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Solitons of axion-dilaton gravity
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We use soliton techniques of the two-dimensional redygédnction equations to obtain nontrivial string
backgrounds from flat space. These solutions are characterized by two integajséferring to the soliton
numbers of the metric and axion-dilaton sectors, respectively. We show that the Nappi-Witten universe asso-
ciated with the SI2)X SU(2)/SO(1,1)<U(1) CFT coset arises as a (1,1) soliton in this fashion for certain
values of the moduli parameters, while for other values of the soliton moduli we arrive at (BgSI(1,1)

X SO(1,1)2 background. Ordinary four-dimensional black holes arise as two-dimeng@oakolitons, while

the Euclidean wormhole background is described as a (0,2) soliton on flat space. The soliton transformations
correspond to specific elements of the string Geroch group. These could be used as a starting point for
exploring the role olJ dualities in string compactifications to two dimensiof80556-282(96)03422-4

PACS numbgs): 11.25.Sq, 02.20.Tw, 04.60.Kz

I. INTRODUCTION Geroch current group. Up to this day, however, very little
progress has been made in this particular direction, since
Duality symmetries in string theory arise as discrete rem{roving the conjecturet! dualities and understanding their

nants of continuous groups of transformations of the lowes&ction on the full spectrum of superstring models based on
order effective theory. These symmetries have received a Idhese effectively 2D backgrounds turns into a difficult prob-
of attention, as they can also provide nonperturbative inforlem.
mation about string theory. The most common examples are N this paper we consider string models with target space
T andS dualities, but it has also become clear recently thaM4XK, where M, is a 4D spacetime with signature
U dualities can be successfully used to explore various gen- + ++ and K is some internal space, which is usually
eralized equivalences among superstrifigg]. represented by a conformal field thedi®FT), so that the

Dimensional reduction offers the possibility to intertwine total central charge is critical. We focus on cosmological

the T and S moduli, and hence construct large groups ofbaCkgrOlmg‘/|4 with nontrivial G ,,,, B,,,, and® that arise

. . L - . as solutions of the lowest order effective theory:
solution-generating symmetries in three and two dimensions.

For example, the reduction from four to three dimensions

gives rise to an @,2) group[3], while the reduction from Seﬁ:f d*X\—delG[R—2(V ,®)2— e *PH? 1.
four to two dimensions leads to an infinite dimensional group Ma

of the lowest order effective theory, the current group 1D

0(2,2) [4]. These results can be regarded as straightforwarg'ere, the theory is defined directly in the Einstein frame,
generalization of similar structures found by Geroch in theWhiCh is related to ther-model frame byG(?) =e?®G
: i . P

find the effective cosmological constant is taken as zero. It
will be convenient for later use to trad®,, with the axion
field b, which is consistently defined in the Einstein frame as

two commuting isometrie$5], but now they also include
apart from the metricG,, the antisymmetric tensor field
B, and the dilatortb. The coset space structure of the sca-
lar fields in various dimensionally reduced supergravity theo- 1

ries was known beforésee, for instance,6—8] and refer- J,b= —e““"me#”P”H vpor (1.2
ences therein More recent is the realization that and S 6

dualities are embedded in the corresponding continuous hid-

den symmetry groups. In a heterotic string context it mean$l .., 1S the field strength 0B, and €p125=1. In M, with
that the reduction from ten to three dimensions gives rise t§ignature—+ + + we may further define the complex con-
an 08,24 group([7,9], while the reduction from ten to two jugate fieldsS. =b:+ie”2®, which provide the natural vari-
dimensions leads to ®,24) [10,11]. It is then natural to ables of theS modull. ]_ater, we will also consider string
expect that the two-dimensionédD) sector of string theory Packgrounds with Euclidean signatufe+ + +.

will be quite rich in symmetry, having ad duality an ap- There is a very limited number of exact CFT back-

propriately chosen discrete subgroup of the underlying stringrounds, which to lowest order ia’ provide solutions of
g. (1.1). The most characteristic examples of this type are

the two pairs of WZW coset models:
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SL(2) SU(2) more connections can be made between different string back-
SOL 1) X U’ SL(2)xSQ(1,1). (1.4 grounds using the inverse-scattering method of the 2D re-
' duced sector, and we hope to return to them in the near
future.
The first model in Eq(1.3) depends on a free parameter that In Sec. Il we briefly discuss the dimensionally reduced
defines the gauging of the coset, and it is particularly interstring background equations and outline the construction of
esting in string cosmology as it describes a closed inhomosoliton solutions using the integrability of the resulting 2D
geneous expanding and recollapsing univéisd (see also ¢ models. In Sec. lll we construct the most general (1,1)
[13] for some earlier ideasThe other three models are the soliton solution on ar-dual face of Minkowski space and
Lorentzian counterparts obtained by analytic continuation otletermine the choice of moduli parameters that correspond
the D=4, ¢=4, N=4 superconformal backgrounds to the CFT backgrounds SL(X)SU(2)/SO(1,1xU(1)
CW=SU(2)/U(1)xU(1)?, A®W=SL(2)/U(1)xSU(2)/ and SL(2)/SO(1,1¥ SO(1,1Y¥. In Sec. IV we describe the
U(1) andW*¥=SU(2)xU(1) (the throat of a wormhoje  ordinary 4D black holes as 2D (2,0) solitons on flat space,
respectively, with appropriately chosen background chargewhere the soliton moduli correspond to the mass, rotation,
[14-16. All these models exhibit two commuting Kiling and Newman-Unti-TamburindNUT) parameters of the most
isometries. It has been established with the aid ¢2,®»  general stationary axisymmetric solution. In Sec. V the Eu-
transformations that the first model in E4..3) is related to  clidean wormhole background is interpreted as a 2D (0,2)
the first model in Eq(1.4) [17], and similarly the other two soliton in the same context. Section VI contains our conclu-
models of the series afe dual to each othel5,18|. sions and some directions for further work on the subject.
Our contribution is to connect the two gravitational back-We argue that the present results could be most importantly
grounds associated with the Nappi-Witten univefd®]  used as starting point for exploring the roleldfdualities in
SL(2)XSU(2)/SO(1,1x U(1) and  SL(2)/SO(1,1) compactifications of string theory to two dimensions.
X SO(1,1¥ to the trivial flat space backgrour@® with

