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Connection between Feynman integrals having different values of the space-time dimension

O. V. Tarasov*
Deutsches Electronen-Synchrotron DESY, Institut fu¨r Hochenergiephysik IfH, Zeuthen, Platanenallee 6, D-15738 Zeuthen, German

~Received 5 June 1996!

A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals
with respect to the space-time dimensiond is proposed. The relation betweend- and (d22)-dimensional
integrals is given in terms of a differential operator for which an explicit formula can be obtained for each
Feynman diagram. We show how the method works for one-, two-, and three-loop integrals. The new recur-
rence relations with respect tod are complementary to the recurrence relations which derive from the method
of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be
naturally solved in the framework of the proposed generalized recurrence relations.@S0556-2821~96!04522-5#

PACS number~s!: 11.10.Gh, 11.10.Kk, 12.38.Bx
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I. INTRODUCTION

Many phenomena in high energy, solid state, and stat
cal physics can be described by quantum field theoret
models considered not only in four-dimensional space-ti
but also in two, three, and other space-time dimensions@1#.
In many cases perturbation theory is the basic tool for cal
lating different physical quantities. The same Feynman d
grams occur in different models with different space-tim
dimensiond. This parameter may be considered as a re
larization parameter@2# different from the value of the physi
cal space-time dimension. Usually one needs to set up a L
rent expansion of the diagram with respect
«5(2l2d)/2, with 2l being the dimension of the physica
space-time in the problem under consideration. The coe
cients of the expansion are different for differentl . The most
advanced methods were developed for the evaluation
d5422« dimensional integrals. For example, the standa
packageMINCER @3# for calculating massless three-loop di
grams is now widely available and has been used in m
multiloop calculations.

Another reason to considerd different from its physical
value was given in@4#. There, a new approach for obtainin
nonperturbative information from a quantum field theory
expanding Green’s functions as a series in powers ofd was
proposed. In light of this investigation one can try to form
late approximate methods for calculatingindividual Feyn-
man diagrams at some asymptotic values ofd, for example,
as udu→` or asudu→0.

One of the most powerful methods for evaluating Fey
man diagrams is the method of integration by parts@5#. In
this approach dimensionally regularized Feynman integ
are considered as functions of the exponents of the sc
propagators. Integration by parts gives relations connec
integrals with some exponents changed by61, very similar
to the relations for the contiguous hypergeometric functio
This is not a big surprise since it has been known for so
time @6# that Feynman amplitudes belong to the class of h
pergeometric functions. In many cases, integrals are just
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portional to the well-studied hypergeometric functions@7–9#.
Using the recurrence relations, a variety of Feynman in

tegrals can be reduced to the restricted set of so called ‘‘ma
ter integrals.’’ The proof of completeness for the set of re-
currence relations obtained by integration by parts and th
problem of a systematic algorithm how to use them for an
arbitrary diagram are open questions. Any additional infor-
mation in this respect may be useful for solving both prob-
lems.

In the present paper we propose a systematic formulatio
of the recurrence relations with respect tod. We shall show
that these relations cannot be obtained by the method o
integration by parts and therefore should be considered as
important addition to the Chetyrkin-Tkachov~CT! recur-
rence relations. As a concrete example, we demonstrate th
CT recurrence relations with the recurrence relation with re
spect tod compose all possible recurrence relations for the
considered integral. New recurrence relations are not o
purely academic interest. We demonstrate how one can ca
culate Feynman integrals using these relations. We also re
erive some useful relations for one-loop diagrams with arbi
trary number of external legs. The relations connecting
integrals with differentd may be also useful for calculating
integrals withdÞ4.

We show how tensor integrals can be represented in term
of integrals with the changedd. This representation allows
us to write Feynman integrals with irreducible numerators a
a combination of scalar integrals having different values o
d. Thus, the solution of the generalized system of recurrenc
relations automatically leads to the solution of the problem
of irreducible numerators.

It turns out that the new recurrence relations are espe
cially useful in the new method for the momentum expansion
of the scalar Feynman integrals proposed in@10#.

The paper is organized as follows. In Sec. II, we presen
the main ideas of our method. First, using the parametri
representation we derive relation for arbitrary scalar integral
with differentd. Then we show how tensor integrals can be
expressed in terms of combinations of scalar integrals havin
different values of the space-time dimension. In the frame
work of this approach the solution to the problem of irreduc-
ible numerators in Feynman integrals is proposed. An algo
rithm for obtaining new generalized recurrence relations
6479 © 1996 The American Physical Society
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including integrals with differentd as well as different ex-
ponents of the propagators is developed.

In Sec. III, explicit relations connecting integrals with
shifted d for some one-, two-, and three-loop integrals a
derived.

In Sec. IV, analogous relations for the one-loop integra
with an arbitrary number of external legs and arbitrary pow
ers of propagators are given. We reproduced already kno
results for these integrals and obtained more general n
ones.

In Sec. V, we demonstrate how one can calculate integr
explicitly by solving recurrence relations with respect to th
dimension of space-time.

In Sec. VI, the new recurrence relations are used to c
culate the«5(62d)/2 expansion for the two-loop self-
energy diagrams from the expansion developed
«5(42d)/2.

II. RELATIONS FOR INTEGRALS WITH DIFFERENT d

The subject of our consideration will be dimensionall
regularized scalar Feynman integrals. An arbitrary scalarL
loop integral can be written as

G~d!~$si%,$ms
2%!5)

i51

L E ddki)
j51

N

P
k̄ j ,mj

n j , ~1!

where

Pk,m
n 5

1

~k22m21 i e!n , k̄ j
m5 (

n51

L

v jnkn
m1 (

m51

E

h jmqm
m ,

~2!

qm are external momenta,$si% is a set of scalar invariants
formed fromqm , N is the number of lines,E is the number
of external legs, andv andh are matrices of incidences of
the diagram with the matrix elements being61 or 0 ~see, for
example, Ref.@11#!.

