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Note on restoring manifest rotational symmetry in hyperfine and fine structure
in light-front QED

Martina Brisudova´ and Robert Perry
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 11 June 1996!

We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle
number. The Hamiltonian contains interactions that must be treated in second-order bound-state perturbation
theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar
Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state per-
turbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to
consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transforma-
tion affects spin-orbit interactions.@S0556-2821~96!05222-8#

PACS number~s!: 12.20.Ds, 11.15.Tk, 11.30.Cp
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I. INTRODUCTION

Light-front Hamiltonian field theory is being developed a
a tool for solving bound-state problems in QCD@1,2#. Cut-
offs are introduced that can be lowered using a similar
renormalization group@3#, and renormalization can be com
pleted either using coupling coherence@4# or by fixing coun-
terterms to repair symmetries violated by the cutoffs. In t
simplest procedure the renormalized, cutoff Hamiltonians
computed perturbatively and may then be diagonalized n
perturbatively to obtain low-lying bound states. Each sta
has an approximation scheme associated with it: in the fi
step, the effective Hamiltonian is calculated to a given ord
in perturbation theory; and in the second step the effect
Hamiltonian is divided into a dominant part, which define
the starting bound-state wave functions, and a perturbat
which is treated to a given order using bound-state pertur
tion theory. Interactions that change particle number
treated perturbatively. As a consequence, different Fo
states decouple and one is left with few-body problems in
leading order. It is therefore important to know to what e
tent bound states are accurately described by the effec
interactions that do not change particle number. A princip
signature of the truncation errors in these schemes is a
lation of rotational invariance, which is a dynamical symm
try in light-front field theory.

There are two reasons why rotational symmetry is co
plicated in this approach. The first is that we have formula
the theory on the light front. Rotations are dynamical, a
light-front spinors depend on the choice of thez axis. In the
weak-coupling limit, however, one expects that rotatio
should become simple because both boost and rotatio
symmetries are kinematic in the nonrelativistic limit. Th
second source of complexity is the regularization and ren
malization scheme that we use@1,2#. This has profound ef-
fects in QCD@5#, but in QED, to obtain the leading interac
tions cutoffs can effectively be removed. Therefore,
disentangle the two problems it is useful to study QED in t
nonrelativistic limit.

Joneset al. @6# have studied positronium in this approac
detailing renormalization and explicitly completing the ca
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culation of hyperfine splitting in the ground state. To second
order in the coupling there are new interactions between the
electron and positron that arise from eliminating matrix ele-
ments of the Hamiltonian involving high-energy photon
emission and absorption. These new interactions have spin
independent as well as spin-dependent parts. The spin
independent interaction, combined with the instantaneous ex
change interaction, leads to the Coulomb interaction, and the
leading-order problem reduces to the familiar equal-time
Schrödinger equation@2#.

The light-front spin-dependent interactions appear to be
different from the spin-dependent interactions found in an
equal-time formulation, even in the nonrelativistic limit. For
example, if one calculates the hyperfine splitting in the pos-
itronium ground state, first-order bound-state perturbation
theory gives incorrect results. The triplet state is not degen-
erate, and the energy of the singlet state is incorrect. This is
because the effective Hamiltonian contains a term that does
not give a contribution in first-order bound-state perturbation
theory, but its contribution in second-order bound-state per-
turbation theory is of the same order ina as the terms con-
tributing in the first order,O(a4). Joneset al. @6# summed
the second-order bound-state perturbation theory analyti-
cally, and showed that it leads to the correct hyperfine split-
ting in the ground state of positronium. Kaluza and Pirner
encountered the same problem@7#, and they completed the
sum numerically.

We propose an alternative approach. We find a simple
unitary transformation of the Hamiltonian that alters the
problematic term so that it enters at first-order in bound-state
perturbation theory. We find the transformation order-by-
order in powers of momenta. In order to restore the hyperfine
splitting, we need to find the unitary transformation only to
the next-to-leading order. A unitary transformation does not
change the eigenvalues, and the transformation we obtain
makes the calculation much easier. It turns out that the uni-
tary transformation to this order is an expansion of the so
called Melosh transformation@8# to next-to-leading order in
powers of momenta. The simple formalism enables us to
study how the similarity transformation affects the spin-
dependent structure of the effective Hamiltonian. This issue
6453 © 1996 The American Physical Society
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is addressed in the third section. The last section contains
conclusions.

