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Solitons of axion-dilaton gravity
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We use soliton techniques of the two-dimensional reducedb-function equations to obtain nontrivial string
backgrounds from flat space. These solutions are characterized by two integers (n,m) referring to the soliton
numbers of the metric and axion-dilaton sectors, respectively. We show that the Nappi-Witten universe asso-
ciated with the SL~2!3SU~2!/SO(1,1)3U~1! CFT coset arises as a (1,1) soliton in this fashion for certain
values of the moduli parameters, while for other values of the soliton moduli we arrive at the SL~2!/SO~1,1!
3SO~1,1!2 background. Ordinary four-dimensional black holes arise as two-dimensional~2,0! solitons, while
the Euclidean wormhole background is described as a (0,2) soliton on flat space. The soliton transformations
correspond to specific elements of the string Geroch group. These could be used as a starting point for
exploring the role ofU dualities in string compactifications to two dimensions.@S0556-2821~96!03422-4#

PACS number~s!: 11.25.Sq, 02.20.Tw, 04.60.Kz
t

I. INTRODUCTION

Duality symmetries in string theory arise as discrete re
nants of continuous groups of transformations of the low
order effective theory. These symmetries have received a
of attention, as they can also provide nonperturbative inf
mation about string theory. The most common examples
T andS dualities, but it has also become clear recently th
U dualities can be successfully used to explore various g
eralized equivalences among superstrings@1,2#.

Dimensional reduction offers the possibility to intertwin
the T and S moduli, and hence construct large groups
solution-generating symmetries in three and two dimensio
For example, the reduction from four to three dimensio
gives rise to an O~2,2! group @3#, while the reduction from
four to two dimensions leads to an infinite dimensional gro
of the lowest order effective theory, the current grou
Ô(2,2) @4#. These results can be regarded as straightforw
generalization of similar structures found by Geroch in t
space of solutions of vacuum Einstein equations with one
two commuting isometries@5#, but now they also include
apart from the metricGmn the antisymmetric tensor field
Bmn and the dilatonF. The coset space structure of the sc
lar fields in various dimensionally reduced supergravity the
ries was known before~see, for instance,@6–8# and refer-
ences therein!. More recent is the realization thatT andS
dualities are embedded in the corresponding continuous
den symmetry groups. In a heterotic string context it mea
that the reduction from ten to three dimensions gives rise
an O~8,24! group @7,9#, while the reduction from ten to two
dimensions leads to Oˆ (8,24) @10,11#. It is then natural to
expect that the two-dimensional~2D! sector of string theory
will be quite rich in symmetry, having asU duality an ap-
propriately chosen discrete subgroup of the underlying str
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Geroch current group. Up to this day, however, very little
progress has been made in this particular direction, since
proving the conjecturedU dualities and understanding their
action on the full spectrum of superstring models based on
these effectively 2D backgrounds turns into a difficult prob-
lem.

In this paper we consider string models with target space
M43K, where M4 is a 4D spacetime with signature
2111 and K is some internal space, which is usually
represented by a conformal field theory~CFT!, so that the
total central charge is critical. We focus on cosmological
backgroundsM4 with nontrivialGmn , Bmn, andF that arise
as solutions of the lowest order effective theory:

Seff5E
M4

d4XA2detG@R22~¹mF!22 1
12e

24FHmnr
2 #.

~1.1!

Here, the theory is defined directly in the Einstein frame,
which is related to thes-model frame byGmn

(s)5e2FGmn ,
and the effective cosmological constant is taken as zero. I
will be convenient for later use to tradeBmn with the axion
field b, which is consistently defined in the Einstein frame as

]mb5
1

6
e24FA2detGem

nrsHnrs . ~1.2!

Hmnr is the field strength ofBmn and e012351. In M4 with
signature2111 we may further define the complex con-
jugate fieldsS65b6 ie22F, which provide the natural vari-
ables of theS moduli. Later, we will also consider string
backgrounds with Euclidean signature1111.

There is a very limited number of exact CFT back-
grounds, which to lowest order ina8 provide solutions of
Eq. ~1.1!. The most characteristic examples of this type are
the two pairs of WZW coset models:

SL~2! 3 SU~2!

SO~1, 1! 3 U~1!
,

SL~2!

SO~1, 1!
3SO~1,1!2, ~1.3!
6424 © 1996 The American Physical Society
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SL~2!

SO~1, 1!
3
SU~2!

U~1!
, SL~2!3SO~1,1!. ~1.4!

The first model in Eq.~1.3! depends on a free parameter th
defines the gauging of the coset, and it is particularly int
esting in string cosmology as it describes a closed inhom
geneous expanding and recollapsing universe@12# ~see also
@13# for some earlier ideas!. The other three models are th
Lorentzian counterparts obtained by analytic continuation
the D54, ĉ54, N54 superconformal background
C(4)5SU(2)/U(1)3U(1)2, D (4)5SL(2)/U(1)3SU(2)/
U(1) andW(4)5SU(2)3U(1) ~the throat of a wormhole!,
respectively, with appropriately chosen background char
@14–16#. All these models exhibit two commuting Killing
isometries. It has been established with the aid of O~2,2!
transformations that the first model in Eq.~1.3! is related to
the first model in Eq.~1.4! @17#, and similarly the other two
models of the series areT dual to each other@15,18#.