To find the desired relation we shall use the paramet
representation of the integral, which can be found in th
literature@11,12#. For an arbitrary scalar Feynman integral i
d-dimensional space-time we have

G~d!~$si%,$ms
2%!5 i LS p

i D dL/2)j51

N
i2n j

G~n j !

3E
0

`

•••E
0

`da ja j
n j21

@D~a!#d/2

3expF i SQ~$si%,a!

D~a!
2(

l51

N

a l~ml
22 i e!D G ,

~3!

whereD(a) andQ($si%,a) are homogeneous polynomials
in a of degreeL andL11, respectively. They can be repre
sented as sums over trees and two-trees of the graph~see, for
example,@13#!:
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D~a!5(
over
trees

S )
over
chords

•••a j••• D ,
Q~$si%,a!5 (

over
2 trees

)
over
chords

•••a j•••S (
over comp.
of 2 tree

qD 2. ~4!

These polynomials are characteristic functions of the topol-
ogy of the diagram and of its subgraphs. SinceD andQ will
play an important role in the rest of the present paper, we
remind the reader of the definitions of the trees and two-trees
for connected diagrams. Any connected subdiagram of the
diagramG containing all the vertices ofG but is free of
cycles~loops! is called a tree ofG. Similarly, a two-tree is
defined as any subdiagram ofG containing all the vertices of
the original diagram, but is free of cycles, and consisting of
exactly two connected components. Finally, a chord of a tree
~two-tree! is defined as any line not belonging to this tree
~two-tree!.

The most illustrative will be graphical representation of
D andQ. As an example we present functionD(a) for the
two-loop propagator-type diagram which will be considered
in Sec. VI. The graph itself and all possible trees are pictured
in Fig. 1.

According to the above definition all lines which were
removed from the graph to make a tree are chords of the tree
The contribution toD(a) from a tree will be product of
a ’s corresponding to its chords. Summing over all trees
given in Fig. 1 we readily get

D~a!5a1a51a2a51a3a51a4a51a1a2

1a3a41a2a31a1a4 . ~5!

The numbering ofa ’s corresponds to the numbering of lines
in the figure. Other examples ofD andQ for some particular
diagrams will be given in the next sections.

In the case when then j ’s do not depend ond, one can see
from Eq. ~3! that d enters the integrand in a rather simple
way. Only the exponent ofD(a) linearly depends on the
dimension of space-time.

In order to find the relation between integrals in different
dimensionsd we have to assume, at first, that all scalar
propagators in Eq.~1! have different masses. Next, we intro-
duce the polynomial differential operator

DS ]

]mj
2D , ~6!

FIG. 1. Trees for the two-loop self-energy graph.
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which is obtained from D(a) by substituting
a j→] j[]/]mj

2 . The application of the operatorD(]) to the
integral ~3! givesD(a) in the numerator of the integrand:

D~]!expS 2 i( a lml
2D→D~a!~2 i !LexpS 2 i( a lml

2D .
~7!

The resulting integral is proportional to the same integr
with d changed tod22:
l

G~d22!~$sj%,$ms
2%!5S 2

1

p D LD~]!G~d!~$sj%,$ms
2%!. ~8!

After having performed the differentiation we identify
masses with the one’s of the original integral.

We may include tensor integrals into our consideration
using standard methods@11,13#. To each line one introduces
an auxiliary vectoraj and then differentiates with respect to
these vectors. The parametric representation for a tensor in
tegral with products ofnj vectors corresponding to thej th
line reads
et
ifted

metric
)
i51

L E ddki)
j51

N

P
k̄ j ,mj

n j )
l51

n1

k̄1m l
•••)

s51

nN

k̄Nls
5 i LS p

i D dL/2)j51

N
i2n j2nj

G~n j !
)
r51

n1 ]

]a1mr

•••)
s51

nN ]

]aNls

3E
0

`

•••E
0

`da ja j
n j21

@D~a!#d/2
expF i SQ~$s̄i%,a!

D~a!
2(

l51

N

a l~m̄l
22 i e!GUaj50 , ~9!

where

m̄l
25ml

21
al
2

4a l
2 , ~10!

s̄i are scalar invariants formed from vectorsq̄i ,

q̄i5qi1(
j

e i j aj
1

2a j
, ~11!

theqi ’s are the external momenta incoming at a vertexi , ande is the incidence matrix defined as

e i j5H 11 if the oriented linej points away from the vertexi ,

21 if the oriented linej points toward the vertexi ,

0 if the line j does not contain the vertexi .

Differentiation with respect toai will produce external momenta and metric tensorsgmn times some polynomialsRs(a)
divided byD(a) to some power in the integrand. The polynomialsRs(a) have to be converted into operatorsRs(]) and the
powers ofD(a) are absorbed into the redefinition ofd. In this way any tensor integral will be expressed as a sum over a s
of tensors formed from external vectors and metric tensors multiplied by a combination of scalar integrals with the sh
value ofd. At the one-loop level such a representation was already proposed in@14#.

Tensor integrals in momentum space can be written in terms of scalar ones without direct appeal to the para
representation~9!. The procedure described above may be derived from the formula

)
i51

L E ddki)
j51

N

P
k̄ j ,mj

n j )
r51

n1

k̄1mr
•••)

s51

nN

k̄Nls
5T~q,],d1!)

i51

L E ddki)
j51

N

P
k̄ j ,mj

n j , ~12!

where the tensor operatorT is

T~q,],d1!5
e2 iQ~$ s̄ i %,a!r

~21!n11•••1nN)r51

n1 ]

]a1mr

•••)
s51

nN ]

]aNls

expS i FQ~$s̄i%,a!2(
l51

N al
2

4a l
D~a!Gr DU aj50

a j5 i ] j

r5~21/p!Ld1

. ~13!
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Hered1 is the operator shifting the value of the space-tim
dimension of the integral by two units:d1G(d)5G(d12). As
before we have to assume that at the beginning all propa
tors have different masses and after applying the opera
T to the integral one should set masses equal to the requ
ones.