II. SPIN-SPIN INTERACTION IN QED

The first step in the calculation is to generate a Ham
tonian renormalized toO(a). We start with a canonical
light-front Hamiltonian regulated by a cutoff on the chang
in free energy at each interaction vertex. This cutoff is low
ered by a similarity transformation:

HLn21
5U21~Ln21!HLn

U~Ln21!. ~1!

U is a unitary operator designed to bring the Hamiltonia
toward band-diagonal form in light-front energy. As the cu
off is lowered by this transformation, one explicitly encoun
ters dependence on the original cutoff and renormalization
required to allow the initial cutoff to be taken to infinity. One
method to accomplish this is to find a Hamiltonian that r
produces itself in form after the canonical coupling an
masses are allowed to explicitly run with the cutoff. This
coupling coherence@4#, and it is relatively straightforward to
find the coupling coherent QED Hamiltonian toO(a) @2,6#.
For more details on the similarity renormalization schem
we refer the reader to Refs.@1–3#, coupling coherence is
discussed in@2,4#, and for applications see Refs.@5,6#.

The effective Hamiltonian for a fermion and an antifer
mion generated by the similarity transformation@3# using
coupling coherence@4# is
our

il-

e
-

n
t-
-
is

e-
d
is

e

-

Heff5H free1V11V21V2eff, ~2!

whereH free is the kinetic energy,V1 is O(e) emission and
absorption,V2 is theO(e

2) instantaneous exchange interac-
tion, andV2eff includes theO(e

2) effective interactions that
reproduce the effects of photon exchange above the cutoff.
For simplicity, we consider the case where the fermion and
antifermion have equal mass.

Kinetic energy is diagonal in momentum space, and ma-
trix elements of the interactions are nonzero only between
states with energy difference smaller thanL2/P1, which is
reflected by an overall cutoff function in the equations be-
low. If the cutoff is chosen within certain limits, the cutoff
functions can be approximated by 1 to leading order ina @2#.

Let us consider matrix elements of the Hamiltonian be-
tween states containing a fermion and antifermion pair. The
kinetic energy is diagonal in momentum space:

p'21m2

p1 1
k'21m2

k1 .

The emission and absorption of a photon enters at second
order.

Let pi , ki be the light-front three-momenta carried by the
fermion and antifermion;s i , l i are their light-front helici-
ties;u(p,s), v(k,l) are their spinors; indexi51,2 refers to
the initial and final states, respectively. The instantaneous
exchange interaction mixes states of different momenta,
2e2ū~p2 ,s2!g
mu~p1 ,s1!v̄~k1 ,l1!g

nv~k2 ,l2!
1

q12hmhnuS L2

P1 2U~p121k1
2!2~p2

21k2
2!U D , ~3!

and so do the effective interactions generated by the similarity transformation:

2e2ū~p2 ,s2!g
mu~p1 ,s1!v̄~k1 ,l1!g

nv~k2 ,l2!
1

q1 Dmn~q!

3S u~ uD1u2L2/P1!u~ uD1u2uD2u!
D1

1
u~ uD2u2L2/P1!u~ uD2u2uD1u!

D2
D uS L2

P1 2U~p121k1
2!2~p2

21k2
2!U D , ~4!

where Dmn(q)5(q'2/q12)hmhn1(1/q1)(hmq
'

n1hnq
'

m)2gmn
' is the photon propagator in light-front gauge,

hm5(0,h151,0,0); q5p12p2 is the exchanged momentum, withq25q'2/q1; D1, D2 are energy denominators:
D15p1

22p2
22q2 andD25k2

22k1
22q2. It is convenient to add Eqs.~3! and ~4! together, leading to

e2ū~p2 ,s2!g
mu~p1 ,s1!v̄~k2 ,l2!g

nv~k1 ,l1!
F gmnS u~ uD1u2L2/P1!u~ uD1u2uD2u!

q1D1
1

u~ uD2u2L2/P1!u~ uD2u2uD1u!
q1D2

D

2
hmhn

2q12
S 12

u~ uD1u2L2/P1!u~ uD1u2uD2u!D2

D1
2

uS UD2U2 L2

P1D u~ uD2u2uD1u!D1

D2

D G uS L2

P1 2U~p121k1
2!2~p2

21k2
2!U D .

~5!
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In what follows, we approximate the cutoff functions by 1
which is allowed to leading order for the range of cutoff
e2m2!L2!em2 @2#.

