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Ponderomotive force due to neutrinos

S. J. Hardy and D. B. Melrose
Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, Sydney, Australia 2006

~Received 20 May 1996!

We derive the ponderomotive force for an arbitrary distribution of neutrinos in a plasma using quantum
statistical field theory. The ponderomotive force has two components. One component, due to gradients in the
neutrino and plasma densities, reduces to a known expression. The second component is due to a coupling
between anisotropies in the neutrino and plasma densities. Simple estimates suggest that the ponderomotive
force is too small to play an important role in the acceleration mechanism for plasma in type II supernovae.
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PACS number~s!: 11.10.Wx, 13.10.1q, 14.60.Lm
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I. INTRODUCTION

Recently, Melrose and Hardy@1# derived a covariant ex-
pression for the ponderomotive force due to a distribution
photons in a medium~plasmons! using a synthesis of quan
tum electrodynamics and the~covariant! kinetic theory of
plasmas, called quantum plasmadynamics~QPD!. The ex-
pression derived reproduces the well-known classical~non-
quantum! limit and has a clear physical interpretation invol
ing the self-energy of the electron in a medium. Here
apply the same procedure to determine a covariant exp
sion for the ponderomotive force due to a distribution
neutrinos in a plasma. We show that the resulting express
reproduces the known expression for isotropic neutrinos
electron distributions.

QPD @2# is a prescription for including the effects of
medium in QED in a manner similar to the more well-know
finite temperature field theory~FTFT! @3#. The main advan-
tage of QPD in these calculations is that it allows the use
arbitrary distribution functions to represent the mediu
rather than the thermal distribution functions used in FTF
Thus QPD allows the analysis of the effects of anisotro
media, such as a beamed distribution of neutrinos or an e
tron distribution with a heat-flux-induced anisotropy.

The main motivation for the investigation reported here
the application to the regions near the core of a type II
pernova ~SN! during the brief ('3 sec! neutrino burst,
where an intense neutrino flux occurs and passes thro
very dense plasma. These conditions are the most favor
known for the ponderomotive force due to neutrinos to
physically significant.

The ponderomotive force due to a distribution of photo
in a plasma is the force that acts on the background pla
as a result of the average effect of the high frequency os
lations of the electromagnetic field@4#.

The ponderomotive force due to a distribution of photo
in a medium is identified via the following steps@1#: The
self-energy of the electron is calculated and the contribut
due to the photon distribution is identified; the effective ma
correction due to this self-energy term is calculated; t
mass correction is integrated over the electron distribut
and is interpreted as a potential in which the electrons
finally, the ponderomotive force is identified as the gradie
of this potential. This prescription reproduces known cova
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ant expressions for the ponderomotive force due to an arb
trary distribution of photons in a medium.

Here we apply the same procedure to calculate the pon
deromotive force due to a beamed distribution of neutrino
via the electron self-energy diagrams shown in Fig. 1, wher
the neutrino propagators are replaced by their propagato
averaged over the neutrinos in the medium. All calculations
are performed to lowest order in 1/MW whereMW is the
mass of theW boson. Thus calculated, the ponderomotive
force separates into two terms. The first of these is the forc
due to gradients in the electron and neutrino densities an
reduces to a known expression@5#. This term is proportional
to the difference between the neutrino and antineutrino den
sities. The second term couples asymmetries in the neutrin
distribution to asymmetries in the electron distribution and is
proportional to the sum of the neutrino and antineutrino den
sities. This second term has not been identified previously.

It should be noted that the ponderomotive force calculate
here is due solely to resonant neutrino-electron interaction
and should not be confused with the force due to elasti
neutrino-electron scattering.

In Sec. II we introduce our notation and one fundamenta
equation of QPD, the particle propagator statistically aver
aged over the medium. We then calculate the contribution
of the self-energy operators shown in Fig. 1. From these w
obtain an expression for the ponderomotive force due to neu
trinos which is accurate to lowest order in 1/MW . This
theory is applied to the neutrino burst of a type II SN in Sec
III, and the dynamical significance of the ponderomotive
force is discussed. Natural units (\5c51) are used
throughout unless otherwise stated.

