure 9 P

We would like to restore the gauge invariance of theSimilarly, the fermion-lattice field#, (y+m,as+ 3ay,) de-
theory without resorting to the tuning of counterterms. If wePend  only on the  gauge-field-lattice fields
could limit the momenta in loops involving gauge fields to Agu(Y T Mg(¥)ag+za,,). _ S
be much less than the fermion-loop UV cutoff, then the ar- The Fourier transform of the fermion-lattice field is given
guments of Sec. V would apply. One way to achieve this iy
to introduce two different lattice spacings, for the gauge
figld andaf for the fermion field_, a-md take the limé;—0 Au(l)z(af)dE A#(X+%afﬂ)exr[—i(er%an)-l]
with a4 fixed before taking the limiag— 0. Such a double- X
limit procedure is similar in spirit to the UV regulator em-

ployed in proving the anomaly-no-renormalization theorem E(ag)dE exp:—i(y+%ag#)-I]A_M(I,er%agM),
[36]. A double-limit procedure has also been discussed pre- y
viously in the context of lattice theorid9,24,26—29. The (6.4)

use of a double limit along with the modification of the mag-
nitude of the fermion determinant has been discussed previvhere
ously in Refs[24,26). L
_ _ _ _ A (ly+3ag,)=exp(sag, )R

1. Interpolation of the gauge fields: General considerations

In computing the double limit, we assume that the gauge- X E A (y+ma+ %am)
field links that reside on the gauge-field lattidg, are the m
dynamical variables, i.e., the variables over which one inte-
grates in the path-integral expressions for amplitudes. These
are the quantities that appear in the pure gauge-field actio e 1 1
(3.1). The interactions of the gauge fields with fermion fieIds'QOte-that’ ifA,(1.y+384,) were equal 1Ay, (y+358y,),
are obtained by inserting gauge-field links, , which reside thenA, (1) would be equal tdAy, (1), where
on the fermion lattice, into the fermion action as (B.3),
(3.4), (3.9, and(3.10. These gauge-field links that reside on % "— d 1 i 1 L
the fermion lattice are not the dynamical variablég, . We Agu(11)=(3) ; Au(Y T 28gu) X ~1(y+28g,)- 1]
must obtain them by an interpolation of the dynamical (6.6)
gauge-field links.

It is often convenient to discuss the interpolation in termsis the Fourier transform of the field on the gauge-field lattice.
of the gauge field#\,, which are related to the plaquettes We express the deviation &f, (1) from Ay, (1) in terms of a
through Eq(3.2). One can use the Hamilton-Cayley theorem*“regulating factor” F ,(1):
to express the logarithm of anxXm group matrix(link), as _ _
a linear combination of the unit matrix and the first-1 A, ()=F (DAg,(1). 6.7
powers of the matrix. The ambiguity in the phase of the
coefficients can be resolved by requiring that matrices that Many different interpolations of the gauge fields are pos-
are close to the unit matrix have logarithms that are close tgible. However, if the interpolation is to lead to a gauge-
zero. This is equivalent to the requirement proposed by 'invariant theory in the double limit, then certain minimal
Hooft[27] that the eigenvalues @fyA4, and the eigenvalues requirements must be met: The interpolation must lead to
of a;As, lie on the interval ¢, ]. correct tree-level amplitudes in the continuum limit, the in-

For simplicity, we will assume thady/a;=R is an inte-  terpolation must provide a UV cutoff of orde#/ay on
ger and that the fermion lattice subdivides the gauge-fieldjauge-field momenta, and the interpolation must relate a
lattice, so that they coincide eveRy sites. For each gauge- gauge transformation of the fields on the gauge-field lattice
field-lattice site y, there are RY fermion-lattice sites to a gauge transformation of the fields on the fermion lattice.
x=y+m, wherem is vector whose components are integersWe now enumerate a set of sufficient conditions for meeting
satisfying these requirements.

xexfd —i(mas+3zar,)-1]. (6.5
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(a) Locality. The interpolation must be local in the sense derivative ofA ,(x+ 1a; ) is continuous and theth deriva-
that gauge fields on the fermion lattice cannot depend otive is continuous except at hypercube boundaries, then
gauge fields on the gauge-field lattice that are separated by (1,) can be at most orda’f“ over a range of,, of order
an arbitrarily large number of gauge-field-lattice sites. If Onerr/af It should be noted, however, that as an interpolation
were to employ a nonlocal interpolation, then the gaugehecomes smoother, it becomes increasingly less local, in-
field-fermion interactions would not go to the Contlnu(lm- V0|V|ng more W|de|y Separated sites on the gauge- -field lat-
cal) form in the limit a;,—0. The interpolation need not be tice. Therefore, such interpolations, in general, increase the
strictly local; it can depend on gauge fields that are separateglze of the ordeay errors in the limitag—0.
by a finite number of gauge-field-lattice sites. However, a The smoothness requirement, coupled with locality, also

dependence of the interpolation on widely separated gaugguarantees that one recovers the correct tree-level amplitudes
field-lattice sites would lead to large orday errors in the in the continuum limit. That is, it guarantees, that

limit a;2—0. We have assumed a local form for the interpo- _ _
lation in Eq.(6.3). lim A, ()=Ag,(). (6.12)
(b) SmoothnesdVe take as a smoothness requirement the agl—0
continuity of fields inside hypercubes on the gauge-field
lattice® That is, we require that, for a givey, the fields  This follows immediately from the fact that, because of con-
A, (y+a;m+3ay) differ on adjacent fermion lattice sites by tinuity,
guantities of order; . There can, depending on the interpo-
lation, be discontinuities along certain directions at the —d
boundaries between the gauge-field hypercubes. However, a“,TOA (hy+z aQ” 2 AM(y+afm+ )
the size of these discontinuities is independenaaf (6.12
The smoothness requirement leads to a UV cutoff on the
gauge-field momentum, since it guarantees that the Fouriesan differ fromAg,,(y+ 2ag#) only by a quantity of order
transform(6.4) vanishes a@{ if n components of are of Ra=a,. Here we are making use of the fact that the gauge
order w/a;. We can see this by making use of the elemen-ields associated with the tree amplitudes are continuous on
tary properties of Fourier transforms. Consider the onethe gauge-field lattice.
dimensional Fourier transform Therefore, we conclude that the smoothness requirement
leads to the properties

1 ; 1
AM(I,,)=anE Au(X+3ar,)exd —i(X,+3a,)l,] F.()~a] if n components of are of order/a,
! (6.133
(no sum overv). (6.9
and
From Eq.(6.8) it follows that
F.(l)=1forl<ml/a,. (6.13b
+ 1 2
af% Vo Au(x+za,)] As we have already mentioned, smoother interpolations re-
di sult in additional suppression &, (1) when components of
_ f 2 2 | are large. For example, if the interpolation/f is “trans-
B Jﬁ,afz (4/af)sm2 Zl”af”)|A L)l 6.9 versely continuous,” i.e., continuous along d)itrections,u
at the boundaries of the gauge-field-lattice plaquettes, then
where there is an additional power @f; on the right-hand side of
Eq. (6.133 for each componerit, that is of orders/a; .
Vo f(x)==(1/ap)[f(x= a,)—f(x)] (6.10 (c) Gauge covarianceWe require that, for every gauge
. o transformationA’ of the gauge-field-lattice link&J,,,, the
are the forward and backward lattice derivatives. Smoothneqﬁterpom,on of the gauge-transformed hnM%‘M must yield
reqwres that the lattice derivative of the fieWd,A, be of a set of fermion-lattice link&JX , whereA denotes a gauge
order af except possibly at gauge-field-lattice hypercube’[ransformatlon of the ferm|onMIatt|ce linkg,, [37]. This re-
boundaries, where it may be of ordsr*. Since the number quirement allows one to infer, from the gauge invariance of
of boundaries does not grow with decreasig the left-  the fermion sector of the theory on the fermion lattice, that
hand side of Eq(6.9) is at most order; *. This implies  the complete theory on the gauge-field lattice is gauge invari-
that, on the right-hand side of E¢.9), A,(I,) can be at ant.
most of ordera; over a range of, that is of orderw/a; . One might imagine that one could meet this gauge-
Smoother interpolations than we consider here lead to adnavariance requirement by fixing to a particular gauge before
ditional suppression of the Fourier transform of the interpo-carrying out the interpolation. However, gauge fixing is a
lated field at large momentum. One can derive relations siminonlocal procedure and, therefore, violates the requirement
lar to Eq.(6.9), but involving higher derivatives. From these, that the interpolation be local.
it can be seen that, if, along the direction, the (—1)st The interpolations that we will consider have the property
that the gauge field , is constant along fermion-lattice links
U, that lie along gauge-field lattice linkdgy,, . For these
SSuch a criterion has been discussed in RE#%,29,317. links, A, is chosen to be equal #y, . This implies that
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R to be resolved. In the analyses to follow, we indicate those
Ugu(y)= lr;[ Uuytmua)=[U,(y)]". (6.1  parts of the arguments that may be affected by these consid-
L erations.

