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Connection between Feynman integrals having different values of the space-time dimension
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A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals
with respect to the space-time dimensidris proposed. The relation betweek and ({d— 2)-dimensional
integrals is given in terms of a differential operator for which an explicit formula can be obtained for each
Feynman diagram. We show how the method works for one-, two-, and three-loop integrals. The new recur-
rence relations with respect tbare complementary to the recurrence relations which derive from the method
of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be
naturally solved in the framework of the proposed generalized recurrence rel§805656-282(196)04522-3

PACS numbgs): 11.10.Gh, 11.10.Kk, 12.38.Bx

I. INTRODUCTION portional to the well-studied hypergeometric functi¢iis9].
Using the recurrence relations, a variety of Feynman in-
Many phenomena in high energy, solid state, and statistitegrals can be reduced to the restricted set of so called “mas-
cal physics can be described by quantum field theoreticeter integrals.” The proof of completeness for the set of re-
models considered not only in four-dimensional space-timeurrence relations obtained by integration by parts and the
but also in two, three, and other space-time dimensfdéhs problem of a systematic algorithm how to use them for an
In many cases perturbation theory is the basic tool for calcuarbitrary diagram are open questions. Any additional infor-
lating different physical quantities. The same Feynman diamation in this respect may be useful for solving both prob-
grams occur in different models with different space-timelems.
dimensiond. This parameter may be considered as a regu- In the present paper we propose a systematic formulation
larization parametdi2] different from the value of the physi- of the recurrence relations with respectdowe shall show
cal space-time dimension. Usually one needs to set up a Latikhat these relations cannot be obtained by the method of
rent expansion of the diagram with respect tointegration by parts and therefore should be considered as an
e=(21—d)/2, with 2| being the dimension of the physical important addition to the Chetyrkin-TkachodCT) recur-
space-time in the problem under consideration. The coeffirence relations. As a concrete example, we demonstrate that
cients of the expansion are different for differénThe most  CT recurrence relations with the recurrence relation with re-
advanced methods were developed for the evaluation ddpect tod compose all possible recurrence relations for the
d=4-2¢ dimensional integrals. For example, the standarctonsidered integral. New recurrence relations are not of
packagemINCER [3] for calculating massless three-loop dia- purely academic interest. We demonstrate how one can cal-
grams is now widely available and has been used in mangulate Feynman integrals using these relations. We also red-
multiloop calculations. erive some useful relations for one-loop diagrams with arbi-
Another reason to consider different from its physical trary number of external legs. The relations connecting
value was given iff4]. There, a new approach for obtaining integrals with differentd may be also useful for calculating
nonperturbative information from a quantum field theory byintegrals withd# 4.
expanding Green’s functions as a series in powerd nas We show how tensor integrals can be represented in terms
proposed. In light of this investigation one can try to formu-of integrals with the changed. This representation allows
late approximate methods for calculatimgydividual Feyn-  us to write Feynman integrals with irreducible numerators as
man diagrams at some asymptotic valueslpfor example, a combination of scalar integrals having different values of
as|d|— or as|d|—0. d. Thus, the solution of the generalized system of recurrence
One of the most powerful methods for evaluating Feyn-relations automatically leads to the solution of the problem
man diagrams is the method of integration by pgsk In  of irreducible numerators.
this approach dimensionally regularized Feynman integrals It turns out that the new recurrence relations are espe-
are considered as functions of the exponents of the scalaially useful in the new method for the momentum expansion
propagators. Integration by parts gives relations connectingf the scalar Feynman integrals proposedif.
integrals with some exponents changed-b¥, very similar The paper is organized as follows. In Sec. I, we present
to the relations for the contiguous hypergeometric functionsthe main ideas of our method. First, using the parametric
This is not a big surprise since it has been known for someepresentation we derive relation for arbitrary scalar integrals
time [6] that Feynman amplitudes belong to the class of hywith differentd. Then we show how tensor integrals can be
pergeometric functions. In many cases, integrals are just praxpressed in terms of combinations of scalar integrals having
different values of the space-time dimension. In the frame-
work of this approach the solution to the problem of irreduc-
*On leave of absence from JINR, 141980 DuliMoscow Re-  ible numerators in Feynman integrals is proposed. An algo-
gion), Russian Federation. Electronic address: tarasov@ifh.de  rithm for obtaining new generalized recurrence relations
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including integrals with differentl as well as different ex-
ponents of the propagators is developed. D(a)=2, ( e ) :
In Sec. lll, explicit relations connecting integrals with trees \ chords
shifted d for some one-, two-, and three-loop integrals are
derived. 2
In Sec. IV, analogous relations for the one-loop integrals Q{sta)= > I ( > CI) N
with an arbitrary number of external legs and arbitrary pow- 2 treeschords o2 tree

ers of propagators are given. We reproduced already known
results for these integrals and obtained more general neWhese polynomials are characteristic functions of the topol-
ones. ogy of the diagram and of its subgraphs. SimcandQ will

In Sec. V, we demonstrate how one can calculate integralglay an important role in the rest of the present paper, we
explicitly by solving recurrence relations with respect to theremind the reader of the definitions of the trees and two-trees
dimension of space-time. for connected diagrams. Any connected subdiagram of the

In Sec. VI, the new recurrence relations are used to caldiagramG containing all the vertices o but is free of
culate thee=(6—d)/2 expansion for the two-loop self- cycles(loopg is called a tree ofs. Similarly, a two-tree is
energy diagrams from the expansion developed atlefined as any subdiagram@fcontaining all the vertices of
e=(4—d)/2. the original diagram, but is free of cycles, and consisting of
exactly two connected components. Finally, a chord of a tree
(two-tree is defined as any line not belonging to this tree
(two-tree.

