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QED in inhomogeneous magnetic fields

M. P. Fry*
School of Mathematics, University of Dublin, Dublin 2, Ireland
(Received 11 March 1996

A lower bound is placed on the fermionic determinant of Euclidean quantum electrodynamics in three
dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetiB(i¢td(0,0B(r)), where
B(r)=0 or B(r)<O andr is a point in thexy plane. Bounds are also obtained for the induced spin for
(2+1)-dimensional QED in the presence Bfr). An upper bound is placed on the fermionic determinant of
Euclidean QED in four dimensions in the presence of a strong, static, directionally varying, square-integrable
magnetic fieldB(r) on R3. [S0556-282(96)04822-9

PACS numbsgs): 12.20.Ds, 11.10.Kk, 11.15.Tk

I. INTRODUCTION hold for Euclidean three-dimensional QEQQED;) and
QED, except that the charge renormalization subtraction is
In quantum electrodynamics and indeed in all gauge thecemitted.

ries coupled to fermions the fermionic determinant is funda- Now the determinant is part of a functional integral over

mental. Without substantially more knowledge of this deter-A,,, and if the gauge field is given an infrared cutoff—a mass

minant a nonperturbative analysis of QED in the continuumterm—thenA , is concentrated o8’ the Schwartz space of

with dynamical fermions will remain impossible. The readerreal-valued tempered distributions. As we have n¢1g8,4],

is reminded that the fermionic determinant results from thethere is a need to regulate in any dimension. One possibility

integration over the fermionic degrees of freedom in theis to replaceA, in the determinant and anywhere else it

presence of a potentidl,,. This determinant combines with appears in the functional integral, exceptdm(A), with

the potential’s gauge-fixed Gaussian measi¢A) to pro- the smoothed, polynomial bounde@” potential Aj}(x)

duce a one-loop effective acti@®ue<In det that is exact and = (h,*A,)(x), whereA , is convoluted with an ultraviolet

on which every physical process in QED depends, therebygutoff function h, €S, the functions of rapid decrea$8].

justifying our opening statement. This introduces a regulated photon propagator since

In order to make this paper reasonably self-contained we

will retrace some material previously covered [ih—4]. A A A

Schwinger’s proper time definition of the fermionic determi- f du(AAL)A, (Y) =Dy, (X—Y), 1.2

nant in Wick-rotated Euclidean quantum electrodynamics in

four dimension$5-7] is the most useful one for our purpose whereD,’'s Fourier transform is such tha lAwoc|ﬁA|2, h,

here: denoting the Fourier transform dfi,. For example, let
h, e Cg with h, (k)=1, k?<A? andh, (k) =0, k?=2A2 The

= dt 2 ) point of all this is that one might just as well assume that
In defe1-SA=7 fo T Tr{e —ex _(D in Eq. (1.1) is C* and polynomial bounded to begin with. If
one succeeds in calculating a useful determinant one can
1 [FI? i then replace the potential iR ,, with Aj} before the final
+ 2 U“VFW)t ] + 2472 e, functional integration over the gauge field. Or one may select

some other regularization procedure.
(1.1 Essentially we are instructed to integrate over all poten-
tials, which requires knowledge of the determinant for all
whereD ,=P,—A,; S denotes the free fermion Euclidean fields. What all fields means depends on the dimensionality
propagator; m is the unrenormalized fermion mass; of space-time. In Euclidean space we need the determinant
o*'=(12D)[ 9], ¥'=—*, and|F|?=fd*xF2,(x), F,, for fieldsB andE in four dimensionsB in three dimensions,
being the field strength tensor. The coupledias been ab- and a unidirectional magnetic fieRl in two dimensions. We
sorbed into the potential. For future reference note égf,  have shown irf1] that an integral of the fermionic determi-
has the invariant dimension @f® in any space-time dimen- nant in QED over the fermion’s mass gives the determinant
sion. Included in the definition is the second-order chargen QED, for the field B=(0,0B(x,y)). It will be shown in
renormalization subtraction at zero momentum transfer thaec. Il that the determinant in QEEnay be calculated in the
is required for the integral to converge for smallas indi-  same way for thid field. And we will show in Sec. Il that
cated by the determinant’s subscript. The determinant i& mass integral of the fermionic determinant in QEfives
gauge invariant, depending only on invariant combinationghe determinant in QEPfor a static, directionally varying
of F,, and their derivatives. Definitiori1.1) continues to  magnetic fieldB(r).
The author has repeatedly encountered the assertion that
the fermionic determinant of QEDs known explicitly. This
*Electronic address: mpfry@maths.tcd.ie is true for the case of massless fermions—the Schwinger
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model [9]—but not for the all-important case of massive  TABLE I. Bounds on fermionic determinants. The lower bounds