zero B,, and @, by considering a specially chosen six- Il. THE REDUCED THEORY AND ITS SOLITONS
dimensional moduli space of backgrounds within the entire ] . ]
set of solutions of Eq(1.1) with two commuting Killing The effective theory(1.1) describes the coupling of an

isometries. This is technically achieved by performing firstordinary SI(2)/U(1) o model to 4D gravity, which is mani-
the 2D reduction of the effective theofg.1), and then em- fest in the axion-dilaton formulation using the field variables
ploying solitonic constructions that are available for the re-Sx=b=ie 2%. This axion-dilatono model has Lorentzian
sulting integrable system of equatioffsoth for the metric ~ Signature _|fM4 is Eu_clldean, but in the case of |r_1terest_here,
and the axion-dilaton sectorsAs it turns out, the simplest WhereMy, is Lorentzian, the S{2)/U(1) o model is Euclid-
(1,1) soliton configuration orF®), or more precisely its €an. Hence, it is convenient to parametrize the axion-dilaton
T-dual face, will be sufficient to describe the semiclassicaSector by the symmetric matrix

backgrounds of these two coset models as 2D solitons for

appropriate choices of the six moduli parameters. The soli- 1 b
tonic dressing ofthe dual of F*) in this paper is analogous A=e?? s aw (2.9
to the solitonic dressing of Kasner-type metrics that were b b°+e”

studied by Belinski and Sakharov in the context of general

relativity many years agfL9]. In the context of pure gravity so that detx=1.

these authors gave a very interesting derivation of 4D black Following [4] (and references thergime consider gravi-

holes as 2D double soliton solutions on flat space. Furthetational string backgrounds of cosmological-type with two

work has also appeared in the literature, which describes theommuting Killing isometries, so that the target space metric

physically very interesting situation of two colliding gravita- is restricted by theé\nsatz

tional plane waves in terms of 2D solitofi20]. Given the

wide applicability of these methods, it is also natural to con- ds?= (X, XH[ = (dX%)?+ (dX})?]

sider the explicit form of solitons in axion-dilaton gravity 0 wis A wA B

and attempt a reinterpretation of known solutions, in particu- +0ap(X7,X0)dXdX",  AB=23, (2.2

lar those that correspond to exact CFT backgrounds, in this

context. and alsob(X%,Xx%), ®(X°X%). For notational convenience
It is interesting to note that the soliton dressing of a givenWe introduce the light-cone coordinates

configuration corresponds to a specific choice of finite group

element of the Geroch groufsee, for instanced,21]), and

hence in the string context we have found the way to gener-

ate the two exact CFT backgrounds3) from flat space by

U duality (viewed as a continuous group of transformationsthen, using the defining relatiori&.2) this Ansatzamounts

at this poinj. In a sense one may then say that the dualitie§o choosing special backgrounds with oy, 0, in which
create a universe, the Nappi-Witten cosmological solution insase the axion equations simplify to

this case. We will also consider Euclidean string back-

grounds and show for example, that the wormhole solution, 4 ad

which is an axionic instanton of the 10D heterotic theory, 9.b= e_(; By, d,b=— e_a By. (2.4
arises as a 2D (0,2) soliton on flat space. Certainly, many & (deg ¢ K Jdegy 7

n=%(x°—xl), §=%(X°+X1)- 23
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This class of backgrounds will be quite sufficient for the the soliton framework of Belinski-Sakhardd9], because

present purposes of our work. their technique is not widely known to string theorists.
The reduced string background equations that follow from Consider the following linear system of ¥2)-matrix
Eq. (1.1 read as follows in the Einstein frame: differential equations:
9,(\Jdeng 19,9)+ d«(\degg 2,9)=0, (2.5 D= f v, Dv— %q,, 2.10

9, (Vdegh "1 N) + d(Vdegh Ttg,N)=0.  (2.6)

whereW (#,¢;1) is a complex matrix function depending on

They are two essentially decoupled(2)/U(1) 2D o mod- a spectral parametéthat takes values in the whole complex

els of Ernst-typgboth having Euclidean signatyreone for plane, and
the metric sectog and the other for the axion-dilatox. A=-adgg l, B=ad,gg . 2.11
Since ydeq satisfies the 2D wave equatian,d.ydeg=0, ¢ 7
we may choose, without loss of generality, Also, the differential operators are
X0= Jdeg=a, X!= 2. _ ! _
B (2.7 Di=0—2——d, Dp=d,+2—4 (212

for the corresponding pair of its conjugate solutions. From
now on we assume the special choice of coordingzeg,  and clearly they commut¢D,,D,]=0. The systen(2.10
usinga = \/deg andg instead ofx° andX® in Eq. (2.2), and is compatible provided thay satisfies the Ernst equation
reserve the notatioX®, X* for more general coordinate sys- (2.5 for ydeg=«. We actually assume
tems. Sometimes, we will also denote the remaining two 0
coordinates byz and w instead ofX? and X3, in order to ¥(n7.£1=0)=9(n.8), (213
make more uniform our presentation in the following sec-
tions.

We recall that the differential equations for the conformal
factor f are linear of first order,

and soV¥ can be regarded as a suitable generalizatiog of
with spectral parameter.

