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Ponderomotive force due to neutrinos
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We derive the ponderomotive force for an arbitrary distribution of neutrinos in a plasma using quantum
statistical field theory. The ponderomotive force has two components. One component, due to gradients in the
neutrino and plasma densities, reduces to a known expression. The second component is due to a coupling
between anisotropies in the neutrino and plasma densities. Simple estimates suggest that the ponderomotive
force is too small to play an important role in the acceleration mechanism for plasma in type Il supernovae.
[S0556-282(96)01322-1

PACS numbdss): 11.10.Wx, 13.10t+q, 14.60.Lm

I. INTRODUCTION ant expressions for the ponderomotive force due to an arbi-
trary distribution of photons in a medium.
Recently, Melrose and Hardyl] derived a covariant ex- Here we apply the same procedure to calculate the pon-

pression for the ponderomotive force due to a distribution ofleromotive force due to a beamed distribution of neutrinos
photons in a mediungplasmons using a synthesis of quan- V2 the electron self-energy diagrams shown in Fig. 1, where
tum electrodynamics and the@ovariant kinetic theory of (€ Neutrino propagators are replaced by their propagators

plasmas, called quantum plasmadynami@®D). The ex- averaged over the neutrinos in the medium. All calculations

presson derved eprodces e weliown classaah 212 PSIOTIC 0 west reer it where i e
quantum limit and has a clear physical interpretation involv- : ! P

force separates into two terms. The first of these is the force

ing the self-energy of the electron in a medium. Here Weue to gradients in the electron and neutrino densities and

apply the same procedure to determine a covariant exprégsy, ces to a known expressifsl. This term is proportional
sion for the ponderomotive force due to a distribution ofy; the gifference between the neutrino and antineutrino den-
neutrinos in a plasma. We show that the resulting expressiogities. The second term couples asymmetries in the neutrino
reproduces the known expression for isotropic neutrinos angistribution to asymmetries in the electron distribution and is
electron distributions. proportional to the sum of the neutrino and antineutrino den-

QPD [2] is a prescription for including the effects of a sities. This second term has not been identified previously.
medium in QED in a manner similar to the more well-known |t should be noted that the ponderomotive force calculated
finite temperature field theorf=TFT) [3]. The main advan- here is due solely to resonant neutrino-electron interactions
tage of QPD in these calculations is that it allows the use ofind should not be confused with the force due to elastic
arbitrary distribution functions to represent the medium,neutrino-electron scattering.
rather than the thermal distribution functions used in FTFT. In Sec. Il we introduce our notation and one fundamental
Thus QPD allows the analysis of the effects of anisotropicequation of QPD, the particle propagator statistically aver-
media, such as a beamed distribution of neutrinos or an ele@ged over the medium. We then calculate the contributions
tron distribution with a heat-flux-induced anisotropy. of the self-energy operators shown in Fig. 1. From these we

The main motivation for the investigation reported here isobtain an expression for the ponderomotive force due to neu-
the application to the regions near the core of a type Il sullinos which is accurate to lowest order inMy,. This
pernova (SN) during the brief &3 seg neutrino burst, (heory is applied to the neutrino burst of a type Il SN in Sec.
where an intense neutrino flux occurs and passes througdfl: @nd the dynamical significance of the ponderomotive
very dense plasma. These conditions are the most favorab{@c€ i discussed. Natural unitshtc=1) are used
known for the ponderomotive force due to neutrinos to beélroughout unless otherwise stated.
physically significant.

The ponderomotive force due to a distribution of photons
in a plasma is the force that acts on the background plasma The form of the statistically averaged fermion propagator
as a result of the average effect of the high frequency oscilused here is that derived by Hayes and Melrp8g This
lations of the electromagnetic fie[d].

The ponderomotive force due to a distribution of photons
in a medium is identified via the following step&]: The v
self-energy of the electron is calculated and the contribution @ ilw‘f e
due to the photon distribution is identified; the effective mass
correction due to this self-energy term is calculated; this w e z o
mass correction is integrated over the electron distribution
and is interpreted as a potential in which the electrons lie;
finally, the ponderomotive force is identified as the gradient FIG. 1. Feynman diagrams representing the self-energy of the
of this potential. This prescription reproduces known covari-electron due to neutrinos.