In solving Eq.(6.14 for U, , we choose the branch cut of

the Rth root in accordance with the definition of the gauge

fields discussed earlier in this section. That is, we take the As an example, let us consider an interpolation that satis-

branch cut such that, i)y, is near unity, therlJ , is near fies the required properties in the case of an Abelian theory.

unity. In an Abelian theory, the gauge transformatil15 is
The property (6.14 is compatible with the gauge- equivalent to

covariance requirement. In order to see that this is so, con-

sider a gauge transformatioh’(y) on the gauge-field lat- Aguy+ag,l2)—Ag,(y+ay,/2)+(1/ag)

tice. Each linkUg,, is transformed according to X[A'(y) = A’ (y+ag,)]. (6.20

Ugu(y) = exdiA"(y)]Ug,(y)exd —TA'(y +ag,)]. If the interpolation of theA’-dependent part of Eq6.20

2. Abelian interpolation

6.15 has a vanishing lattice curl, then it can be written as the
Thus, according to Eq6.14), the fermion-field links change lattice gradient of a potential on the fermion lattice. Then Eq.
as follows: (6.20 is equivalent to a gauge transformation on the
fermion-lattice fieldof the same form as Ed6.20]. It is
_ 1R CA easy to see that a simple linear interpolation of the gauge
Uiy +m, a0 =[Ug,(y) T {exdIA"(¥)]Ugu(y) field [37] has this property. Hence, it is gauge covariant un-
xexd —iA'(y+ag,) ]} (6.16  der infinitesimal gauge transformatiofeithough not under

the large gauge transformations of Rgff]). To be explicit,
A gauge transformatiorh on the fermion-lattice links that one takes
reproduces the right-hand side @:.16 can be obtained by

the following procedure. First, set AM(y+%an+ mas)

A(y)=A'(y) forally. 6.1 _

(Y)=A"(y) y (6.17) —m%) Ag(y+3ag,+agmy(u))

Then, each linkU ,(y+m,a;) can be brought into agree-
ment with the right-hand side of Eq6.16) by suitable x 1 {(1=m,/R)[1-mq,(x)]
choice ofA (y+m,as+as,), where the choices can be made b= ! o
by a sequential algorithm, starting at the first link and work-
ing toward the last link. At the last link, the choice of +(m, /R)mg,(u)}. (6.23)
Aly+m,as+as,)=A(y+a must not conflict with Eq.
(6(&/7). Hﬂovzlevefﬁ) (y+2g,) . Clearly, this interpolation satisfies the locality and smooth-

ness requirements. We have, for this interpolation,

I {exdiA(y+m,a)]U,(y+m,a) . 1
mﬂ A,u.(|1y+§ag,u.):Ag,u(y+§ag/.L)
xXexd —iA(y+m,a;+ag,)]}

sin(za¢l ,R)
Rsin(zayl ,)

sirf(3a¢l ,R)

:exp{iA(y)]lr;{ [Ugu(y+m,anlexd —iA(y+ag,)], H Resran) | (6.22
(6.18 L . .
which implies that the regulating factor is given by
and so the choice of\(y+a,,) that is required by Eq.
(6.14 is _ sin(za¢l ,R) sirf(3a¢l ,R) 623
153 = . 1 ” 2 1 " .
Aly+ag,) =N’ (y+ag,), (6.19 Rein(3al )+ [ Risim(zarl,)

We see explicitly that the propertié6.13 hold, as expected

which agrees with Eq6.17). from our general arguments.

Recently, Shamifl] has pointed out that there is a poten-
tial difficulty in maintaining the smoothness and the gauge
covariance of the interpolation procedure. He has shown that
the interpolating field differs from a smooth field by a gauge In the case of non-Abelian gauge fields, simple linear in-
transformation that is, in general, topologically nontrivial terpolations of the sort discussed in the last section do not
and, hence, singular. These difficulties do not appear in amatisfy the gauge-covariance requirement. However, 't Hooft
Abelian theory with a noncompact gauge-field action. It is[27] has proposed a more intricate interpolation method that
possible that they might be avoided by fixing to a suitabledoes. Here we discuss a variant of 't Hooft's method that was
gauge on the gauge-field lattice. However, this issue has yetuggested by Hernaez and Sundrurf80].

3. Non-Abelian interpolation
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The first step in the method is to fix the interpolation for does this by seeking a field configuration that minimizes the
fermion-lattice links that lie along gauge-field-lattice links three-dimensional pure gauge-field action, subject to the
according to Eq(6.14). As we have already shown, this step boundary conditions along the elementary plaquettes and the
is consistent with the gauge-covariance requirement. three-dimensional Lorentz-gauge condition. The last step is

The next step is to determine the interpolation for theto determine the fields inside the four-dimensional hyper-
fields A, that lie on the two-dimensional surface of an el- cubes bounded by the three-dimensional cubes. One mini-
ementary plaquette, where heweis either one of the two mizes the four-dimensional pure gauge-field action, using the
directions that define the plaquette. The interpolation is giveffields on the cubes as boundary conditions and fixing to the
by the field configuration that minimizes the two- four-dimensional Lorentz gauge. It is easy to see, by gener-
dimensional action for a pure gauge-field theory on the fermalizing the preceding arguments, that these last two steps
ion lattice® subject to the boundary conditions on the fieldsresult in fields that satisfy the smoothness requirement.
on the links bounding the plaguette. To obtain a unique so- Finally, there is the question of whether this interpolation
lution to the minimization condition, one must fix the gauge.method satisfies the gauge-covariance requirement. Suppose
A convenient choice is the two-dimensional Lorentz gauge that we have obtained a field configuration on the fermion

P lattice by the interpolation method. Then suppose that we
E VoA -0 6.24 r_nake a gauge transformation on the gauge_-fleld lattice. The
=R : links bounding the elementary plaquettes will be changed in

value, and a reapplication of the interpolation procedure will

One can argue that the solution is unique as follows. Thé&esult in a new field configuration on the fermion lattice. We
minimization condition implies that the field configurations wish to show that this new field configuration can be ob-
satisfy the gauge-field equations of motion. If we neglecttained by a gauge transformation on the fermion lattice of the
terms of higher order im;, then the equation of motion is  original fermion-lattice field configuration. Here, we para-

phrase the argument presented in Ra€].

(V,—igA,F,,=0, (6.25 We have already shown that there is a gauge transforma-

tion that does this for the gauge fields that lie on the links

where bounding the elementary plaquettes on the gauge-field lat-
N 4 , tice. Such a gauge transformation will not, in general, leave

Fu=V. A=V, A,—ig[AL AL (6.20  the gauge fields that lie inside the plaquettes in the two-

dimensional Lorentz gauge. However, we can always make a
gauge transformation on theterior of a plaquette that re-

turns the fields to the Lorentz gauge, without changing the
“UtA _inU— 2 2_ fields on the links that bound the plaquette. Similarly, we can
Vi Va1V A ATF G (AL AD 0.(6 27 find a gauge transformation on the interior of a three-

' dimensional cube that returns the fields inside the cube to the

If one setsg=0 in Eq.(6.27), then one recovers Laplace’s three-dimensional Lorentz gauge and a gauge transformation
equation, which, with the given boundary conditions, has &n the interior of a four-dimensional hypercube that returns
unique solution. One can obtain a solution to all orders irthe fields inside the hypercube to the four-dimensional Lor-

g by iteration, treating the ordey and orderg? terms as €ntz gauge. Since the pure gauge-field actions are invariant
source terms and using the solution to Laplace’s equation dghder these transformations, the resulting configuration still
a starting point. Hence, in the continuum limit, the interpo_SatiSﬁeS the minimization criteria. Hence, it is identical to the
lated field configuration that is continuously connected to thdield obtained by applying the interpolation method to the
g=0 solutions is unique. gauge-transformed gauge-field-lattice links. Here we are as-

In order to see that the gauge fields derived through thiSuming the uniqueness of the interpolated field configuration.
interpolation procedure satisfy the smoothness requirement,
suppose the opposite, that a gauge field has a discontinuity. 4. Feynman rules
Then, for at least one poin, the first term on the left-hand By considering the Fourier transform of the lattice action,
side of Eq.(6.27) is of ordera; ?, whereas the remaining one can easily derive the Feynman rules for the double-limit
terms are of ordeaf_1 or smaller.(Here we are assuming procedure.
that the interpolated gauge field is bounded, which may not The Feynman rules for the gauge-field propagators and
be true in the presence of singularities of the type discussedertices are the same as those for a theory with lattice spac-
by Shamir[1].) Therefore, in the case of a discontinuousing a5. Momenta in propagators and vertices range from
gauge field, the equations of motion cannot be satisfied in the- m/ay to w/ag, and momentum is conserved modulo
continuum limit, and one concludes that the gauge field doe&n/ay. Hence, pure gauge-field loop integrations range
not satisfy minimization criterion in the continuum limit. from —m/ag to m/ay.