Let go(7,£€) be a known solution and le¥ (7, ;1) be
the corresponding solution of the linear syst&rl0. If we
assume that other solutions gfexist such that

W) =x(H¥o(l), (2.14

then x(#,¢;1) has to satisfy the system of equations

ol 12
d¢(Inf) a+4Tr[(g 3¢9)°+(N"79N)%], (2.9

1
,(Inf)=——+ %Tr[(g*la,,g)%(x*la,,x)zj, 2.9

1 1
Dax=17—_(Ax=xA0), Dax=y_ (Bx—xBo),

and so, once a solutiorg(\) of the two Ernsto models is (2.15
known, f can be simply determined integrating by quadra-
tures. All these calculations are performed in the EinsteirwhereA,, B, are the current$2.11) of a seed metrigy. If
frame, where the decoupling of Eq.5) and (2.6) takes we manage to find an appropriatél), then according to
place, but the results can be easily translated in the€gs.(2.13 and(2.14), a new solution will be obtained
o-model frame of string theory.

The nonlineare models of the 2D reduced theory are 9(7,6)=x(1=0)go. (2.16
known to be integrable, and it is precisely this property that
is responsible for having an infinite-dimensional symmetry/here are a few technical assumptions pnnamely, the
group, the(string Geroch group, acting on the space of clas-reality condition on the reall line, x(I)=x(l), and
sical solutions. Because of integrability the 2D models  x(*)=1.
admit soliton solutions, which can be constructed explicity ~ The n-soliton excitations of a given seed backgrougng
on any given background that acts as a seed for the solitonge very special in thag has a simple pole structure in the
On any string background we may actually construct a whol€omplex! plane
series of solitonic excitationsn(m), wheren andm denote
the soliton numbers of thg and N sectors, respectively. )= 1+2 R(7.8)
Here, we briefly review the essential ingredients of the soli- xX(m.& 1= w(n,€)°
ton technique for the Erngt model using only the metric
sector of the theory, but the construction is exactly the samé&he residue and pole functions can be determined substitut-
for the axion-dilaton sector sincgdeg\ satisfies the same ing Eq. (2.17) in Eq. (2.15 and start comparing the pole
equation(2.6) as\. The new solutions that arise in this fash- structure on the left- and right-hand sides. The details are
ion are solitons in the 2D sense, and although 4D stringather lengthy and we skip them here. We only give the final
backgrounds can be reconstructed from thar() data, the result that will be used later for explicit computations. The
resulting configurations are not necessarily solitons of the 4mpoles are roots of the algebraic equation
world saturating the Bogomol'ny bound, and thus they are ) ®© 5
generically quantum-mechanically unstable. Next, we revisit mit2(B—Co) i+ a=0, (2.18

(2.17
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where C{ are arbitrary numerical constantmoduli, and  Eg. (2.10 (and its\ counterpajt when an arbitrary back-

i satisfy the differential equations i, &: ground is used as seed. For this reason we will start from
very simple seed solutions, knowinl,, and use the soliton
_ 2p _ 2pk technique to construgand hence reinterpret in this context
k= a+uy’ &f'uk_a—,u,k' (2.19 the more complicated solutions that exist in the literature.

The Geroch group of the metric sector is the loop group
The residue matriceR, are degenerate having the compo- 5| (2), and when both sectors are taken into account the

nent form Geroch group becomed @) x SL(2)=0(2,2). It is known
(R ag=NWM K (2.20 !n this case how to obtain the entire algebrg by successive
KWABT WA B intertwining of continuousl and S transformationg4]|. We
where the two-component vectdd ¥ is given using the _briefly men;ion her_e .that 4D bgckgrounds with two commut-
inverse of¥, atl=u,, ing isometries exhibit the obvious(82) group of transfor-
mations on the space of solutions. These transformations are
nonlocally realized in the axion-dilaton formulation of the

k) _ Ky — .
)—EA CYW o (7. &= as- (2.21 theory and their generators are embedded in the algebra of
the string Geroch group @,2) as follows We use the zero-
Cl is an arbitrary constant two-component vector, whichmode subalgebra of thg SL(2), sayTS, T°, T3, and the

together withC{¥, provides all the moduli parameters of the nonlocally realized SE2) subalgebra of thg\ SL(2), say
general SO|I'[0nIC excitation afo. The other two-component T-1 T9 J1 'that includes thet 1 modes. The continuous
vectorsN® have more complicated forms and cannot beanalogue of thesrduallty SL(2) transformations are locally

k
explicitly written with the same eas&l®) are the solution  reajized in the axion-dilaton formulation and correspond to
vectors of thenth order linear system of algebraic equatlonsthe zero-mode generato?éi, T‘i, TO, of the A &L (2).

n Hence, by intertwining @,2) with S we can generate after

2 =—2 M5(go) s> (222 an infinite number of steps the entiré(@) algebra of the

N axion-dilaton sector. To generate the oth&(Z) we inter-

d change the field variableg— a\ and perform the same in-
tertwining procedure. The exchange of the two sectors is a
legitimate operation in this case because hotimodels have

1 Euclidean signature, and this is alsdasymmetry of the 2D

LPy= —_a22 M4 (do)asMi’ - (223 reduced string background equations, leavingnaffected.

el AB The n-soliton matriceq2.25 could also be described in
terms of specific elements of the infinite-dimensional group
of Geroch transformations obtained by other approaches

[21]. We will not attempt here to decompose them in terms

of more fundamental operations associated with successive

(2.29 intertwining of T and S transformations, but we note as an

important property their commutativity in the following

sense: anr{(+n’) soliton can either be constructed directly
from a seed background or it can be viewed as an

n’-solitonic excitation of then-soliton, and similarly for
n<—>n’. Since there is a systematic understanding of the
group elements of soliton dressing, we think that is worth
exploring further the precise meaning and the consequences
of U duality in this particular sector of string theory. Of

0. course, much work remains to be done in this direction.

