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Note on restoring manifest rotational symmetry in hyperfine and fine structure
in light-front QED
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We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle
number. The Hamiltonian contains interactions that must be treated in second-order bound-state perturbation
theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar
Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state per-
turbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to
consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transforma-
tion affects spin-orbit interaction§S0556-282(196)05222-9

PACS numbes): 12.20.Ds, 11.15.Tk, 11.30.Cp

[. INTRODUCTION culation of hyperfine splitting in the ground state. To second
order in the coupling there are new interactions between the
Light-front Hamiltonian field theory is being developed as electron and positron that arise from eliminating matrix ele-
a tool for solving bound-state problems in Q€@D2]. Cut- ments of the Hamiltonian involving high-energy photon
offs are introduced that can be lowered using a similarityemission and absorption. These new interactions have spin-
renormalization group3], and renormalization can be com- independent as well as spin-dependent parts. The spin-
pleted either using coupling cohererjdé or by fixing coun-  independent interaction, combined with the instantaneous ex-
terterms to repair symmetries violated by the cutoffs. In thechange interaction, leads to the Coulomb interaction, and the
simplest procedure the renormalized, cutoff Hamiltonians aréeading-order problem reduces to the familiar equal-time
computed perturbatively and may then be diagonalized nonSchralinger equatior2].
perturbatively to obtain low-lying bound states. Each stage The light-front spin-dependent interactions appear to be
has an approximation scheme associated with it: in the firstlifferent from the spin-dependent interactions found in an
step, the effective Hamiltonian is calculated to a given ordeequal-time formulation, even in the nonrelativistic limit. For
in perturbation theory; and in the second step the effectivexample, if one calculates the hyperfine splitting in the pos-
Hamiltonian is divided into a dominant part, which definesitronium ground state, first-order bound-state perturbation
the starting bound-state wave functions, and a perturbationheory gives incorrect results. The triplet state is not degen-
which is treated to a given order using bound-state perturbaerate, and the energy of the singlet state is incorrect. This is
tion theory. Interactions that change particle number ardecause the effective Hamiltonian contains a term that does
treated perturbatively. As a consequence, different Fockot give a contribution in first-order bound-state perturbation
states decouple and one is left with few-body problems in theéheory, but its contribution in second-order bound-state per-
leading order. It is therefore important to know to what ex-turbation theory is of the same order danas the terms con-
tent bound states are accurately described by the effectigibuting in the first orderO(«*). Joneset al. [6] summed
interactions that do not change particle number. A principathe second-order bound-state perturbation theory analyti-
signature of the truncation errors in these schemes is a viaally, and showed that it leads to the correct hyperfine split-
lation of rotational invariance, which is a dynamical symme-ting in the ground state of positronium. Kaluza and Pirner
try in light-front field theory. encountered the same problgii, and they completed the
There are two reasons why rotational symmetry is comsum numerically.
plicated in this approach. The first is that we have formulated We propose an alternative approach. We find a simple
the theory on the light front. Rotations are dynamical, andunitary transformation of the Hamiltonian that alters the
light-front spinors depend on the choice of thaxis. In the  problematic term so that it enters at first-order in bound-state
weak-coupling limit, however, one expects that rotationsperturbation theory. We find the transformation order-by-
should become simple because both boost and rotationakder in powers of momenta. In order to restore the hyperfine
symmetries are kinematic in the nonrelativistic limit. The splitting, we need to find the unitary transformation only to
second source of complexity is the regularization and renorthe next-to-leading order. A unitary transformation does not
malization scheme that we u$g,2]. This has profound ef- change the eigenvalues, and the transformation we obtain
fects in QCD[5], but in QED, to obtain the leading interac- makes the calculation much easier. It turns out that the uni-
tions cutoffs can effectively be removed. Therefore, totary transformation to this order is an expansion of the so
disentangle the two problems it is useful to study QED in thecalled Melosh transformatiof8] to next-to-leading order in
nonrelativistic limit. powers of momenta. The simple formalism enables us to
Joneset al.[6] have studied positronium in this approach, study how the similarity transformation affects the spin-
detailing renormalization and explicitly completing the cal- dependent structure of the effective Hamiltonian. This issue
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is addressed in the third section. The last section contains our Her=Hireet V1+ Vot Voers, )
conclusions.
whereH;,q. is the kinetic energyV, is O(e) emission and
IIl. SPIN-SPIN INTERACTION IN QED absorptionV, is the O(e?) instantaneous exchange interac-
tion, andV,.¢ includes theO(e?) effective interactions that
The first step in the calculation is to generate a Hamil-reproduce the effects of photon exchange above the cutoff.
tonian renormalized td(«). We start with a canonical For simplicity, we consider the case where the fermion and
light-front Hamiltonian regulated by a cutoff on the changeantifermion have equal mass.
in free energy at each interaction vertex. This cutoff is low-  Kinetic energy is diagonal in momentum space, and ma-
ered by a similarity transformation: trix elements of the interactions are nong/ero only between
_ states with energy difference smaller thAd/P*, which is
Hy, =Y 1(An*1)HAnU(A“*1)' @) reflected by an overall cutoff function in the equations be-
U is a unitary operator designed to bring the Hamiltonianlow' !f the cutoff is chogen within certain Ii_mits, the cutoff
toward band-diagonal form in light-front energy. As the cut- functions can b_e approm_mated by 1 to leading orden [-Q]'
: Let us consider matrix elements of the Hamiltonian be-