The representation~12! for tensor integrals may give a
solution of the problem of irreducible numerators, i.e., t
appearance of scalar invariants in the numerator which
absent in the scalar propagators. This kind of integral can
expressed in terms of scalar integrals without numerators
with the changed space-time dimension. Therefore the co
bined set of recurrence relations, i.e., relations with t
changedd and those obtained from integration by part
should be used to reduce all integrals to the set of sca
master integrals. In@10# we presented a method for the sma
momentum expansion of multiloop scalar integrals based
d recurrences. This method from the very beginning does
produce integrals with irreducible numerators although tho
appear in traditional methods for the small momentum e
pansion. In principle irreducible numerators can be regard
as propagators raised to negative powers and the corresp
ing integrals can be considered as object in a more com
cated class of integrals with additional new denominators
our approach one remains in the same class of functio
satisfying generalized recurrence relations, i.e., recurre
relations derived from the method of integration by pa
plus relations connecting integrals with differentd.

Having representation~12! at hand, we can now state th
procedure for obtaining new, generalized recurrence re
tions. The starting identity

)
i51

L E ddki
]

]krm
H S (

l
xl k̄lmD )

j51

N

P
k̄ j ,mj

n j J [0, ~14!

wherexl are arbitrary constants, written in this form turn
out to be rather convenient for the derivation. After perform
ing the differentiation one would usually express scalar pro
ucts with integration momenta in terms of invariants th
occur in the denominator of the propagators. At this point
propose to change the derivation and write all or only so
of integrals containing scalar products with loop momenta
a combination of integrals with changedd. In this way we
produce many relations including integrals with changed e
ponents of scalar propagators and changed values of
space-time dimension. Combining the different relations@or
choosing in a proper wayxl in Eq. ~14!# one can try to find
the most optimal set of relations for the reduction of th
concrete class of integrals to the set of basic ‘‘master’’ in
grals. In fact, the method of integration by parts correspon
to some specific representation of scalar products in Eq.~14!.
Our derivation is more general and it includes an integrat
by parts method@5# as a particular case.

We expect that solutions of the generalized recurren
relations and those obtained by the method of integration
parts will be of the same complexity. The fact that in case
know the explicit result for an integral in terms of hyperge
metric functions,d/2 appears in the same manner as a
exponent of the propagators, can be considered as a co
mation of this statement. However, further investigation
this problem is needed.
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Several remarks are in order. All relations which connec
integrals with shiftedd are valid for arbitrary momenta and
masses and also for their real and imaginary parts. We wa
to stress here that in general scalar products in Eq.~8! must
be considered as independent variables. One cannot use a
restrictions valid for some specific values ofd.

All relations obtained with the help of the parametric rep-
resentation may be profitably used in the frame of momen
tum as well as configuration space.

The minimal change of the space-time parameter is 2
From concrete examples@7–9#, when the result is known in
terms of hypergeometric functions, one can observe tha
changingd by62 we obtain contiguous functions and there-
fore may hope to find relations between integrals. The
change ofd by 61 shifts the parameters of the hypergeo-
metric functions by61/2, producing functions which do not
belong to the class of contiguous functions. In general ther
are no relations between those functions.

Application of the differential operators to the integral
will increase the powers of the denominators. To simplify
the right-hand side~RHS! of Eq. ~8! the CT recurrence rela-
tions can be used. In general every integral ind22 dimen-
sions can be reduced to combinations of a rational functio
of scalar products of external momenta, masses, andd and
rational multiples of master integralsI j

(d)($si%,$ms
2%):

G~d22!~$si%,$ms
2%!5(

j
Cj~$si%,$ms

2%,d!I j
~d!~$si%,$ms

2%!.

~15!

The set of basic integrals ind22 dimensions can be ex-
pressed in terms of the same integrals ind dimensions:

I k
~d22!~$si%,$ms

2%!5(
j
Bk j~$si%,$ms

2%,d!I j
~d!~$si%,$ms

2%!.

~16!

This relation can be inverted and therefore we will get a
representation of an arbitraryd-dimensional basic scalar in-
tegrals in terms of (d22)-dimensional ones. Such a repre-
sentation may be useful for some practical calculations. Th
most evident practical application of the relation connecting
integrals with differentd: Having the« expansion for some
particular d0 we can find similar expansion ind062l ( l
integer! dimensions.

The proposed relations can be used, for example, in th
evaluation of massless propagator type (222«)-
dimensional integrals using the packageMINCER @3# written
for (422«)-dimensional integrals. The polynomials
Q($si%,a), D(a) can be easily constructed by means of a
computer program for any particular integral@15#.

III. EXAMPLES

In this section several illustrative examples of the new
recurrence relations will be presented. We start with the one
loop propagator-type diagram with massive particles:

I n1n2
~d! ~q2,m1

2 ,m2
2!5E ddk1

@ ipd/2#
Pk1 ,m1

n1 Pk12q,m2

n2 . ~17!

In this caseD(a)5a11a2 and, therefore,



e-

f

54 6483CONNECTION BETWEEN FEYNMAN INTEGRALS HAVING . . .
I n1n2
~d22!~q2,m1

2 ,m2
2!52~]11]2!I n1n2

~d! ~q2,m1
2 ,m2

2!

52n1I n111 n2
~d! ~q2,m1

2 ,m2
2!

2n2I n1n211
~d! ~q2,m1

2 ,m2
2!. ~18!