II. PONDEROMOTIVE FORCE

The form of the statistically averaged fermion propagato
used here is that derived by Hayes and Melrose@6#. This

FIG. 1. Feynman diagrams representing the self-energy of th
electron due to neutrinos.
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derivation is outlined in the Appendix. The resulting expre
sion for the propagator for a massive fermion is

G~P!5~gmP
m1m!F 1

P22m21 i0

1
ip

« (
e561

ne~ep!d~P02e«!G , ~1!

where ne(ep) are the fermion occupation numbers, wit
e511 corresponding to particles,e521 corresponding to
antiparticles, and where the four-momenutmP5(E,P) is re-
lated to the physical four-momentump5(«,p) through
P5ep. Note that the physical four-momentum is define
such that the particle’s energy« is always positive. Clearly,
if ne(ep) are evaluated for thermal distributions, Eq.~1! re-
duces to the expressions derived through FTFT@3#.

Following Hayes and Melrose@6#, we relate this propaga-
tor to a four-dimensional distribution functionN(P) given
by

N~P!5 (
e561

2pm

«
d~E2e«!ne~ep!, ~2!

which may be written

N~P!5 (
e561

4pmd~P22m2!H~e«!ne~ep!, ~3!

whereH(x) is the Heaviside step function. Equation~3! is
useful in performing averages over the distribution of ferm
ons through

Ā5TrE d4P

~2p!4
N~P!A, ~4!

where ‘‘Tr’’ denotes the trace over the Dirac matrices a
corresponds to a sum over the spin states of the fermion

The resonant part of the statistically averaged propaga
Eq. ~1!, for a massless neutrino may be written

ResGnu~q!52p iq” (
e561

d~q2!H~e«!nnu
e ~eq!. ~5!

The nonresonant part of the propagator is identical to
vacuum propagator.

We turn now to the evaluation of the self-energy diagram
shown in Fig. 1. We present the derivation for th
W-boson self-energy termSW and state the analogous resu
for the Z-boson self-energy termSZ. Analyzing the first
Feynman diagram shown in Fig. 1, one obtains

SW~p!5
2 ig2

8
gm~12g5!E d4q

~2p!4

3ResGnu~q!gn~12g5!GW
mn~p2q!, ~6!

where

GW
mn~p!5

gmn2pmpn/MW
2

p22MW
2 ~7!
s-

h

d

i-

nd
s.
tor,

the

s
e
lt

is theW-boson propagator. Assuming that all momenta are
small compared to the mass of theW boson, Eq.~6! becomes

SW5
2 iGF

A2
gm~12g5!E d4q

~2p!4
ResGnu~q!gm~12g5!.

~8!

Inserting Eq.~5!, expanding, and integrating overq0 leads to

SW5
2 iGF

A2
4~11g5!gmE d3q

~2p!3
@~1,q̂!mnnu

1 ~q!

1~21,q̂!mnnu
2 ~2q!#, ~9!

where we use the energy-momentum relation for massless
neutrinos,«5uqu, and whereq̂5q/uqu. Performing the same
procedure for theZ-boson diagram, the second diagram of
Fig. 1, leads to

SZ5~gV1gA!SW, ~10!

with

gV52 1
212sin2uW , gA52 1

2 , ~11!

and whereuW is the Weinberg angle.
Hence, the resonant contribution of a neutrino medium to

the self-energy of an electron is given by

S5
2 iGF

A2
8sin2uW~11g5!gmN

m, ~12!

where

Nm5E d3q

~2p!3
@~1,q̂!mnnu

1 ~q!1~21,q̂!mnnu
2 ~2q!#.

~13!

A. Mass excess

In the electron propagator, the self-energy term appears in
the denominator as 1/(p”1S2m). This leads to a correction
m→m1dm in the electron mass given by
@p”1S#25(m1dm)2. Assumingudmu!m, this gives

dm5
21

2m
@p”S1Sp” #. ~14!

Inserting Eq.~12! one obtains the correction to the mass of a
single electron due to a medium of neutrinos:

dm5
A2GF

me
@2~pN!1g5~N” p”2p”N” !#, ~15!

where we use standard properties of theg matrices.
The mass excess of Eq.~15! is averaged over the electron

distribution as in Eq.~4!. Interpreting this average as an en-
ergy density we write
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U5
A2GF

me
TrE d4P

~2p!4
2pmed~p22me

2!(
e
H~e«!ne

e~ep!

3@2~pN!1g5~N” p”2p”N” !#. ~16!