The subject of our consideration will be dimensionally The most illustrative will be graphical representation of
regularized scalar Feynman integrals. An arbitrary scalar D andQ. As an example we present functi@{«) for the

Il. RELATIONS FOR INTEGRALS WITH DIFFERENT d

loop integral can be written as two-loop propagator-type diagram which will be considered
in Sec. VI. The graph itself and all possible trees are pictured
L N in Fig. 1.
G(d)({Sing}):H JddkiH pai (1) According to the above definition all lines which were
i=1 j=1 kj.m, removed from the graph to make a tree are chords of the tree.

The contribution toD(«) from a tree will be product of
where a’s corresponding to its chords. Summing over all trees
given in Fig. 1 we readily get
E

L
Py m=rr——a—— k].u“zz P +Z MimdE, D(a)=ajas+ aras+ azas+ azas+ aja;

2 +azast araszt agay,. 5)

0 are external momentds;} is a set of scalar invariants The numbering ofr's corresponds to the numbering of lines

formed fromq,,,, N is the number of linesE is the number in the figure. Other examples &f andQ for some particular

of external legs, and and » are matrices of incidences of diagrams will be given in the next sections.

the diagram with the matrix elements being. or O (see, for In the case when the;'s do not depend od, one can see

example, Ref[11]). from Eg. (3) thatd enters the integrand in a rather simple
To find the desired relation we shall use the parametri?vay. Only the exponent ob(a) linearly depends on the

representation of the integral, which can be found in thedimension of space-time.

||terature[1l 12 For an arb|trary scalar Feynman |ntegra| in In order to find the relation between |ntegra|s in different
d-dimensional space-time we have dimensionsd we have to assume, at first, that all scalar

propagators in Eq.1) have different masses. Next, we intro-
duce the polynomial differential operator

i

- dL/2
@fs) fm2)=it| —
({si},{m3}) =i ( i ) i=1 ['(v)) D( (9

» —/, (6)
an
Xfo fo Ja)]

(20 Sl B> D O
VRN

where D(a) and Q({s;},«) are homogeneous polynomials

in « of degreel. andL +1, respectively. They can be repre-

sented as sums over trees and two-trees of the dsmeh for

example[13]): FIG. 1. Trees for the two-loop self-energy graph.
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which is obtained from D(«) by substituting oo ) 1\t § )

a;—dj=alom? . The application of the operat@r(4) to the G )({Sj}!{ms}):( - ;) D()GY({s;}.{me}). (8

integral (3) givesD(«) in the numerator of the integrand:
After having performed the differentiation we identify
masses with the one’s of the original integral.

D(a)exp< _iE almF)HD(a)(—i)LeX4 —iz a|m|2)- We may include tensor integrals into our consideration
using standard method%1,13. To each line one introduces
(7 an auxiliary vectorg; and then differentiates with respect to

these vectors. The parametric representation for a tensor in-

The resulting integral is proportional to the same integrakegral with products oh; vectors corresponding to thjh
with d changed tad—2: line reads

g dU2N —yenn o,

nN | 177
H klm...Sl:[l kN)‘sZIL(i_> H F(VJ)H

]| r=1 &al# s=1 ﬁaN)\S

f[ fddkﬁ P”J

=1

da’Ja i -1 Q({S} C!) N '
XJO fo [D(a)]%? p[' " D(a) _,Z a(mi=ie)||a-0, (9)
where
a
M= g2 (10
's; are scalar invariants formed from vectays
=t 2 : 11
AT e ay

the g;’s are the external momenta incoming at a veliteand € is the incidence matrix defined as

+1 if the oriented ling points away from the verteix
€)= —1 if the oriented ling points toward the vertek
0 if the linej does not contain the vertéx

Differentiation with respect t@; will produce external momenta and metric tensgfs times some polynomialRy(«)
divided byD(«) to some power in the integrand. The polynomiRlga) have to be converted into operatdtg(d) and the
powers ofD(«) are absorbed into the redefinition @f In this way any tensor integral will be expressed as a sum over a set
of tensors formed from external vectors and metric tensors multiplied by a combination of scalar integrals with the shifted
value ofd. At the one-loop level such a representation was already propodéd]in

Tensor integrals in momentum space can be written in terms of scalar ones without direct appeal to the parametric
representatiori9). The procedure described above may be derived from the formula

N L N _
H JddkH PJ H Ky, Sl;[l |<MS=T(q,a,o|+)i1:[l f ddkij[[l P, (12

jr— i

where the tensor operatdris

N a2
il (s}~ 2, 4—'