fermions considered here. We note in passing that there i8 QED, (Ref. [4]) and QEDR (see Sec. )l are for the field

evidence that the massive fermionic determinant in QD B=(0,0B(x,y)), B(x,y)=0. For B(x,y)=<0 replaceB with —B.

discontinuous am=0 for magnetic fields with nonvanishing The upper bound for QEfhas no restriction on the sign B{(x,y).

flux [3]. This would imply that the Schwinger model's fer- The upper bounds for QEIRef. [8]) and QED) (see Sec. Il are

mionic determinant cannot in general be obtained as thér @ static, directionally varying fiel(r), reR".  Z andT denote

zero-mass limit of QEBs. the size of the boxes in treandt directions. The Iqwer bounds for
As the representatiofi.1) makes clear, the calculation of QED, 3 are representatlye; better but more complicated bounds may

a fermionic determinant is really just a problem in quantumPe found in Sec. Il and in Ref4].

mechanics involving the calculation of the energy levels and

their degeneracy of the Pauli operator QED, B2
- <In det<0
1 4P
_ T _ — _ 2, = v
(P-A)"(P-A)=(P—-A) +2 o*’F,,=0. (1.3 QED;
z
Since the determinant is required for general fields, probably ~on fd2r|B|3’2$ln det<0
the best that can be done at present is to make estimates that QED
A

place stringent bounds on the determinant. Inevitably it is the
Zeeman termoF that complicates matters. If it is simply
ignored then the zero modes of the Pauli operator are absent, 48m°
thereby causing an unacceptable modification of the infrared
behavior of QED.

It is by now a piece of folklore that the Pauli operator in ) )
two space dimensions in a unidirectional magnetic fieldthe effective energy at the one-loop level is unbounded from
B—0 at infinity has associated eigenvalues with finite degenbelow as the field’s flux is increased. As noted above, it is
eracy. This is necessary if one is to make sense out of th&'e one-loop effective action, or energy in the special case of
trace in Eq(1.1) or any other definition of a determinant the Static fields in Euclidean space, that is relevant to the non-
author is aware of. This question has been discussed iBerturbative analysis of QED. Section Il C is devoted to
[1,3,4. We know in particular that polynomial, infinite flux, €stablishing bounds on the induced spin in planar QED with
unidirectional magnetic fields are associated with infinite definite mass fermions in the presence of inhomogeneous back-
generacy[10]. Whether infinite flux in general implies an 9round magnetic fields.
infinitely degenerate ground state is not known. Some results Finally, we would like to comment on the case of general
in this direction are given ifiL1]. Here we will consider only Static fieldsB(r) andE(r) in QED,. It seems to be taken for
those unidirectional magnetic fields with finite flux, which is 9ranted that the effective Lagrangian for constBnand E
consistent with the introduction of a volume cutoff and [5:14] is an indication of the behavior of the fermionic de-
which is required to define QED before taking the thermo-terminant for general fields, provided one accepts the fudg-
dynamic limit. ing of the thermodynamic limit involved. _Now it is well

Before listing the known bounds on the determinants, inknown thatF,,, can be reduced to block diagonal form for
cluding those obtained here, we mention two analytic calcusonstant fields by two rotations iR™ (corresponding to a
lations for finite flux fields: the determinant in QElbr the ~ Lorentz boost and a rotation in Minkowski spacAs a re-

ZTBl* _ ('n deten(KB)) TB|?
= |l =
N A2 Inn 612

radially symmetric cylindrical field3], sult the constant field case reduces to the calculation of the
spectrum of two uncoupled harmonic oscillators describing
o H(r—a) the planar motion of two independent charged particles in the
B(r)= 27  a (1.4 normal magnetic and electrim the Euclidean sengdields
3 (|B+E|*=|B—E|). Therefore, constant fields are not generic
and the determinant in QEDor the field[12] in any sense, and the completely open problem of general

static fields may yet prove to be of substantial interest.