Performing the trace over theg matrices and carrying out the
p0 integral over thed function leads to

U5
GF

A2
2sin2uWNmM

m, ~17!

where

Mm5E d3p

~2p!3
@~1,p̂!mne

1~p!1~21,p̂!mne
2~2p!#.

~18!

In a covariant treatment of the ponderomotive force@7#,
the energy-momentum tensorTB

mn for the background plasma
experiences a four-force such that one hasFn5]mTB

mn

5]nU. Thus the ponderomotive three-force per unit volum
due to a distribution of neutrinos may be written

F̃52
GF

A2
2sin2uW“~NmM

m!. ~19!

In the following section we evaluate Eq.~19! for some
simple distributions.

B. Axisymmetric distributions

We assume, for simplicity, that the neutrino and electr
distribution functions are separable, axisymmetric, and t
their axes of symmetry are aligned. We write

np
e ~ep!5hp

e ~ upu!Fp
e ~cosa!, ~20!

where the subscriptp denotes the particle species (e or nu)
and where we introduce spherical polar momentum coor
nates (upu,a,w). We denote the number densities of a give
species asnp

e given by

np
e5E d3p

~2p!3
np

e ~p!. ~21!

We also define a measure of the anisotropy of the part
distributions through

^ap
e &5

1

np
eE d3p

~2p!3
cosanp

e ~ep!. ~22!

For separable distributions of the form~20!, one has that

^ap
e &5

1

4pE21

1

d~cosa!cosaFp
e ~a!, ~23!

where we assume that the angular distribution is normaliz
to 4p.

Evaluating Eqs.~18! and ~13! leads to

Nm5~nnu
1 2nnu

2 ,0,0,̂ anu
1 &nnu

1 1^anu
2 &nnu

2 !m ~24!
e

on
hat

di-
n

icle

ed

and

Mm5~ne
12ne

2,0,0,̂ ae
1&ne

11^ae
2&ne

2!m. ~25!

On evaluating Eq.~19!, the ponderomotive force per unit
volume has two components:

F̃pond5F̃1F̃8, ~26!

where

F̃52
GF

A2
2sin2uW“@~nnu

1 2nnu
2 !~ne

12ne
2!# ~27!

and

F̃851
GF

A2
2sin2uW“@~^anu

1 &nnu
1 1^anu

2 &nnu
2 !

3~^ae
1&ne

11^ae
2&ne

2!#. ~28!

The component~27! is the force due to any distribution of
interacting neutrinos and electrons. This expression reduces
to that given by@5# in the limit ne

25nnu
2 50, ne

1 constant,
anduW5p/2. Thus, Eq.~27! represents a generalization of
the known result to include the effects of positrons and an-
tineutrinos. The other component~28! corresponds to a pre-
viously unidentified force due to coupling of the anisotropies
in the electron and neutrino distributions. Clearly, the form
of Eq. ~28! is dependent on the assumption that the electron
and neutrino distributions are axisymmetic and that their
axes are aligned. If the axes of symmetry of the distributions
are orthogonal, the inner product of Eq.~19! has no contri-
bution from the asymmetry of the electrons, and Eq.~28! is
identically zero.

III. APPLICATIONS

The motivation for this investigation is the possible appli-
cation to the acceleration of plasma in type II SNe. The
explosion mechanism for type II SNe suffers a well-known
problem in that the bounce shock, which should blow off the
outer layers of the star, is insufficiently energetic to over-
come disassociation energy losses near the center of the SN
@8#. This problem has been largely overcome in recent times
through consideration of neutrino driven convective overturn
@9#. This convective instability leads to much larger density
irregularities in the center of SNe than previously consid-
ered. In view of Eqs.~27! and~28!, which involve the rate of
change of the electron number density, these density irregu-
larities may be crucial to the physical significance of this
work. We restrict ourselves here to general considerations of
sources of anisotropies and density irregularities which
might contribute to the ponderomotive force and simple es-
timates of its magnitude.

The neutrinos emitted during a SN explosion are gener-
ated within the core and diffuse outwards to a region which
is transparent to neutrino transport. Thus the neutrinos ap-
pear to be radiating from a ‘‘neutrinosphere’’ approximately
70 km in diameter. All species of neutrinos and antineutrinos
are thought to be produced in the neutrino burst in roughly
equal quantities. Thus we see that the first component of the
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ponderomotive force, Eq.~27!, is suppressed as it is propor
tional to the difference of the neutrino and antineutrino nu
ber densities.