1- E

where thenXn matrix I' was determined by Belinski an
Sakharov

Therefore, putting it all together we arrive at a concrete ex-
pression for then-soliton excitation ofgy: namely,

9(7.é)= (1 >

k=1 Mk

A final issue is the overall normalization of the dressing ma-,
trix x. Using this last equation we find
deg=a®"?u;?u,? - -u,?  which  differs  from
deg,=a?. Agreement is achieved by scaling with
miio- - - wnla”, and this is what we will assume from now
on. The properly normalized-soliton dressing matrices of

/1«1//«2 “Mn

x(1=0)= (229 Il. (1, 1) SOLITONS AND CFT BACKGROUNDS

According to the general framework of the previous sec-
tion we may compute the simplest one-soliton solution of the
Ernsto model, say Eq(2.5), using as the seed metric

define specific group elements of the Geroch group. The nor-
malization (2.25 is introduced to achieve consistency with
the standard formulation of Geroch transformations that pre=

serve daj.
Summarizing, if we apply this proceduce to any given a®st 0
string backgroundjo, A, (more preciselyg\, to be in exact 9={ o g25)0 S1tS2= 1. 3.1

analogy for both sectorswe will obtain a generic rf,m)
solitonic excitation with 8+ 3m continuous moduli. One of
the difficulties to implement this construction in practice, In a purely gravitational context this choice of the seed met-
apart from the problem of inverting the corresponding matri-ric corresponds to a Kasner cosmological background. There
ceslI” for largen andm, is to find the explicit solutiont'; of  are two special cases in this family, namely,
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1 the connections we would like to make later with 4D CFT
$;=0, s;=1; S1=527 5 (3.2 backgrounds. The one-soliton backgroundggn(3.1) is ob-
tained using only one pole located at
which correspond to flat spa€m polar coordinatésand an
isotropic universe, respectively. Using E@.10 we may u=p==Co— B \(Co—B)?~a?. (3.9

determine¥ for this background, This pole is positioned on the real axis of the complex

(124281 +a®% 0 plane provided that
Yolh={ (124281 + a?)%2)° @3 (Co—B)*=a?. (3.5
We see clearly thaW(I=0)=g, as required on general Otherwise, we will be forced to consider more complicated
grounds(2.13). double-soliton solutions, since complex poles always come

We will first derive the general form of the one-soliton in pairs. Then, the physical one-soliton matfafter normal-
solution, and then make various specializations according tization with u/«) reads

a [ C5(2Com)®1pu®+CE(2Cou)* 20 2CoC1Cou(a®~ p?)

= , 3.6
BT UR\ 204C1Conla?— u?) C3(2Cou)®2u?+ C5(2Cou) 1" (36

where with respect to the Killing coordinat@, which yields the

) ) purely gravitational background
A=C%(2Cou)%2a®1+ C5(2Cou)*1a?s2. (3.7

1
If we were to apply the same construction to the axion- dSZ:_Zdaz*” adp®+dZ+dw’. (.13
dilaton Ernsto model (2.6), we should have scaled in
front of the seed matrif3.1), sinceg, behaves the same way |ntroducing coordinates
as+/deg\y=a),. Let us begin with a background having

, B B
e 2Po— 4251 b _Q (3.9 x=2\/ZcoshZ—, y=2\/Esmh§, (3.149

with s3+s;=1 as well. Scaling ou& from the general form  the metric (3.13 assumes the flat space form
of the one-soliton solution, we find that the new axion-gs2= —dx2+dy?+dz2+dw?. Actually, it is immediately

dilaton system is given by the configuration recognized thaf3.14) is a Rindler transformation of the 2D
L, ., Minkowski space X,y) with (Ine,B) providing the corre-
o, C12(2Cu" ) *2a51+ CL2(2CH " ) *S1a%S2 sponding pair of Rindler coordinates. Hence, we start from
e =

the 2D Rindler wedge times a flat 2D Euclidean space pa-

rametrized by the other two coordinatesw), and use its

T-dual face as seed string background.

2CLCICup’ (aP—1'?) We notice that ouAnsatze(3.11) and(3.12 for the seed

= 0 ’1 Z'fL L — background imply the following choice of the Kasner-type
C12(2Cu" ) ®2a*1+ CL2(2CHu" ) %S parameters for the two sectors:

(3.10

where the primes are used to distinguish the parameters of g9 S1=%75, 3.19
the axion-dilaton system from those of the metric moduli.

Suppose now we are combining both sectors to construct
the (1,1) soliton starting from the following solution of the
string background equations in the Einstein frame:

C:ILZ(ZCaM/)ZSéaASi_I_ CéZ(ZCCV)M/)ZSiM/Z !
(3.9

=

N s1=0, s,=1. (3.1

Then, the resulting (1,1) soliton simplifies considerably and

ds2= — da?+dB%+ a(dZ2+dw?), (3.11) in the Einstein frame is given by
2 2
bo=0, e ?®o=q. (3.12 Cia——i-Cg,u Clcz(a——,u,>
1 M M
This particular choice of the seed background is very special gFW ) , |
in that it is T dual toF 4, i.e., the flat space metric with zero S PP c2,+ 02
dilaton and antisymmetric tensor fields. To see this we trans- ™2l - 1T 2 “

late Eq.(3.1)) in the o-model frame and perforii duality (3.17
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1 a? while the conformal factor in the Einstein frame is deter-
e 2= W<4C62C12M’ +Céz—,>, mined according to Eq3.20).
0o~ 2 K (3.18 We claim that this solution corresponds to the cosmologi-
' cal background found by Nappi and Witten while consider-
2C,CC) a2 ing the SL(2)X SU(2)/SO(1,1XU(1) CFT coset. In this
b1=ﬁ<—, —u ) (3.19 regard, the numerical parametethat was introduced in Eq.
4Gy Ci7+Cy% (3.25 will be shown to describe the arbitrariness in the gaug-

) ) , ing of this coset. For this purpose we also choose
As for the conformal factof, which follows by integration

of Egs.(2.8) and(2.9), we find after some lengthy computa- Co=—1, (3.29
tion the result

212 12 12 2 thus describing the santedependent string background for
¢ _M(4C"C p "+ Gy a) (320 @0y point in the soliton moduli space that is restricted by
" (aP=ud)(aP—u'?) ' Egs.(3.23, (3.25, and(3.29.