In four dimensions, there are two more steps in the inter- The Feynman rules for fermion propagators, gauge-field-
polation method. The third step is to determine the fieldsermion vertices, and\-fermion vertices are determined by
inside the cubes bounded by the elementary plaquettes. Owensidering the Fourier transform of the fermionic part of the

action. Momenta in propagators and vertices range from
—mla; to w/a; and momentum is conserved modulo
5This action is given by Eq(3.1), but in two dimensions and on 27/a;. Hence, pure fermionic loop integrations range from
the fermion lattice. —mla; to 7la;.

and we have rescaled the fields ¢pyIn the Lorentz gauge,
the equation of motion becomes
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When a gauge-field line attaches to a fermion line, ondermion line, if one gauge-field momentum entering a ferm-
must consider the effect of the interpolation in working oution line is large, at least one other gauge-field momentum
the Fourier transform of the gauge field on the fermion lat-entering a fermion line must be large. We assume, initially,
tice, as in Eq(6.4). The interpolation introduces a regulating that exactly two gauge-field momenta entering a fermion line
factor F (1) for each connection of a gauge-field line to aare large.

fermion line. The gauge-field momentugwhich appears in Powers ofa; arise from the fermion propagators, gauge-
the Fourier transform of the gauge field on the fermion lat-field-fermion vertices, and\ vertices through which the
tice (6.4), can be written as large momentum flows. It is easy to see, by making use of
the power-counting rules of Sec. V A, that the minimum
I=1"+(27/ag)q, (6.28  number of factors ofy; arises if the large gauge-field mo-

mentum flows through at most one fermion propagator.
Inverse powers of; can arise from the sum over vari-
ables of the type in Eq. (6.28). If two gauge-field momenta
entering a fermion line are large, there is only one indepen-
dent sum, the other sum being constrained by momentum

! : . conservation. The range of the sum contributes a factor of
q for each attachment ofa gquge-ﬂeldzbrlme toa fermlor) orderR~a; * for each component of the momentum that is
line. The quantityl’ may be interpreted as the gauge-field large f

momentum variable in the Fourier transform of the gauge There is a regulator factdf associated with each of the

field on the gauge-field lattic¢s.6). Only |" appears in oints at which the two large momenta enter the fermion

gauge—fielq_propagators and pure gauge-field vertices; th the. From Eq.(6.133, we see that each regulator factor con-
are insensitive to the value gfbecause, as can be seen fromtributes a factora; for each component of the momentum

Eq. (6.6), they are periodic, with period#a, . In a Feyn- that is large. Hence, the minimum number of poweraois

man diagram, integrations over variables of the typare ; i | fth
constrained by the fact that the total of the gauge-field mopbtalned by taking only one component of the momentum to

: . . . be large.
mentum, including the variables of the ty[de is conserved, 9

dulo 2/ _ i d tex. Thus. th By way of illustration, let us consider the case in which
modulo Zm/ag, In everypropagator and vertex. 1hus, the y,q large gauge-field momentum flows through exactly one
gauge-field-momentum variables, including those of the typ

, . . ; . fermion propagator. As we have already noted, this case
l", can be reorgamzed, in the usual way, into Independerﬁives the minimum number of powers af. The fermion
e o g 10 . o0 e IOPASIOr Cntrbutes a factor ofordf The large o
) . -Ing o propag » 9AUIEE o htum also flows through two gauge-field-fermion vertices
field-fermion vertices, and vertices depend on the value of : :

. or a gauge-field-fermion vertex andAavertex. The gauge-
g, as well as on the value ¢f. The sums over variables of

the typeq are constrained only by momentum conservation,ﬁeld'ferm'on ve.rtlces contribute factors ({flor(jm? and the
modulo 2r/a,, along each fermion line. Aside from this A Vertex contributes a factor of ordes; =. Hence, the
constraint, there is an independent sum oydor each at- Propagators anéjlvertmes contribute a factor of oefein the
tachment of a gauge-field line to a fermion line. amplitude andh; in the gauge variation. If we take one com-
Using these Feynman rules and E6.13h, we see that, Ponent of the gauge-fieldlmomentum to be large, the range of
in the limit a;—0, for momenta much less than the cutoff the sum overqg gives a; ~ and the regulator factors give
wlay, the Feynman rules for the fermion become the conafz. We conclude that, in this example, the contribution to
tinuum Feynman rules. Therefore, we recover the requirethe amplitude from the factors associated with the large

where q takes on values from<{R+1)/2 to (R—1)/2 in
integer steps andw/ag<I|'<m/ay. We can think of the
integration ovel from — 7r/a; to 7/a; as an integration over
|” from—m/ag4 to w/ag and a sum oveq from (—R+1)/2
to (R—1)/2. There is an integration ovér and a sum over

low-energy behavior of the tree-level amplitudes. gauge-field momenta is of ordaf. The contribution to the
. gauge variation is larger, of ordaﬂ. This is a consequence
5. Counting powers of a of the fact that the large momentum associated withAhe

In th|s Section we will demonstrate, for an Open fermionﬁeld Contribu'[eS an additional dimensionful faCtor O&flto
line or for the odd-parity part of a closed fermion line, that the gauge variation. Since the contributions to the amplitude
contributions that arise when gauge-figlot A-field) mo-  itself from this momentum region vanish a%, we can still
menta of ordermw/a; enter the line vanish in the limit conclude that the amplitude differs from a gauge-invariant
a;—0 with a, fixed. We call momenta of ordetr/a;  expression by terms of order .
“large” momenta. In the arguments to follow, we assume Now let us relax the assumption that only two of the
that the even-parity parts of fermion loops have been modigauge-field momenta entering the fermion line are large. For
fied as in Sec. V B 1 to render them exactly gauge invarianteach additional large momentum, there is at least one factor
One consequence of this assumption is that all of the gauggy for the propagators and vertices through which it flows, a
variations must arise from the odd-parity parts of loops. Thdactor a; ! for the associated sum over and a factoras
argument that we present holds in two and four dimensiondrom the associated regulator factor. Hence, contributions in-
We proceed by counting the powersaf associated with a volving more than two large gauge-field momenta are sup-
contribution in which large gauge-fieldr A -field) momenta pressed by at least one additional poweref
enter a fermion line. We can also relax the assumption that the fermion-loop
In the initial discussion, we assume that the fermion-loopmomentum associated with a closed fermion line is not large.
momentum associated with a closed fermion line is not largeSuppose that the loop momentum is large. Then, the entire
Since momentum is conserved, moduler/2;, along a contribution of the loop, including the sums over variables of
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the typeq and the regulator factors, arises from short dis-with the analysis of Sec. V, allows us to conclude that the
tances and can be expressed in terms of local operators aad-parity parts of fermion loops can be rendered gauge in-
the gauge-field lattice. variant by taking the double limit and by requiring the ferm-

Consider first the case of loops containing gauge variaion to be in a representation of the gauge group that satisfies
tions (A vertices. All of the gauge variations arise from the anomaly-cancellation condition. We assume that the
odd-parity loops. As we have already discussed in Seceven-parity parts of fermion loops have been rendered ex-
V B 2, the lattice-rotationally invariant, odd-parity, local op- actly gauge invariant by replacing them with one-half the
erators of dimensio or less involving aA field are of the  corresponding loop for a fermion with a vectorlike coupling
form of the ABJ anomaly(In the present case, continuum to the gauge field. Therefore, we have achieved our goal of
derivatives must be replaced by lattice derivatives on thenaking all the amplitudes in the theory gauge invariant. We
gauge-field lattice, since we are really discussing the effechave also found that contributions associated with the odd-
tive theory on the gauge-field lattigelhese all vanish if the parity parts of loops are finite in the limit;—0. This im-
anomaly-cancellation conditiofb.?) is satisfied. There are plies that the phase of the fermion determinant is finite in this
no such operators of dimensiaht 1. Hence, the contribu-  |imit. Furthermore, we have seen that the contributions in
tions to the gauge variations from the regions of integratiorwhich a large gauge-field momentum enter the odd-parity
in which both the gauge-field momenta and the fermiOﬂ-'OOFbart of a fermion |00p vanish aa%' possib]y times |Oga_
moment are large are of ordaf, possibly times logarithms  rithms of a,. This result, together with the analysis of Sec.
of as. V B 2, implies that the phase of the fermion determinant dif-

Now consider the odd-parity parts of loop amplitudes.fers from a gauge-invariant expression by terms of order
Recalling our arguments of Sec. V B(@nd again replacing a2 possibly times logarithms a; , in the limit a;—O0.
continuum derivatives by derivatives on the gauge-field lat- |t should be noted that the detailed power-counting rules
tice), we note that the lattice-rotationally invariant, local, we have presented in this subsection are specific to interpo-
odd-parity operators of dimensiah or less involving only |ations of the gauge fields that are discontinuous in at least
gauge fields all vanish under Bose Symmetrization. FUrtherone direction at the boundaries of the gauge-fie]d hyper-
more, there are no lattice-rotationally invariant, odd-parity,cubes. One might devise smoother interpolations in which
local operators of dimensiod+1 involving only gauge the gauge fieldor their higher derivativésare continuous.
fields. Hence, the contributions to the odd-parity loop ampli-Eqr such interpolations, the regulating factey,(l) and,
tudes from the regions of integration in which both gauge+ence, the contributions to the amplitudes and gauge varia-
field momenta and the fermion-loop moment are large are ofions would be suppressed by additional factorspfvhen
orderaf, possibly times logarithms ;. gauge-field-fermion-loop momenta are of ordefa; .