B
BOGY) = Fostinin) 12 9
Il. THREE-DIMENSIONAL QED

localized in a strip of finite extent in the direction. A Connection between the fermionic determinants

Table | summarizes the known bounds on the fermionic ' ;
determinants in QED. The lower bounds are for the fields in QED; and QED;
B=(0,0B(x,y)), B(x,y)=0 or B(x,y)<0. The lower bound We choose for the Dirac matrices in three dimensions the
for QED; is new and will be dealt with in Sec. Il. The upper 2X2 matrices y*=(io,io,,io3), where theg;’s are the
bound on QER's determinant for a static, square integrable,Pauli matrices. In this case definiti¢h.1) of the determinant
directionally varying magnetic fiel&(r), wherer is a point  in QED; reduces to
in R3, is also new and will be established in Sec. lll. The
other bounds have been previously derived. While the
bounds for QEDR; indicate stability, the lower bound for
QED,, for the class of static magnetic fields considered, in- 5
dicates that the contribution of the virtual fermion currents to —exp{—[(P—A)?—¢-B]t})e ™. (2.1

1 = dt _p%
In debED3= > fo T Tr(e
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This definition(and regularizationof the fermionic deter-
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for the unidirectional field3(r).

minant is parity conserving and gives no Chern-Simons term, An immediate consequence of EQ.5) is that the “dia-

which is known to be regularization dependébb]. Such a
term may always be added. In order to reIatnggst to
Euclidean QED in two dimensions leB=(0,0B(r)),
A=(A(r),0), andA, =(A,,A), wherer is a point in thexy

magnetic” bound in QEDR[8,13],

detep, <1, (2.9

plane. Enclosing the axis (which may also be called the implies a “diamagnetic” bound in QEPfor the static field

time axig in a large box of lengttZ we get

5 z = dt _p?
In debEDS(m )zm . t—3,7Tr(e L —exp{—[(P,

~A,)2-3B]the ™, (22
where we used
~PZ% Z .
Trspac€ 3= (@m0 2.3

the remaining trace in Eq2.2) is over space and spin indi-

ces.
The fermionic determinant in Euclidean QEDdenoted
by detg,in Refs.[1-4]) is

N dt P2, 9
In detgep,(M?) = 5 fo TTr(e s —exp{—[(P.—AL)

—o4B])e ", (2.4)

Using nothing more tharf§dE exp(—tE?) = (w/4t)¥2 we
get the connection between the two determinants:

In de 22 “dEInd E2+m?
Qep, (M%) = — . n detep,(E“+m?)

Z (= dMm? )
=5 fmZ —\/w In detyep,(M9).
(2.9

As for B, we are assuming that it is a smooth, polynomial
boundedC™ function with finite flux; it will also be assumed

to be square integrable.

As a check on Eq(2.5 one may substitute the second-
order contribution to QEPs determinant obtained by ex-

panding Eq.(2.4),

1 d%k, - )
In debEDzz—ﬁj W|B(kL)|

fld 21-2) O(B%, (2.6
X . Zm“‘ (B, (2.6

and obtain the canonical result

Z ([ dk o~
In debED3:_Ef (ZT)2|B(kJ_)|

L 2(1-2) .
><fodz[z(l— )kf+m2]1’2+o(B ),

(2.7

B=(0,0B(r)),

debEDss 1. (2.9

The term “diamagnetic” is placed in quotation marks as it is
really an expression of the paramagnetic property of fermi-
ons as definition$2.1) and (2.4 make clear.

B. Lower bound on In detQEDS

It is now possible to obtain a lower bound on In@@g

with the aid of Eq.(2.5 for the field B=(0,0B(r)), where
B(r)=0 or B(r)<0, andr is a point in thexy plane. For
B(r)=0 we showed irf4] that
B(r
1+ 22|
m

(2.10

For B=<0, simply replaceB with —B. Thus Egs.(2.5 and
(2.10 give

In debEDzzéder[B(r)—[B(r)erz]ln

dm?