—iQshap M4 NG
= 1
T(q,é’,d ) (_1)n1+--~+nNr].;[l aal,u.r s];[l &aN p aj:O ( 3)
a;=id
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Hered® is the operator shifting the value of the space-time Several remarks are in order. All relations which connect
dimension of the integral by two unitd*G(®=G(@*2) As integrals with shiftect! are valid for arbitrary momenta and
before we have to assume that at the beginning all propaganasses and also for their real and imaginary parts. We want
tors have different masses and after applying the operatdo stress here that in general scalar products in(&gmust
T to the integral one should set masses equal to the requirdse considered as independent variables. One cannot use any
ones. restrictions valid for some specific values af

The representatiofl2) for tensor integrals may give a All relations obtained with the help of the parametric rep-
solution of the problem of irreducible numerators, i.e., theresentation may be profitably used in the frame of momen-
appearance of scalar invariants in the numerator which areim as well as configuration space.
absent in the scalar propagators. This kind of integral can be The minimal change of the space-time parameter is 2.
expressed in terms of scalar integrals without numerators bigrom concrete examplg3—9], when the result is known in
with the changed space-time dimension. Therefore the conterms of hypergeometric functions, one can observe that
bined set of recurrence relations, i.e., relations with thechangingd by =2 we obtain contiguous functions and there-
changedd and those obtained from integration by parts,fore may hope to find relations between integrals. The
should be used to reduce all integrals to the set of scalazthange ofd by =1 shifts the parameters of the hypergeo-
master integrals. IfiL0] we presented a method for the small metric functions by+ 1/2, producing functions which do not
momentum expansion of multiloop scalar integrals based obelong to the class of contiguous functions. In general there
d recurrences. This method from the very beginning does nagre no relations between those functions.
produce integrals with irreducible numerators although those Application of the differential operators to the integral
appear in traditional methods for the small momentum exwill increase the powers of the denominators. To simplify
pansion. In principle irreducible numerators can be regardethe right-hand sidéRHS) of Eq. (8) the CT recurrence rela-
as propagators raised to negative powers and the corresportibns can be used. In general every integratlin2 dimen-
ing integrals can be considered as object in a more complisions can be reduced to combinations of a rational function
cated class of integrals with additional new denominators. Irof scalar products of external momenta, masses,caadd
our approach one remains in the same class of functionsational multiples of master integral$d)({si},{m§}):
satisfying generalized recurrence relations, i.e., recurrence
relations derived from the method of integration by parts

- 2\ — 2 d 2
plus relations connecting integrals with differeht s 2)({8‘}’{m3})_; Cj({si}{me} 1] (s} {mZh).
Having representatiofl2) at hand, we can now state the (15)
procedure for obtaining new, generalized recurrence rela-
tions. The starting identity The set of basic integrals id—2 dimensions can be ex-

pressed in terms of the same integralglidimensions:

iﬁlfddkiak [(Z X'k_"‘)ﬁl Pim

d
T

}50- (14 P s himeh =2 Bydshimehal@(sh{mE).

wherex, are arbitrary constants, written in this form turns (16)
out to be rather convenient for the derivation. After perform-tris relation can be inverted and therefore we will get a

ing the differentiation one would usually express scalar pmd'representation of an arbitragrdimensional basic scalar in-

d lati including i Is with ch particular dy we can find similar expansion idy+2l (I
produce many relations including integrals with changed Xintege) dimensions.

ponents  of ds_calar _propggatkc))_rs_ anorl] CZi?ged va:ues of the The proposed relations can be used, for example, in the
space-time dimension. Combining the different relatitns o\ a1 aion of massless propagator type —@)-

choosing in a proper way, in Eq. (14)] one can try to find  jinensional integrals using the packageicer [3] written
the most optimal set of relations for the reduction of thefor (4—2¢)-dimensional integrals. The polynomials

concrete class of integrals to the set of basic “master” inte-Q({S_} ), D(a) can be easily constructed by means of a
grals. In fact, the method of integration by parts CorreSpondﬁomrlnjter,program for any particular integfab]
to some specific representation of scalar products in( Ej. ’
Our derivation is more general and it includes an integration
by parts methodl5] as a particular case.

We expect that solutions of the generalized recurrence |n this section several illustrative examples of the new
relations and those obtained by the method of integration byecurrence relations will be presented. We start with the one-

parts will be Of the same complexity. The fact that in case We&oop propagator-type diagram with massive particles:
know the explicit result for an integral in terms of hypergeo-

Ill. EXAMPLES

metric functions,d/2 appears in the same manner as any 1 (o, mE.m2) = ddk, pr1 pr 17
exponent of the propagators, can be considered as a confir- vyvp L2 [i'n'a72] ky.my kg—g,my’

mation of this statement. However, further investigation of
this problem is needed. In this caseD(a) = a;+ a, and, therefore,
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givzz(q mz,m3)= —(81+<9z)l”2(q ,m$,m3)
__Vl|v1+ly2(q mz,mp)
(18)

d
— ol S}l)V2+1(q ,mg,m3).

Here and in the followingy; is assigned to the lingr propa-

6483
2(d—3)
19972(2,0,0 = —21%9(q?,0,0 = —qz—la‘?m%o.@.
(25)

This formula can be easily verified from the explicit result
for 119, (4%,0,0).