Here and in the followinga i is assigned to the line~or propa-
gator! with massmi . We can get another recurrence relatio
connecting integrals with differentd following the prescrip-
tion given in Sec. II. From the identity

E ddk1
]

]k1m
@~k11q!mPk1 ,m1

n1 Pk12q,m2

n2 #[0, ~19!

we obtain~omitting for the moment arguments ofI n1n2

(d) )

n1E ddk1
@ ipd/2#

~qk1!Pk1 ,m1

n111Pk12q,m2

n2

5S d22n1D I n1n2
~d! 2n2I n121 n211

~d! 2n1m1
2I n111 n2

~d!

1n2~q
22m1

2!I n1n211
~d! . ~20!

The integral with the scalar product (qk1) can be written as
a scalar integral with shiftedd. According to Eqs.~4! and
~11! the functionQ with auxiliary vectorsa1, a2, which are
related to the lines with massesm1, m2, respectively, is

Q~$s̄%,a!5S q1
a1
2a1

2
a2
2a2

D 2a1a2 . ~21!

Formulas~12! and ~13! for this case yield the relation

E ddk1
@ ipd/2#

~qk1!Pk1 ,m1

n111Pk12q,m2

n2 5n2q
2I n111 n211

~d12! . ~22!

Inserting Eq.~22! into Eq.~20! we obtain the desired identity

n1n2q
2I n111 n211

~d12! 2S d22n1D I n1n2
~d! 1n2I n121n211

~d!

1n1m1
2I n111 n2

~d! 2n2~q
22m1

2!I n1n211
~d! [0. ~23!

In addition to the above relations two more relations can
obtained from the traditional method of integration by par

2n2m2
2I n1n211

~d! 1n1I n121 n211
~d! 1n1~m1

21m2
22q2!I n111 n2

~d!

2~d22n22n1!I n1n2
~d! 50,

n1I n111 n221
~d! 2n2I n121 n211

~d! 2n1~m1
22m2

21q2!I n111 n2
~d!

2n2~m1
22m2

22q2!I n1n211
~d! 1~n22n1!I n1n2

~d! 50.

~24!

For the simplest case, atm15m250 andn15n251 from
Eqs.~18! and ~24! we readily get
n

be
ts:

I 11
~d22!~q2,0,0!522I 21

~d!~q2,0,0!5
2~d23!

q2
I 11

~d!~q2,0,0!.

~25!

This formula can be easily verified from the explicit result
for I n1n2

(d) (q2,0,0).

At m150,m25m, from Eqs.~18! and~23! we get simpler
relations connecting integralsI n1n2

(d) (q2,0,m2) with different

d:

n1n2q
2I n111 n211

~d12! ~q2,0,m2!2S d22n1D I n1n2
~d! ~q2,0,m2!

1n2I n121 n211
~d! ~q2,0,m2!2n2q

2I n1n211
~d! ~q2,0,m2![0,

I n1n2
~d22!~q2,0,m2!1n1I n111 n2

~d! ~q2,0,m2!

1n2I n1n211
~d! ~q2,0,m2![0. ~26!

The integralI n1n2

(d) (q2,0,m2) is proportional to the Gauss hy-
pergeometric function@7#:

I n1n2
~d! ~q2,0,m2!5~21!n11n2

G~n11n22d/2!G~d/22n1!

~m2!n11n22d/2G~d/2!G~n2!

32F1F n1 ,n11n22
d

2
;

d

2
;

q2

m2G . ~27!

As is well known there are 15 relations of Gauss between
contiguous functions2F1. Substituting Eq.~27! into Eq.~24!
one can find correspondence between the CT recurrence r
lations and only six relations of Gauss. The reason is
obvious—in the CT relations the third parameter of2F1 in
Eq. ~27! does not change and therefore all corresponding
relations for contiguous functions cannot be reproduced. I
we include into consideration also identities~26!, we cover
all 15 relations, though in principle, to reduce the integrals
I n1n2

(d) (q2,0,m2), with integern1 andn2 to two boundary in-
tegrals, it is enough to know only the CT relations.

Now we consider two-loop bubble integrals with three
different masses:

Jn1n2n3
~d! 5

1

pdE E ddk1d
dk2Pk1 ,m1

n1 Pk12k2 ,m2

n2 Pk2 ,m3

n3 .

~28!

The functionD(a) for this integral is

D~a!5a1a21a1a31a2a3 , ~29!

and hence,

Jn1n2n3
~d22! 5~]12

2 1]13
2 1]23

2 !Jn1n2n3
~d! . ~30!

In the above formula and in what follows we use the short-
hand notation

] i1••• i N
N 5)

j51

N
]

]mi j
2 .

Let us take, for simplicity,n15n25n351. In this particular
case the relation connectingJ111

(d) with different d first was
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found in@16#. Exploiting the relation obtained by the metho
of integration by parts

D]1J111
~d! 5 1

2 ~d23!~]1D!J111
~d! 1~d22!J011

~d!

1
~d22!

4m1
2 @~]3D!J101

~d! 1~]2D!J110
~d! #, ~31!

where

D5m1
41m2

41m3
422m1

2m2
222m1

2m3
222m2

2m3
2 , ~32!

and similar relations for]2J111
(d) , ]3J111

(d) , from Eq. ~30! we
reproduce the relationship between integrals with differ
d given in @16#:

DJ111
~d22!52~d22!~d23!J111

~d!1 1
2G2S 22

d

2D @s1s2]3D

1s1s3]2D1s2s3]1D#, ~33!

wheresi5mi
d24 .

