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QED in inhomogeneous magnetic fields

M. P. Fry*
School of Mathematics, University of Dublin, Dublin 2, Ireland

~Received 11 March 1996!

A lower bound is placed on the fermionic determinant of Euclidean quantum electrodynamics in thr
dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetic fieldB~r !5„0,0,B~r !…, where
B~r !>0 or B~r !<0 and r is a point in thexy plane. Bounds are also obtained for the induced spin for
~211!-dimensional QED in the presence ofB~r !. An upper bound is placed on the fermionic determinant of
Euclidean QED in four dimensions in the presence of a strong, static, directionally varying, square-integra
magnetic fieldB~r ! on R3. @S0556-2821~96!04822-9#

PACS number~s!: 12.20.Ds, 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

In quantum electrodynamics and indeed in all gauge th
ries coupled to fermions the fermionic determinant is fund
mental. Without substantially more knowledge of this det
minant a nonperturbative analysis of QED in the continuu
with dynamical fermions will remain impossible. The read
is reminded that the fermionic determinant results from
integration over the fermionic degrees of freedom in t
presence of a potentialAm . This determinant combines with
the potential’s gauge-fixed Gaussian measuredm(A) to pro-
duce a one-loop effective actionSeff}ln det that is exact and
on which every physical process in QED depends, ther
justifying our opening statement.

In order to make this paper reasonably self-contained
will retrace some material previously covered in@1–4#.
Schwinger’s proper time definition of the fermionic determ
nant in Wick-rotated Euclidean quantum electrodynamics
four dimensions@5–7# is the most useful one for our purpos
here:

ln detren~12SA” !5
1

2 E
0

` dt

t
XTrH e2P2t2expF2SD2

1
1

2
smnFmnD t G J 1

iFi2

24p2 Ce2tm2
,

~1.1!

whereDm5Pm2Am ; S denotes the free fermion Euclidea
propagator; m is the unrenormalized fermion mas
smn5~1/2i !@gm,gn#, gm†52gm, andiFi25*d4xF mn

2 (x), Fmn
being the field strength tensor. The couplinge has been ab-
sorbed into the potential. For future reference note thateFmn
has the invariant dimension ofm2 in any space-time dimen
sion. Included in the definition is the second-order cha
renormalization subtraction at zero momentum transfer t
is required for the integral to converge for smallt, as indi-
cated by the determinant’s subscript. The determinan
gauge invariant, depending only on invariant combinatio
of Fmn and their derivatives. Definition~1.1! continues to
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hold for Euclidean three-dimensional QED~QED3! and
QED2 except that the charge renormalization subtraction is
omitted.

Now the determinant is part of a functional integral over
Am , and if the gauge field is given an infrared cutoff—a mass
term—thenAm is concentrated onS8, the Schwartz space of
real-valued tempered distributions. As we have noted@1,3,4#,
there is a need to regulate in any dimension. One possibilit
is to replaceAm in the determinant and anywhere else it
appears in the functional integral, except indm(A), with
the smoothed, polynomial boundedC` potential A m

L(x)
5(hL*Am)(x), whereAm is convoluted with an ultraviolet
cutoff function hlPS, the functions of rapid decrease@8#.
This introduces a regulated photon propagator since

E dm~A!Am
L~x!An

L~y!5Dmn
L ~x2y!, ~1.2!

whereDmn
L ’s Fourier transform is such thatD̂ mn

L }uĥLu2, ĥL

denoting the Fourier transform ofhL . For example, let
ĥLPC 0

` with ĥL(k)51, k2<L2 andĥL(k)50, k2>2L2. The
point of all this is that one might just as well assume thatAm
in Eq. ~1.1! is C` and polynomial bounded to begin with. If
one succeeds in calculating a useful determinant one ca
then replace the potential inFmn with Am

L before the final
functional integration over the gauge field. Or one may selec
some other regularization procedure.

Essentially we are instructed to integrate over all poten
tials, which requires knowledge of the determinant for all
fields. What all fields means depends on the dimensionalit
of space-time. In Euclidean space we need the determina
for fieldsB andE in four dimensions,B in three dimensions,
and a unidirectional magnetic fieldB in two dimensions. We
have shown in@1# that an integral of the fermionic determi-
nant in QED2 over the fermion’s mass gives the determinant
in QED4 for the fieldB5„0,0,B(x,y)…. It will be shown in
Sec. II that the determinant in QED3 may be calculated in the
same way for thisB field. And we will show in Sec. III that
a mass integral of the fermionic determinant in QED3 gives
the determinant in QED4 for a static, directionally varying
magnetic fieldB~r !.