_ _ - L D (420 m2) with A
gato) with massm; . We can get another recurrence relationlations connecting mtegraléwz(q ,0,m?) with different

connecting integrals with differert following the prescrip-
tion given in Sec. Il. From the identity

f ddkl

we obtain(omitting for the moment arguments b(,fi)VZ)

i qm]=0 (19

ki—q,m,

Vl+l

fﬁnﬁ(qkﬂp

kl q,m,

d d) 2,(d
= E_Vl)lgll)vz_vzls/l1V2+1_V1m1|(111)+1V2
2 d)
+rp(qP=mDI, 1 (20

The integral with the scalar produagk;) can be written as
a scalar integral with shifted. According to Egs(4) and

(11) the functionQ with auxiliary vectorsa;, a,, which are

related to the lines with masses;, m,, respectively, is

a a
4t %2 (21)
2&’2

2a ) a1y,

QF.0=a
Formulas(12) and(13) for this case yield the relation

f[_cvﬁ(qkﬂpylﬂ K, —q.m, =07l (V(ijrri)szrl (22

At m; =0, m,=m, from Eqgs.(18) and(23) we get simpler
d:
d+2) 2 d (d) 2 2
V1V2q V1+1V2+1(q 0 m ) __Vl lvlvz(q ,O,m )
ol 1, 1(62,0,m) = wpg?llY), L 1(g?,0,m?)=0,

Nd*D
Viv2

(a2,0,m?) + vl {2, 1, (6%,0,m?)
+ 1,0, 1(02,0,m*)=0. (26)

The integrall (d) ,,(4%,0,m?) is proportional to the Gauss hy-
pergeometric funct|ovﬁ7]

F(V1+ Vz_d/Z)F(d/Z_ Vl)
(mZ) V1+V2*d/21"(d/2)1_‘(1/2)

d
vy, V1t rvo— E; q2
|- (27)

d_ m
>

()

1v2

(qZ,O,mZ) = ( - 1)V1+V2

XoFq

As is well known there are 15 relations of Gauss between
contiguous functionsF ;. Substituting Eq(27) into Eq.(24)

one can find correspondence between the CT recurrence re-
lations and only six relations of Gauss. The reason is
obvious—in the CT relations the third parameter &%, in

Eq. (27) does not change and therefore all corresponding
relations for contiguous functions cannot be reproduced. If
we include into consideration also identiti€%), we cover

all 15 relations, though in principle, to reduce the integrals

Inserting Eq(22) into Eq.(20) we obtain the desired identity 1D (g?,0,m?), with integerv, and v, to two boundary in-

d
+2) _ (d) (d)
VlVZq V1+l 1/2+l (E V1 IV1V2+V2|V1*1V2+1

2,(d 2_ 20 (d)
+V1m1|§;l)+1yz_”2(q _m1)|5»1)u2+1=0- (23

In addition to the above relations two more relations can be

v1v2
tegrals, it is enough to know only the CT relations.
Now we consider two-loop bubble integrals with three
different masses:

obtained from the traditional method of integration by parts:The functionD(«) for this integral is

(d)

2 2 2
2v,mals, w0, v (mitmi—glY,

Vl—l vy

v)l® =0,

V1v2

—(d—2v,—

d)

( (d)
vl v +1v,—1

— 1@ _ 2 _ 24 42
VZIV1*1V2+1 Vl(ml m2+q )IV1+1V2

(d) =0.

2 2
— vp(mi—m;— Vv,

d
q )|§/1)1;2+1+(V2_ vyl

(29)

For the simplest case, at;=m,=0 andv,;=v,=1 from
Egs.(18) and(24) we readily get

(d) d pr2 v3
JV1V2V3 J J d k d k2 k 7k2 mZsz m’
(28)
D(a)=aiast+ ajaz+ ayas, (29
and hence,
J9-2) = (92,4 325+ 359I\ (30)

V1V2V3 v V2V3

In the above formula and in what follows we use the short-
hand notation

N
L
I

Let us take, for simplicityp,=v,=v3;=1. In this particular
case the relation connectin?; with differentd first was
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found in[16]. Exploiting the relation obtained by the method

of integration by parts

A9,J{11=5(d=3)(9;) 3171+ (d~2) 360,
+ (i_m? [(358) 351+ (90) 3], (3D
where
A=mi+mj+mi—2m2ms—2mim3—2msm3, (32

and similar relations for,J{9), 3;3(%;, from Eq. (30) we

reproduce the relationship between integrals with different

d given in[16]:

d
A ?=—(d—2)(d~3)J &%ﬁ+lrz(2—§)[s1s2a3A
+ 51530, +5,8391A], (33
wheres,=m’™*.

One can easily obtain another recurrence relation for th

integral (28) with differentd. From the identity

f f ddklddkz(

keeping the scalar produck4{k,) untouched, we get

f f d%,d%,(k k2)P

P2

V3 ]
my ky—ky,myt Ky ,mg

d
N v
Ky, * akzﬂ)[klﬂpk

=0, (34)

v3+1
kl‘kz my' ky,mg

N

The first integral in Eq(35) can be expressed in terms of
integrals with another value of the space-time dimension
by using formula(13) with

3@

V1VoV3

> =0.