One can easily obtain another recurrence relation for
integral ~28! with differentd. From the identity

E E ddk1d
dk2S ]

]k1m
1

]

]k2m
D @k1mPk1 ,m1

n1 Pk12k2 ,m2

n2 Pk2 ,m3

n3 #

[0, ~34!

keeping the scalar product (k1k2) untouched, we get

n3
pdE E ddk1d

dk2~k1k2!Pk1 ,m1

n1 Pk12k2 ,m2

n2 Pk2 ,m3

n311

1n1m1
2Jn111 n2n3

~d! 2S d22n1D Jn1n2n3
~d! [0. ~35!

The first integral in Eq.~35! can be expressed in terms o
integrals with another value of the space-time dimensiond
by using formula~13! with

Q~$s̄%,a!5
1

4 S a1a1
2
a2
a2

2
a3
a3

D 2a1a2a3 . ~36!

Here again vectorsai correspond to lines with massmi . In
order to obtain the integral with the scalar product (k1k2) in
the integrand one has to differentiate with respect toa1 and
a3 which leads to
d

ent

the

f

1

pdE ddk1d
dk2~k1k2!Pk1 ,m1

n1 Pk12k2 ,m2

n2 Pk2 ,m3

n311

5 1
2n2dJn1n211 n311

~d12! . ~37!

Substituting Eq.~37! into Eq. ~35! we obtain

n2n3dJn1n211 n311
~d12! 12n1m1

2Jn111 n2n3
~d! 2~d22n1!Jn1n2n3

~d! [0.

~38!

This identity was used to evaluate the coefficients in t
small momentum expansion of the two-loop master diagr
with all masses equal by the method proposed in@10#.

Now we turn to the three-loop case and consider for si
plicity bubble diagrams. At the three-loop level, bubble di
grams in general have the topology shown in Fig. 2, whe
each line corresponds to a scalar propagator with an arbitr
exponent.

The relation betweend- and (d22)-dimensional three-
loop vacuum integrals with all masses arbitrary is

G~d22!~$ms
2%!52

1

p3 ~]123
3 1]124

3 1]126
3 1]135

3 1]136
3 1]145

3

1]146
3 1]156

3 1]234
3 1]235

3 1]245
3 1]246

3 1]256
3

1]345
3 1]346

3 1]356
3 !G~d!~$ms

2%!. ~39!

The numbering of the masses corresponds to the numbe
of the lines in Fig. 2.

Three-loop master bubble integrals encountered in
small momentum expansion of the QED photon propaga
were studied in@17#. Every integral in this case can be ex
pressed in terms of three basic structures. The only nontri
combination of two integrals taken as one of such structu
was

FIG. 2. Three-loop bubble diagram.
m3d212B4
~d!52 1

4 ~d22!~d23!E E E ddk1d
dk2d

dk3
@ ipd/2G~32d/2!#3

Pk2 ,m
Pk3 ,m

Pk22k3,0

3@Pk1 ,m
Pk12k3,0

Pk12k2,0
2Pk1,0

Pk12k3 ,m
Pk12k2 ,m

#. ~40!

By using Eq.~39! and the method of integration by parts we find the following relation forB4
(d) :

B4
~d22!5

3~d24!2~d25!~3d214!~3d216!

16~d26!5
B4

~d!1
33d32367d211170d2864

8~d24!2~d26!5

2
7~8d2280d1195!

~d24!2~d26!5
G~d/221!G2~62d!G~923d/2!

G2~32d/2!G~1222d!
. ~41!
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We observe that the relation includesB4
(d) itself and two additional terms with a triviald dependence. The results for other

diagrams of the three-loop photon propagator look similar; i.e., they exhibit three terms of a structure like in Eq.~41!.
Other useful three-loop vacuum integrals were introduced in@18#:

m3d212D35E E E ddk1d
dk2d

dk3
@ ipd/2G~32d/2!#3

Pk1,0
Pk2,0

Pk3 ,m
Pk12k3,0

Pk12k2 ,m
Pk22k3 ,m

, ~42!

m3d212B55E E E ddk1d
dk2d

dk3
@ ipd/2G~32d/2!#3

Pk1 ,m
Pk3 ,m

Pk12k2 ,m
Pk22k3,0

. ~43!

These integrals occurred in the evaluation of the three-loop QCD correction to the electroweakr parameter. The space-time
recurrence relation forD3

(d) looks more complicated than that forB4
(d) and it includes alsoB5

(d) :

D3
~d22!52

16~63d32832d213622d25176!

~d24!4~d25!2~d26!3
2

64G~d/221!G~52d!

~d24!3~d25!~d26!3G~32d/2! F11
~7d232!G~d/221!G~723d/2!

3G2~32d/2!

1
~37d22350d1828!G~52d!G~723d/2!

24~2d29!G~32d/2!G~922d! G2
4~d22!~d23!~3d28!~3d210!

9~d24!~d26!3
B5

~d!

2
4~d22!~d23!~d24!

~d26!3
D3

~d! . ~44!

The corresponding relation forB5
(d) is simpler and reads

B5
~d22!52

4~d22!~d23!~3d28!~3d210!

9~d24!~d26!3
B5

~d!2
64~15d252!

9~d24!4~d26!3
. ~45!
e
y

ri-
It can be obtained from Eq.~39! by observing that
]2G

(d)5]4G
(d)50, which holds becauseB5

(d) corresponds
to the diagram Fig. 2 with contracted second and fou
lines. ForB5

(d) we found an explicit expression in terms o
hypergeometric functions3F2 and 2F1 with the argument
1/4, satisfying relation~45!.

Relations~41!, ~44!, and~45! can be used for the compu
tation of the coefficients in the small momentum expans
of Feynman diagrams by the method proposed in@10#.

A more detailed analysis of the generalized recurren
relations for two- and three-loop diagrams will be given in
future publication. Several examples of these recurrence
lations one can find also in@10#.