The author has repeatedly encountered the assertion th
the fermionic determinant of QED2 is known explicitly. This
is true for the case of massless fermions—the Schwinge
6444 © 1996 The American Physical Society



54 6445QED IN INHOMOGENEOUS MAGNETIC FIELDS
model @9#—but not for the all-important case of massiv
fermions considered here. We note in passing that ther
evidence that the massive fermionic determinant in QED2 is
discontinuous atm50 for magnetic fields with nonvanishing
flux @3#. This would imply that the Schwinger model’s fer
mionic determinant cannot in general be obtained as
zero-mass limit of QED2’s.

As the representation~1.1! makes clear, the calculation o
a fermionic determinant is really just a problem in quantu
mechanics involving the calculation of the energy levels a
their degeneracy of the Pauli operator

~P” 2A” !†~P” 2A” !5~P2A!21
1

2
smnFmn>0. ~1.3!

Since the determinant is required for general fields, proba
the best that can be done at present is to make estimates
place stringent bounds on the determinant. Inevitably it is
Zeeman termsF that complicates matters. If it is simply
ignored then the zero modes of the Pauli operator are abs
thereby causing an unacceptable modification of the infra
behavior of QED.

It is by now a piece of folklore that the Pauli operator
two space dimensions in a unidirectional magnetic fie
B→0 at infinity has associated eigenvalues with finite deg
eracy. This is necessary if one is to make sense out of
trace in Eq.~1.1! or any other definition of a determinant th
author is aware of. This question has been discussed
@1,3,4#. We know in particular that polynomial, infinite flux
unidirectional magnetic fields are associated with infinite d
generacy@10#. Whether infinite flux in general implies an
infinitely degenerate ground state is not known. Some res
in this direction are given in@11#. Here we will consider only
those unidirectional magnetic fields with finite flux, which
consistent with the introduction of a volume cutoff an
which is required to define QED before taking the therm
dynamic limit.

Before listing the known bounds on the determinants,
cluding those obtained here, we mention two analytic cal
lations for finite flux fields: the determinant in QED2 for the
radially symmetric cylindrical field@3#,

B~r !5
F

2p

d~r2a!

a
, ~1.4!

and the determinant in QED3 for the field @12#

B~x,y!5
B

@cosh~x/l!#2
, ~1.5!

localized in a strip of finite extent in they direction.
Table I summarizes the known bounds on the fermio

determinants in QED. The lower bounds are for the fie
B5„0,0,B(x,y)…, B(x,y)>0 orB(x,y)<0. The lower bound
for QED3 is new and will be dealt with in Sec. II. The uppe
bound on QED4’s determinant for a static, square integrab
directionally varying magnetic fieldB~r !, wherer is a point
in R3, is also new and will be established in Sec. III. Th
other bounds have been previously derived. While
bounds for QED2,3 indicate stability, the lower bound fo
QED4, for the class of static magnetic fields considered,
dicates that the contribution of the virtual fermion currents
e
e is
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the effective energy at the one-loop level is unbounded from
below as the field’s flux is increased. As noted above, it is
the one-loop effective action, or energy in the special case of
static fields in Euclidean space, that is relevant to the non-
perturbative analysis of QED. Section III C is devoted to
establishing bounds on the induced spin in planar QED with
finite mass fermions in the presence of inhomogeneous back-
ground magnetic fields.

Finally, we would like to comment on the case of general
static fieldsB~r ! andE~r ! in QED4. It seems to be taken for
granted that the effective Lagrangian for constantB andE
@5,14# is an indication of the behavior of the fermionic de-
terminant for general fields, provided one accepts the fudg-
ing of the thermodynamic limit involved. Now it is well
known thatFmn can be reduced to block diagonal form for
constant fields by two rotations inR4 ~corresponding to a
Lorentz boost and a rotation in Minkowski space!. As a re-
sult the constant field case reduces to the calculation of the
spectrum of two uncoupled harmonic oscillators describing
the planar motion of two independent charged particles in the
normal magnetic and electric~in the Euclidean sense! fields
1
2 ~uB1Eu6uB2Eu!. Therefore, constant fields are not generic
in any sense, and the completely open problem of general
static fields may yet prove to be of substantial interest.

II. THREE-DIMENSIONAL QED

A. Connection between the fermionic determinants
in QED3 and QED2

We choose for the Dirac matrices in three dimensions the
232 matricesgm5( is1 ,is2 ,is3), where thesi ’s are the
Pauli matrices. In this case definition~1.1! of the determinant
in QED3 reduces to

ln detQED35
1

2 E
0

` dt

t
Tr„e2P2t

2exp$2@~P2A!22s•B#t%…e2tm2
. ~2.1!