The construction is rather formal up to now, while making
up to an overall numerical factor, wherefgs=1 by inspect-  various seemingly unjustified choices of the free parameters.
ing Eq.(3.11). At this point we introduce coordinate$®, X! in terms of

There is an ambiguity to choosg, or u_ in Egs. a, B given by
(3.197—(3.19, but since

, a=sin2X%in2x!, B=cos2X’cos2X!, (3.29
M= :;- (3.2 thus also restricting the range efand8 asX? andX* range

N from 0 to «/2. This is a good choice because
the two choices yield the same result provided that in the Con 0 1 0 1
metric soliton moduli spaced;,C,)—(—C,,C;). Simi- e “7=1-cosX"cos2X"+ sing(cos2X"— cosX")
larly, in the axion-dilaton sector the two choices, are (3.30
equivalent provided that @;,Cp)—(—C5/2Co,2CoC1).  ig manifestly real and positive, as should be expected for an
Hence, in the following we may choose, without loss of gen-pgnest dilaton field. For the axion we find
erality,

o pr OB b=cos#(cos2X°— cos2X?). (3.3)
M=o 0~ —an,

At first sight it seems that these choices are not good for the

w' =C{—B+\(Ci—B)>—a?. (3.22  metric sector(3.24), since
Next, we show how to obtain the string backgrounds associ- ~ g,,= —4sirfX%sin’X*, gy, = —4co$X cosX?,
ated with the two coset models SL(RBU(2)/ (3.32

SO(1,1)XU(1) and Sl(2)/SO(1,1)x SO(1,1¥ by making . i
appropriate choices of the moduli parameters in the 6D spacdd the signature turns out to be— instead of+ +. Recall,

of solutions we have obtained. however, the way we have obtained the physical metric in
(i) Nappi-Witten universe: In theg sector of the general the soliton con_struction of Sec. Il There,zwe had to_ scale
(1,1) soliton solution we choose x(I=0) accordingly so that dgt=degy= «~. The scaling
was u/ a for the one-soliton, but equally well we could have
C,=0, (3.23  taken—u/a. The latter choice renders the signaturegof
physical, i.e.,+ +, and there is no contradiction.
which gives rise to a diagonal metric with components To make exact contact with the Nappi-Witten cosmologi-
cal background we introduce coordinadésandX® by scal-
9,7=Co— B+ \/(CO_B)Z_azl ing

du=Co B~ Co PP (324 N (ST R [

independent ofC,. For the axion-dilaton sector we set

, _ and compute the full metric in the-model frame. The final
C, sing—1 result reads

2C,  co¥ ' (3.29
ds(zr)=—(dX°)2+(dX1)2

[

Ci=1,

where6 is an arbitrary numerical constant. Hence, choosing

, . 2
m’y we also fix :
i 1T cosxX%cosxX1+ sinf(cos2X®— cos2x?)
—2b_ 1 _ o A a2 2
e 1-B+singy(1-p)"—a’, (3.2 X [(1+ sing)co£XcoX(dX?)2

b=cosA\(1— B)>— a?, (3.2 +(1—sing)sirX%sirt X (dx3)?]. (3.39
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We also compute the antisymmetric tensor field from theing O(2,2) group elements; but it also contains much more
axion and find that all its components are zero apart from that allow for a flat space derivation of these CFT back-

0 1 0 1 grounds.
:l c0s2X"— Cos2X™ +sind(1— cos2X"cos2X") (i) The coset S[2)/SQ(1, 1)X SQ(1,1)?: Following the
2372 1—cos2X%cos2X! + sing(cos2X?— cos2x?) same construction as above we will now specify other points

(3.395 in the moduli space of soliton solutior(8.17)—(3.19 that

lead to the semiclassical geometry of the (3LSQ(1,])
This is precisely the result that was obtained in the semiclass SO(1,1)2 coset. g y (BISA1.Y

sical limit of the SL(2)<SU(2)/SO(1,1xU(1) coset We chooseC,=0 for the metric sector, thus arriving at
model having an arbitrary parametér that specifies the o same expressiof8.24 as before, while for the axion-

gauging[12]. . " - .
So, according to this, the Nappi-Witten universe can bed”aton sector we [eC,=0. In this case we find
created from flat space starting froa suitably restricted e 2=C)— g+ \/W, (3.39
part o) the Rindler wedge, performing B duality transfor-
mation and then a (1,1) soliton dressing. Consequently, our b=0. (3.40

procedure completely determines the group element of the

string Geroch group (2,2) that connects classically the two We furthermore let

backgrounds. The Nappi-Witten background describes a ,

closed expanding and recontracting universeXdsvaries Co=Co, (349
from O (big bang to /2 (big crunch. These two authors and introduce the coordinate transformation
performed an in-depth analysis of the model noting that for

. 1 . 1,4
1—sind — T a2X g 0 — . _a2X 0
v =rational number (3.36 a= €7 sinh2X’, - f=Co—3e™ cosh®, (342

which clearly has Co— 8)?= &2 as required for reality. We

X%=0 or #/2 are orbifold singularities. Also, away from the find in this parametrization

special valuesx!=0 or m/2, respectively, these are singu-
larities in the causal structure of spacetime rather than cur- e‘zq’:elecosﬁxo, (3.43
vature singularities.