Z o
In dEbE%BW fmz\/ﬁ d2r[B(r)—[B(r)

+M?]In| 1+ Bv(r;”
Z|m[® 3B(r) B(r)\3%?
:%f"zr[”%ﬁ(”ﬁf) }

(2.1)

This is our main bound. A simpler, less stringent bound can
be obtained by noting that

3
1+§x—(1+x)3’2>—x3’2, x=0, (2.12
in which case
In de —— d?r|B(r)|*? (2.13
e,= 6 ' '

The absolute value has been added to include the two pos-
sible signs ofB. Note that this bound is uniform in the fer-
mion’s mass. The reader is again cautioned that our results
(2.1) and (2.13 have only been established for magnetic
fields that have the same sign everywhere.

As a formal check on Eq2.13 we can compare it with
Redlich’s[16] result for the zero-mass limit of In q;g% for

the case of a constant magnetic field. Combining his Eq.
(4.25 with Eq. (2.13 requires
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V(312) Vv Ciwe
lim In detygp, = — ———— B¥%=— — B2 2.1 S(r;B)=—- I|m s
m—0 oen, A7%V2 6m 2.19 4 oJ)c 2mi

_ _ -1
or {(3/2)<2%?7/3, where{(3/2) is the Riemann; function Xt(r|(PL—A +m—wo3)

+(PL—AL+m+w0'3)_1|r>

3/2)= —32 2.1
{32 nZln (215 =——I|mf —e “lostr(r| (P,

€l0

andV is the volume of a large box iR3. Since((3/2)=2.612 5 o1
to four significant figures, E¢2.14) implies 2.612<2.962. —o3B+m =) r). (2.2
If the z axis is relabeled as the time axis then the effecnveNOW rotate thew contour 90°

one-loop energy of QED; is bounded by counterclockwise while letting

e——ie to effect a Wick rotation. This gives

1 © dE
O<é<g— J’ d’r[B(n)[*, (2.1 S(r,B):—mj0 S w(r|(PL—AL)?
where the lower bound comes from the diamagnetic bound —o3B+m2+E?) " 1r). (2.22
(2.9). Hence our results support stability for the class of
static magnetic fields considered here. To make sense out of this the spin densitydatO has to be

As another check on our results consider the field of Refsubtracted out. Changing the integration variable to
[12] given by Eq.(1.5). Equation(2.16) gives the bound M2=E?+m? and integrating over they plane, we obtain
the total induced spin:

0=é&<Li(eB)¥¥12, (2.17
where the coupling has been restored, andis the length S(B)=S(0)=— 71— fmz N TH(P.—AL)?
of the strip in they direction. The authors of Ref12] cal-
culated£ analytically. The zero-mass limit of, given by —agB+M2)*1—(Pf+M2)*1]. (2.23

their Eq.(22), allows a direct check on E@2.17):
We will now relate the induced spin to the determinants
LA (eB)®? 15 1 detyep, and degep,. From Eq.(2.4),
E=———1(312 5/2 +ee . 2.1 3
| {327 35 8512 g (2.18

p 1
— Indebegp, == T (P, —A,)?>— 03B+ M?) 71
Thus Eqs(2.17 and(2.18 give 0.073----<0.083. gme " 0%en,= 5 TP =A™= 0 )

—(P7+M?)71, 2.2
C. Induced spin (PL ) (2.29
Using the above results we can obtain a lower bound ofnd hence
the spin induced in the vacuum by a static, unidirectional AM?
magnetic field for all finite values of the fermion mass. In _ o m o=
2+1 dimensions the normal ordered spin density in the fielg > B)~S(0)=—52 m? JMZ—m2 IM? In deep,(M
B(r)=(0,0B(r)) derived from the potentiah=(A (r),0) is (2.25
given by
Since de@ED2 is even inB so is the induced spin.
‘RY— = T From Eq.(2.2), after relabeling the axis the time axis,
2<p<r - UH
= IE e loe ? Ind —mTthT P —A,)?
=—7 E'[T; 2 (1) ogin(r) om M deen, =5 | rexp{—[(P.—A,)
X[(Ep— o) 1+ (Eqtw) 1], (2.19 — 05B]t}— e PiYetn, (2.26

where the contou€ runs below the negative real axis, Again using t~Y2=(4/m)Y?[ 5dE exp(—tE? and then
passes through the origin, and continues running above thehanging the integration variable M?=E2+m? gives
positive realw axis. They, are energy eigenstates