Finally, we consider the even-parity parts of loop ampli- |t may be useful to contrast our results with those of Ref.
tudes. Because the even-parity parts of loops are exact{ig0]. In that work, the authors make the additional assump-
gauge invariant, only gauge-invariant local operators cafion that the interpolation is transversely continuo(Ehat
contribute. Thereis a lattice-rotationally invariant, gauge- assumption is valid for the interpolations that we have pre-
invariant, Bose-symmetric operator of dimensthmamely,  sented. They are then able to show that the all the contribu-
the one that renormalizes the gauge-field wave functiontions in which a large gauge-field momentum enters a ferm-
Hence, there could, in principle, be contributions, in whichjon loop are suppressed by powersagf Their proof applies
large gauge-field momenta flow into the even-parity parts oto the even-parity parts of loops, as well as to the odd-parity
loops, that go aa?, possibly times logarithms of;. Of  parts of loops and to loops containifgvertices. They con-
course, we need not show that such contributions vanish iolude, as we do, that contributions in which large gauge-field
order to establish the gauge invariance of the double-limitnomenta enter the odd-parity parts of loops Vanisl’a%\,s
procedure. Furthermore, their behavior is no worse than thajowever, they also conclude that gauge variations vanish as

of the even-parity parts of fermion loops in the absence oh?  This last result seems to be at odds with our explicit
large gauge-field momenta, which is also logarithmic inexample.

as .
We must also consider the possibility that, in a Feynman
diagram, inverse powers @&; could arise from a fermion
loop other than the fermion line under consideration, and In the last section we demonstrated that there exists a
thereby lead to contributions from regions of large gaugesatisfactory procedure for computing the fermion determi-
field momenta that are nonvanishingas-0. We have al- nant. There are actually several variants of this procedure
ready seen that such inverse powergptannot arise when that one can employ, and some may be more efficient than
gauge-field momenta entering the loop are large and or wheothers in practical calculations. We now discuss some of
both gauge-field momenta and the fermion-loop momentunthese computational options.
are large. The local-operator argument given for the latter Once one has replaced the magnitude of the fermion de-
case also applies when only the fermion-loop momentum iserminant with the square root of the determinant for a ferm-
large. Therefore, no inverse powers af can arise from a ion with vectorlike couplings to the gauge field, the magni-
fermion loop. tude of the fermion determinant has an exact gauge
Let us summarize these results. We have found that, in thimvariance. Therefore, one can evaluate the modified magni-
double limit, contributions in which a large gauge-field mo-tude of the determinant without employing the double-limit
mentum enters a fermion loop containing a gauge variatioprocedure, and still obtain a gauge-invariant result. That re-
vanish asa; times logarithms ofa;. This result, combined sult will be equivalent to the one obtained through the

6. Options for computing the determinant
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doubling-limit procedure, since the effective action isthe thermodynamic limit of an infinite humber of configura-
unique, aside from gauge-invariant counterterms, which cations. To the extent that the thermodynamic limit is equiva-
always be absorbed into a redefinition of the coupling conlent to the infinite-volume limit, the number of “excep-
stant. tional” gauge-field configurations should become
There are several advantages in calculating the magnitudenishingly small as the volume is taken to infinity.

of the fermion determinant without making use of the We note that it is straightforward to reduce the size of the
double-limit procedure. There is the obvious advantage thajauge-variant contributions that arise from the odd-parity
one would not be faced in a numerical simulation with theparts of fermion loops in the region of integration in which
computational burden of taking the limi;—0 for each the fermion-loop momentum and gauge-field momenta all
gauge-field configuration. Another advantage follows fromhave magnitudes much less thatta;. These contributions
the fact that, in four dimensions, the magnitude of the deterge g consequence of orday deviations of the tree-level
minant is divergent in the limia;— 0. The divergence arises |attice fermion action from the tree-level continuum fermion
from the diagram with two external gauge fields, which gen-,ction. Such deviations are easily removed by employing an
erates the logarithm dd; that is associated with the gauge- improved tree-level actiof89,40. To reduce the size of the
field wave-function renormalization. In the double-limit pro- gauge variations that arise from the low-momentum region,

cedure, one would need to .add a Wave—functlon—it is necessary only to improve the Wilson term in the tree-
renormalization counterterm, which has the effect Oflevel action

replacing Ir; with Inag, to obtain the correct renormaliza- Similarly, one can eliminate the leading gauge-variant

tion of the gauge-field-fermion coupling and to obtain a finite o . ) .
result. This counterterm can be determined from a one-looﬁqomnbl.Jtlons t'hat arise frgm thg odd-parity parts of loops in
e region of integration in which the gauge-field momenta

calculation, since radiative corrections to the fermion loop X : : but the fermion.| ;
with two external gauge fields are suppressed in the limiENtering a loop are large, but the fermion-loop momentum

a;—0. However, it is simpler to bypass the double limit itself is small. As we h_ave seen, these contributior_ls a_rise
altogether in the case of the magnitude of the determinant.fom subdiagrams in which the factors along the fermion line

One must, of course, make use of the double-limit proce@ré the same as in a one-loop fermion self-energy diagram.
dure in computing the phase of the determinant. Fortunatelyn particular, the leading contribution comes from the terms
in two and four dimensions, the phase is finite in the limitcorresponding to a fermion-mass renormalization. Mass gen-
a;—0, because, as we have seen, there are no odd-pari§tation is precluded if the action is invariant under a constant
Bose-symmetric renormalization counterterms. shift of the fermion field 38]. If we drop the gauging of the

There is one advantage in using the double-limit proceWilson term(3.10), then the action exhibits this symmefry.
dure to compute the magnitude of the determinant. The vedn the case of the odd-parity parts of loops, all of the argu-
torlike gauge symmetry of the magnitude of the determinantnents in both this section on dynamical gauge fields and in
does not preclude the generation of a mass for the fermioBec. V on background gauge fields are independent of
field. In general, the unrenormalized fermion mass will bewhether the gauging of the Wilson ter(8.10 is retained or
nonzero. However, it is easy to see that fermion self-energyot. Hence, we are free to drop the gauging of the Wilson
diagrams are suppressed in the double-limit procedure.  term in computing the phase of the determindimt.comput-

In the absence of the double-limit procedure, one musing the magnitude of the determinant, one must retain the
tune a counterternii.e., the hopping parametaf) to make gauging of the Wilson term in order to maintain the vector-
the renormalized mass of the fermion with vectorlike cou-like gauge symmetry.
plings vanish. In practical terms, this procedure is somewhat Unfortunately, the two improvement schemes that we
tricky because we wish to maintain the positivity of Wilson- have mentioned are of no use unless one can also reduce the
Dirac determinant, so that its square root is real. Of course, Bize of the violations of gauge invariance that arise from the
is well known, from studies of theories with vectorlike inter- regions of integration in which both gauge-field momenta
actions, how to determine the critical value of the hoppingand fermion-loop momenta are of ordefa; . This probably
parameterk.iica, &t Which the renormalized fermion mass would require the use of smoother interpolations, which, as
vanishes. There are several procedures at one’s disposal. Ree have already argued, ultimately require nonlocality and
example, one can use the vanishing of mass corrections tead to increased errors of orday .
the Ward-Takahashi identities, the vanishing of the Although the violations of gauge invariance vanish as
Goldstone-bosoitmeson mass, or the first occurrence of a powers ofa;, a sufficiently large gauge transformation could
zero eigenvalue of the Wilson-Dirac operator as definitionamake the coefficient of the gauge variation impractically
of kgiical- These approaches are equivalent in the infinite
volume limit. In determiningxiicas By any of these meth-
ods, one averages over an ensemble of gauge configurationsit is easy to understand diagrammatically why mass generation
A given gauge configuration may yield a valuecgiic, that  cannot occur. If the Wilson term is not gauged, then there are no
differs from the ensemble average. Therefore, if one fixewilson vertices, only naive vertices. Each of these contains a
x to be slightly below the ensemble-average value ofy matrix and a factoP, . Consider a fermion-self-energy diagram.
Keritical» ONE May encounter “exceptional” gauge-field con- A Wilson mass from a rationalized propagator numerator vanishes
figurations, such that the lowest eigenvalue of the Dirac opwhen sandwiched between two naive vertices, because of the pro-
erator is negative and the fermion determinant is negativgectorsP, . The remaining terms in the propagator numerators yield
On the other hand, we expect an average of the determinanbntributions with an odd number gf matrices, and so they do not
over an ensemble of gauge configurations to be positive ihave the form of a mass term.
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large for numerical work. Therefore, it is probably advanta-cedure. For the-odd parity part, we must invoke the double-
geous to fix the interpolating field to a smooth gauge, such amit procedure to ensure gauge invariance. If an interacting
one of the renormalizable gauges. Then one would at leagtropagator’'s end points are separated by a distance that van-
avoid the spurious, large, “pure gauge” contributions to theishes asa— 0, then nonvanishing gauge variations can arise
gauge field that are known to arise from UV divergences. from the associated fermion-loop divergence. In this case, as
was discussed in Sec. VB2, we must also impose the
anomaly-cancellation conditiorf5.7) in order to ensure
gauge invarianc.