This cosmological solution is positioned in the entire while the antisymmetric tensor field is zero and the metric is
moduli space of (1,1) solitons as follows: consider the 3Ddiagona|_ In theo-model frame, also settingvzxz and
subspace with axis labeled i@y, C;, andC;, while keep-  z=X3, the metric assumes the form
ing the other coordinates fixed to their chosen values
C,=0, Cj=1=—Cy; if we draw all 2D planes having the dsf,, = — (dX%)?+ (dX) 2+ tant?XO(dX?) 2+ (d X3)2,

C, line as common axis, then every point on each such plane (3.44

will correspond to the same solution, while rotating planes, : oo .
changes. In this description the criteriof8.36) for having and the resulting background coincides with the geometry of

P ;
orbifold singularities is equivalent to considering rational the coset SI2)/SAL,DxSAL, 1 as it was advertised.

. R The wormhole background will be discussed separately in
values for the slope of the solution plane, which is given bySeC V using 2D solitons in Euclidean space
C,/Cy according to Eq(3.25. ' '

Concluding we mention that the points of the moduli
space with the same restrictions as before, but @ik 0,
yield (a suitable analytic continuation Jothe background In this section we briefly review for completeness the in-
SL(2)/SO(1,1XSU(2)/U(1). Using the parametrization terpretation of ordinary 4D black holes as 2D (2,0) solitons,
(3.29 it follows from our general expression that the axionfilling up some of the intermediate steps of the calculation
field is zero, the dilaton field is [19] as well. We use as a starting point the flat space metric
in polar coordinates,

IV. BLACK HOLES AS 2D (2,0) SOLITONS

e 2®=cogX%irX?, (3.37
d?=da?+dB2%+ a?dp?—dr?, 4.9
and the metric in ther-model frame is diagonal,
for which the matrix¥ of the linearized systen2.10) for
ds, = — (dX%)%+ (dX1)?+ cofX (dX?)?+tarPX(dX®)%.  stationary axisymmetric metrics is

(3.38 R ,
a—2p61—1 0
It describes a suitable real form of the direct product of two Vo(l)= _ 4.2
2D black hole cosets. This background was usefll# to 0 -1

obtain the complete Nappi-Witten solution byZ®) trans-

formations. If (1-sind)/cosd takes only integer values, the We point out a few differences between this case and the
transformation is in @,2Z) and the underlying back- cosmological setting of the two previous sections. Here, the
grounds are equivalent as exact conformal field theories. It i28D space §&,8) has Euclidean signature, while the
interesting to note that the transformation that provides ther-model g is Lorentzian. As a result, one has to take into
(1,1) soliton dressing already contains in it the correspondaccount various sign changes in order to adopt the general
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soliton construction to stationary axisymmetric metrics; inAlso, using an appropriate shift gf we may fix,

particular, Eq.(2.18 changes to
pict2(B=Co) py— a?=0, (4.3

and the factor uu—a?® in Eq. (2.23 changes to

1 1
3=3(C'-Cy),  Z=3(Cg'+C). (41D

We introduce now the change of variables

wi + a?. Analogous changes have to be introduced in the

linearized system of equatiori®.10—(2.12 and the differ-
ential equation$2.19 for the polesu, . Also, then-soliton
transformation of a seed backgroundy, vyields
deg=(—1)"a®""2u;%u,? --u,? and the normalization
(2.25 is the same as before fareven. Ifn is odd, however,
the signature of the soliton metrig changes sign to- +,

which is is not acceptable. For this reason the simplest physi-

a=\(r—M)2—32%sind, B—Z=(r—M)cosd, (4.12

and substitute fojp, and w,. Provided that we choose the
solutionsu,, of Eq. (4.3, we obtain

6 6
w1=2(r—M +2)sin2§, to=2(r—M —2)sin2§.

cal soliton to construct is the double-soliton solution on flat (4.13

space(4.1).

Hence, the two-soliton solution depends only on three

The present version of the formalism will also become,qquii A B. andM . while S, is fixed by Eq.(4.10 andZ

relevant in the next section, while considering Euclideanjoes not appear anywhere. It is also useful to introduce the
gravitational solutions of the string background equations. ”bhange of variable

that case the axion-dilaton system corresponds to a Lorentz-

ian o-model \, and the explicit construction of its solitons
will require the modifications we are considering here.

t=—7+2A0¢ (4.19

After some calculation we find that the general (2,0) soli-and identifyt with the time coordinate. Then, substituting in

ton on the purely gravitational backgroudll) has metric
components

) Ny N,
9ro=2(p1— o) (a +M1M2)E: 977=—4M1M23,
(4.4

where
Ny =AS(a?+ uf) (o + p3) + AMa?(ui— u3)
~B3(a*~ ulud), (4.5
Np=3%(a?+ pypp)?— Aa®(p1—p2)?, (4.6
D=[(X+M)us+(E—M)upl?(a@®+ p1p)*+[(A—B)a®
—(A+B) il (1= 1), (4.7)

while g, is determined by the condition dgt — . Also,
the corresponding conformal factor turns out to be

M2

= D
Ay — po) (@ + uf) (@ + pd) (a?+ uypg)?
(4.8

whereasfy=1. In the above expressions the parameters
B, M, and3, are the special combinations of t8&) moduli,

cc@=cxz-mc, cc@P=2A-B)Ccrcy?,
cc=—(z+M)cy,
(1) (2)_1

which clearly satisfy the condition

32=M?-A%+B?2, (4.10

Eq. (4.49—(4.8 we may compute the explicit form of the
two-soliton metric in the coordinates,@, ¢,t).

The special cas&=B=0 is the simplest, since the re-
sulting two-soliton metric is diagonal,

r r—2m
d52=r2(d02+sil’]219d(p2)+r_ dr?— dt?,

2M r
(4.195

and coincides with the Schwarzschild metric. In the more
general situation we obtain the Kerr metric with mass param-
eter M, rotation parameteA, and NUT parameteB that
describes the behavior of the 4D metric at infinity. The result
of the two-soliton construction precisely yields the complete
Kerr metric in Boyer-Lindquist coordinates,

ds?= M)2—32—AZsir?9]dt?