J
Hi=Enin, am In debEDg 277 f \/Mzi Tr[((PL_AL)Z_O-BB
H=a-(p.—A,)+pm, (2.20 +M?) "= (P2+M?) 1. (2.27

with y*=io;, y=io,, B=03, anda=By. Then Comparing Eq(2.27) with (2.23 gives
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J 27\ B(r)
o I deen, = —2T[S(B)—S(0)], (2.28 [S(F,B)—S(r.O)]mﬂo=—Sgr(m)<1—3) 5. (239
which is what one expects from formal manipulation of the ;4 hence
fermionic functional integral for déEDS-
We are now in a position to obtain bounds on the induced om\ &
spin. From Eqs(5) and(6) in [4], [S(B)—S(0)]m_0= —sgr{m)(l— 5) 5. (2396
d P 1 ) B(r)
(;_mzln detep, < Aam? 4 f d*r Inj 1+ me |’ The result(2.36 is therefore consistent with our results
(2.29 (2.32 and(2.33.
where it is again assumed th{r)=0 or B(r)<O0 with r a i
point in thexy plane and®=[d?r B(r). Substituting Eq. Il FOUR-DIMENSIONAL QED
(2.29 in Eq. (2.29 gives, form>0, A. Connection between the fermionic determinants
in QED; and QED,
o0 2 . B
S(B)—S(0)= 12 dM “ a2 In( 1+ B(rz)) In order to make the connection we choose the static po-
87 Jm2 YMZ—=m?2 M tential A,=(0,A(r). It is assumed tha® is polynomial

boundedC” and thatA e L3(R®). Why A is chosen to be in
@ } L3 will be explained below(see also end of Sec. II)CWe

M? will require that the magnetic fielB=V XA be square inte-
grable. If BeL%R3 and A is also assumed to be in the
_m j d2r| [B(r) +m2]V2— B(r) Coulomb gaug&-A=0, then, by Sobolev-Talenti-Aubin in-
A7 2m ’ equality[19],
(2.30 3 1/3
_ f d3r B(r)-B(r)=(277/16)13> Ud3r|Ai(r)|6) ,
while, for m<O0, i=1
3.0
[m| 2 2712 B()
S(B)_S(O)g_ﬂ f dr| [B(r)+m]™*= 2|m|—|m| : that is, AcL®R3 as well asL3R®. As a simple conse-

(2.3)  quence of this and Hder's inequality[20],

For B<O simply change the sign @ in Egs. (2.30 and
(2.3). Elementary estimates indicate that the integrals in
Egs.(2.30 and(2.31) converge ifB e L%(R?).

Of particular interest is then=0 limit of the induced spin p~t+gq t=rt, 1sp, q, r=c«, (3.2
since this is related to the vacuum condensaté),_o in
the presence of an inhomogeneous background magnetice N LP(R3). No assumption has to be made about fi-
field. If the range ofB is finite and independent af, then 3<p=6
them=0 limit may be safely taken, giving nite flux as it is always zero. Finally, we choose the chiral

representation of thg matrices so thatr;=(, 7k 0 ) with

—oy

Ifglle=<Ifllgllg.

[S(B)—S(0)] 0=~ D/87 (232§ i k=1,2,3 in cyclic order.
Following these preliminaries, Eql.1) for QED,'s fer-
and o .
mionic determinant reduces to
[S(B)—S(0)]mjo=P/87. (2.33
_T « dt 2 _p2
These limits are consistent with the results of Parwaii. In deten=73 f o t |(4mt)1? Tree
Comparing Eq(2.28 with Egs.(2.32 and (2.33 it is evi- e
dently possible for In d@EDB to have a discontinuous mass 2 B 2
- —[(P-A)*— 0 + ——|e” M
derivative atm=0. exp{—[( )"~ o-Blt) 1272 € '
Finally, the vacuum condensate for the magnetic field 3.3