IV. RELATIONS FOR n-POINT ONE-LOOP INTEGRALS

In this section we consider scalar one-loop integrals
pending onn21 external momenta:

I n
~d!5E ddq

pd/2)
j51

n
1

@ j #n j
, ~46!

where

@ j #5~q2pj !
22mj

21 i e for j,n and@n#5q22mn
21 i e.

~47!

The corresponding diagram and the convention for the m
menta are given in Fig. 3.
rth
f

-
ion

ce
a
re-

de-

o-

For the diagram in Fig. 3 the functionD(a) is a polyno-
mial linear ina j ,

D~a!5(
j51

n

a j , ~48!

and, hence,

I n
~d22!52(

j51

n

] j I n
~d! . ~49!

To get rid of the derivatives in this relation we use th
method of integration by parts. Let us consider the identit

E ddq
]

]qm
Fxnqm1( i51

n21xipim
P j51

n @ j #n j G[0, ~50!

which is valid for arbitraryxi . Upon differentiation and ex-
pressing scalar products in the numerator in terms of inva
ants@ j # in the denominator, we get

E ddq
1

P i51
n @ i #n i H xnS d2nn2(

j51

n

n j D
1 (

j51

n21

xj S n j2nn1@ j # (
k51,kÞ j

n21
nk
@k# D

2@n# (
j51

n21
n j

@ j #(i51

n

xi1(
j51

n

n j

Rj
~n!~$xi%!

@ j # J [0, ~51!
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whereRj
(n)($xi%)5( i51

n Ri j
(n)xi with

Rni
~n!52mi

22mn
21pi

2 , Rin
~n!5mi

22mn
22pi

2 for i,n,

Ri j
~n!5mi

22mn
22pi

212pipj , for i , j,n

Rnn
~n!522mn

2 . ~52!

The integral related to the last sum in~51! can be made
proportional to the RHS of Eq.~49!. This requires to find
xi such that

Rj
~n!~$xi%!51, j51, . . . ,n. ~53!

Imposing these conditions we obtain a system ofn equations
for xi . The solution of the system reads

xi5
1

2
] i lnDn for i,n,xn5

Gn21

2Dn
, ~54!

whereGn is the Gram determinant,

Gn5Up1p1 p1p2 ••• p1pn
p2p1 p2p2 ••• p2pn
•••••••••••••••••••••

pnp1 pnp2 ••• pnpn

U ,
andDn is proportional to the determinant,

Dn52
1

2n
det~C!, ~55!

of then3n matrix C,

Ci j5mi21
2 1mj21

2 2~pi212pj21!
2, ~56!

where it is assumed thatm05mn and p050. Substituting
xi into Eq. ~51!, we obtain the following relation between
d-dimensional and (d22)-dimensional integrals:

F (
j51

n21

~n j2nn!~] jDn!1S d2nn2(
j51

n

n j DGn21G I n~d!

5(
j51

n

~] jDn!I n, j
~d22!12DnI n

~d22! . ~57!

The index j of I n, j
(d22) means that the factor 1/@ j #n j in the

integrand must be changed into@ j #/@ j #n j . For n j51 we ob-
tain the simpler relation

~d2n21!Gn21I n
~d!5(

j51

n

~] jDn!I n, j
~d22!12DnI n

~d22! .

~58!

Ford56, n>6 and assuming that external momenta are fo
dimensional the Gram determinantGn21 vanishes and hence
the term withI n

(6) drops out and we get a relationship be
tween four-dimensional integrals withn legs and integrals
with n21 legs. Such a relation was first obtained in@19# ~see
also@20#!. Whend56 andn55 the left-hand side~LHS! of
Eq. ~58! is zero and we arrive at a formula for reducin
ur

-

g

four-dimensional pentagon integrals to box integrals. This
relation was first derived in@21#. For arbitraryd andn, Eq.
~58! was obtained by a different method in@22#. Equation
~57! as far as we know is new.

It is evident that by using Eq.~8! and integration by parts
one can also derive relations similar to Eq.~58! for multiloop
integrals.

Equation~57! can be used in the reduction of the one-loop
tensor integrals to scalar ones. In@14# an explicit general
formula for one-loop tensor integrals was derived:

E ddq
qm1

•••qmM

P j51
n @ j #n j

5 (
l,k1 , . . . ,kn21

2l1( ki5M

~21!M2l

2l

3$@g#l@p1#
k1
•••@pn21#

kn21%m1•••mM

3E dd12M22lq

pM2l@n#nn)j51

n21 ~n j !kj
@ j #n j1kj

, ~59!

where (n)k[G(n1k)/G(n) is the Pochhammer symbol. The
shorthand notation$@g#l@p1#

k1
•••@pn21#

kn21%m1•••mM
corre-

sponds to the symmetrical~with respect tom1•••mM) tensor
combination, each term of which is constructed froml met-
ric tensorsg, k1 momentap1 , . . . ,kn21 momentapn21. For
example,

$gp1%m1m1m3
5gm1m2

p1m3
1gm1m3

p1m2
1gm2m3

p1m1
.

In Eq. ~59!, l, ki>0, maxki5M , max l5@M /2# ~integer
part ofM /2). For more details see@14#. Thus, the procedure
of calculating one-loop diagrams will be as follows. One
should use first Eq.~59!, perform contractions of indices, and
then using~57! reduce all scalar integrals with the changed
dimensions to thed5422« dimensional set of integrals.
After that scalar integrals should be reduced to the set o
master integrals by making use of recurrence relations ob
tained by the method of integration by parts.

V. EVALUATION OF ONE-LOOP INTEGRALS
USING SPACE-TIME RECURRENCE RELATIONS

With the help of Eqs.~15! and ~16! one can obtain rela-
tions that include only one particular integral with different
shifts ind:

(
k
Bk~$si%,$ms

2%,d!I ~d2k!~$si%,$ms
2%!5I 0~$si%,$ms

2%,d!,

~60!