+ VlmlJ(d+1V2V3_ (35)

Q({s}a)= (36)

Here again vectors; correspond to lines with mass; . In
order to obtain the integral with the scalar producikp) in
the integrand one has to differentiate with respect@and
a; which leads to

med- 1280 = — 1 (d—2)(d— 3)f fJ

0. V. TARASOV
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1
3 2
FIG. 2. Three-loop bubble diagram.

L[ (ko) P 2 vatl

g 10%Ka(K1ko) Py my kg —ky,my' ky,my
=2 VZdJSJC:_:2+1 vgt+1: (37)

Substituting Eq(37) into Eq. (35) we obtain

VaV3 dJ( w +1y3+1+2V1m1~]§/?+1uzy3_(d_2V1)J(V(1)Vzv3 0.
(38)

Ei‘his identity was used to evaluate the coefficients in the

small momentum expansion of the two-loop master diagram
with all masses equal by the method proposefiLii.

Now we turn to the three-loop case and consider for sim-
plicity bubble diagrams. At the three-loop level, bubble dia-
grams in general have the topology shown in Fig. 2, where
each line corresponds to a scalar propagator with an arbitrary
exponent.

The relation betweem- and (d—2)-dimensional three-
loop vacuum integrals with all masses arbitrary is

1
d=2)( f 21\ 3 3 3 3 3 3
G4 A({mg}) =~ 3 (9105 d10a F126T d135T d136T d1as

3 3 3 3 3 3 3
+ 9146t I1s6T Iozat Ioast doast doagt 256

+ 0545t I3a6T 9359 GV ({M}). (39
The numbering of the masses corresponds to the numbering
of the lines in Fig. 2.

Three-loop master bubble integrals encountered in the
small momentum expansion of the QED photon propagator
were studied if17]. Every integral in this case can be ex-
pressed in terms of three basic structures. The only nontrivial
combination of two integrals taken as one of such structure
was

d%%, d,d%Ks

[T 7920 (3—di2) ]2 P, .mPiy mPi,—ks0
X[ Py .mPk; —k5,0Pk, ~kp.0~ Py 0Pk, — kg mPky —ky,ml- (40)
By using Eq.(39) and the method of integration by parts we find the following relationB‘gS’P:
B(d72)23(d—4)2(d—5)(3d—14)(3d—16) @ 33d%-3670%+ 11701 — 864
4 16(d—6)° 4 8(d—4)%(d—6)°
B 7(8d2—80d+ 195 I'(d/2—1)I'?(6—d)I'(9—3d/2) @1

(d—4)%(d—6)°

I'%(3—d/2)I'(12—2d)
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We observe that the relation includB§” itself and two additional terms with a trivial dependence. The results for other
diagrams of the three-loop photon propagator look similar; i.e., they exhibit three terms of a structure liké4m) Eq.
Other useful three-loop vacuum integrals were introduced &:

12 d9,d"%,d%;
m D3:J' f f[|’7Td/2F(3 d/2)]3 Pkl OPk2 OPk3 Pkl—k3 OPkl—kz sz—k3 m» (42)
- d%,d%,d%5
m3d lZBszf j f[md’zr(s d/2)]3pk1 mPg.mPi,—ky,mPk,— k.0 (43

These integrals occurred in the evaluation of the three-loop QCD correction to the electioweekmeter. The space-time
recurrence relation fob{" looks more complicated than that 8" and it includes als®." :

(@2 16(63d°—832°+36221-5176 641 (d/2—1)I'(5—d) (7d—32)T'(d/2—1)I'(7—3d/2)
Oy T T d—a%d-5%d-6)°  (d-4%d—5)(d—6)T(3—d2)| " 3r%(3—-d/2)
(37d2—350d+828)I'(5—d)['(7—3d/2)| 4(d—2)(d—3)(3d—8)(3d—10)
242d—-9)T(3-di2T(9-2d) | 9(d—4)(d—6)° s
4(d—2)(d—3)(d—4)
- (d_6)3 3 - (44)

The corresponding relation f&.” is simpler and reads

G-z Ad-2)(d-3)(3d-8)(3d-10 ,  64151-52

S 9(d—4)(d—6)° 5 9(d—4)%(d—6)3" (45)

It can be obtained from EQq(39) by observing that For the diagram in Fig. 3 the functidd(«) is a polyno-
9,6 W= 3,G@=0, which holds becausB{"Y corresponds mial linear ina;,

to the diagram Fig. 2 with contracted second and fourth n
lines. ForB{Y we found an explicit expression in terms of D(a)=2, a;, (49)
hypergeometric functiongF, and ,F; with the argument =1

1/4, satisfying relation45).