Since a chiral-fermion actioffor example, the sum of ~ The power-counting arguments that we have given previ-
Egs. (3.3, (3.4, (3.9, and (3.10] is not invariant under ously also apply to the operator matrix elements. In particu-
gauge transformations, if one computes matrix elements dfr, we expect the violations of gauge invariance arising from
operators involving fermion fields straightforwardly using odd-parity operator loops to vanish a# and we expect the
such an action, the result is not, in general, gauge invariantleviations of the odd-parity loops from a gauge-invariant
In this section, we discuss a method for computing matrixexpression to vanish aﬁ
elements of fermion operators that yields a gauge-invariant
result. The method that we present is related, but not identi- B. Example: Violation of baryon-number conservation

cal, to the approach that we used in computing the fermion . .
bp puting As an example of the procedure for computing matrix

determinant. elements of operators involving fermion fields, let us con
In analyzing the matrix elements of fermion operators, we P invoiving : : ' u

assume that any fermions in the initial and final states havéIder the matrix element of the baryon-number current
been removed by the Lehmann-Symanzik-Zimmermann B B B
: J = 7.1
(LSZ) reduction. We also assume that the total number of W)= 970 7, 87(X) 7D
ol//S;::Ztggsuglaaobtze\/\}icz:tslcgl;?:;:efti fi?rr:hiitt(;[?sc;en rmlc;g ai_n the presence of dynamical gauge fields plus an external
gtors 9 ProPag, rce of background gauge-field quanta. We assume that
9 ' ® is part of a larger column vectay such that the gauge
group of the complete fieldy satisfies the anomaly-
A. General procedure cancellation condition(5.7), but the subgroup associated
with ¢ does not.
A matrix element ofJE is given by a weighted average

VII. MATRIX ELEMENTS OF FERMION OPERATORS

We begin by employing theys trick of Sec. VB 1 to
move all the factord®; to the end points of the interacting ’ - >
fermion propagators, treatings as if it anticommuted with ©Ver gauge-field configurations of
all Wilson masses and vertices. If each interacting propaga-
tor's end points are separated by a fixed amount in configu- _ B
ration space, then there is no fermion-loop UV divergence FM_E Try,Sehiral X:X). (7.2
associated with the propagator. In this case, the rearrange-

ment changes the expression by terms of omjeand by  whereS2, . (x,x’) is the interacting baryon propagator, with
terms corresponding to the renormalization counterterms agonfiguration-space end pointaandx’. The subscript “chi-
sociated with radiative corrections to the propagators andy| ingicates that the interactions of the baryons with the
operator vertices. If the interacting propagator's end pointyauge field are left handed. NoW,, is gauge variant. How-
are separated by a dlst_ance that vamSh.EEB—aﬁ, .then there ever, we can modify the definition of the matrix element so
is a fermion-loop UV divergence associated with the propazg tg render it gauge invariant. We apply thetrick of Sec.
gator. In this case, the rearrangement also changes the &%-g 1 1o move all of the projector®, in S, on the right-

pression by terms _corresponding to 'ghe renormalization, , \ sige of Eq(7.2) to the factory, . The terms that we
counterterms associated with the fermion loop. Once Weiiscard in this procedure all vanislﬁ in the lindg—0 or

have ‘_’°mp'et,ed this rearrangement, all of the facRyrsare have the the forms of renormalization counterterms. The re-
associated w@h the fermion operators. Of cour_Bé,= PL,_ sult is thatF , is replaced by
and so there is at most one such factor associated with the K’
left-hand side and one such factor associated with the right- _
hand side of each operator. . FuZE Try,PLSoeciol X.X), (7.3

If the operators themselves are independent of the gauge X
field, then the modified matrix element is exactly gauge in-
variant, since the fermion now has only vectorlike interac-where S, is the interacting propagator for baryons with
tions with the gauge field along its propagators. Therefore, irvectorlike couplings to the gauge field. The expresgiaf)
this case, we can compute the modified matrix element with-
out recourse to the double-limit procedure.

If an operator involves gauge fields, for example, through 2Since we have applied thg; trick here to the odd-parity part as
a gauge-covariant derivative, then, with the modification thatvell as to the even-parity part, the anomaly takes on a somewhat
we have described, the even-parity part of the expressiodifferent form than in the Appendix. However, the conclusion—that
associated with that operator is still exactly gauge invariantthe gauge variations in the presence of a background field can be
but the odd-parity part is not. Therefore, we can compute theemoved by imposing the anomaly cancellation conditlm)—is
even-parity part without making use of the double-limit pro- unchanged.
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has an exadivectorlike) gauge invariance. Consequently, we  We begin by noting that the determinant of the lattice
can compute it without recourse to the double-limit proce-Dirac operatorD can be written as
dure.

Now F, corresponds to the matrix element of a left- detD=de{d+ (D—9)]=dew def1+ (1/9)(D—d)]

handed baryon current
=det exp{Tr In[1+(1/9)(D— )]}, (8.1

3B(x) = ¢B(x) 7,,PLYB(X) (7.4)

in a theory in which the baryons have vectorlike interactions\{_vr?:rege'r‘:'utrgit:gie Egsgngf;?at?or? ?r\:gluztf?g;\?e: Oa)c;tion

Wlth the gauge field. A.S IS We".kng\ém’ in four dlmens'lons, In(detD) is obtained by expanding the logarithm in £§.1)
in a theory with vectorlike couplings,, is not conserved: Its in DOWers of

divergence is given by the ABJ anomaly, which is nonzero in P 019 . . .
the presence of background gauge fields with nonzero wind- As an |nterme<_j|ate step n an_alyzmg thg perturpat|on Se-
ing number. Thus, we have recovered the familiar result thaf€S: 1€t us eéxamine the series in/{D—J), introducing a
once one has added such renormalization counterterms as af@/ametet as the coefficient of #(D—0) in Eq. (8.1). At

required to render its matrix elements gauge invariant, thé*ed lattice spacing in a finite volum® andJ are just finite
baryon_number current is not Conser\[dd_]_ matrices. Therefore, the |Ogal’lthm can be considered to be a

Of course, one could also compute the violation ofmatrix-valued function with matrix argument. Furthermore,
baryon-number conservation directly, by examining ampli-its expansion in powers af(1/9)(D— ) has a finite radius
tudes that have unequal numbers of incoming and outgoingf convergence. Lex be an eigenvalue of 4(D—J). Then
baryons. Such amplitudes can be computed in the standatte radius of convergence of the logarithm as a matrix-
way by considering the contributions to the path integral ofvalued function off iS1A\ ., Wherex . is the\ with the
the zero modes of the Dirac operafd?]. As we have ar- largest magnitude. There is a branch-point singularity in the
gued in Sec. V B Isee, in particular, Eq5.6)], the manipu-  matrix-valued function whenevein=—1.
lations of the fermion determinant that we advocate do not Now, (D— ) is an analytic function o through the link
affect the low-energy modes in the continuum limit. There-yariaplesU. Since (D— d) vanishes as at least one power of
fore, the lattice and continuum calculations yield the Sam& asg—0, the perturbation series has a finite radius of con-
result. vergence ing. The branch points af\ = —1 correspond to

isolated branch points in the complgyplane. Consequently,
VIIl. BEYOND PERTURBATION THEORY one can determine dBtalmost everywhere in the complex

The analyses that we have presented so far have be&hPlane by analytic continuation ig. Of course, there are
given in terms of weak-coupling perturbation theory. In this@mbiguities because of the cuts that arise from the branch
section, we will argue that, in the presence of an arbitranyPoints. However, the ambiguity associated with a cut has no
background gauge f|e|d' the perturbation expansions for th@ffect on the determinant, since it leads to shifts of the argu-
fermion determinant and interacting fermion propagators acment of the exponential by=in, wheren is an integef’. The
tually determine these quantities completely, except at th@ranch points themselves correspond to zero modes of the
zero modes of the Dirac operator. This is not to imply thatDirac operator. As we have argued in Sec. V B 1, the proce-
one can analyze the complete theory through the use of pedure that we use to rearrange the determinant leaves the zero
turbative techniques. The gauge-field sector of the theory, aihodes unaffected; they are given, in the limjt-0, by the
course, exhibits effects that are not amenable to a perturbaero modes of the continuum Dirac operator.
tive analysis. Similarly, we can write the interacting propagator as

Throughout this section, we will assume that the gauge-
field configuration defined on the gauge-field lattiaad im-
plicitly on the fermion latticg is bounded. Of course, there is
no universal bound that applies to all of the gauge-field con-
figurations in the path integral. Therefore our conclusions
may not hold when one sums over all configurations. An-

other potential loophole arises from the fact that, configura- . . . .
tion by configuration, the gauge fields on the fermion-field | '€ €xpansion of the right-hand side of E8.2) in powers

lattice may become unbounded because of singularities i’ (D—9) has a finite radiu§lo.f convergence. Therefore, the
perturbation expansion dd~ - in powers ofg has a finite

the interpolating field of the type discussed by Sharr ; : i .
radius of convergence. By analytic continuation, the pertur-

bation series determines the interacting propagator every-
where except at the zero modes of the Dirac operator.