II. PONDEROMOTIVE FORCE
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derivation is outlined in the Appendix. The resulting expres-is the W-boson propagator. Assuming that all momenta are
sion for the propagator for a massive fermion is small compared to the mass of théboson, Eq(6) becomes

G(P)=(y,P*+m)

—iGE dq
PZ—m?+i0 EWZWYM(]-—)’QJ WRGSGnu(Q)Y’L(l—}%).

®
: ()

+ 7 > n(ep)S(P°— ee)
€ 1

Inserting Eq(5), expanding, and integrating ovg? leads to

where n¢(ep) are the fermion occupation numbers, with .

e=+1 corresponding to particleg=—1 corresponding to W —iGg q -
antiparticles, and where the four-momenu® (E,P) is re- 2= 2 4(1+75) vu W[(l,q)“nnu(q)

lated to the physical four-momentum=(e,p) through

P=ep. Note that the physical four-momentum is defined +(=19)*n(— )], 9)

such that the particle’s energyis always positive. Clearly,
if n“(ep) are evaluated for thermal distributions, E#j) re-  where we use the energy-momentum relation for massless
duces to the expressions derived through FT8]T neutrinos,e =|q|, and wherej=q/|q|. Performing the same
Following Hayes and Melros$], we relate this propaga- procedure for thez-boson diagram, the second diagram of
tor to a four-dimensional distribution functioN(P) given  Fig. 1, leads to
by
32=(gy+gax", (10)

27m
N(P):E;ﬂTa(E—es)nf(ep), 2 it

which may be written gy=—3+2sifby, ga=-—3, (12)

N(P)= 2 47rmS(P?—m?)H (e )n*(ep), 3 and wheref,, is the Weinberg angle.
e=*1 Hence, the resonant contribution of a neutrino medium to

. - . o the self-energy of an electron is given by
whereH(x) is the Heaviside step function. Equati¢®) is

useful in performing averages over the distribution of fermi- _iG
ons through S = P8 sif oy (1+ vs) v, N, (12

V2

— d*P
A=TrJ —(277)4N(P)A, @ here

where “Tr” denotes the trace over the Dirac matrices and d3q

corresponds to a sum over the spin states of the fermions. NH= j ——[(19)*n (@) +(—19)*n(—a)].
The resonant part of the statistically averaged propagator, (2m) 3

Eq. (1), for a massless neutrino may be written (13

. ¢ A. Mass excess
ReG,(q)=27id X, 8(g*)H(ee)ng(eq).  (5) ,
e==*1 In the electron propagator, the self-energy term appears in

. ) the denominator as (> —m). This leads to a correction
The nonresonant part of the propagator is identical to the,_ 1 sm in the electron mass given by
vacuum propagator. 2_ 2 ; < e A
We turn now to the evaluation of the self-energy diagramyﬂz] (m-+Jm)®. Assuming|om|<m, this gives
shown in Fig. 1. We present the derivation for the -1
W-boson self-energy ter" and state the analogous result om= %[bz +3p]. (14
for the Z-boson self-energy ternx?. Analyzing the first

Feynman diagram shown in Fig. 1, one obtains Inserting Eq.(12) one obtains the correction to the mass of a

2 single electron due to a medium of neutrinos:

_ |g d4q
sW(p)= 7#(1—75)f =
(2’77) \/EG;:
XReG(0)7,(1- )Gl (p—a),  (6) om= . (20PN +ys(Kp=pR)L, - (19
where where we use standard properties of thenatrices.
1w oinr M2 The mass excess of E(L5) is averaged over the electron
Gl (p)= g PP Mw 7 distribution as in Eq(4). Interpreting this average as an en-

p’~Mg ergy density we write
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\/EG dp and
U= FTrf 3 27Me8(p2—m2) Y, H(ee)ns(ep) L o o
Me (2m) € M#=(ng—ng,0,0{ag)nd +(az)ng)*. (25
X[2(pN) + y5(Np—pN)]. (16) On evaluating Eq(19), the ponderomotive force per unit