The ‘‘hmhn’’ term is spin-independent, it vanishes on
shell, and it is at least one power of momentum higher th
the leading spin-independent piece of the ‘‘gmn’’ term. As
we explain later, it does not affect spin-spin and tensor i
teractions, but it may influence the spin-orbit interaction.

In what follows we use Jacobi momenta in the center-o
mass frame:

pi
15xiP

1, pi
'5k i

', ki
15yiP

1, ki
'52k i

',

where yi512xi ; and we replace four-component spinor
u(p,s), v(k,l) with two-component spinors by substituting

u~p,s!5A2/p1~p11bm2aW'
•pW'!L1S js

0 D , ~6!

and similarly for v(k,l) with m→2m and s→s̄. Here
b5g0, aW 5g0gW are Dirac matrices,L15 1

4g
2g1 is a pro-

jection operator, andjs is a two-component spinor,
,
s

-
an

n-

f-

s

j↑5S 10D , j↓5S 01D .
From now on we will write the Hamiltonian as an operator
which acts in the cross product space of these two-
component spinors.

After the following change of variables, which defines
pz ,

xi5
ApiW 21m21piz

2ApiW 21m2
, yi5

AkiW 21m21kiz

2AkiW 21m2
, ~7!

where kiW52piW , and the three-momentum in the center of

mass frame is thenpW [(k',pz), we take the nonrelativistic
limit of the Hamiltonian.

The energy denominators become
q1D1

52qW 21S p1z

mA11p1W
2/m2

2
p2z

mA11p2W
2/m2D ~p1W

22p2W
2!1F 21p1W

2/m21p2W
2/m2

A11p1W
2/m2A11p2W

2/m2
22Gp1zp2z.2qW 2,q1D252qW 2

2S p1z

mA11p1W
2/m2

2
p2z

mA11p2W
2/m2D ~p1W

22p2W
2!1F 21p1W

2/m21p2W
2/m2

A11p1W
2/m2A11p2W

2/m2
22Gp1zp2z.2qW 2, ~8!
ate
at
and the interaction Hamiltonian reduces to

4e2~2m!2F 1

2qW 2
~11d!G ~v01vspin!1vhmhn

, ~9!

wherev0 andvspin come from thegmn term in Eq.~5!. v0 is
spin-independent andvspin depends on spins.d denotes cor-
rections from energy denominators that we discuss in t
next section, together with the spin independentvhmhn

that

arises from thehmhn term in Eq.~5!. We have dropped an
overall factor ofAx1x2(12x1)(12x2) in the Hamiltonian
which is absorbed by a similar factor in the definition of th
two-body wave function.

The corrections from energy denominators do not infl
ence the discussion of spin-dependent structure, because
enter as an overall factor multiplying the entiregmn term.
This will become clear later. To second order in powers
momenta,

v0511
1

4m2 ~pW 11pW 2!
21

1

2m2pW 1•pW 21
1

2m2pW 1
'
•pW 2

'

1
3

4m2 „~p1W !z
21~p2W !z

2
…, ~10!
he

e

u-
they

of

and

vspin52
i

2m
„~kW12kW2!3sW a…z2

i

2m
„~pW 12pW 2!3sW b…z

1
1

4m2 „~kW12kW2!3sW a…'•„~pW 12pW 2!3sW b…'

13
i

4m2 ~kW23kW1!•sW a13
i

4m2 ~pW 23pW 1!•sW b

1
i

4m2 ~kW23kW1!z•~sW a!z1
i

4m2 ~pW 23pW 1!z•~sW b!z

1
i

4m2 ~kW1!z•~kW13sW a!z2
i

4m2 ~kW2!z•~kW23sW a!z

1
i

4m2 ~pW 1!z•~pW 13sW b!z2
i

4m2 ~pW 2!z•~pW 23sW b!z.

~11!
We can immediately see that the first two terms invspin,

which are linear in momentum, will lead to difficulties in
bound-state perturbation theory. In first-order bound-st
perturbation theory they integrate to zero, but they enter
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the second-order of bound-state perturbation theory, bring
the same power of momentum as the familiar te
(qW 3sW a)'•(qW 3sW b)' . So in order to obtain correct splitting
of the ground-state triplet and singlet states using this Ham
tonian, one has to sum second-order bound-state perturb
theory using all bound and scattering electron-positron sta
@6#. We note that the remaining terms in Eq.~11! give rise to
part of the spin-orbit interaction.