TABLE I. Bounds on fermionic determinants. The lower bounds
in QED2 ~Ref. @4#! and QED3 ~see Sec. II! are for the field
B5„0,0,B(x,y)…, B(x,y)>0. For B(x,y)<0 replaceB with 2B.
The upper bound for QED2 has no restriction on the sign ofB(x,y).
The upper bounds for QED3 ~Ref. @8#! and QED4 ~see Sec. III! are
for a static, directionally varying fieldB~r !, rPR3. Z andT denote
the size of the boxes in thez andt directions. The lower bounds for
QED2,3 are representative; better but more complicated bounds may
be found in Sec. II and in Ref.@4#.

QED2

2
iBi2

4pm2<ln det<0

QED3

2
Z

6p Ed2ruBu3/2< ln det<0

QED4
ZTiBi2

48p2 < lim
l→`

S ln detren~lB!

l2 lnl D<TiBi2

6p2
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This definition~and regularization! of the fermionic deter-
minant is parity conserving and gives no Chern-Simons te
which is known to be regularization dependent@15#. Such a
term may always be added. In order to relate detQED3

to
Euclidean QED in two dimensions letB5„0,0,B~r !…,
A5„A'~r !,0…, andA'5(Ax ,Ay), wherer is a point in thexy
plane. Enclosing thez axis ~which may also be called the
time axis! in a large box of lengthZ we get

ln detQED3~m
2!5

Z

4p1/2 E
0

` dt

t3/2
Tr„e2P'

2 t2exp$2@~P'

2A'!22s3B#t%…e2tm2
, ~2.2!

where we used

Trspacee
2P3

2t5
Z

~4pt !1/2
; ~2.3!

the remaining trace in Eq.~2.2! is over space and spin indi
ces.

The fermionic determinant in Euclidean QED2 ~denoted
by detSch in Refs.@1–4#! is

ln detQED2~m
2!5

1

2 E
0

` dt

t
Tr„e2P'

2 t2exp$2@~P'2A'!2

2s3B#%…e2tm2
. ~2.4!

Using nothing more than*0
`dE exp(2tE2)5(p/4t)1/2 we

get the connection between the two determinants:

ln detQED3~m
2!5

Z

p E
0

`

dE ln detQED2~E
21m2!

5
Z

2p E
m2

` dM2

AM22m2
ln detQED2~M

2!.

~2.5!

As for B, we are assuming that it is a smooth, polynom
boundedC` function with finite flux; it will also be assumed
to be square integrable.

As a check on Eq.~2.5! one may substitute the second
order contribution to QED2’s determinant obtained by ex
panding Eq.~2.4!,

ln detQED252
1

2p E d2k'

~2p!2
uB̂~k'!u2

3E
0

1

dz
z~12z!

z~12z!k'
21m2 1O~B4!, ~2.6!

and obtain the canonical result

ln detQED352
Z

4p E d2k'

~2p!2
uB̂~k'!u2

3E
0

1

dz
z~12z!

@z~12z!k'
21m2#1/2

1O~B4!,

~2.7!
m,

al

-

for the unidirectional fieldB~r !.
An immediate consequence of Eq.~2.5! is that the ‘‘dia-

magnetic’’ bound in QED2 @8,13#,

detQED2<1, ~2.8!

implies a ‘‘diamagnetic’’ bound in QED3 for the static field
B5„0,0,B~r !…,

detQED3<1. ~2.9!

The term ‘‘diamagnetic’’ is placed in quotation marks as it is
really an expression of the paramagnetic property of fermi-
ons as definitions~2.1! and ~2.4! make clear.

B. Lower bound on ln detQED3

It is now possible to obtain a lower bound on ln detQED3
with the aid of Eq.~2.5! for the fieldB5„0,0,B~r !…, where
B~r !>0 or B~r !<0, and r is a point in thexy plane. For
B~r !>0 we showed in@4# that

ln detQED2>
1

4p E d2r FB~r !2@B~r !1m2# lnS 11
B~r !

m2 D G .
~2.10!

For B<0, simply replaceB with 2B. Thus Eqs.~2.5! and
~2.10! give

ln detQED3>
Z

8p2 E
m2

` dM2

AM22m2 E d2r FB~r !2@B~r !

1M2# lnS 11
B~r !

M2 D G
5
Zumu3

6p E d2r F11
3B~r !

2m2 2S 11
B~r !

m2 D 3/2G .
~2.11!