B(r)=B(1+r?R% 72, (2.34 , . _
where T is the dimension of the time box and
has been calculated by Dunne and HaB]. AssumeB>0. ||B||2=fd3rzB(r)-B(r). We have used Eq(2.3) again for
Since the authors use<4t y matrices, their result has to be Trgy,c€~ Po', exchangingZ for T. The factor 2 in Eq(3.3
divided by a factor of 2 to correct for this and by anothercomes from a partial spin sum; the remaining spin trace is
factor of 2 to relate their condensate to the spin density irover a two-dimensional space. The determinant in QED
Eqg. (2.19. Their Eq.(29) then gives the presence dB(r) is, from Eq.(1.1),
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, 1 (= dt 02 Sec. Il C. For the present, note that it is defined for all real
In detep, (M%) =3 f T Tre™ ™! e by Egs.(3.4) and(3.6) [see Eq(3.14) below]. But already
0 one begins to see the usefulnessAaf L3(R3).
—expl—[(P—A)2—o- B]t})e‘"“z. Inserting Eq.(3.6) in Eq. (3.5 gives
(3.9

T d*k . 1
In de%ﬁﬁf (2—)3|B(k)|2f dz 41
Thus we get the connection between QEIhd QED for T T 0

static magnetic fields: 2(1—2)k2+m?
-2)In —
In de;enzz—T fxd E( In detyep, (E?+m?) T (= dM?
™ Jo 3 +— f ———Indey(M?). (3.9
T Jm?2 MZ—m?

IB* [~ dt

e~ (EZ+md)t
242 o 112

The first term on the right-hand side is the second-order
vacuum polarization contribution to ¢gtin a static mag-

T f") dm? In detoes (M2)+ B]|2 netic field, renormalized at zero momentum transfer.
7 Jw? MZ—m2 Gen; 24 \M2)
3.5 B. Upper bound on In det,,

An upper bound can be put on In ¢etin a general static
magnetic fieldB(r) with the help of Eq.(3.8) and the dia-

In order to get the upper bound on In dgin Table | it is magnetic inequality for QEp[8]:

useful to isolate the second-order contribution to Inggt
Denoting the remainder by In detve get

|debED3(1—eS/A)|s1, (3.9
1 &k~ _ _ , _
In detyep,(1-SA) = - yp= J 23 |B(K)] whereA is the smooth potential we introduced in Sec. I A.
& & Form+0 debED3 has no zeros for rea (see Sec. lll ¢and
1 z(1-2) if detoep,|e—o=1, then we can write, instead of E.9),
X | dz RENT/) 3
o [2Z(1—2)ks+m“]

where the subscript 4 in E€B.6) is explained below; it does A few comments on Eq¥3.9) and(3.10 are in order. The
not refer to four dimensions. We have changed the argudiamagnetic inequality is general and follows for any deter-
ments of dQﬁEDB in preparation for making contact with the minant that is obtained as the continuum limit of a lattice
formal identity In detl-+x)=Tr In(1+x); see Eq.(3.7) be- theO(y obeying reflection po.sitivity. On the Iaf[tice Wilson
low. The first term on the right-hand side of E®.6) was fermlons may pe used, and since they@minvariant, Fhere
obtained by expanding Eq3.4) to second order. Graphi- 'S "0 Chern—&mqns_tenfﬁ&?]. The_ fg_ct that the continuum
cally, In det, is the sum of all even order one-loop fermion limit of detQED3 coincides with definition(3.4) follows from
graphs in three dimensions, beginning with the fourth-ordeSeiler’s Statement 5.4 and his Hg.20 (without the coun-
box graph since definitiof3.4) respects Furry’s theorem or terterm which is not needed in QBDin Ref.[6].

C invariance. Thus, restorine, Now Egs.(3.10 and(3.6) imply that

] n 3

1 -
In det,(1—eSA=— >, %Tr(SA)”. 3.7) In deh(l—SA)iﬂf (ZT)slB(k)

h=4
fld Z(1-2z)
" Jo P 12+ mA T

| 2

The operator SA is a bounded operator on
L2(R®, Vk2+m?d%k;C?) for AelLP(R® for some p>3,
which is the case here. In additicBA= (P+m) ~*A(X) be- (3.19
longs to the trace ideal C, for p>3

[C,={All|A| P=Tr((ATA)"2)<x}] [6,21-23. As aresult, the This remarkable consequence of the paramagnetism of
eigenvalues H, of the compact operat@A (none of which  charged spirg fermions implies that all the nonlinearities of
are real for m#0; see Sec. IlIC are such that Indet, are bounded by a quadratic in the magnetic field.
S7_,|e,| P<oo [24]. Therefore, the series in E(.7) has a  Inserting Eq.(3.1)) into Eq. (3.8) gives, for|B|*=|m| (re-
finite radius of convergence, although our analysis will notstoringe, recall thate?|B|>=e?fd°r B-B has the dimension
rely on this. More will be said about detor generale in of mass in both three and four dimensipns
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z2(1-2)k?+m?