The key to resolving this nuisance is to recognize that
spin-independentv0 and the spin-dependentvspin are both
multiplied by the same energy denominators. We seek a
tary transformation which, applied to the spin-independ
term, generates terms that cancel the unwanted linear te
and restore rotational invariance in the (qW 3sW a)•(qW 3sW b)
term.

Consider the transformation

Ua511
i

2m
~PW a3sW a!z2

1

2

Pa
'2

4m2 ~12!

for each particlea. This transformation is clearly unitary to
second order in momentum, which is all we require here.
two particlesa andb in the initial and final states,

U initial
† 5F12

i

2m
~kW13sW a!z2

1

2

k1
'2

4m2G
3F12

i

2m
~pW 13sW b!z2

1

2

p1
'2

4m2 G , ~13!

and

Ufinal5F11
i

2m
~kW23sW a!z2

1

2

k2
'2

4m2G
3F11

i

2m
~pW 23sW b!z2

1

2

p2
'2

4m2 G . ~14!

The Hamiltonian transforms as

H→UfHUi
† , ~15!

leading to new operatorsṽ0 and ṽspin,

ṽ0511
1

2m2 ~pW 11pW 2!
21

1

2m2 ~p1W
21p2W

2! ~16!

to the leading order, and

ṽspin52
1

4m2 ~qW 3sW a!•~qW 3sW b!

1
3i

4m2 ~kW23kW1!•sW a1
3i

4m2 ~pW 23pW 1!•sW b

2
i

m2 ~pW 23pW 1!•sW b2
i

m2 ~kW23kW1!•sW a

1
i

4m2 ~pW 1!z•~pW 13sW b!z2
i

4m2 ~pW 2!z•~pW 23sW b!z

1
i

4m2 ~kW1!z•~kW13sW a!z2
i

4m2 ~kW2!z•~kW23sW a!z. ~17!
ing
rm

il-
ation
tes

the

uni-
ent
rms,

For

The corrections from energy denominators@i.e.,d in Eq. ~8!#
do not affect spin-dependent interactions to this order. Th
term in the unitary transformation designed to remove
(qW 3sW )z also removesd(qW 3sW )z , becaused is an overall
factor multiplying bothv0 andvspin.

The rotationally noninvariant terms that do not mix initial
and final state momenta@e.g., (i /4m2)(pW 1)z•(pW 13sW b)z# can
be removed by adding terms of that form to the unitary trans
formation at second order in momentum:

Ua→Ua1
i

4m2 ~Pa!z•~PW a3sW a!z . ~18!

The resultant spin-dependent interactions are

ṽspin52
1

4m2 ~qW 3sW a!•~qW 3sW b!

1
3i

4m2 ~kW23kW1!•sW a1
3i

4m2 ~pW 23pW 1!•sW b

2
i

m2 ~pW 23pW 1!•sW b2
i

m2 ~kW23kW1!•sW a , ~19!

which is the familiar Breit-Fermi interaction.
The hmhn term in Eq. ~5!, which we ignored so far, is

spin-independent and already one power of momentum
higher than the leading spin-independent term inv0. There-
fore, to order two powers of momentum higher than the lead
ing spin-independent term, it does not affect the spin-spin
and tensor interactions. It may affect the spin-orbit interac-
tions. But at least as far as the spin-spin structure, we ca
now diagonalize the new Hamiltonian using states that ar
related to the original states as

uc̃&5Uuc&. ~20!

It should be mentioned that the unitary transformation
presented here is a next-to-leading order expansion of th
Melosh transformation@8#:

m1xaM02 i ~Pa
'3sW a!z

A~m1xaM0!
21Pa

'2
. ~21!

III. SIMILARITY TRANSFORMATION
AND FINE STRUCTURE

In this section we consider corrections that arise due to
the similarity transformation, i.e., thehmhn term and the
corrections due to energy denominators in thegmn term in
Eq. ~5!. For completeness, we mention that the finite cutoffs
also introduce corrections, the size of which depends on th
specific choice ofL @2#.

In the previous considerations we omitted corrections due
to energy denominators in thegmn term in Eq.~5!, or d in
Eq. ~9!. These corrections do not affect the spin-dependen
terms, but they do produce a spin-independent correction:

4e2~2m!2F d
qW 2

G54e2~2m!2
1

qW 2
F uqzuuqW •~p1W1p2W !u

mqW 2
G ,

~22!
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where we have dropped the omniprese
Ax1x2(12x1)(12x2) as before. Similarly, any correction
of this term due to the finite cutoff do not affect spin
dependent interactions.