off is lowered by this trans_fo_rmation, one explicitly eNcoun- veen states containing a fermion and antifermion pair. The
ters dependence on the original cutoff and renormalization Rinetic energy is diagonal in momentum space:

required to allow the initial cutoff to be taken to infinity. One

method to accomplish this is to find a Hamiltonian that re-

produces itself in form after the canonical coupling and p?+m?  ki?+m?

masses are allowed to explicitly run with the cutoff. This is P’ + Kkt -

coupling coherencp4], and it is relatively straightforward to

find the coupling coherent QED Hamiltonian®(«) [2,6]. The emission and absorption of a photon enters at second

For more details on the similarity renormalization schemeorder.

we refer the reader to Ref§l-3|, coupling coherence is Let p;, ki be the light-front three-momenta carried by the

discussed if2,4], and for applications see Ref&,6]. fermion and antifermiong;, \; are their light-front helici-
The effective Hamiltonian for a fermion and an antifer- ties;u(p,o), v(k,\) are their spinors; indeix= 1,2 refers to

mion generated by the similarity transformatif8] using the initial and final states, respectively. The instantaneous

coupling coherenci4] is exchange interaction mixes states of different momenta,

_ezu_(pz:02)Y“U(pl:0'1)U_(k1:7\1))’vv(k2:7\2)% 77M77V9(7/;_j_(p1+k1)_(p2+k2) ), 3)
and so do the effective interactions generated by the similarity transformation:
_ezu_(pz,0'2)’)’”U(pl,0'1)U_(k1,7\1)7VU(k2,7\2)qi+D,“/(Q)
v 9(|D1|_AZ/P;)19(|D1|_|D2|) N 6(|D2|_A2/P|;)20(|D2|_|Dll)> 0(7/;—‘(pl+kl)—(p2+k2) ) @

where D, (a)=(q*?/q"?) n,7,+(1q") (59" ,+ nvqiﬂ)—gfw is the photon propagator in light-front gauge,
7,=(0,7,=1,0,0); g=p,—p, is the exchanged momentum, with =q*?/q*; D,;, D, are energy denominators:
D.:=p; —p, —q andD,=k;, —kj —q". It is convenient to add Eq$3) and(4) together, leading to

6(ID1| = A%/P*)6(|D4| —|Dy)) N 0(ID,| = A%/P*)6(|D,| —|D4))
q+D1 q+D2
2

6| |Dy|—==|6(|D5|—|D4|)D
_mum| 80D =A%P") 0D~ [D:))D, ( 2 7>+> (ID2l~|P4)D: LS P
2072 D, D, o P1TKy P2 TK;

e’u(pz,02) Y*u(p1,o)v (Ko, N2) y"v(Ky, N 1) g,uv(

|

(5)
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which is allowed to leading order for the range of cutoffs
e?m?<A?<ent [2].