This is our main bound. A simpler, less stringent bound can
be obtained by noting that

11
3

2
x2~11x!3/2>2x3/2, x>0, ~2.12!

in which case

ln detQED3>2
Z

6p E d2r uB~r !u3/2. ~2.13!

The absolute value has been added to include the two pos-
sible signs ofB. Note that this bound is uniform in the fer-
mion’s mass. The reader is again cautioned that our results
~2.11! and ~2.13! have only been established for magnetic
fields that have the same sign everywhere.

As a formal check on Eq.~2.13! we can compare it with
Redlich’s@16# result for the zero-mass limit of ln detQED3

for
the case of a constant magnetic field. Combining his Eq.
~4.25! with Eq. ~2.13! requires
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lim
m→0

ln detQED352
Vz~3/2!

4p2&
B3/2>2

V

6p
B3/2, ~2.14!

or z~3/2!<23/2p/3, wherez~3/2! is the Riemannz function

z~3/2!5 (
n51

`

n23/2, ~2.15!

andV is the volume of a large box inR3. Sincez~3/2!52.612
to four significant figures, Eq.~2.14! implies 2.612<2.962.

If the z axis is relabeled as the time axis then the effectiv
one-loop energyE of QED3 is bounded by

0<E<
1

6p E d2r uB~r !u3/2, ~2.16!

where the lower bound comes from the diamagnetic bou
~2.9!. Hence our results support stability for the class o
static magnetic fields considered here.

As another check on our results consider the field of Re
@12# given by Eq.~1.5!. Equation~2.16! gives the bound

0<E<Ll~eB!3/2/12, ~2.17!

where the couplinge has been restored, andL is the length
of the strip in they direction. The authors of Ref.@12# cal-
culatedE analytically. The zero-mass limit ofE, given by
their Eq.~22!, allows a direct check on Eq.~2.17!:

E5
Ll~eB!3/2

8&p
Fz~3/2!2

15

16p
z~5/2!

1

eBl2 1••• G . ~2.18!

Thus Eqs.~2.17! and ~2.18! give 0.0732•••<0.083.

C. Induced spin

Using the above results we can obtain a lower bound o
the spin induced in the vacuum by a static, unidirection
magnetic field for all finite values of the fermion mass. In
211 dimensions the normal ordered spin density in the fie
B~r !5„0,0,B~r !… derived from the potentialA5„A'~r !,0… is
given by

S~r ;B!5
1

2 K Fc†~r ,t !
1

2
s3 ,c~r ,t !G

2
L

52
1

4
lim
e↓0

(
n
E
C

dv

2p i
e2 ivecn

†~r !s3cn~r !

3@~En2v!211~En1v!21#, ~2.19!

where the contourC runs below the negative realv axis,
passes through the origin, and continues running above
positive realv axis. Thecn are energy eigenstates

Hcn5Encn ,

H5a•~p'2A'!1bm, ~2.20!

with g15is1, g25is2, b5s3, anda5bg. Then
e

nd
f

f.

n
al

ld

the

S~r ;B!52
1

4
lim
e↓0

E
C

dv

2p i
e2 ive

3tr^r u~P”'2A”'1m2vs3!
21

1~P”'2A”'1m1vs3!
21ur &

52
m

2
lim
e↓0

E
C

dv

2p i
e2 ivetr^r u„~P'2A'!2

2s3B1m22v2
…

21ur &. ~2.21!

Now rotate thev contour 90° counterclockwise while letting
e→2i e to effect a Wick rotation. This gives

S~r ,B!52mE
0

` dE

2p
tr^r u„~P'2A'!2

2s3B1m21E2
…

21ur &. ~2.22!

To make sense out of this the spin density atB50 has to be
subtracted out. Changing the integration variable to
M25E21m2 and integrating over thexy plane, we obtain
the total induced spin:

S~B!2S~0!52
m

4p E
m2

` dM2

AM22m2
Tr@„~P'2A'!2

2s3B1M2
…

212~P'
21M2!21#. ~2.23!

We will now relate the induced spin to the determinants
detQED3 and detQED2. From Eq.~2.4!,

]

]m2 ln detQED25
1

2
Tr@„~P'2A'!22s3B1M2

…

21

2~P'
21M2!21#, ~2.24!

and hence

S~B!2S~0!52
m

2p E
m2

` dM2

AM22m2

]

]M2 ln detQED2~M
2!.

~2.25!

Since detQED2 is even inB so is the induced spin.
From Eq.~2.2!, after relabeling thez axis the time axis,

we get

]

]m
ln detQED35

mT

2p1/2 E
0

` dt

t1/2
Tr„exp$2@~P'2A'!2

2s3B#t%2e2P'
2 t
…e2tm2

. ~2.26!