Performing the trace over thematrices and carrying out the volume has two components:

p° integral over thes function leads to Foon=F+F’ (26)
pon )
G
U= —L25sif 6N, M#, ap Where
V2
E:—%zgr?a Vi(nf—n2)(nf-nJ)] (27
where \/5 w nu” Mo/ He e
MM=Jﬂ[<1ﬁ>“n*<p>+<—1ﬁ>ﬂn<—p)] and
(277_)3 1 e ’ e .
(18) ~ Gr
Fr=+—

28It OV ({ @p Nyt @ Ny

In a covariant treatment of the ponderomotive fofeg V2

the energy-momentum tensdf” for the background plasma o+ “\p—

experiences a four-force such that one Ha%=d,Th" X (@ )Ne +(ae )Ne ). @9

=9d"U. Thus the ponderomotive three-force per unit volumeThe component27) is the force due to any distribution of

due to a distribution of neutrinos may be written interacting neutrinos and electrons. This expression reduces

to that given by[5] in the limit n; =n_, =0, n, constant,

B & and 6,,= 7/2. Thus, Eq.(27) represents a generalization of

V2 the known result to include the effects of positrons and an-
tineutrinos. The other componef#8) corresponds to a pre-
In the following section we evaluate Eq19) for some Viously unidentified force due to coupling of the anisotropies

F=——=2sirf 6,V (N,M*). (19

simple distributions. in the electron and neutrino distributions. Clearly, the form
of Eq. (28) is dependent on the assumption that the electron
B. Axisymmetric distributions and neutrino distributions are axisymmetic and that their

N ) axes are aligned. If the axes of symmetry of the distributions
We assume, for simplicity, that the neutrino and electron, o orthogonal, the inner product of E49) has no contri-

distribution functions are separable, axisymmetric, and thag tion from the asymmetry of the electrons, and &) is
their axes of symmetry are aligned. We write identically zero.

ng =5 dF(cosw), 20
o eP) = (Il P(cos) 0 IIl. APPLICATIONS

where the subscrigh denotes the particle species ¢r nu)
and where we introduce spherical polar momentum coordi
nates (p|,a,¢). We denote the number densities of a given

The motivation for this investigation is the possible appli-
cation to the acceleration of plasma in type Il SNe. The
explosion mechanism for type Il SNe suffers a well-known

species as, given by problem in that the bounce shock, which should blow off the
3 outer layers of the star, is insufficiently energetic to over-
[ 9P . di iati | the center of the SN
ne= | ——n<(p). (21)  come disassociation energy losses near the center of the
(2m) [8]. This problem has been largely overcome in recent times

] i . through consideration of neutrino driven convective overturn
We also define a measure of the anisotropy of the particleg) This convective instability leads to much larger density
distributions through irregularities in the center of SNe than previously consid-
1 &®p ered. In view of Eqs(27) and(28), whiqh involve the rgte_of
(af)= _Ef ——3c0%N(€p). (220  change of the electron number density, these density irregu-
nyJ (2m) larities may be crucial to the physical significance of this
S work. We restrict ourselves here to general considerations of
For separable distributions of the forf20), one has that sources of anisotropies and density irregularities which
1 (1 might contribute to the ponderomotive force and simple es-
(agy= 4_f d(cosw) cosa® (), (23  fimates of its magnltgde. ' _
T -1 The neutrinos emitted during a SN explosion are gener-
ated within the core and diffuse outwards to a region which
where we assume that the angular distribution is normalizegs transparent to neutrino transport. Thus the neutrinos ap-
to 4. pear to be radiating from a “neutrinosphere” approximately
Evaluating Eqgs(18) and(13) leads to 70 km in diameter. All species of neutrinos and antineutrinos
L - o are thought to be produced in the neutrino burst in roughly
N#= (M= Npw0,0{ any Nyt () Ny (24 equal quantities. Thus we see that the first component of the
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ponderomotive force, Eq27), is suppressed as it is propor- 1/r? dependence due to the radial expansion, @8) re-
tional to the difference of the neutrino and antineutrino num-duces to
ber densities.