T d*k .2
In detenimf W|B(k)| jodz 11_2)"1

mz
N B¢ dM?2 d3k Bk 2fd z2(1-2) +wa dm? In det(M?
m w2 m 3| )| [Z(l Z)k2+M2]1/2 HBII“\/W n et4( )
T f d |é(k)|2fld 21-2)l [4||B||4+22(1—z)k2—2m2} TF M (M2). (3.12
=— — V4 —Z)In — ———= 1IN e . .
47T2 (277)3 0 m2 ”BH4 /MZ_mZ t4

The argument of the logarithm in the last line of F8.12 has been simplified somewhat usingX@/<x-+y for x,y=0.
The last term in Eq(3.12 can be estimated for strong fields. ThusBet-AB, A>0. Then

In d MTIBI (4)\4”8“4>+ fw My det(\BM?) + O ) (313
ndet. < n — ——Inde ) : ’
fon >, 24 AN NN L=

Evidently the large mass behavior of In glet needed in Eq(3.13. Equations(3.4) and(3.6) can be combined to give

1 © dt 1/2 dSk R
In det4(m2)=§f Tre ™ —exp{—[(P—A)2— o~ B]t})+—,§f dz 41— z)f (27)3|B(k)|2e*'<22<1*2>t e tm?,
0
(3.19
|
so that the large mass limit will come from the smiatkegion _Indete{\B) T|B|?
of det,’s proper time representation. Carrying out the small- AN = 672 (3.18
. . A—c> ™
expansion we find
T C[(P=A)2— o Blt\—e P We note that this upper bound for a gen(_eral ;tqtic fEind;
rexp—L( )"-o-Blti—e ™) greater by a factor of 2 than the case wieis unidirectional
-3/2 3 2 2 2 3 2 [l]
= (4mt) d°r|3 t°B-B+ 1 t'B-V°B The bound(3.18 relies on the proper time definition of

the fermionic determinant in Eq1.1). Recall that it incor-

2 1
4 2 4 4
—25V(B-B)"+ 55 1"B-V'B arises as to whether the bou8118) is renormalization scale

dependent. It is not.

5 2 5 6
+O(t°B-BB-V*B,t’B-V B)}' (3.19 QED, in external fields. The only divergent graph is the

porates mass-shell renormalization. Therefore the question

It is easy to demonstrate this because we are dealing with

second-order photon self-energy term. Hence any finite

which, together with Eq(3.14), gives the large-mass expan- renormalization scale change will only introduce an ambigu-

sion of In det: ity quadratic in the field and so cannot change the bound
(3.18.
1 (= dt 5 1572 ) To show this explicitly refer back to E¢3.8): the loga-
In det,= J J M 1go%2 (B B) rithm in the photon self-energy term vanishekt0, cor-

responding to on-shell renormalization. Suppose we sub-

tracted atk’=u2. Then referring to Eq(3.8) again we get
+0(t"?B-BB-V?B) [ ™

[(B-B)? (fB-BB-VZB> In defed(m?, u?)=In deteq m?, u?=0)+ ||B||2

= 280(mp TO\ T Tml” (319 )

1
xfodz ZA1-2)In m .

(3.19

Then

- 2
———In det,(AB,M? . . . )
fA4B4 JMZ=m2 Wl ) The two determinants differ only by a quadratic in the field

strength, as promised. Therefore the bo(®d8), which in-
J(B-B)?