We now address thevhmhn
term, and its effect on the

spin-orbit interaction. Dropping the omniprese
Ax1x2(12x1)(12x2), thehmhn term gives

4e2
1

2~x12x2!
2 Fu~ uD1u2uD2u!~q1D12q1D2!

q1D1

1
u~ uD2u2uD1u!~q1D22q1D1!

q1D2
G . ~23!

To the lowest order in momentum this equals~for details
see Appendix!

vhmhn
54e2~2m!2

1

qW 2
F uqzuuqW •~p1W1p2W !u

mqz
2 G . ~24!

The unitary transformation (15) applied to this ter
produces1

4e2~2m!2
1

qW 2
F uqzuuqW •~p1W /m1p2W /m!u

qz
2 G

3F12
i

2m
~qW 3sW a!z1

i

2m
~qW 3sW b!zG . ~25!

All of these corrections are nonanalytic. This is a cons
quence of using a nonanalytic cutoff function in the simila
ity transformation. If the nonanalytic spin-dependent corre
tions do not vanish, a simple angular momentum opera
does not emerge even in the nonrelativistic limit. Fort
nately, these spin-dependent terms integrate to zero in fi
order bound state perturbation theory, since they are
under parity. Terms that appear at higher orders must
paired with other terms from second-order bound state p
turbation theory and with higher-order terms from similari
transformation. Corrections that arise due to the finite va
of the cutoff L do not influence the lowest order spin
dependent interactions for the same reasons.

IV. CONCLUSIONS

We have studied the part of the effective QED Ham
tonian that does not change particle number. We have sh
that the light-front spin-dependent interactions reduce to
familiar Breit-Fermi interactions. This can be achieved by
simple unitary transformation corresponding to a change
spinor basis. As a consequence of sharp cutoff functions
the similarity transformation, there are nonanalytic corre
tions. These nonanalytic corrections produce sp

1This term can affect spin-orbit splittings even if one does not u
the unitary transformation to rotate the spins. In that case, th
would be corrections in second-order bound state perturba
theory, arising from the product of Eq.~24! with the first two terms
in vspin @see Eq.~11!#.
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independent corrections atO(a3), but they do not affect the
spin-dependent splittings at orderO(a4). Photon exchange
below the cutoff is needed to remove the corrections at orde
O(a3).

Our primary motivation for restricting this study to the
part of the Hamiltonian that does not change the particle
number is QCD. The approach suggested by Wilsonet al. @1#
builds on suppressing the exchange of low energy gluons b
introducing a gluon mass, or by using confinement@2#. A
mass gap causes higher Fock states to decouple when t
cutoff is lowered below the gap, producing a constituent ap
proximation for QCD.

As far as aspects discussed here, in QCD questions abo
rotational symmetry become more complicated, because th
finite size of the cutoff comes into play. It is straightforward
to show that the procedure we outline here does not com
pletely restore manifest rotational symmetry in the spin-spin
interaction in QCD. It is still useful, however, because it
helps to separate violations of manifest rotational symmetr
caused by using light-front spinors from the violations due to
the cutoff @5#.
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APPENDIX: hµhn TERM

Let us concentrate on the expression in the square brac
ets in Eq.~23!. From Eq.~8! one can see that the energy
denominators have the form

q1D15a1X,

q1D25a2X, ~A1!

where

X5S p1z

mA11p1W
2/m2

2
p2z

mA11p2W
2/m2

D ~p1W
22p2W

2!

~A2!

and

a52qW 21O~p6!. ~A3!

The difference between the energy denominators is

q1D12q1D252X. ~A4!

Step functions can be expressed as

u~ uD1u2uD2u!5u~ ua1Xu2ua2Xu!5u~aX!,

u~ uD2u2uD1u!5u~ ua2Xu2ua1Xu!5u~2aX!. ~A5!

Using these expressions, to the lowest nonvanishing order

se
ere
ion
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Fu~ uD1u2uD2u!~q1D12q1D2!

q1D1

1
u~ uD2u2uD1u!~q1D22q1D1!

q1D2
G

52FXu~aX!

a1X
2
Xu~2aX!

a2X G.2UXaU1OSX2

a2 D . ~A6!

It is easy to show that even if the cutoff is kept in place, the
nonanalytic corrections are still present.
,
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