A. Anisotropies

We turn now to the second component of the ponderom
tive force, Eq.~28! which is nonzero only if both the electron
and neutrino distributions are anisotropic.

At any point outside the neutrinosphere the neutrin
propagate in a cone with opening angle subtended by
neutrinosphere. For a cone with an opening anglea0
(!1),

^anu
6 &5

1

2
~11cosa0!'12

a0
2

4
, ~29!

implying a large neutrino anisotropy.
Anisotropies in the electron distribution may be produc

by a variety of effects, though the level of anisotropy ne
the core of a SN is expected to be small. We now brie
discuss some possible sources of anistropic electron distr
tions.

~1! One possible source of anisotropy relates to the b
flows of the electron medium. Any differential flow ove
regions of the plasma leads to an anisotropic componen
the distribution. This has been characterized for plasma
the solar wind by Dung@10#.

~2! Another cause of an anisotropic plasma distribution
a heat flux through the plasma surrounding the SN core. T
leads to a level of anisotropy in the electron distributio
which is related to the thermal conductivity of the plasm
medium@11,12#.

~3! Finally, anisotropies are often encountered in magn
tized plasmas where the temperature perpendicular to
magnetic field may be different to that parallel to the ma
netic field @12#.

We provide no specific measures of the level of anis
ropy caused by these effects—as will be seen below,
actual magnitude is irrelevant to the conclusions of th
work.

B. Simple estimates

We estimate the magnitude of Eq.~28! for two limiting
cases. In the first, the anisotropic component of the ponde
motive force is assumed to arise solely through the den
gradient of the neutrinos caused by their radial expansi
The electron distribution is assumed constant. In the sec
case, the reverse is assumed, and the contribution to Eq.~28!
from a change in the electron density is evaluated assum
that any variation in the neutrino distribution is negligibl
The true physical scenario may lie between these extrem
and there may also be a contribution from the change in
measure of the anisotropy of the electron density. A relev
force per unit volume for comparison is that of dire
neutrino-electron scattering which is approximate
1011 N m23 for the neutrino and plasma properties used b
low.

Now, assuming that the electron density and anisotro
are constant in space, and that the neutrino density ha
-
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1/r 2 dependence due to the radial expansion, Eq.~28! re-
duces to

F̃8'
GF

A2
4sin2uW^ae

1&ne
nnu
r
. ~30!

For plasma and neutrino parameters relevant to the core of a
type II SN,ne51036 m23, nnu51038 m23, andr5105 m,
we find

F̃8'^ae
1&107 N m23, ~31!

where we have usedGF510262 N m4. This force is many
orders of magnitude smaller than that due to neutrino-
electron scattering, regardless of the level of anisotropy of
the electron distribution.

For the second case, it is assumed that the neutrino den-
sity is constant and that the electron density varies a certain
amountDne over some length scaleDx. This might repre-
sent large scale variations due to convective motions in the
plasma or smaller scale variations due to plasma instabilities
or plasma oscillations. For the same plasma parameters used
above we have

F̃8'^ae
1&

Dne
Dx

10225 N m. ~32!

Thus, for any reasonable levels of density fluctuations, this
contribution to the ponderomotive force is even smaller than
that of Eq.~31!, and is not significant.

Given that Eqs.~31! and ~32! both show that the aniso-
tropic contribution to the ponderomotive force is dynami-
cally unimportant in their respective applications, we con-
clude that the ponderomotive force appears not to play a role
in the explosion mechanism of type II SNe.

IV. CONCLUSION

An expression for the ponderomotive force on a plasma
due to a distribution of neutrinos is derived, allowing for
anisotropies in both the electron and neutrino distribution.
The inclusion of anisotropies here is possible due to the use
of propagators that are averaged over arbitrary distributions
of electrons and neutrinos, whereas in earlier calculations of
neutrino interactions only finite temperature propagators, av-
eraged over thermal distributions, were used@3#. The pon-
deromotive force appears to be dynamically unimportant in
its most promising application, the explosion mechanism of
type II SNe.
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APPENDIX

We present here the derivation of the fermion propagator
statistically averaged over the medium, as in@6#. The statis-
tical averaging is performed by replacing the vacuum density
matrix ŵV by a particle density matrix
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ŵP5(
q

)
e
wequeq&^equ ~A1!

in the expression for the electron propagator:

G~x2x8!52 iTr@ŵPT$Ĉ~x!C̄~x8!%#. ~A2!