The “7,7n,” term is spin-independent, it vanishes on-
shell, and it is at least one power of momentum higher tha

the leading spin-independent piece of thg,,” term. As

In what follows, we approximate the cutoff functions by 1, 1 0
=l 5[4

rI]:rom now on we will write the Hamiltonian as an operator

we explain later, it does not affect spin-spin and tensor in-WhICh acts in the cross product space of these two-

teractions, but it may influence the spin-orbit interaction. component SpINors. . . .
In what follows we use Jacobi momenta in the center-of- After the following change of variables, which defines

mass frame: Pz,

P =xP" pi=xi, ki=yiP", ki=-—«,

Vﬁ)iz+m2+piz \/Ez"'mz‘i‘kiz

wherey;=1—x;; and we replace four-component spinors Xj=———— ym=—— 7
u(p,o), v(k,\) with two-component spinors by substituting 2Vpi?+m? 2Vk;?+m?

u(p,)=2/p" (p* + pm- &l-ﬁum(%), ()
wherek;=—p;, and the three-momentum in the center of
mass frame is theﬁE(Ki,pZ), we take the nonrelativistic
limit of the Hamiltonian.
The energy denominators become

and similarly foruv(k,\) with m——m and oc—o. Here
B=19°, a=+"y are Dirac matricesA . =1y~ y* is a pro-
jection operator, ang, is a two-component spinor,

q'D;
N P1 P2 —~ —~ 2+ E_Z/mz'f' ﬁzzlmz N N
=—q*+ N = - ] — 2)(p12—p22)+ NN P12P2=—0%9" D= —q°
my1+po/m= myl+p,/m 1+p15/m 1+ p,/m
_ plZ - pZZ —~2 =3 2+ 512/m2+ p—)22/m2 o 2
( LD 2 myitp2im? (P1°—P2°) + Jit 5 2meLs B2 2|P1zP2=—0°%, )
mvy1+p;9/m* my1l+p,“/m 1+ p9/mey1+py/m
T
and the interaction Hamiltonian reduces to and
4e?(2m)?| —(1+d +vgpin) T , 9 oL oL L.
( ) _qz( ) |(vo Uspln) U”ﬂ”" ©) Uspin:_ﬁ((kl_kz)xaa)z_%((pl_pz)xab)z

wherev andv g, come from theg,,, term in Eq.(5). v, is
spin-independent angl,;, depends on spinsl denotes cor-
rections from energy denominators that we discuss in the
next section, together with the spin independep/’f,,y that

arises from thep, 7, term in Eq.(5). We have dropped an
overall factor of \x;X,(1—%;)(1—x,) in the Hamiltonian P R P )
which is absorbed by a similar factor in the definition of the + W(kzx ki), (0a),+ W(pzx P1); (),
two-body wave function.

The corrections from energy denominators do not influ- i L i .
ence the discussion of spin-dependent structure, because they  + W(kl)z' (KX 0y),— W(kz)z' (KoX 0,),
enter as an overall factor multiplying the entigg, term.

This will become clear later. To second order in powers of

1 L . IR -
+ W((kl_kz)xoa)L'((pl_pZ)XUb)L

[ [
+3W(kzx kl)'0a+3m(pzx P1)- o

i - [ - -
momenta, + a2 (P2 (P1X0b)~ 75 (P2)z (P2X 0) 2
-1+ 1 S 2+1* - L 1. - (1)
vo=1F Zrz (Pt P2)™F 5raPi- ot 51 - P We can immediately see that the first two terms ig,,

which are linear in momentum, will lead to difficulties in
bound-state perturbation theory. In first-order bound-state

3
~\2 ~\2
* W((pl)z+(p2)z)’ (10 perturbation theory they integrate to zero, but they enter at
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the second-order of bound-state perturbation theory, bringinghe corrections from energy denominatfirs.,d in Eq. (8)]
the same power of momentum as the familiar termdo not affect spin-dependent interactions to this order. The