In the arguments to follow, the convergence properties of
the perturbation series are crucial. Ultimately, we wish to
study these properties in the case of infinite volume and in °In computing the square root of the determinant of the Wilson-
the limit a;— 0. However, it is illuminating to consider first Dirac operator, we choose< k.- This implies that we are to
the behavior of the perturbation series for the somewhat sinthe right of the cut in d@=exp(Tr InD), and so there is no am-
pler case of finite volume and fixed lattice spacing. biguity in the square root.

D il=[9+(D-09)] t=0" Y1+ (D—0)(1l9)] .
(8.2

A. Finite volume and fixed lattice spacing
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B. Infinite volume and the limit a;—0 propagator, sums of gauge-field momenta and the fermion

Now let us take up the infinite-volume case. Here it isMomentum nearly vanisH. o _
most convenient to examine the convergence properties of SUPPOSe that we include the possibility of multiple-gauge-
the perturbation series, using the momentum-space Feynmgﬁld—fermmn vertices. The effect of these is to replace propa-
rules. We are ultimately interested in the linait—0. gator factors by powers @ . Therefore, we can bound any
In order to demonstrate that our perturbative analyseBropagator factor byC,a;+(C,/k)], whereC, andC, are

hold for arbitraryg, we need to prove two properties: that the af—indepen(jent conjstants. This implies that the contributions
perturbation series for the effective actilngarithm of the © the mteractm% propagator are bounded by
fermion determinantand the interacting fermion propagator (A9)"[C1as+(C2/k)]" and the contributions to the effec-
have finite radii of convergence, and that one can take thive action are bounded by ((Ag)"[C,as+(Ca/K)]™
limit a;— 0 term by term in the perturbation series. To prove T"US, we see that, f@ small enough, these contributions are
the first property, we need to show only that the perturbatiorPOU”ded by the terms in a convergent geometric series that is
series is absolutely convergent. To prove the second propfdependent o&; . _ . o .
erty, we must show that the perturbation series is uniformly NOw consider the region of integration in which some of
convergent as;—0. We will demonstrate this by showing 1€ gauge-field momenta are of ordefa; . As we have seen
that the series can be majorized. That is, we will show that? Se€c. VI B 5, such contributions are suppressed by powers
for everya in a neighborhood ofi;=0, the absolute value ©f &. If a gauge-field momentum of order/a; passes
of each term in the perturbation series is bounded by afrough a fermion propagator, then the propagator is
as-independent series that converges. Thus, the proof of thRounded by a constant times. Thus, we can again bound
uniform convergence of the series also demonstrates the afi€ propagator factors byC,as+(C,/k)]. There are addi-
solute convergence of the series. We will assume that thonal powers ofa; from the regulating factors associated
first few terms in the perturbation series of ordgror less  with the vertices. Otherwise, the bounds on vertices are un-
have been removed, so that we do not have to deal witkhanged. The powers af; in the regulating factors more
individual terms in the determinant that are divergent aghan compensate for inverse powersphssociated with the
a;— 0. Obviously, subtracting a finite number of terms doesranges of the sums over the gauge-field-momentum variables
not affect the convergence of the series. g in Eq.(6.28. Therefore, the contributions to the interacting
First we analyze the region of integration in which all the propagator and the effective action are again bounded by
gauge-field momenta, and the fermion-loop momentum i{Ag)"[C,a;+(C,/k)]" and (1h)(Ag)"[Cias+(C,/k)]",
the case of the effective action, have magnitudes much lesespectively. Forg small enough, these gquantities are, in
than 7r/a; . Consider the contribution to a term of ordgt  turn, bounded by the terms in a convergent geometric series
that contains only single-gauge-field-fermion vertiagd).  that is independent .
The magnitude of each vertex is bounded by an Finally, we consider contributions to the effective action
as-independent constant timgs We can obtain a bound on from the region of integration in which the fermion-loop
the magnitude each fermion propagator by dropping the Wilsnomentum is of ordetr/a;. We see from Eq(5.1) and the
son term and replacing (d4)sin(p,a) by a finite constant of ~surrounding discussion that, for gauge-field momenta with
order unity timesp,, . Thus, the magnitude of each propaga- magnitudes much less tham/a¢, such contributions are
tor is bounded by ama;-independent constant times|d|. ~ bounded by ara;-independent constant timesé\g)”a?‘d.
Since we are assuming, in the case of contributions to th&he argument of the preceding paragraph shows that contri-
effective action, that the fermion momentum is much lessbutions from gauge-field momenta of ordeva; do not
than w/a;, the volume of the integration is an change this bound. Again, far small enough, the contribu-
as-independent constant. Thus, each such contribution to thioons are bounded by the terms in @pindependent, conver-
interacting fermion propagator is bounded®ggA/k)", and  gent geometric series.
each such contribution to the effective action is bounded by We conclude that the perturbation series for the interact-
(1/)C(Ag/k)", whereC is ana;-independent constamd,is  ing propagator and the effective action have finite radii of
the maximum magnitude of the gauge fiéldandk is the = convergence and are uniformly convergent in the limit
minimum of the magnitudes of the gauge-field momentaa;—0. Therefore, the perturbation series determine the
Here, we assume that the momentum of the gauge field is cyropagator and the fermion determinant by analytic continu-
off in the infrared by physical effects or by application of an ation, except at singularities. Furthermore, we can take the
explicit infrared regulator. We also assume that one can ndimit a;—0 term by term. In this limit, the singularities cor-
glect the regions of integration in which sums of gauge-fieldrespond to the zero modes of the continuum Dirac operator.
momenta nearly vanish or, in the case of the interacting

Suppose that we constrairmomentum integrations so that each

%ere we are assuming that the gauge-field configuration in moeomponent of momentum has a range of sizelative its uncon-
mentum space is bounded. In fact, the gauge field may be singulatrained range. There arg/[ (n—r)!r!] ways to do this. The vol-
in momentum space. However, if the gauge field is bounded irume of integration of each of themomenta is reduced by a factor
configuration space, then these singularities are integrable. Hence®. At mostr propagators are enhanced by a factar. Therefore,
one could eliminate any such singularities by smearing thehe net effect of constraining momenta is to multiply the bounds we
momentum-space gauge field over a small fraction of the range diiave obtained by '™+ 1)"<C", whereC is anas-independent
the gauge-field momentum integration. constant.
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Therefore, the conclusions that we have reached througha@ the summation over gauge-field configurations outside of
perturbative analysis of the fermion determinant and interactthe perturbative analysis.
ing propagator apply for arbitrarg. In particular, we can Shamir[1] has presented an argument that potentially un-
conclude that, in the continuum limit, the prescriptions wedermines these analyses. He observes that, if an interpolation
have given for computing the fermion determinant and theof the gauge field is gauge covariant, then the interpolating
matrix elements of fermion operators give the correct low-field is related to a smooth field by a gauge transformation
energy amplitudes and yield gauge-invariant expressions. that is, in general, topologically nontrivial. Hence, the inter-

polating field may possess singularities. Such singular fields

violate the smoothness requirement for gauge fields on the
IX. SUMMARY AND DISCUSSION fermion-field lattice that was used in the power-counting

analyses of Sec. VIB5 and also violate the assumption of

We have presented a general procedure for constructingie boundedness of the gauge fields that was made in Sec.
gauge-invariant lattice formulations of theories of chiral fer-v/||. It is possible that one might avoid these difficulties by
mions interacting with gauge fields. The procedure involvesixing to a suitable gauge on the gauge-field lattice. How-
three key ingredients(1l) The fermions must be in an ever, this is an open question.
anomaly-free representation of the gauge gro(®); one Putting aside questions of principle, it is not yet clear that
must replace the magnitude of the fermion determinant withhe procedure presented will be tractable in practical numeri-
the square root of the determinant for a fermion that hagal calculations. The obvious stumbling block is the double-
vectorlike couplings to the gauge field, but that is otherwiseimit procedure fora; and ay, which could lead to comput-
identical to the original fermion; ang8) one mustimplement  ing requirements that are much greater than in the case of a
the gauge-field action on a lattice with spaciagand the  single lattice-spacing limit.
interacting fermion-field action on a lattice with spacing  In computing themagnitudeof the fermion determinant,
a¢, define a suitable interpolation of the gauge field to thepne has two distinct options. One can apply the double-limit
fermion-field lattice, and take the limé;— 0 before taking procedure. Then one must tune a counterterm that renormal-
the limit a;— 0. In four dimensions, all three of these con- izes the gauge-field wave function in order to keep the mag-
ditions are required to ensure the gauge invariance of thajtude of the determinant finite in the limit;—0 and to
formulation. In this procedure, the magnitude of the determigbtain the correct renormalization of the gauge-field-fermion
nant is exactly gauge invariant. The gauge variations of theéoupling. The coefficient of this counterterm is readily com-
phase of the determinant vanishags and the deviations of puted in perturbation theory, since it is generated only by the
the phase of the determinant from a gauge-invariant exprestiagram with a single fermion loop and two external gauge
sion vanish aafz, possibly times logarithms af; . (We note fields.
that the result of Ref[30] for the power behavior of the On the other hand, the magnitude of the fermion determi-
gauge variations seems to differ from the one derived in thigant is exactly gauge invariant, once one has replaced it with
papen) the square root of the determinant for a fermion with vector-

We have also presented a closely related method for ddike interactions. Therefore, one can compute the magnitude
fining, in a gauge-invariant fashion, matrix elements of ferm-of the determinant by taking;=ay. Since a vectorlike
ion operators in chiral theories. As was shown in Sec. VII B,gauge symmetry does not preclude the generation of a ferm-
the application of this method to the baryon-number currenton mass, one must also tune a mass countertaopping
leads to the familiar conclusion that that current is not conparameter, so as to keep the fermion masslégln prac-
served. tice, it may be a challenging problem to approach the critical

The analysis of these methods is couched in weakvalue of the hopping parameter in such a way that the posi-
coupling perturbation theory. In analyzing the properties of divity of the determinant is maintained. See the discussion in
UV regulator, of which the lattice is an example, we areSec. VI B 6) In this single-limit procedure, all other renor-
concerned with the behavior of the theory near the cutoffmalization counterterms can be absorbed into a redefinition
Hence, one might hope, in the case of asymptotically fre®f the coupling constant. Hence, only the fermion mass and
theories, that the perturbation expansion would be a reliabléhe coupling constant need be tuned in taking the continuum
guide to that behavior. limit.