1
r2+(B—Acoa9)2{_[(r_
+[sirfé(r?+ A2+ B?)2—((r —M)%2—3?)(2Bcod
+Asirt0)?]de?+ 4[ Bcosd((r —M)%2—32)
—AsirP0(Mr +B?)]dtde} +[r?+ (B— Acosh)?]

2 1 2
x| deo +mdr . (4.1

We note finally that the Lorentzian analogue of the self-
dual Taub-NUT metric corresponds to the limEs=0=A
andM = £iB. These limits, however, are somewhat peculiar
in the two-soliton sector because all three quantitigs
N,, D become zero, and the two real poldsl3 coincide.

V. EUCLIDEAN (0,2) SOLITONS

We describe now how axionic instanton solutions of the
Euclidean string background equations can be accommo-
dated into the present scheme. More specifically, we study
the moduli space of (0,2) 2D solitons and determine the
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specific choice of parameters that give rise to the wormholéiere, we have used for convenience the notation

(and other related backgroundss solitons on flat space. It is

true that these backgrounds were originally introduced as

soliton solutions of the 10D heterotic string thedsge, for

instance[14] and references thergirbut their description as

2D solitons of the reduce@-function equations using 1 1

inverse-scattering methods appears to be new. C(21)C<22)=§(A— B), C<12)C<21)=§(C—D), (5.8
We consider the general form of the (0,2) soliton solu-

tions starting from 4D flat Euclidean space. It will be conve-whijch satisfy the relation

nient for later use to consider as seed metric

1 1
C{'C?=5(A+B), C{'C{’=—5(C+D),

C?=D?-A%+B2. (5.9
1
d52=2\/%(da2+d,82)+(\/a2+,82—/5')d¢2 So, the soliton moduli depends on four parameters in this
atp caseA, B, C, and one of th€{”, since the other one can be
+(Ja?+ g2+ B)d 72 (5.1)  absorbed by shiftings.

Searching for an axionic instanton solution in this moduli
with deg= o, instead of the Euclidean version of H4.1).  Space we notice that if
However, the explicit form of the metric background will be 5 2
used only after completing the soliton construction in the A=xD, B°=C (5.10
axion-dilaton sector. The seell and b are zero, and the

metric (5.1) is flat as can be seen using the transformation we obtain

1 1 e ?®xp=1. (5.1
a=-e?rsin2p, B= e’ cosp, (5.2 _ _
2 2 One can also prove relatively easily that there are no other
axionic instanton solutions in this sector. Moreover, from all
or introducing z=exp(p+ir)cosp, w=explp+iy)sing that  soliton constructions we have considered so far, only this
yields ds’=dzdz+dwdw. example exhibits axionic instanton solutions.
The axion-dilaton sector has Lorentzian signatine Next, we determine the explicit form of the solution

should replacér?+e~** with b?>—e™*® in Eq. (2.1, since  choosingA=D andB=C for concreteness. Substituting in
the relevant conjugate pair of field variables is nowgq. (5.4) we obtain

S.=b+e ?® instead of b=ie ?®], and therefore, the
(0,2) soliton calculation is analogous to (2,0) metric solitons D’ B é (1= po)(@®+ wipr)

K . . K . . . = —= (5‘12)
of stationary axisymmetric gravity. There isa dlfference with 21N} B o a2+ 12
the analysis of the previous section, however, in that our
normalized axion-dilaton seed matrix\o=diag(a,~ @) is  Further manipulation using E¢4.3) yields
“isotropic,” while go=diag(a?,—1) in Eq. (4.1). It is,
therefore, appropriate in the present case to consider A
1 0 gt —
Wo(l)=Va?—2p1 -2 . (5.3 K1
0 -1 and so the dilaton depends only gn. Choosing the solution
w, and taking into account that_ = — a®/u, in this case,

Explicit calculation shows that the (0,2) axion-dilaton soli-

ton fields are we finally arrive at the result

_26 1 2 2 20— 14 M= (C?—ciha
& T =2mpan b= (1~ p2)(a +M1,U«2)§, J(CP=B)2+a?’ 0 o /B-

(5.9 (5.19

where Cgl) can be absorbed by shifting, and hence for all pur-
) s o o ) poses it may be set equal to zero.
Ni=B%a“(u1—up) +CYa"+ mip,)?, (5.9 We also note for completeness that fé&=D, but
B= —C, the dilaton depends only gm, and the result turns
Ny =AC(m1+ po)(@®+ puipy) out to be essentially the same up to an interchang€{pf
B 2 andC{® . Similar remarks apply to the axionic anti-instanton
+BD(pn1— o) (= piuo), (5.6 caseA= — D with B= +C.
The solution we have obtained in this fashion can be put
22 2 2 2_p2 _ 2, 4 2 2
D= CHuit po) (@ papg) "= B (pa = po) (a7 pips together with the flat space metr(6.1) to yield in the Ein-

— (1= o) (@2 + g ) [AB( g — po) (@ — ) stein frame the 4D string background

+CD(uq+ wo) (@®+ )] (5.7 ds?=e?’(dp?+de?+ sirfedy?+ cogedr?), (5.15
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e?®=1+2Me 2, b=e 2?%?+const. (5.16 For certain discrete values of the soliton moduli the un-

derlying string backgrounds are equivalent as exact confor-

We have used the change of coordinate®) and the fact mal field theories, as it was demonstrated explicitly for the

that for axionic instantons there is no contribution to thegeneral one-parameter form of the Nappi-Witten universe.
conformal factorf coming from thex sector[see Eqs(2.8)  This happens because the corresponding OR,2;
and(2.9]. This configuration is actually known as the worm- T_duality transformation§17] act on the soliton moduli as

hole solution. A related version of it, which represents onlydescribed. Since the soliton transformations provide specific

the throat of the wormhole and coincides with the SemiC'aSe|ements of the String Geroch group, i.e., the current group

sical geometry of the S(2)x U(1) WZW model, consists of &2 2) in the simplest case under discussion, and they also
a dilaton field with different boundary condition in that the -ntainS transformations and their intertwining with, our

constant term in Eq(5.16 is missing, but with the same qescription suggests that other discrete remnants of this

Einstein metric. These two models are related to each othggginjte-dimensional group could act &k dualities in string

by an SL(2R) transformatiorn(the continuous counterpart of compactifications to two dimensiofié, 10].