Again using t21/25(4/p)1/2* 0
`dE exp~2tE2! and then

changing the integration variable toM25E21m2 gives

]

]m
ln detQED35

mT

2p E
m2

` dM2

AM22m2
Tr@„~P'2A'!22s3B

1M2
…

212~P'
21M2!21#. ~2.27!

Comparing Eq.~2.27! with ~2.23! gives
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]

]m
ln detQED3522T@S~B!2S~0!#, ~2.28!

which is what one expects from formal manipulation of t
fermionic functional integral for detQED3.

We are now in a position to obtain bounds on the induc
spin. From Eqs.~5! and ~6! in @4#,

]

]m2 ln detQED2<
F

4pm22
1

4p E d2r lnS 11
B~r !

m2 D ,
~2.29!

where it is again assumed thatB~r !>0 or B~r !<0 with r a
point in the xy plane andF5*d2r B~r !. Substituting Eq.
~2.29! in Eq. ~2.25! gives, form.0,

S~B!2S~0!>
m

8p2 E
m2

` dM2

AM22m2 F E d2r lnS 11
B~r !

M2 D
2

F

M2G
5

m

4p E d2r F @B~r !1m2#1/22
B~r !

2m
2mG ,

~2.30!

while, form,0,

S~B!2S~0!<2
umu
4p E d2r F @B~r !1m2#1/22

B~r !

2umu
2umuG .

~2.31!

For B<0 simply change the sign ofB in Eqs. ~2.30! and
~2.31!. Elementary estimates indicate that the integrals
Eqs.~2.30! and ~2.31! converge ifBPL2~R2!.

Of particular interest is them50 limit of the induced spin
since this is related to the vacuum condensate^c̄c&m50 in
the presence of an inhomogeneous background magn
field. If the range ofB is finite and independent ofm, then
them50 limit may be safely taken, giving

@S~B!2S~0!#m↓0>2F/8p ~2.32!

and

@S~B!2S~0!#m↑0<F/8p. ~2.33!

These limits are consistent with the results of Parwani@17#.
Comparing Eq.~2.28! with Eqs. ~2.32! and ~2.33! it is evi-
dently possible for ln detQED3 to have a discontinuous mas
derivative atm50.

Finally, the vacuum condensate for the magnetic field

B~r !5B~11r 2/R2!22, ~2.34!

has been calculated by Dunne and Hall@18#. AssumeB.0.
Since the authors use 434 g matrices, their result has to b
divided by a factor of 2 to correct for this and by anoth
factor of 2 to relate their condensate to the spin density
Eq. ~2.19!. Their Eq.~29! then gives
he

ed

in

etic

s

e
er
in

@S~r ;B!2S~r ;0!#m→052sgn~m!S 12
2p

F D B~r !

8p
, ~2.35!

and hence

@S~B!2S~0!#m→052sgn~m!S 12
2p

F D F

8p
. ~2.36!

The result ~2.36! is therefore consistent with our results
~2.32! and ~2.33!.

III. FOUR-DIMENSIONAL QED

A. Connection between the fermionic determinants
in QED3 and QED4

In order to make the connection we choose the static po-
tential Am5„0,A~r!…. It is assumed thatA is polynomial
boundedC` and thatAPL3~R3!. Why A is chosen to be in
L3 will be explained below~see also end of Sec. III C!. We
will require that the magnetic fieldB5“3A be square inte-
grable. If BPL2~R3! and A is also assumed to be in the
Coulomb gauge“•A50, then, by Sobolev-Talenti-Aubin in-
equality @19#,

E d3r B~r !•B~r !>~27p4/16!1/3(
i51

3 S E d3r uAi~r !u6D 1/3,
~3.1!

that is, APL6~R3! as well asL3~R3!. As a simple conse-
quence of this and Ho¨lder’s inequality@20#,

i f gi r<i f ipigiq ,

p211q215r21, 1<p, q, r<`, ~3.2!

AP ù
3<p<6

Lp(R3). No assumption has to be made about fi-

nite flux as it is always zero. Finally, we choose the chiral
representation of theg matrices so thats i j5(0

2sk
2sk

0 ) with

i , j ,k51,2,3 in cyclic order.
Following these preliminaries, Eq.~1.1! for QED4’s fer-

mionic determinant reduces to

ln detren5
T

2 E
0

` dt

t F 2

~4pt !1/2
Tr„e2P2t

2exp$2@~P2A!22s•B#t%…1
iBi2

12p2Ge2tm2
,

~3.3!

where T is the dimension of the time box and
iBi25*d3rB~r !•B~r !. We have used Eq.~2.3! again for

Trspacee
2P0

2t, exchangingZ for T. The factor 2 in Eq.~3.3!
comes from a partial spin sum; the remaining spin trace is
over a two-dimensional space. The determinant in QED3 in
the presence ofB~r ! is, from Eq.~1.1!,
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ln detQED3~m
2!5

1

2 E
0

` dt

t
Tr„e2P2t

2exp$2@~P2A!22s•B#t%…e2tm2
.