In Eq. ~A1!, the states are denoted by the set of quant
numbers$eq% wheree511 for particles,e521 for anti-
particles, and whereq denotes the remaining quantum num
bers. Writing the density matrix in this form assumes tha
is diagonal; that is, it is assumed that there are no ph
correlations between the states. In Eq.~A2!, T denotes the
chronological operator, andĈ is a wave function operator.

The statistical averageK̄ of any operatorK̂ is

K̄5Tr~ŵPK̂ !5(
qe

wqe^equK̂ueq&. ~A3!
um

-
t it
ase

The particle number operators

n̂q
e5âq

e†âq
e ~A4!

give

n̄q
e5Tr@ŵn̂q

e #, ~A5!

with

Tr@ŵâq
e âq

e†#512n̄q
e . ~A6!

The statistically averaged form of the fermion propagato
is obtained by first expanding the chronological operator in
Eq. ~A2!, and inserting the second-quantized form of the the
wave functions. This leads to
p

e

G~x2x8!52 iH ~ t2t8!TrF ŵP(
q

(
q8

âqâq8
† cq

1~x!c̄q8
1

~x8!exp$2 i«qt1 i«q8t8%1b̂q
†b̂q8cq

2~x!c̄q8
2

~x8!exp$ i«qt2 i«q8t8%G
1 iH ~ t82t !TrF ŵP(

q
(
q8

âq8
† âqc̄q8

1
~x8!cq

1~x!exp$2 i«qt1 i«q8t8%1b̂q8b̂q
†c̄q8

2
~x8!cq

2~x!exp$ i«qt2 i«q8t8%G ,
~A7!

whereâ and b̂ are particle and antiparticle annihilation operators, respectively,cq
1 andcq

2 are particle and antiparticle wave
functions, respectively, and«q denotes the energy eigenvalue of a particle with given quantum numbersq.

The trace over the density matrices is performed through Eqs.~A5! and ~A6!, and the integral expression for the ste
operator,

H~ t82t !5E dv

2p

exp$2 iv~ t2t8!%

v1 i0
, ~A8!

is inserted. This leads to

G~x2x8!5(
q
E dv

2p

1

v1 i0
„cq

1~x!c̄q
1~x8!$~12nq

1!exp@ i ~v1«q!~ t82t !#2nq
1exp@ i ~«q2v!~ t82t !#%

1cq
2~x!c̄q8

2
~x8!$nq

2exp@ i ~«q2v!~ t2t8!#1~12nq
2!exp@ i ~v1«q!~ t2t8!#%…. ~A9!

In each of the terms above, the integral is shifted in origin to eliminate«q from the argument of the exponential, and w
substitute plane wave solutions

cq
e5ws

eexp~ i ep•x!, ~A10!

leading to

G~x2x8!5V(
s
E dp0

2p E d3p

~2p!3
exp$ ip0~ t82t !%F H 12n1~p!

p02«1 i0
2

n1~p!

p02«2 i0 J ws
1~p!w̄s

1~p!exp$ ip•~x2x8!%

1H n2~p!

p01«1 i0
2

12n2~p!

p01«2 i0 J ws
2~2p!w̄s

2~2p!exp$ ip•~x82x!%G . ~A11!

Summing over spin states through

(
s

ws
e~p!w̄s

e~p!5
p”1em

«
~A12!
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and taking the Fourier transform leads to

G~P!5
1

2« F H 12n1~p!

p02«1 i0
2

n1~p!

p02«2 i0 J ~gmP
m1m!1H n2~p!

p01«1 i0
2

12n2~p!

p01«2 i0 J ~gmP
m1m!G . ~A13!

This expression may be reduced to

G~P!5~gmP
m1m!F 1

P22m21 i0
1
ip

« (
e561

ne~ep!d~P02e«!G , ~A14!

which is the propagator for a fermion statistically averaged over a medium. Clearly, if the occupation numbers in Eq.~A14!
are those for a thermal distribution of fermions, this expression reduces to the expression commonly encountered
literature derived via finite temperature field theory@3#.
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