Relations(41), (44), and(45) can be used for the compu-
tation of the coefficients in the small momentum expansion
of Feynman diagrams by the method proposefiL. 1@-2=— > g1t@, (49

A more detailed analysis of the generalized recurrence =1
relations for two- and three-loop diagrams will be given in aTo get rid of the derivatives in this relation we use the
future publication. Several examples of these recurrence renethod of integration by parts. Let us consider the identity
lations one can find also ifl0].

and, hence,

d d any—’_zn lX pl,u
IV. RELATIONS FOR n-POINT ONE-LOOP INTEGRALS d 95q HE =0, (50)
M =
In this section we consider scalar one-loop integrals dey nich is valid for arbitraryx; . Upon differentiation and ex-
pending omn—1 external momenta: pressing scalar products in the numerator in terms of invari-
d. n ants[j] in the denominator, we get
) d“q 1
1= —mll = (46) 1 n
T =1 [J] ) J ddq X 2
I j=1
where
14
[j]=(q—pj)2—m-2+ie for j<nand[n]=g?—m3+ie. +E Xj| vj—vat[i] 2 K
i k=Tk#j [K]
(47)
ing di i ) LRV
The corresponding diagram and the convention for the mo _[n]z v z 2 p g (51)
menta are given in Fig. 3. = L] ’
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whereRIV({x}) = ={_; R{Vx; with

RW=—m?—mZ+p?, RP=m2-m2—p? fori<n,

RV=mf—mi—p?+2p;p;, for i,j<n

RV =—2m3.

nn

(52

The integral related to the last sum {#1) can be made
proportional to the RHS of Eq49). This requires to find
X; such that

RV({x}H=1, j=1,...n. (53
Imposing these conditions we obtain a system efjuations
for x; . The solution of the system reads

1 . Gn-1
xiziaiInAn for I<n’X”:TAn’ (54
whereG,, is the Gram determinant,
P1P1  PiP2 P1Pn
G| P20 PP T PP
PnP1  PnP2 PnPn
andA, is proportional to the determinant,
1
Ap=— ?de(C), (55)
of thenXxn matrix C,
Cj; :mi2—1+mj2—1_(pi—1_pj—1)2: (56)

where it is assumed thah,=m, and p,=0. Substituting
X; into Eq. (51), we obtain the following relation between
d-dimensional andd— 2)-dimensional integrals:

n—1

J_Zl (vj— v)(FA,) +

n

d— vn—E Vj) Gnl}lﬁd)

j=1

n
2121 (GADIG D +2A,11072), (57)

The indexj of Iﬁfj_z) means that the factor [3/]"i in the
integrand must be changed irftp]/[j]"i. For ;=1 we ob-
tain the simpler relation

n

(d=n=1)G, =2 (GAIN 2 +24,1172.
=1 '
(58)

Ford=6,n=6 and assuming that external momenta are four

dimensional the Gram determinaat,_, vanishes and hence

0. V. TARASOV

FIG. 3. One-loop diagram with-legs.

four-dimensional pentagon integrals to box integrals. This
relation was first derived ih21]. For arbitraryd andn, Eq.
(58 was obtained by a different method [i82]. Equation
(57) as far as we know is new.

It is evident that by using Ed8) and integration by parts
one can also derive relations similar to E58) for multiloop
integrals.

Equation(57) can be used in the reduction of the one-loop
tensor integrals to scalar ones. 4] an explicit general
formula for one-loop tensor integrals was derived:

Qu,” Uy
fddq—i =
I, [j]"

(_1)M7)\
Nk Tk, 2N

2+ D k=M

X{Lg Pl - - [Pn-2] 1,

_ -1
Xf dd+2M 2)\qn

where @) =I"(v+k)/T'(v) is the Pochhammer symbol. The
shorthand notatiofi g]" p;]*t- - -[pn,l]knfl}#l. -y, COITE-

sponds to the symmetric@lith respect tqu,- - - uy) tensor
combination, each term of which is constructed frarmet-
ric tensorsy, k; momentap, . .. k,_, momentap,_,. For
example,

()
,n,M—)\[n]vnj:l [j]l/j‘"kj ’

(59

{g pl},ul,ulp,3: g,ul,uzpl,u3+ g,ulp,3p1/1,2+ g,uz,u3pl,ul'

In Eqg. (59), \, ki=0, maxk;=M, max\=[M/2] (integer
part of M/2). For more details sdd 4]. Thus, the procedure

of calculating one-loop diagrams will be as follows. One
should use first Eq59), perform contractions of indices, and
then using(57) reduce all scalar integrals with the changed
dimensions to thel=4—2¢ dimensional set of integrals.
After that scalar integrals should be reduced to the set of
master integrals by making use of recurrence relations ob-
tained by the method of integration by parts.

V. EVALUATION OF ONE-LOOP INTEGRALS
USING SPACE-TIME RECURRENCE RELATIONS

With the help of Eqs(15) and (16) one can obtain rela-
tions that include only one particular integral with different

the term with!(®) drops out and we get a relationship be- ghifts in d:

tween four-dimensional integrals with legs and integrals
with n—1 legs. Such a relation was first obtained19] (see
also[20]). Whend=6 andn=5 the left-hand sid€éLHS) of

Eq. (58 is zero and we arrive at a formula for reducing

2 Be({si}. {mZ}, )1 40 ({s;},{mZ}) =1o({s}.{mZ}.d),
(60)
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FIG. 4. Two-loop scalar diagrams with massive loops.