~3.4!

Thus we get the connection between QED3 and QED4 for
static magnetic fields:

ln detren5
2T

p E
0

`

dES ln detQED3~E
21m2!

1
iBi2

24p3/2 E
0

` dt

t1/2
e2~E21m2!tD

5
T

p E
m2

` dM2

AM22m2 S ln detQED3~M
2!1

iBi2

24pAM2D .
~3.5!

In order to get the upper bound on ln detren in Table I it is
useful to isolate the second-order contribution to ln detQED3

.
Denoting the remainder by ln det4 we get

ln detQED3~12SA” !52
1

4p E d3k

~2p!3
uB̂~k!u2

3E
0

1

dz
z~12z!

@z~12z!k21m2#1/2

1 ln det4~12SA” !, ~3.6!

where the subscript 4 in Eq.~3.6! is explained below; it does
not refer to four dimensions. We have changed the ar
ments of detQED3 in preparation for making contact with th
formal identity ln det~11x!5Tr ln~11x!; see Eq.~3.7! be-
low. The first term on the right-hand side of Eq.~3.6! was
obtained by expanding Eq.~3.4! to second order. Graphi
cally, ln det4 is the sum of all even order one-loop fermio
graphs in three dimensions, beginning with the fourth-or
box graph since definition~3.4! respects Furry’s theorem o
C invariance. Thus, restoringe,

ln det4~12eSA” !52 (
n54

`
en

n
Tr~SA” !n. ~3.7!

The operator SA” is a bounded operator on
L2(R3,Ak21m2d3k;C2) for APLp~R3! for some p.3,
which is the case here. In addition,SA”5(P” 1m)21A” (X) be-
longs to the trace ideal Cp for p.3
@Cn5$AuiAi n

n[Tr„(A†A)n/2…,`%# @6,21–23#. As a result, the
eigenvalues 1/en of the compact operatorSA” ~none of which
are real for mÞ0; see Sec. III C! are such that
( n51

` uenu
2p,` @24#. Therefore, the series in Eq.~3.7! has a

finite radius of convergence, although our analysis will n
rely on this. More will be said about det4 for generale in
gu-

n
er
r

ot

Sec. III C. For the present, note that it is defined for all real
e by Eqs.~3.4! and~3.6! @see Eq.~3.14! below#. But already
one begins to see the usefulness ofAPL3~R3!.

Inserting Eq.~3.6! in Eq. ~3.5! gives

ln detren5
T

4p2 E d3k

~2p!3
uB̂~k!u2E

0

1

dz z~1

2z!lnFz~12z!k21m2

m2 G
1
T

p E
m2

` dM2

AM22m2
ln det4~M

2!. ~3.8!

The first term on the right-hand side is the second-order
vacuum polarization contribution to detren in a static mag-
netic field, renormalized at zero momentum transfer.

B. Upper bound on ln detren

An upper bound can be put on ln detren in a general static
magnetic fieldB~r ! with the help of Eq.~3.8! and the dia-
magnetic inequality for QED3 @8#:

udetQED3~12eSA” !u<1, ~3.9!

whereA is the smooth potential we introduced in Sec. III A.
FormÞ0 detQED3 has no zeros for reale ~see Sec. III C! and

if detQED3ue5051, then we can write, instead of Eq.~3.9!,

0,detQED3~12eSA” !<1. ~3.10!

A few comments on Eqs.~3.9! and ~3.10! are in order. The
diamagnetic inequality is general and follows for any deter-
minant that is obtained as the continuum limit of a lattice
theory obeying reflection positivity. On the lattice Wilson
fermions may be used, and since they areCP invariant, there
is no Chern-Simons term@25#. The fact that the continuum
limit of detQED3 coincides with definition~3.4! follows from
Seiler’s Statement 5.4 and his Eq.~7.20! ~without the coun-
terterm which is not needed in QED3! in Ref. @6#.

Now Eqs.~3.10! and ~3.6! imply that

ln det4~12SA” !<
1

4p E d3k

~2p!3
uB̂~k!u2

3E
0

1

dz
z~12z!

@z~12z!k21m2#1/2
.