Furthermore, as we have argued in Sec. VI, in the pres- It seems possible that one would need to compute only the
ence of a given gauge-field configuration, the perturbationmagnitude of the fermion determinant in updating gauge-
series defines the interacting fermion propagator and théeld links, computing the phase of the determinant as an
fermion determinant everywhere except at zero modes of thexpectation value once equilibrated lattices had been gener-
Dirac operator. The convergence of the series is uniform irated. If this turns out to be the case, then the use of a single-
a¢, so that one can analyze the continuum limit term bylimit procedure for the magnitude of the determinant would
term. Hence, the methods for computing the determinant antesult in an even greater relative reduction of the computing
propagator are valid in the presence of a nonperturbativéme.
gauge-field configuration. We have not addressed the issue In computing the phase of the fermion determinant one

127 typical fermion action is given by the sum of E@8.3), (3.4), 3The diagrams that generate fermion masses are suppressed in
(3.9, and(3.10. The corresponding action for a fermion with vec- the double-limit procedure, and so no mass counterterm is required
torlike couplings is obtained by settifgr=P =1. in that case.
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mustemploy the double-limit procedure. This computation isgauge invariance that arise from the odd-parity parts of ferm-
mitigated somewhat in two and four dimensions by the facion loops vanish in limi;=a4;— 0. Nevertheless, one could
that, owing to the absence of odd-parity counterterms in amse the two-dimensional theories as a testing ground for
anomaly-free theory, the phase is actually finite in the limitmethods of extrapolating to the limét;—0 with a4 fixed.
a;—0. Therefore, one can carry out a straightforward ex-One could check the gauge invariance of the fermion deter-
trapolation to obtain the limit. minant and also compare the results for various physical
One source of error in the extrapolation is easily reducedquantities, such as the mass spectrum, with analytic results.
As we have seen in Sec. VI, ordaf-deviations of the phase More stringent tests of the methods presented here could
of the determinant from a gauge-invariant expression arisee obtained in four dimensions. Again, one could test the
from the region of integration in which the gauge-field mo- convergence of the extrapolation &g=0 and the gauge
menta and the fermion-loop momentum associated with #nvariance of the determinant. Also, in weak coupling, one
given fermion loop are much smaller in magnitude thancould compare results for physical quantities in the standard
wla; . In this region, the deviations from the limiting result electroweak model with calculations in weak-coupling per-
come from the deviations of the tree-level lattice action fromturbation theory.
the tree-level continuum action. The order ap of these It is clear that the fermion determinant we have described
deviations can readily be increased through the use of imeorresponds to a complex effective action. This is a general
proved actions[39,40. Similarly, one can eliminate the property of chiral gauge theories that would be expected to
orderafz gauge-variant contributions to the phase of the dehold regardless of the lattice formulation chosen: The effec-
terminant that arise from the region of integration in whichtive action receives imaginary contributions that iwgepen-
gauge-field momenta are large and the associated fermioflentof the UV regularization from finite odd-parity parts of
loop momentum is small. One can accomplish this by dropfermion loops. It remains an open question as to whether one
ping the gauging of the Wilson ter8.10 in computing the ~ €an d_evise prz_ictical means for handling such complex ac-
phase of the fermion determinatiut not the magnituge  tions in numerical simulations.
Then there is a symmetry under constant shifts of the ferm-
ion field [38] that precludes the generation of fermion-mass
terms, which give the largest gauge-variant contributions.
Unfortunately, such improvement programs are of limited ACKNOWLEDGMENTS
utility, since errors also arise from the region of integration
in both gauge-field momenta and fermion-loop momenta are | would like to thank Maarten Golterman, Eve Kos
of ordersr/a; . As we showed in Sec. VI B 5, when one usesPeter Lepage, and D. K. Sinclair for a number of illuminat-
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Although gauge-variant contributions ultimately vanish as
a;—0, the presence of large, “pure gauge” contributions in
gauge-field configurations might make the approach to that APPENDIX: COMPUTATION OF THE ANOMALY
limit problematic in numerical work. It is probably sensible,
therefore, to fix the interpolating field to a smooth gauge, In this appendix we present a calculation of the gauge
such as one of the renormalizable gauges, to ensure at leagtriation of the odd-parity parts of fermion loops in the pres-
that the known, spurious, “pure gauge” contributions areence of a background gauge field in four dimensipé4.
absent. For simplicity, we restrict ourselves to the case in which the
In testing the ideas of this paper in numerical simulationsWilson term has not been gauged. If one includes the gaug-
it would be most efficient, computationally, to consider two-ing of the Wilson term(3.10, then one must consider addi-
dimensional theories. Then, anomaly cancellation can bgonal contributions to the gauge variation involving
achieved by introducing both left- and right-handed fermi-A-gauge-field-fermion vertices.
ons, such that the sum of Ti{T,) for the left-handed fer- We will use repeatedly the fact that a trace containing an
mions is equal to the sum of TF(T}) for the right-handed odd number ofys’s is nonvanishing only if it contains four
fermions [43]. Strictly speaking, two-dimensional theories factors that are linearly independent combinations of the the
do not require the double-limit procedure. That is because, a®atrices y;, v,, ¥s, and y,. These linearly independent
can be seen from E@6.1), the only divergent subdiagram is combinations can come from three sources: thmatrices
a fermion loop with exactly two external gauge fields; thereassociated with naive vertices in the loop, thematrices
are no divergent subdiagrams containing gauge-field propassociated with external momenta in propagators, angl the
gators. However, the odd-parity part of a fermion loop withmatrices associated with the loop momentum in propagators.
two external gauge fields is zero by virtue of the anomaly- In order to expose the external momenta, we expand the
cancellation condition(5.7). Therefore, the violations of propagators and vertices in a Taylor series in the external
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contributions up to those containing four external gauge
fields.

The contribution involving oné\ vertex and no external
gauge fields vanishes by Abelian charge-conjugation sym-
metry.

Next consider the contribution involving ong vertex
and one external gauge field. If the gauge-field vertex is a
naive vertex, it can contribute one of the linearly indepen-
denty-matrix factors. The one independent external momen-
tum can contribute another. However, that is not enough to
saturate a trace containing an odd numbey; st

In the contribution involving oné\ vertex and two exter-
nal gauge fields, we can have at most two factors of external
momentum in the Taylor expansion and still obtain a nonva-
nishing contribution in the limita—0. Then, in order to
obtain a nonvanishing trace, we must take all of the gauge-
field-fermion vertices to be of the typ€", which involves a
single gauge field, and we must retain terms proportional to
the external momentum only in the Taylor expansions of the
propagators. The nonvanishing contribution then comes from
the diagram of Fig. @&, whose amplitude we denote by
A plus the diagrams obtained by permuting the gauge
fields. That contribution is given by

FIG. 3. Diagrams that contribute to the ABJ anomaly in four |Im[A(2) (I, p,0;15,v,¢)+ pern(ly, u,b;l5,v,c)]
dimensions. a—=0

- 4

Ll =

i Tr{lT M(p) i sW(p)}
)4 a5 ﬂ(app)
momenta times the lattice spaciagWe can use the result,
derived in Sec. V A, that a loop containing/a vertex re- (1N

. L LT - X(I1+15),aVv, " (p)
ceives a nonvanishing contribution in the lingit-0 only
from the region of integration in which the magnitude of the
loop momentum is of ordefr/a. In this region, it is easy to
see, from the discussion in Sec. V A and the fact that the
external momenta are assumed to be much smaller in mag-

nitude than the cutoffr/a, that thenth term in the Taylor

sw(p)}llo avi (p)%%p)}

a(ap,) »

expansion has a relative suppression faethr Thus, for a + permtly, u,bilz,v,)

loop with degree of divergenc®, terms in the Taylor ex-

pansion containing more thdh factors of the external mo- =g W,UI 2p (L2 Tr(T Ty, TeH)

menta do not receive a nonvanishing contribution from the

region of large loop momentum in the lindt—0. Therefore, + perm(ly, w,b:l,,v,0) (Ala)

we retain only the firsD terms in the Taylor expansion. For

these terms, it can be seen, from the discussion in Sec. V A,

that the region of integration in which the magnitude of the

loop momentum is much less thara gives a negligible Here, sums over repeated indices are understood. The sub-

contribution. Thus, we can extend the range of the integrascript “odd” on the trace means that we retain only those
tion to the entire Brillouin zone. terms that contain an odd number ¢t's, and “perm”