S duality), which keeps the axionic instanton condition - pyrther progress in this direction certainly requires ex-

variant, sayS_ constant, and simply shife®® by a constant. tending the formalism to include gauge fields as well. For

We finally point out that higher solitonic excitations of example, it will be interesting to describe 4D black holes

the axion-dilaton sector might be interesting to consider inyith electric chargeQ as 2D solitons of an Emst-type

this case. We have determined the solution of the linearized 2 1) ;- model. The points in the soliton moduli space that

system for thex sector of the semiclassical background of gescribe extremal black holes are special in that a solitonic

the model SU(2x U(1), interpretation of the resulting configuration exists in four as
well as in two (reduced dimensions. This should be ulti-
mately extended to O(8,24F models, which are applicable

2
a’— Bl FZ—Z,BI Y to heterotic string compactifications to two dimensions
V(D= 2V(a®+B?)(a?—281-1?) . [10,11). One should also try to find in this context the nec-
Py 0 essary conditions on the Killing isometries so that the soli-

22—28l—

tonic nature of a given configuration is preserved or attained
(5.1 under reduction. It seems that the relevant distinction in the
However, we are not in a position at this moment to give s€*amples we have considered so far is provided by the trans-
good spacetime interpretation to its multi-soliton excitations)ational vs the rotational character of the corresponding Kill-
It might turn out an interesting geometrical problem and weiNd vector fields(using the same terminology as iB]). For

hope to return to it elsewhere. Euclidean black holes, for exampl&,dt is rotational unless
M =B (self-dual Taub-NUT limit withA=0 in the vacuum
VI. CONCLUSIONS AND DISCUSSION case or M =Q (extremal nonrotating solution of the electro-

vacuum equations in which cases we find that/dt be-

In this paper we have considered solitonic solutions of thecomes translational. These two examples demonstrate clearly
2D reduced B-function equations for gravitational string that the reduction with respect to rotational isometries can
backgrounds with axion and dilaton fields. We found thatgive rise to 2D solitonic configurations, in the sense de-
many known solutions that admit an exact conformal fieldscribed above, even if the 4D configurations are not so. A
theory description arise as simple solitonic excitations of flatharacteristic feature of rotational isometries in supersym-
space, or itsT-dual face, depending on the particular ex- metric backgrounds is that the fermions depend on the Kill-
ample. These backgrounds include cosmological solutionshg coordinates, while the bosonic fields do not, and hence it
as well as 4D blackholes and wormholes. It should be alsis such as having a coordinate-dependent compactification.
interesting to consider further generalizations to colliding The soliton solutions of the 4D theor{fBogomolny,
gravitational plane wave solutions of string theory, thus exPrasad, Sommerfield statesare quantum-mechanically
tending the results dR20] to strings. stable having manifest space time supersymmetry. On the

A key point in implementing our construction is the non- other hand, the 2D solitonic interpretation of a given con-
trivial interplay between the coordinate and the solution-figuration was only used here in the context of the inverse-
generating(Geroch-type transformations. These two kinds scattering method with no reference to supersymmetry.
of transformations do not commute with each other, and weédence, a natural question arises to find the special properties
should always use a coordinate system in the seed backf these 2D solitons with respect to 2D reductions of the
ground with nonconstant dgt The Geroch transformations spacetime supersymmetry algebra. To the best of our knowl-
leave deg invariant, and only after the solitonic dressing is edge the only helpful results that exist in the literature are
performed we may transform the new background into anyontained in[22], where the 2-dim reduction of maximal
other suitable coordinate system. Note that the action of theupergravity(and some of its consistent truncatipngere
Geroch group would be trivial if we were starting from flat described in terms of Lax pairs and integrable structures. We
space in Cartesian coordinates because there are no oth®iefly mention that the local supersymmetry transformations
physical solutions of the Erngt model with dey=*+1 that can be bosonized in two dimensions and they can be in-
are also compatible with the equations for the conformal faceluded as Kac-Moody variations into the corresponding
tor f. Actually, the conformal factor has a very special role infinite-dimensional hidden symmetrGeroch-type trans-
incorporating the effects of 2D gravity in the reduced form offormations. Also, the variation of the conformal factor that
the string background equations. accounts for the 2D gravitational effects in this case can be
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included systematically using central extensions of the assdhe lowest order effective theory. Better understanding of its
ciated current group23]. Further work is certainly required soliton solutions are worthy in the light of the recent devel-
in this direction, putting together in a more constructive wayopments in nonperturbative string theory, in order to estab-
the vast variety of soliton solutions obtained by the inversedish and explore the meaning of infinitely makly dualities
scattering methods with the supersymmetric configurationgn the spectrum. This particular sector of string theory, where
of the 2D reduced supergravity. It is conceivable that 11Dmany more connections are expected to exist than those in
supergravity will be singled out in this line of thought, ac- other sectors, could also help in the long run to expose better
cording to earlier expectations by Nicol&?2)]. the right structures that are needed for the ultimate formula-

Summarizing, the 2D reduced sector of string theory istion of string theory. Could it be an exactly solvable sector?
quite rich in symmetry due to the integrability structure of We hope to return to it elsewhere.
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