~3.11!

This remarkable consequence of the paramagnetism o
charged spin-12 fermions implies that all the nonlinearities of
ln det4 are bounded by a quadratic in the magnetic field.
Inserting Eq.~3.11! into Eq. ~3.8! gives, for iBi2>umu ~re-
storinge, recall thate2iBi25e2*d3r B•B has the dimension
of mass in both three and four dimensions!
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ln detren<
T

4p2 E d3k

~2p!3
uB̂~k!u2E

0

1

dz z~12z!lnFz~12z!k21m2

m2 G
1

T

4p2 E
m2

iBi4 dM2

AM22m2 E d3k

~2p!3
uB̂~k!u2E

0

1

dz
z~12z!

@z~12z!k21M2#1/2
1
T

p E
iBi4

` dM2

AM22m2
ln det4~M

2!

<
T

4p2 E d3k

~2p!3
uB̂~k!u2E

0

1

dz z~12z!lnF4iBi412z~12z!k222m2

m2 G1
T

p E
iBi4

` dM2

AM22m2
ln det4~M

2!. ~3.12!

The argument of the logarithm in the last line of Eq.~3.12! has been simplified somewhat using 2Axy<x1y for x,y>0.
The last term in Eq.~3.12! can be estimated for strong fields. Thus letB→lB, l.0. Then

ln detren<
l@1

l2TiBi2

24p2 lnS 4l4iBi4

m2 D1
T

p E
l4iBi4

` dM2

AM22m2
ln det4~lB,M2!1O~l22!. ~3.13!

Evidently the large mass behavior of ln det4 is needed in Eq.~3.13!. Equations~3.4! and ~3.6! can be combined to give

ln det4~m
2!5

1

2 E
0

` dt

t FTr„e2P2t2exp$2@~P2A!22s•B#t%…1
t1/2

2p3/2 E
0

1

dz z~12z!E d3k

~2p!3
uB̂~k!u2e2k2z~12z!tGe2tm2

,

~3.14!
n

:

so that the large mass limit will come from the small-t region
of det4’s proper time representation. Carrying out the smat
expansion we find

Tr„exp$2@~P2A!22s•B#t%2e2P2t
…

5~4pt !23/2E d3r F23 t2B•B1
2

15
t3B•“2B

2
2

45
t4~B•B!21

1

70
t4B•“4B

1O~ t5B•BB•“2B,t5B•“6B!G , ~3.15!

which, together with Eq.~3.14!, gives the large-mass expa
sion of ln det4:

ln det45
1

2 E
0

` dt

t E d3r F t5/2

180p3/2 ~B•B!2

1O~ t7/2B•BB•“2B!Ge2tm2

5
*~B•B!2

480pumu5
1OS *B•BB•“2B

umu7 D . ~3.16!

Then

E
l4iBi4

` dM2

AM22m2
ln det4~lB,M2!

5
*~B•B!2

960piBi8l4 1O~l28!, ~3.17!

and hence Eqs.~3.13! and ~3.17! give the bound in Table I
ll-

-

lim
l→`

ln detren~lB!

l2 lnl
<
TiBi2

6p2 . ~3.18!

We note that this upper bound for a general static fieldB is
greater by a factor of 2 than the case whenB is unidirectional
@1#.

The bound~3.18! relies on the proper time definition of
the fermionic determinant in Eq.~1.1!. Recall that it incor-
porates mass-shell renormalization. Therefore the question
arises as to whether the bound~3.18! is renormalization scale
dependent. It is not.

It is easy to demonstrate this because we are dealing with
QED4 in external fields. The only divergent graph is the
second-order photon self-energy term. Hence any finite
renormalization scale change will only introduce an ambigu-
ity quadratic in the field and so cannot change the bound
~3.18!.

To show this explicitly refer back to Eq.~3.8!: the loga-
rithm in the photon self-energy term vanishes atk250, cor-
responding to on-shell renormalization. Suppose we sub-
tracted atk25m2. Then referring to Eq.~3.8! again we get

ln detren~m
2,m2!5 ln detren~m

2,m250!1
T

4p2 iBi2

3E
0

1

dz z~12z!lnF m2

z~12z!m21m2G .
~3.19!

The two determinants differ only by a quadratic in the field
strength, as promised. Therefore the bound~3.18!, which in-
dicates a growth faster than quadratic, is not altered by a
renormalization scale change.