We also note that the matrices associated with the loop Mmeans permutations of the symbols separated by semicolons,
momentum can never contribute the required linearly indel-€., permutations of the gauge fields. In the last line we have
pendent factors: If a term contains an odd number otsed the fact, which follows from the computation of the
y-matrix factors associated with the loop momentum, ittrace, that Efv)p(, is proportional toe,,, -
gives a vanishing contribution because the integrand is an A similar analysis shows that the nonvanishing contribu-
odd function of the loop momentum; if a term contains antion involving oneA vertex and three external gauge fields is
even number ofy-matrix factors associated with the external given in the limita—0 by the diagram of Fig. ®), whose
momentum, these factors can be brought together by usingmplitude we denote b, plus the diagrams obtained by
the anticommutation relations and eliminated by usingpermuting the gauge fields. In this cag®=1, and so we
(y-a)’=a>. retain only one power of the external momentum in the Tay-

Armed with these facts, let us consider in turn the varioudor expansion. The result is
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lim [AD) (11, ,0;15,2,¢513,p,d) + pern(ly, u,b;l,,v,¢:l5,p,d)]

a—0
= d%p [ d
=g’ _W—(zﬂ)m(ﬂast(p) Tapy > (P (1o +la), aV, N PSE PV, (P SE(RIV, (P SE(p)
d
HiTaysM(PISERIV,(P)| 5o SH(P) |11+ ), AV M) SRV () S ()

HTaysM(P) SRV, P SE PRIV, (p)

——5{(p) }Ilg aVi'(p)st(p)

(9(apg) odd

XTr(T,T,TeTq)+ perm(ly,u,b;l,,v,Cilz,p,d)

=031 (I 1o+ 1), Tr(Ta T T Ta) + permily, u,b;l,,v,¢5l3,p,d)

=013 L (UDTHT AT [Te, Tal) Hlan( LA THT Ty, [ To Tel}) +126( L2 TH(To{ Ty [ Te, Tol}

nrpo

+Ta{Td a[Tb 1Tc]}+Ta{Tc v[Tb de]})]"‘ perml1-,U«:b;|2,V,C;|3,P,d)- (Alb)

Here, we have used the facts that only the first Dirac trace is nonzero and that it is proportiepg,to

It is easily seen that the contribution involving ofevertex and four external gauge fields is given in the lieit0 by
the diagram of Fig. @), whose amplitude we denote B*), plus the diagrams obtained by permuting the gauge fields. In this
case, D=0, and so we set the external momenta equal to zero. The result is

I|m[A(:V)pg(l1,,u,b;lz,v,c;lg,p,d;l4,a,e)+ pern(ly, u,b;l,,v,c;l5,p,d;14,0,€)]

o 4

er[uTaySM(p)sF(p)v“)N(p)SEV(p)v(“N(p)SW(mv Np)SE(P)VEN(0)SE(P) Todd

9w
XTr(T,TpTTgTe) tperm(ly, u,b;ls,v,Cil3,p,d;14,0,€)
=[g* A UBTHTA[ Ty Tl [T, Tel) + permtly, m,b;l,,v,¢il3,0,d;14,0,€)]. (Alc)
|
Again we have used the fact that the Dirac trace is propor- —(I/g)da(k)[FE,”,iy (P P P P
tional to €,,,,. In fact, direct computation of the trace
shows that + cyclic perm(l,, u;l5,v; .. .)]
14 ,=0. (A2) el (P P P
We see that the odd-parity contributions from the fermion + cyclic perntl,u;lo,v; .. .), (A3)
loops all vanish in the limia— 0 if the anomaly-cancellation ) .
condition (5.7) is satisfied. where the tildes denote the Abelian case,
Now let us sketch a method by which the calculation of
1) andI® can be completed. If we drop the color factors in k== | (A4)
- [

Eqg. (A1), then the resulting expressions correspond to the
calculation of the gauge variations in an Abelian theory.
Sincel @ and1®) are symmetric under cyclic permutations andd,, is defined in Eq(3.8). This relation follows from the
of the gauge fields, we can compute them by considerindact that the left-hand side of E¢A3) is the gauge variation
cyclic permutations of the Abelian expressions for the gaugéhat one obtains by taking
variations.

Consider the quantitf(“) ..., which is the Abelian am- Auxta,l2)—A,(xta,l2)+ (Lag[AX) —Alx+a,)],

plitude associated with tﬁg Vodd-parity part of a particular set (AS)

of diagrams involving a fermion loom gauge fieldSwith  whijch is equivalent to Eqi4.1a in an Abelian theory, and
indicesauv- - ), and noA vertices. We include i the  absorbing the transformation of the fermion fieidslb into
diagram with no multiple-gauge-field-fermion vertices anda change of variables in the path integf@ne Fourier trans-
the diagram with a single two-gauge-field-fermion vertex in-forms Eq.(A5) with respect to the coordinate of the gauge
volving the gauge fields with indices and x. We note the field to obtain the left-hand side of EGA3).] At a graphical
following relation between the Abelian gauge variation andlevel, the relation(A3) is obtained by applying repeatedly
. the Feynman identity
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da(K)[VON(p,K) +VPW(p,k) =~ [iSF(p+k) ] P imAL " D(1,15, ... Jo-1)+ cyclic permly, uil,,v; ...)
a—0
+PR[iS\'év(p)]_l_(l_PL)M(p‘Fk)‘l‘(l—PR)M(p)’ . T(n)cont
(A6) :_(I/g)k“[rauww(ll-lz,|3, coadns)
+ cyclic permil ¢, u;l,,v; .. .)]. A7)

as in textbook demonstrations of gauge invariance at thdhe right-hand side of EqA7) is just the continuum expres-
Feynman-graph level. Thl terms, of course, give tha sion for the ABJ anomaly. We can evaluate it by considering

vertices on the right-hand side of EGA3). For the inverse the gauge variation of the continuum action in the presence

propagator terms, one does not find the simple pairwise car?—f a UV regulator. If we impose a Pauli-Villars regulator,

cellation that occurs in the continuum theory because th‘%hen we obtain expressions that are identical to those in Egs.
: ) Ala) and (Alb), except that there are no color factors, the
lattice vertices are momentum dependent. It follows from th

. . : "Silson massM(p) is replaced everywhere by the Pauli-
recursion relation3.7) that this momentum dependence is Villars mass, the limia— 0 is taken in the remaining terms

compensated by the contributions that one obtains by oMy, the propagators and vertices, and there is a minus sign

tractingd,, (k) with the two-gauge-field vertices. The result o5, se one subtracts the massive Pauli-Villars-regulator
is a complete cancellation of the inverse propagator téfms. contribution. The results are

Now, ™ receives no contributions from the region of

integration in which the magnitude of the loop momentum is 1) o= —1/(247%) €,y p0r» (A8a)
of order 7r/a. This follows from the fact, discussed in Sec. 3) ] 5
VI B 5, that the odd-parity parts of loops have no renormal- lvpo=11(48T°) €, (A8D)

i;ation counterterms'that are invariant under cyclic permu'ga\-NhiCh, upon continuation to Minkowski space, can be seen
tions of the gauge fields. It can also be seen by expanding, o iy agreement with previous calculations of the gauge
I'™ in a Taylor series in the external momenta. The f'rSt(consisten)tanomaly[45].
5—n terms in the expansion have a vanishing trace under Tpjs result is actually independent of the choice of UV
cyclic permutations of the gauge fields; the remainder in thgegulator. As we have already mentioned, if one assumes
expansion is suppressed by powersathen the magnitude  symmetry under cyclic permutations of the gauge fields, then
of the loop momentum is of order/a. We conclude that we  there are no renormalization counterterms for the odd-parity
can evaluatd™ (including all permutations of the gauge parts of the ordinary fermion-loop amplitudéfose associ-
fields) by taking the limita—0 in the propagators and ver- ated with diagrams that do not contalnvertices. The ab-
tices. The result is just the continuum expression. Thus, sence of counterterms guarantees that the amplitudes them-
selves are regulator independent. Furthermore, the anomaly
can be obtained from the amplitudes by varying the gauge
1t we had gauged the Wilson term in the action, then therefields according to Eq4.18 and absorbing the transforma-
would be Wilson vertices in the amplitudes, as well as naive vertition of the fermion field€4.1b) into a change of variables in
ces. The cancellation of the inverse propagator terms would fail ithe path integral, as was discussed explicitly for the Abelian
the presence of the Wilson vertices because they commute rathease in reference to EA3). Therefore, the anomaly is also
than anticommute with thes's in the inverse-propagator terms in regulator independent. In particular, we would have obtained
Eg. (A6). Consequently, a more complicated identity than @), the result(A8) had we chosen to retain the gauging of the
involving A -gauge-field-fermion vertices, would be obtained. Wilson term in the action.
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