=, _Gr Nny
F'~—4sirty{ag Yne—. (30)
A. Anisotropies \/E WAle /Tle™,

_ We turn now to the second component of the ponderomogq, plasma and neutrino parameters relevant to the core of a
tive force, Eq.(28) which is nonzero only if both the electron type Il SN,n,=10%® m~3, n,,=10%® m~3, andr=10° m
1 le 1 nu 1 )

and neutrino distributions are anisotropic. we find
At any point outside the neutrinosphere the neutrinos
propagate in a cone with opening angle subtended by the E/%<a;>107 Nm3, (31)
neutrinosphere. For a cone with an opening angle
(<1), where we have useGg=10 % N m?* This force is many

orders of magnitude smaller than that due to neutrino-
electron scattering, regardless of the level of anisotropy of
(29 N
the electron distribution.
For the second case, it is assumed that the neutrino den-
implying a large neutrino anisotropy. sity is constant and that the electron density varies a certain

Anisotropies in the electron distribution may be produced@MOuntAn, over some length scaléx. This might repre-
by a variety of effects, though the level of anisotropy nears€nt large scale variations due to convective motions in the
the core of a SN is e;<pected to be small. We now brieflyplasma or smaller scale variations due to plasma instabilities

discuss some possible sources of anistropic electron distrib @' Plasma oscillations. For the same plasma parameters used
tions above we have

(1) One possible source of anisotropy relates to the bulk _ An
flows of the electron medium. Any differential flow over |:'~<ae+>_e 102 Nm. (32)
regions of the plasma leads to an anisotropic component of Ax

the distribution. This has been characterized for plasma II:l'hus, for any reasonable levels of density fluctuations, this

the solar wind by Dund10]. - ; X
(2) Another cause of an anisotropic plasma distribution iScontr|but|on to the ponderomotive force is even smaller than

. that of Eq.(31), and is not significant.
a heat flux through the plasma surrounding the SN core. Thlg . .
leads to a level of anisotropy in the electron distribution Given that Eqs(31) and (32) both show that the aniso

which is related to the thermal conductivity of the plasmatroIOIC contribution to the ponderomotive force is dynami-
medium[11,17] cally unimportant in their _respectwe applications, we con-
Lo . . clude that the ponderomotive force appears not to play a role
(3) Finally, anisotropies are often encountered in magnes " o explosion mechanism of tvoe Il SNe
tized plasmas where the temperature perpendicular to the P yp '

magnetic field may be different to that parallel to the mag-
netic field[12]. V. CONCLUSION

We provide no specific measures _of the level of anisot- pp expression for the ponderomotive force on a plasma
ropy caused by these effects—as will be seen below, thgye 1o a distribution of neutrinos is derived, allowing for
actual magnitude is irrelevant to the conclusions of thisypisotropies in both the electron and neutrino distribution.
work. The inclusion of anisotropies here is possible due to the use

of propagators that are averaged over arbitrary distributions
B. Simple estimates of electrons and neutrinos, whereas in earlier calculations of
_ . — neutrino interactions only finite temperature propagators, av-

We estimate the magnitude of E@Q8) for two limiting  graged over thermal distributions, were ugdl The pon-

cases. In the first, the anisotropic component of the ponderQyeromotive force appears to be dynamically unimportant in

motive force is assumed to arise solely through the densitys most promising application, the explosion mechanism of
gradient of the neutrinos caused by their radial expansmque Il SNe.