Let us conclude this section with a comment on the phys-
ics of Eq. ~3.18!. The main input was the ‘‘diamagnetic’’



54 6451QED IN INHOMOGENEOUS MAGNETIC FIELDS
bound given by the upper bound in Eq.~3.10!. It is a reflec-
tion of the paramagnetic tendency of charged fermions in
external magnetic field as is evident from Eq.~3.4!: the ei-
genvalues of the Pauli Hamiltonian are, on average, redu
in the presence ofB relative to theB50 case. The bound in
Eq. ~3.18! is saying that because of this there is a limit o
how fast the one-loop effective action—due to the vacuu
fermion current density induced byB—can grow. It is also
interesting that the diamagnetic bound has come to us b
long chain of reasoning starting with QED3 on a lattice, that
it had lain dormant for about seventeen years, and th
emerged again to tell us something nontrivial about QED4.

C. Zeros of det4

In order to write Eq.~3.9! in the form ~3.10! it is neces-
sary to show that detQED3 or, equivalently det4~12eSA” !, has
no zeros for reale whenmÞ0. Instead of working in the
Hilbert spaceL2(R3,Ak21m2d3k;C2) introduced in Sec.
III B we will make a similarity transformation onSA” , which
does not change its eigenvalues, and deal with the inte
operator

K5~P21m2!1/4SA” ~P21m2!21/4, ~3.20!

on L2~R3,d3r ;C2! @21,26#. Let cnPL2 be an eigenvector of
K,

Kcn5
1

en
cn . ~3.21!

Taking the Fourier transform of Eq.~3.21! gives

E d3k

~2p!3
A”̂ ~p2k!~k21m2!21/4ĉn~k!

5
1

en

p”1m

~p21m2!1/4
ĉn~p!. ~3.22!

Its complex conjugate is

2E d3k

~2p!3
ĉn
†~k!~k21m2!21/4A”̂ ~k2p!

5
1

en
.

ĉn
†~p!~m2p” !

~p21m2!1/4
. ~3.23!

Multiply Eq. ~3.22! from the left byĉ†~p!(p21m2)21/4 and
Eq. ~3.23! from the right by (p21m2)21/4ĉn~p!; add the two
equations and integrate both sides overp to get

i Im~en!E d3p~p21m2!21/2ĉn
†~p!p” ĉn~p!
an

ced

n
m

y a

en

gral

5m Re~en!E d3p~p21m2!21/2uĉn~p!u2. ~3.24!

SincecnPL2 so doesĉn . Therefore both integrals in Eq.
~3.24! converge by inspection, and the integral on the right-
hand side is not zero. Since( n51

` uenu
2p,` for p.3, there

are no zeros at the origin. Hence Eq.~3.24! implies
Im(en)Þ0 if mÞ0. A similar conclusion was reached in
QED4 by Adler @27# and in the pseudoscalar Yukawa model
in 111 dimensions in a finite space-time volume by Seiler
@26#.

In Sec. III B we saw that, for the potentials we are con-
sidering,SA”PCp , p.3. Then by theorem 6.2 of Simon in
Ref. @24# we can express det4 in terms of the eigenvalues of
SA” :

det4~12eSA” !5 )
n51

` F S 12
e

en
D expS (

k51

3

~e/en!
k/kD G .

~3.25!

Since all of the eigenvalues are off the real axis formÞ0,
det4 cannot vanish for real values ofe, and therefore Eq.
~3.10! follows from this, definition~3.6!, and detQED3ue50

51.
Since there is a nonsingular matrixC such that

C21gmC52g m
T , namely C5g2 in the representation

gm5( is1 ,is2 ,is3), C invariance is maintained and hence
det4 is an even function ofe. This and the reality of det4 for
real e imply that the eigenvalues appear in quartets
6en ,6en

.. The same conclusion in QED4 was reached by
the authors in Ref.@28#.

It is not essential thatAPL3~R3!. Instead, one may as-
sume thatAPL6~R3! in the Coulomb gauge as required ifB
is square integrable. In this caseSA”PC6 so that one must
deal with det6, whose expansion begins in sixth order. The
analysis above is trivially modified with the end result that
Eq. ~3.18! is unchanged. It should be mentioned that restrict-
ing A to L6~R3! is not a weaker assumption than requiringA
to be inL3~R3! since the former condition restricts local sin-
gularities more severely.

Finally, the analysis we have used to show that detQED3
has no zeros for reale and mÞ0 may be applied to
detQED2. Here it must be kept in mind thatAm behaves as a
‘‘winding’’ field in the gauge]mA

m50 with a 1/r fall off if
the magnetic flux is nonvanishing. Stated differently,
AmPL2~R2! only if the total flux is zero. By assuming
AmPL3~R2! one can show thatSA”PC3 and conclude that
detQED2 is never negative if detQED2ue5051.
y
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