(gXc,), - (gX o), . So in order to obtain correct splitting term in the unitary transformation designed to remove
of the ground-state triplet and singlet states using this Hamil{qx ), also removesi(qX ¢),, becaused is an overall
tonian, one has to sum second-order bound-state perturbatidactor multiplying bothv, andv gpin.

theory using all bound and scattering electron-positron states The rotationally noninvariant terms that do not mix initial

[6]. We note that the remaining terms in Eqj1) give rise to  and final state momen{.g., (/4m?)(p,),- (P1X p),] can

part of the spin-orbit interaction. be removed by adding terms of that form to the unitary trans-
The key to resolving this nuisance is to recognize that thggrmation at second order in momentum:

spin-independent, and the spin-dependent,, are both

multiplied by the same energy denominators. We seek a uni- i . -

tary transformation which, applied to the spin-independent U,—U +4 2(Pa)z (PaX 04)s- (18)
term, generates terms that cancel the unwanted linear terms,

and restore rotational invariance in thgXo,)-(qXa,)  The resultant spin-dependent interactions are

term.

, , - 1 . .
Consider the transformation Vspin=— 4_2(q X o) - (qX )
U= 1t 5 (ByX )i 3 —zpéz 12
=1t o (PaX0a)e™ 5 2 (12

1] ]
+ W(kth)'(fa*’ W(pzx P1)- 0y

for each particlex. This transformation is clearly unitary to |

second order in momentum, which is all we require here. For — —2(p2>< py)- Tp— Z(EZX K)-0a, (19
two particlesa andb in the initial and final states,
[ 2 which is the familiar Breit-Fermi interaction.
Ulhiar = ﬁ(klxoa)z_ 2 4m? The 7,7, term in Eq.(5), which we ignored so far, is
spin-independent and already one power of momentum
1p;"? higher than the leading spin-independent terny 4n There-

: 13

[
B ﬁ(plx Tp)z 2 4n? fore, to order two powers of momentum higher than the lead-
ing spin-independent term, it does not affect the spin-spin
and and tensor interactions. It may affect the spin-orbit interac-

tions. But at least as far as the spin-spin structure, we can

' Roxo ke'® now dia i iltoni i
= — -z gonalize the new Hamiltonian using states that are
Uina=| 1+ o(keX 7)™ 5 202 related to the original states as
. 12 —~
2m P27 bz 5 am?
It should be mentioned that the unitary transformation
The Hamiltonian transforms as presented here is a next-to-leading order expansion of the
+ Melosh transformatiof8]:
H—U;HU/, (15

m-+x,M O—i(PﬁX&a)z
V(m+x,Mg)%+ P2

leading to new operators, andv gy, (21)
p

1 1
=1+ + + +p,2 16
2m o (Pt P2)? (p1 P2*) (16 IIl. SIMILARITY TRANSFORMATION

_ AND FINE STRUCTURE
to the leading order, and ) . ) . )
In this section we consider corrections that arise due to

’gspin: — %(ax f;a)'(ﬁx (;b) the sirr_1i|arity transformation, i.e.,.th%m' term and the
corrections due to energy denominators in thg term in
3i 3i ) Eq. (5). For completeness, we mention that the finite cutoffs
+ —z(lzz><|21) ) (}a+ _2(52>< p1)- 5b also introduce corrections, the size of which depends on the
4m 4m specific choice ofA [2].
i Pio. In the previous considerations we omitted corrections due
— =5 (P2Xp1) - op— —3(kyXky) -0, to energy denominators in thg,, term in Eq.(5), or d in
m m Eq. (9). These corrections do not affect the spin-dependent
i . i L. terms, but they do produce a spin-independent correction:
+W(pl)z'(plxab)z_ W(pZ)z'(pZXUb)z | || (ot )|
4e?(2m)?| =;| = 4e?(2m)? 2[—% 4 iP1TP
q mc?

i _ L.
+W(kl)z'(klxga)z 4m 2(k2)z (kzxffa (17 q 22)
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where we have dropped the omnipresentindependent corrections &(«°), but they do not affect the
VX1x2(1—x,)(1—x,) as before. Similarly, any corrections spin-dependent splittings at ord&{(«*). Photon exchange
of this term due to the finite cutoff do not affect spin- below the cutoff is needed to remove the corrections at order
dependent interactions. 0(ad).