=W+O(7\_8), (3.19

renormalization scale change.

dicates a growth faster than quadratic, is not altered by a

Let us conclude this section with a comment on the phys-

and hence Eq<3.13 and(3.17) give the bound in Table I: ics of Eq.(3.18. The main input was the “diamagnetic”
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bound given by the upper bound in E§.10. It is a reflec-

tion of the paramagnetic tendency of charged fermions in an

external magnetic field as is evident from E§.4): the ei-
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=m Re(en)J dPp(p?+m?) YAy (P2 (324

genvalues of the Pauli Hamiltonian are, on average, reduced

in the presence dB relative to theB=0 case. The bound in

Eq. (3.18 is saying that because of this there is a limit onSince ¥, e L? so doesy,. Therefore both integrals in Eqg.
how fast the one-loop effective action—due to the vacuun{3-24 converge by inspection, and the integral on the right-

fermion current density induced tB—can grow. It is also

hand side is not zero. Sincg;,_,|e,| P< for p>3, there

interesting that the diamagnetic bound has come to us by @€ no zeros at the origin. Hence E.24) implies

long chain of reasoning starting with QEDBn a lattice, that

Im(e,)#0 if m#*0. A similar conclusion was reached in

it had lain dormant for about seventeen years, and theREDs by Adler[27] and in the pseudoscalar Yukawa model

emerged again to tell us something nontrivial about QED

C. Zeros of def
In order to write Eq.(3.9) in the form(3.10 it is neces-
sary to show that dggD3 or, equivalently defl1—eS/A, has

no zeros for reak when m#0. Instead of working in the
Hilbert spaceL?(R3,k?+m?d3k;C?) introduced in Sec.
[l B we will make a similarity transformation o8 A which

does not change its eigenvalues, and deal with the integral

operator

K=(P?2+m?)YsAP2+m?) V4 (3.20
on LAR3,d%r;C?) [21,26. Let ¢, eL? be an eigenvector of
K1

1

K(/rn:e— Un - (3.21

Taking the Fourier transform of E@3.21) gives

dk - 2.4 2y~ 147
| Gy AR 400

1 p+m -

e (pPrmA)TA Un(P).

(3.22

Its complex conjugate is

f d3k
) @n)?

1 g (m—p)
Multiply Eq. (3.22 from the left byfp*( )(p%+m?) Y4 and

Eq. (3.23 from the right by 2+ m?) ~Y4y,(p); add the two
equations and integrate both sides opeo get

JL(K) (K2+m2) 4 (k—p)

(3.23

i Im(ep) f d3p(p2+m?)~Y2y! () pifn(p)

in 1+1 dimensions in a finite space-time volume by Seiler
[26].

In Sec. Ill B we saw that, for the potentials we are con-
sidering, SA€C,, p>3. Then by theorem 6.2 of Simon in
Ref.[24] we can express dgin terms of the eigenvalues of
SA

” 3
dety(1—eSA= Hl {(1— ;) exp( Z (e/en)k/k”.

n k=1
(3.2

Since all of the eigenvalues are off the real axis o0,
det, cannot vanish for real values @& and therefore Eq.
(3.10 follows from this, definition(3.6), and deéED3|e:0
=1.

Since there is a nonsingular matri€ such that
C'y,C=-7v,, namely C=y, in the representation
¥,=(ioq,io;,i03), C invariance is maintained and hence
det, is an even function oé. This and the reality of dgfor
real e imply that the eigenvalues appear in quartets
ten,ten*. The same conclusion in QEDRvas reached by
the authors in Ref28].

It is not essential thaf eL3(R3). Instead, one may as-
sume thatA e L%R3) in the Coulomb gauge as requiredsf
is square integrable. In this caS8Ae(Cg so that one must
deal with def, whose expansion begins in sixth order. The
analysis above is trivially modified with the end result that
Eq. (3.18 is unchanged. It should be mentioned that restrict-
ing A to L%R3) is not a weaker assumption than requirig
to be inL3(R®) since the former condition restricts local sin-
gularities more severely.

Finally, the analysis we have used to show thabg%t

has no zeros for reat and m#0 may be applied to
debEDz. Here it must be kept in mind th# , behaves as a

“winding” field in the gauged, A*=0 with a 1f fall off if

the magnetic flux is nonvanishing. Stated differently,
A,eL?R? only if the total flux is zero. By assuming
A, €L3R? one can show thaBAeC; and conclude that
detyep, is never negative if dg’gD2|e:0=1.
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