FIG. 3. One-loop diagram withn-legs.
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whereI 0($si%,$ms
2%,d) is some explicitly known expression.

It can be eliminated from the equation giving rise to highe
order recurrence relations. For an explicit solution Eq.~60!
looks simpler than the ones obtained by the method of in
gration by parts. In this section we will demonstrate how th
space-time recurrence relations proposed in the present p
can be used for evaluating integrals.

We consider the one-loop propagator-type integral

I ~d!5m42dE ddk1
@ ipd/2#

Pk1 ,m
Pk12q,m . ~61!

By using Eq.~8! and the first relation of Eq.~24! we obtain

I ~d22!5
2~d23!m2

~q224m2!
I ~d!2

2G~22d/2!m2

~q224m2!
. ~62!

Introducing

Ī ~d!5 i2dS m2

4m22q2D
d/2 G~d22!

G~d/221!
I d, ~63!

we get the simpler equation

Ī ~d22!5 Ī ~d!2S m2

4m22q2D
d/2G~d23!G~22d/2!

i dG~d/221!
. ~64!

Without loss of generality, one can parametrized as
d52l22«, wherel is an integer number and« is an arbi-
trary small number. The inhomogeneous term in Eq.~64! can
be absorbed by a redefinition ofĪ (d):

Ī ~2l22«!5(
j50

l S m2

4m22q2D
j2« G~2 j22«23!G~22 j1«!

i 2 j22«G~ j212«!

1C«
l , ~65!

yielding the following very simple equation forC«
l

C«
l 5C«

l21 . ~66!

Since l in our case is an arbitrary integer we can conclud
that C«

l does not depend onl at all. It can be found, for
example, by taking the limitl→` or udu→`. Taking the
limit udu→` is quite a delicate matter. The largerudu, the
more divergent becomes the integral. In order to keep t
regularization of the integral, we have to consider« as com-
plex and l large. The asymptotic value of the integral a
l→` can be found by the method of steepest descent
depends on the sign ofq2. From the parametric representa
tion of the integralI (d) one gets, forq2,0 andl→`,

I ~d!→G~22 l1«!S 2pm2

q2l D 1/2S 12
q2

4m2D l2«23/2

3@11O~1/l !#. ~67!

FIG. 4. Two-loop scalar diagrams with massive loops.
r-

te-
e
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e
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-

At large l and q2,0, the sum in Eq.~65! is convergent
which allows us to findC«

l :

C«
l 5

i 2«p

sinp«

m4

A2q2~4m22q2!3/2

2(
j50

` S m2

4m22q2D
j2« G~2 j22«23!G~22 j1«!

i 2 j22«G~ j2«21!
.

~68!

Substitution ofC«
l in the above formulas yields

I ~d!5
ApG~d/221!G~22d/2!

G„~d21!/2…

m

A2q2
S 12

q2

4m2D ~d23!/2

1GS 12
d

2D 2m2

~4m22q2!2
F1F 1,d21

2
;

d

2
;

4m2

4m22q2G .
~69!

By using the formula for the analytic continuation of the
hypergeometric series we get the known result

I ~d!5GS 22
d

2D 2F1F 1,22 d

2
;

3

2
;

q2

4m2G . ~70!

The example considered illustrates the main ideas of how
to use the relation~8! for the evaluation of Feynman inte-
grals. The same method applies without modification to more
complicated cases, for example, to the one-loop integral~17!
with different masses atn15n251 or to the two-loop inte-
gral ~28! with n15n25n351. The recurrence relations in
these cases are very similar to Eq.~62!. We applied this
technique also to some two- and three-loop integrals. Th
main difficulty encountered in these computations was to
find the asymptotic value for the integral for larged. An
expansion at larged is frequently used in solid state physics
and statistical physics. Our experience shows that it can als
be used for the approximate evaluation ofindividual Feyn-
man integrals. Details of these calculations will be given in a
future publication.

VI. THE TWO-LOOP SELF-ENERGY
FOR THE f3 MODEL IN 6 22« DIMENSIONS

The aim of this section is to show howd-recurrence rela-
tions can be used to obtain the« expansion of the nontrivial
integrals in one dimension from the known expansion in an
other dimension.

We consider two-loop self-energy diagrams which are en
countered, for example, in thef3 model with two massive
and one massless scalar fields@23#. At the two-loop level
there are two nontrivial diagrams, given in Fig. 4, contribut-
ing to the self-energy of the massless field.

The solid lines in Fig. 4 are related to massive particles
and the dashed lines to massless ones. The correspondi
integrals read
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I 1
~d!5E E ddk1d

dk2
@ ipd/2G~42d/2!#2

3Pk1 ,m
Pk2 ,m

Pk12q,mPk22q,mPk12k2,0
,

I 2
~d!5E E ddk1d

dk2
@ ipd/2G~42d/2!#2

Pk1 ,m
2 Pk2 ,m

Pk22q,mPk12k2,0
.

~71!

Using the« expansion ind5422« dimensions we will
find the « expansion of these integrals up toO(«) at
d5622«. This can be done in three steps.

The first step consists of expressing the integralsI 1
(d) and

I 2
(d) in terms of basic ones, chosen in@8# to obtain the
d→4 limit for the two-loop photon propagator. In fact tw
integrals from this basis are the integralI 1

(d) itself and its
derivative with respect to the mass. The remaining basic
tegrals were the derivative with respect to the mass of
one-loop scalar integral with two massive lines, its squa
and a one-loop vacuum integral with a mass.

Thus, at this stage we need to compute only the integ
I 2. By using the recurrence relations given in@8# for integrals
contributing to the two-loop photon propagator, we get
o

in-
the
re,

ral

I 2
~d!52

~d24!