We now address the, ,, term, and its effect on the Our primary motivation for restricting this study to the
spin-orbit  interaction. HDropping the  omnipresent Part of the Hamiltonian that does not change the particle

VX X(L—X1)(1—Xp), the 7,77, term gives number is QCD. The approach suggested by Wikspal.[1]
K builds on suppressing the exchange of low energy gluons by

1 6(|D4|—|D,))(q*D1—q*D,) introducing a gluon mass, or by using confinemg2it A

4e? 2(X1—%y)2 D mass gap causes higher Fock states to decouple when the
12 9 "1 cutoff is lowered below the gap, producing a constituent ap-
6(|D,|—|D4|)(q"D,—q"Dy) proximation for QCD.
+ 4D, : (23 As far as aspects discussed here, in QCD questions about

rotational symmetry become more complicated, because the
To the lowest order in momentum this equétsr details ~ finite size of the cutoff comes into play. It is straightforward
see Appendix to show that the procedure we outline here does not com-
pletely restore manifest rotational symmetry in the spin-spin
qullﬁ-(ﬁﬁﬁz)l} interaction in QCD: It i.s still usefu.l, howevgr, because it
B (24 helps to separate violations of manifest rotational symmetry
caused by using light-front spinors from the violations due to

maj
) ) ) ) the cutoff[5].
The unitary transformation (15) applied to this term

1
a2

v ,,M,7V=4e2(2m)2 ;
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X

All of these corrections are nonanalytic. This is a conse-
guence of using a nonanalytic cutoff function in the similar-
ity transformation. If the nonanalytic spin-dependent correc- Let us concentrate on the expression in the square brack-
tions do not vanish, a simple angular momentum operatoets in Eqg.(23). From Eg.(8) one can see that the energy
does not emerge even in the nonrelativistic limit. Fortu-denominators have the form
nately, these spin-dependent terms integrate to zero in first-

APPENDIX: 7,7, TERM

order bound state perturbation theory, since they are odd q'Di=a+X,
under parity. Terms that appear at higher orders must be .
paired with other terms from second-order bound state per- q'Dy=a—X, (A1)

turbation theory and with higher-order terms from similarity
transformation. Corrections that arise due to the finite valu
of the cutoff A do not influence the lowest order spin-
dependent interactions for the same reasons. K= P1z _ P2z (P2—ps2)
m\/1+ p12/m? m\/1+ P2/ m?
IV. CONCLUSIONS (A2)

é(vhere

We have studied the part of the effective QED Hamil-a
tonian that does not change particle number. We have shown
that the light-front spin-dependent interactions reduce to the
familiar Breit-Fermi interactions. This can be achieved by a
simple unitary transformation corresponding to a change ofpe difference between the energy denominators is
spinor basis. As a consequence of sharp cutoff functions in
the similarity transformation, there are nonanalytic correc- qg'D;—q*D,=2X. (A4)
tions. These nonanalytic corrections produce spin-

Step functions can be expressed as

a=—q2+0(p°). (A3)

This term can affect spin-orbit splittings even if one does not use 0(|D4|—|D,|)=6(|a+ X|—|a—X|) = 8(aX),
the unitary transformation to rotate the spins. In that case, there
would be corrections in second-order bound state perturbation 0(|D2| —|D1|)= 9(|a—x| — |a+ x|): 0(—aX). (A5)
theory, arising from the product of E(R4) with the first two terms
in vgpin [S€€ EQ(1D)]. Using these expressions, to the lowest nonvanishing order,
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6(ID1|=[D2)(a"D1-a" Do) X6(aX) Xé(-aX)| _[X| (X
= - =2+ .
g*D, 2 a+X a—X 2a © aZ (A6)
_ + _ Tt
N 0(|D| |D1|)+(q D,—q"Dy) It is easy to show that even if the cutoff is kept in place, the
q'D; nonanalytic corrections are still present.
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