wherel o({s;},{m2},d) is some explicitly known expression.
It can be eliminated from the equation giving rise to higher-

order recurrence relations. For an explicit solution E&f)

looks simpler than the ones obtained by the method of inte-
gration by parts. In this section we will demonstrate how the
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At large | and g><0, the sum in Eq(65) is convergent
which allows us to findC! :

| i%¢ m

Ce= Sinme R (Am?— )32
”( m? )j_sF(Zj—28—3)F(2—j+s)

_jzo 4m?—g? 72T (j—e—1)

4

(68)

Substitution ofC!, in the above formulas yields

(d)_\/;F(d/Z—l)F(Z—d/z) m ( g2 )(d3)/2

space-time recurrence relations proposed in the present paper

can be used for evaluating integrals.
We consider the one-loop propagator-type integral
d%;,

|(d):m4_dj ﬁﬂszkl‘mpkl—q,m- (61)

By using Eq.(8) and the first relation of Eq24) we obtain

I((,72)_2(d—3)m2 @ 2I'(2—d/2)m? 62
~(g°—4m?) (9°—4m?)
Introducing
_ m> dr2 r(d_z)
(dy_;:—d d
e (4m2—q2) rae-n'  ©d
we get the simpler equation
T2 @ m? \92r(d-3)I'(2—d/2) 64
a 4m?—qg? i9r(dre—-1)

Without loss of generality, one can parametrige as
d=2l-2¢, wherel is an integer number anel is an arbi-
trary small number. The inhomogeneous term in B¢) can

be absorbed by a redefinition bf:

|_(2|—2s)=z

! ( m2 )isr(zj—zg—s)r(z—jJrs)

= \4m?—g? 272 (j—1—¢)
+C!, (65)
yielding the following very simple equation fd!
cl=clt. (66)

Sincel in our case is an arbitrary integer we can conclude
that C| does not depend oh at all. It can be found, for

example, by taking the limit—o or |d|—o. Taking the
limit |d|—c is quite a delicate matter. The largt|, the

L(d—1)/2) NEra TG
d-1.
Fld 2m? F1’2’4m2
173 (4m’—g»)> | d  am?—q?
2’

(69

By using the formula for the analytic continuation of the
hypergeometric series we get the known result

d
1

E; qz

d 2"
(d) — _ _ —
| —F(Z 2)2F1 3. am?2 (70
2’

The example considered illustrates the main ideas of how
to use the relatior{8) for the evaluation of Feynman inte-
grals. The same method applies without modification to more
complicated cases, for example, to the one-loop inte@@!
with different masses at;=v,=1 or to the two-loop inte-
gral (28) with v;=wv,=wv3=1. The recurrence relations in
these cases are very similar to E§2). We applied this
technique also to some two- and three-loop integrals. The
main difficulty encountered in these computations was to
find the asymptotic value for the integral for large An
expansion at largd is frequently used in solid state physics
and statistical physics. Our experience shows that it can also
be used for the approximate evaluationindividual Feyn-
man integrals. Details of these calculations will be given in a
future publication.

VI. THE TWO-LOOP SELF-ENERGY
FOR THE ¢° MODEL IN 6 —2& DIMENSIONS

The aim of this section is to show hodvrecurrence rela-
tions can be used to obtain theexpansion of the nontrivial

more divergent becomes the integral. In order to keep théntegrals in one dimension from the known expansion in an-

regularization of the integral, we have to considess com-

plex andl large. The asymptotic value of the integral as

other dimension.
We consider two-loop self-energy diagrams which are en-

| —oo can be found by the method of steepest descent. kountered, for example, in thé® model with two massive

depends on the sign @f. From the parametric representa-

tion of the integral (¥ one gets, folg?<0 andl—c,

_ 2\ 12 q2 I—e—3/2
(d) — -

X[1+0(1M)]. (67)

and one massless scalar fiel®3]. At the two-loop level
there are two nontrivial diagrams, given in Fig. 4, contribut-
ing to the self-energy of the massless field.

The solid lines in Fig. 4 are related to massive particles
and the dashed lines to massless ones. The corresponding
integrals read
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d d _ 2 2
(@) dkydk; NI YT LN PR W PIYCEI
1 [i’7T 2 ( 1 )

d2r(4—dr2)1? (d=3)'! " (d—3) 4m
X Pkl,mPk2,mPkl—q,mPkZ—q,mPkl—kz,Ov N m?2d-10 H(@ 72
(d—3)(d—4) 1~

d9,d%
d)_ 17 ™2 . . . .
15 )—J j [T 72 (4= d/2) 2 P&, mPi,.mPi,-qmPi, 0. where the prime denotes differentiation with respectrfo
(71 andH{? is a basic integral occurring in one-loop calcula-

tions:

Using thee expansion ind=4—2¢ dimensions we will
find the ¢ expansion of these integrals up ©(e) at )
d=6—2¢. This can be done in three steps. @ L3-3 q?