The electron distribution is assumed constant. In the secon

case, the reverse is assumed, and the contribution t(2BQ.

from a change in the electron density is evaluated assuming

that any variation in the neutrino distribution is negligible.  S.J.H. thanks Padma Shukla for introducing him to this

The true physical scenario may lie between these extremeproblem and for valuable discussions regarding plasma-

and there may also be a contribution from the change in th@euytrino interactions.

measure of the anisotropy of the electron density. A relevant

force per unit volume for comparison is that of direct APPENDIX

neutrino-electron  scattering which is approximately

10'* N m~3 for the neutrino and plasma properties used be- We present here the derivation of the fermion propagator

low. statistically averaged over the medium, agéh The statis-
Now, assuming that the electron density and anisotropyical averaging is performed by replacing the vacuum density

are constant in space, and that the neutrino density has raatrix wy, by a particle density matrix

2

+ 1 g
(apy= §(1+005a0)m1— R
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The particle number operators

V“vp=§ IT weglea)(eql (A1)
ne=ag'a (A4)
in the expression for the electron propagator:
Gx—x)=—iTIWpAPOW(x ).  (A2) 9Ve
In Eq. (Al), the states are denoted by the set of quantum _az-rr[\;vﬁa], (A5)
numbers{eq} wheree=+1 for particles,e= —1 for anti-
particles, and wherg denotes the remaining quantum num- ith
bers. Writing the density matrix in this form assumes that itV
is diagonal; that is, it is assumed that there are no phase R L
correlations between the states. In E42), 7 denotes the Tr[waéaé*]=l—n;. (AB)
chronological operator, anf is a wave function operator.
The statistical averaglé of any operatoK is The statistically averaged form of the fermion propagator
is obtained by first expanding the chronological operator in
K= Tr(ka)=E W <€q|k|€q>. (A3) Eqg. (A2), and inserting the second-quantized form of the the
G o wave functions. This leads to

’

G(x—x’)=—iH(t—t’)Tr{\7vp2 2 aqa wq(x)w (Xexp{—iggt+iggt }+b b Wy (x)z,b (xexpliegt—igqt }}
q

+iH(t'—t)Tr{\7vp2 E 4// (X! z//q(x)exp{ iggttiggt’ }+b :;Iq,(x’)l/xq(x)exp[isqt—isq/t’}},
q

q'

(A7)
wherea andb are particle and antiparticle annihilation operators, respectiv;q*]lyand i, are particle and antiparticle wave
functions, respectively, anel, denotes the energy eigenvalue of a particle with given quantum nurgbers

The trace over the density matrices is performed through &gs). and (A6), and the integral expression for the step
operator,

dco exp—iw(t—t")}

H(t'—t)= —i0 : (A8)
is inserted. This leads to
dw
G(x—x'>=2 o w+,0<¢q<x)¢q(x {(1-ng)exdi(w+eq)(t' —t)]—ngexfi(sq— o) (t' —1)]}
+z//;(x)w;,(x’){n;exr[i(aq—w)(t—t’)]+(1—n;)ex;{i(w+sq)(t—t’)]}). (A9)

In each of the terms above, the integral is shifted in origin to elimiagtérom the argument of the exponential, and we
substitute plane wave solutions

V= pEexpliep-x), (A10)

leading to

1-n"(p) +(p)
p’—e+i0 p°-—

@q (P)eq (P)explip- (x—X')}

dp® [ d®
G(x—x’)=V§ J%J %gexmip‘)(t’—t)}u

n=(p) 1-n7(p) | _ — o
00 e+i0  pOre—io | Ps (TP)¢s (Pexpip- (X' =x)} . (A11)
Summing over spin states through
p+em
2 #HP)ei(p)= (A12)
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and taking the Fourier transform leads to

1[f1-n"(p  n"(p) n(p) 1-n7(p)
= — — M — M
M=z :p0—8+io p0—c—i0] VuP M G0 T pore—io| (PIT M- (A3
This expression may be reduced to
1 T
G(P)=(yMP"+m) m'ﬁ‘: ;1 nE(Gp)ﬁ(PO—Gs) , (A14)

which is the propagator for a fermion statistically averaged over a medium. Clearly, if the occupation numberAEQ.
are those for a thermal distribution of fermions, this expression reduces to the expression commonly encountered in the
literature derived via finite temperature field the¢8y.
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