~d23!
I 1

~d!1
m2

~d23! S 12
q2

4m2D ~ I 1
~d!!8

1
m2d210

~d23!~d24!
H1

~d! , ~72!

where the prime denotes differentiation with respect tom2

andH1
(d) is a basic integral occurring in one-loop calcula-

tions:

H1
~d!52F1F 1,32 d

2
;

3

2
;

q2

4m2G
5

1

d25
1

~d26!

~d25! S 12
q2

4m2DH1
~d22! . ~73!

The next step is to find relations between the basic inte
grals I 1

(d) and (I 1
(d))8 in d andd22 dimensions. Using Eq.

~8!, with D(a) given by Eq.~5! we get a system of equations
in the form of Eq.~16!. This system enables us to find the
required relations
23z~d23!~d24!2~3d214!~3d216!I 1
~d!5

m4

4
~d28!2~d26!@2~d26!~d24!z3112~d24!~2d211!z2112~d27!

3~3d214!z216~d27!~2d29!#I 1
~d22!1

m6

4
~d28!2~d26!@2~d24!z3

12~3d216!z228~9d241!z132~2d29!#~ I 1
~d22!!82

2m2d210

~d26!2~42z!

3@~d24!~23d22226d1552!z328~d24!~19d22188d1462!z2

116~22d32310d211447d22238!z164~2d29!~d25!2#~H1
~d!!2

1
16m2d210

~d26!2~42z!
@~19d22182d1432!z22~56d22552d11344!z116

3~2d29!~2d211!#H1
~d!1

16m2d210

~d26!2~d24!~d25!~42z!
@~d26!~d24!2z2

22~d313d2298d1288!z28~d25!~5d228!~2d29!#, ~74!

23z~d23!~d24!2~3d214!~3d216!~ I 1
~d!!85

3m2

2
~d24!~d26!~d28!2@~d24!~d25!z21~7d234!~d27!z24~2d29!

3~d27!#I 1
~d22!1

3m4

4
~d24!~d26!~d28!2@~5d224!z224~7d233!z

116~2d29!#~ I 1
~d22!!81

24~d24!m2d212

~42z!~d26!2
@~d24!~7d2270d1174!z2

2~30d32424d211986d23084!z28~2d29!~d25!2#~H1
~d!!2

2
96~d24!m2d212

~42z!~d26!2
@~d24!~d26!z24~2d29!~2d211!#H1

~d!

1
48~7d232!~d26!z2192~2d29!~5d228!

m1222d~42z!~d26!2
, ~75!
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wherez5q2/m2.
The final step is to perform the« expansion up to a constant term. It is remarkable that the most complicated inte

I 1
(d22) and (I 1

(d22))8 at d5622« give contribution starting from the first order in« and therefore may be disregarded in th
considered approximation. To calculateI 1

(d) and I 2
(d) up to a constant term in« we need to expandH1

(d) to second order. The
required expansion is

H1
~622«!511«F21

1

a
ln~v !G1«2F41

p2

6a
1

1

2a
ln2~v !1

2

a
ln~v !2

1

a
ln2S 11a

2 D2
2

a
Li2S 11a

2 D G , ~76!

where

a25
q2

q224m2 , v5
12a

11a
, and Li2~x!52E

0

xln~12y!dy

y
, ~77!

from which we obtain

m4«22I 1
~622«!5

32a2

6«2~12a2!
1

3127a2

12«~12a2!
1
19

24
2

1

12a2
1

47

6~12a2!
2

2h~a!

3a~12a2!

2S 5482
1

3a
2

7

24a2
1

1

48a4
2

1

3~12a! D ln2~v !1
1

12S 43a 2
1

a3
1

48a

~12a2! D ln~v !, ~78!

m4«22I 2
~622«!52

a2

18«2~12a2!
2

15128a2

108«~12a2!
1
389

324
2

1

36a2
2

1207

648~12a2!
2

123a2

18a~12a2!
h~a!

1
1

144S 101 4

a
2

1

a2
2

1

a4
2

8

~12a! D ln2~v !1S 5

54a
2

1

36a3
2

43a

54~12a2! D ln~v !, ~79!

with

h~a!5 ln2S 11a

2 D2
1

«
ln~v !2z~2!12Li2S 11a

2 D .
In the considered case it is possible to obtain an expl
result in terms of hypergeometric functions and hence to p
form the « expansion using directly the exact formula
However, from our experience with the« expansion at
d5422«, we may say that this is a quite formidable an
errorprone task. Thus, having done it once, it is much si
pler to use thed recurrence relations in order to get the resu
in the other dimension. In cases when the analytic resul
not known, it might be useful to choose the most conveni
d from the point of view of the« expansion and then to
transform the result to the required space-time dimensi
Especially this procedure may be helpful if one encount
integrals with infrared as well as ultraviolet divergences.

VII. CONCLUSIONS

We proposed a new type of recurrence relations for Fe
man integrals. The addition of the space-time dimension
the set of recurrence parameters for Feynman integral
quite natural and it extends the set of recurrence relati
obtained from the integration by parts method. We exp
that within the framework of the extended set of recurren
relations it will be possible to formulate rather effective a
gorithms for the computation of Feynman diagrams. T
problem with irreducible numerators in Feynman integra
finds a natural interpretation in the frame of generalized
icit
er-
e.

d
m-
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ent
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re-

currence relations. We demonstrated that a direct solution of
the new recurrence relations is possible. Finding solutions of
such relations would considerably simplify if it would be
possible to develop an effective algorithm for the asymptotic
expansion atudu→`. At the same time the expansion at
udu→` could be used as an approximation for the integral at
finite d. This kind of expansion is well known in solid state
and statistical physics. Basically, in the present publication
we formulated general ideas about new techniques which we
intend to apply later to the calculation of some particular
classes of Feynman integrals.
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