The first step consists of expressing the integf%ﬁ’sand Hi =2F; 3 4m?
I(Zd) in terms of basic ones, chosen 8] to obtain the 2
d—4 limit for the two-loop photon propagator. In fact two
integrals from this basis are the integi4? itself and its 1 (d—6) 9\ @2
derivative with respect to the mass. The remaining basic in- “d-5 " (d—5) 1= 4m? Hi ™ (73

tegrals were the derivative with respect to the mass of the

one-loop scalar integral with two massive lines, its square, The next step is to find relations between the basic inte-

and a one-loop vacuum integral with a mass. grals1{ and ({Y)’ in d andd—2 dimensions. Using Eq.
Thus, at this stage we need to compute only the integral8), with D(«) given by Eq.(5) we get a system of equations

I,. By using the recurrence relations giver{ & for integrals  in the form of Eq.(16). This system enables us to find the

contributing to the two-loop photon propagator, we get required relations

4
—3z(d—3)(d—4)%3d— 14)(3d—16)I(1d)=mT(d—8)2(d—6)[—(d—6)(d—4)23+ 12(d—4)(2d—11)z°+12(d—7)

m6
X(3d—14)z—16(d—7)(2d—9)]114" 2+ T(d—8)2(d—6)[2(d—4)23

2m2d710
_ 2_ _ _ (d=2)yr _
+2(3d—16)z2—8(9d—41)z+32(2d—9) (114 ?) [d=6)°4=2)
X[(d—4)(23d?>—226d+552)2°—8(d—4)(19d%— 188d + 462) 2

+16(22d°— 31002+ 1441 — 2238 2+ 64(2d— 9)(d—5)2](H{M)?
16mzd—10
+ MQM—_Z)[(lgdZ—182d+432)22—(56d2—552d+ 1344z+16
16n,]2d710
(@ 6%d-4d-5) -z N

—2(d®+3d?—98d+288z—8(d—5)(5d—28)(2d—9)], (74

X (2d—9)(2d— 1) HP + d—4)2z2

2
—3z(d—3)(d—4)2(3d—14)(3d—16)(l(1d))’=3%(d—4)(d—6)(d—8)2[(d—4)(d—5)22+(7d—34)(d—7)z—4(2d—9)
. 3m*
X(d=7)]114" 2+ T(d—4)(d—6)(d—8)2[(5d—24)22—4(7d—33)2

2 _ 2d—12
+16(2d—9)](11" )" + %[(d—4)(7d2—70d+174)22

—(30d%— 424d2+ 19861 — 3084 z— 8(2d — 9)(d— 5)2](H\¥)?

96(d— 4)m?d-12 .
~ D57 (@ 4(d—6)2—4(2d—9)(2d~ 11)TH

48(7d—32)(d— 6)2— 1922d— 9)(5d— 28)
i M2 84— 2)(d—6)? '

(79
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wherez=g%/m?.

The final step is to perform the expansion up to a constant term. It is remarkable that the most complicated integrals
1992 and ({%"?)’ atd=6—2¢ give contribution starting from the first order inand therefore may be disregarded in the
considered approximation. To calculd® and1{? up to a constant term ia we need to expanti{®) to second order. The
required expansion is

2

HE 29211 5| 24 | vefar = Linzy+ 2 e il BT 76
3 =1+¢ an(v) € %a En(v) an(v) an — EIZT , (76)
where
q? 1-a . Jxln(l—y)dy
2_ - — N 7
a mz, V=1t a and Li(x) o y ) (77
from which we obtain
_ a2 _ 2
2, (6-26) 3-a . 31-7a +E’_ 1 . 47 2h(a)
1 6e%(1—a%) 12:(1-a’) 24 12a° 6(1—-a°) 3a(l-ad)
517+1 1|2+1431+48a| 28
28 3a 2422 28" 3(1i-a), " W T2l 7 T @ T A=/ ") (78)
e a? 15+28° 389 1 1207 1—3a?
m48 2|(6 2e) _ _ _ 4+ _ _ h(a)
2 18?%(1—a®) 108&(1—a® 324 36a° 6481—a°) 18(l—a’)
1 10 4 1 1 8 2 5 43a | 79
T 0 a2 @ 1ma) "W sa  3e  sa1—ay, ") (79)

with

+a| 1 [1+a
)—gln(v)—§(2)+2le( 5 )

=0
—~
QD
~
I
5
N
—_—
N‘

In the considered case it is possible to obtain an explicicurrence relations. We demonstrated that a direct solution of
result in terms of hypergeometric functions and hence to perthe new recurrence relations is possible. Finding solutions of
form the £ expansion using directly the exact formulae. such relations would considerably simplify if it would be
However, from our experience with the expansion at possible to develop an effective algorithm for the asymptotic
d=4-2¢, we may say that this is a quite formidable and expansion afd|—. At the same time the expansion at
errorprone task. Thus, having done it once, it is much sim{d|— o could be used as an approximation for the integral at
pler to use thal recurrence relations in order to get the resultfinite d. This kind of expansion is well known in solid state
in the other dimension. In cases when the analytic result iand statistical physics. Basically, in the present publication
not known, it might be useful to choose the most convenientve formulated general ideas about new techniques which we
d from the point of view of thes expansion and then to intend to apply later to the calculation of some particular
transform the result to the required space-time dimensiorclasses of Feynman integrals.

Especially this procedure may be helpful if one encounters
integrals with infrared as well as ultraviolet divergences.
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