Our contribution is to connect the two gravitational bac
grounds associated with the Nappi-Witten universe@12#
SL(2)3SU(2)/SO(1,1)3U(1) and SL(2)/SO(1,1)
3SO(1,1)2 to the trivial flat space backgroundF (4) with
zero Bmn and F, by considering a specially chosen six
dimensional moduli space of backgrounds within the ent
set of solutions of Eq.~1.1! with two commuting Killing
isometries. This is technically achieved by performing fir
the 2D reduction of the effective theory~1.1!, and then em-
ploying solitonic constructions that are available for the r
sulting integrable system of equations~both for the metric
and the axion-dilaton sectors!. As it turns out, the simplest
(1,1) soliton configuration onF (4), or more precisely its
T-dual face, will be sufficient to describe the semiclassic
backgrounds of these two coset models as 2D solitons
appropriate choices of the six moduli parameters. The s
tonic dressing of~the dual of! F (4) in this paper is analogous
to the solitonic dressing of Kasner-type metrics that we
studied by Belinski and Sakharov in the context of gene
relativity many years ago@19#. In the context of pure gravity
these authors gave a very interesting derivation of 4D bla
holes as 2D double soliton solutions on flat space. Furt
work has also appeared in the literature, which describes
physically very interesting situation of two colliding gravita
tional plane waves in terms of 2D solitons@20#. Given the
wide applicability of these methods, it is also natural to co
sider the explicit form of solitons in axion-dilaton gravit
and attempt a reinterpretation of known solutions, in partic
lar those that correspond to exact CFT backgrounds, in
context.

It is interesting to note that the soliton dressing of a giv
configuration corresponds to a specific choice of finite gro
element of the Geroch group~see, for instance,@21#!, and
hence in the string context we have found the way to gen
ate the two exact CFT backgrounds~1.3! from flat space by
U duality ~viewed as a continuous group of transformatio
at this point!. In a sense one may then say that the dualit
create a universe, the Nappi-Witten cosmological solution
this case. We will also consider Euclidean string bac
grounds and show for example, that the wormhole soluti
which is an axionic instanton of the 10D heterotic theor
arises as a 2D (0,2) soliton on flat space. Certainly, ma
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more connections can be made between different string back-
grounds using the inverse-scattering method of the 2D re-
duced sector, and we hope to return to them in the near
future.

In Sec. II we briefly discuss the dimensionally reduced
string background equations and outline the construction of
soliton solutions using the integrability of the resulting 2D
s models. In Sec. III we construct the most general (1,1)
soliton solution on aT-dual face of Minkowski space and
determine the choice of moduli parameters that correspond
to the CFT backgrounds SL(2)3SU(2)/SO(1,1)3U(1)
and SL(2)/SO(1,1)3SO(1,1)2. In Sec. IV we describe the
ordinary 4D black holes as 2D (2,0) solitons on flat space,
where the soliton moduli correspond to the mass, rotation,
and Newman-Unti-Tamburino~NUT! parameters of the most
general stationary axisymmetric solution. In Sec. V the Eu-
clidean wormhole background is interpreted as a 2D (0,2)
soliton in the same context. Section VI contains our conclu-
sions and some directions for further work on the subject.
We argue that the present results could be most importantly
used as starting point for exploring the role ofU dualities in
compactifications of string theory to two dimensions.

II. THE REDUCED THEORY AND ITS SOLITONS

The effective theory~1.1! describes the coupling of an
ordinary SL(2)/U(1) s model to 4D gravity, which is mani-
fest in the axion-dilaton formulation using the field variables
S65b6 ie22F. This axion-dilatons model has Lorentzian
signature ifM4 is Euclidean, but in the case of interest here,
whereM4 is Lorentzian, the SL(2)/U(1) s model is Euclid-
ean. Hence, it is convenient to parametrize the axion-dilaton
sector by the symmetric matrix

l5e2FS 1 b

b b21e24F
D ~2.1!

so that detl51.
Following @4# ~and references therein! we consider gravi-

tational string backgrounds of cosmological-type with two
commuting Killing isometries, so that the target space metric
is restricted by theAnsatz

ds25 f ~X0,X1!@2~dX0!21~dX1!2#

1gAB~X
0,X1!dXAdXB, A,B52,3, ~2.2!

and alsob(X0,X1), F(X0,X1). For notational convenience
we introduce the light-cone coordinates

h5
1

2
~X02X1!, j5

1

2
~X01X1!. ~2.3!

Then, using the defining relations~1.2! this Ansatzamounts
to choosing special backgrounds with onlyB23Þ0, in which
case the axion equations simplify to

]jb5
e24F

Adetg
]jB23, ]hb52

e24F

Adetg
]hB23. ~2.4!
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This class of backgrounds will be quite sufficient for th
present purposes of our work.

The reduced string background equations that follow fro
Eq. ~1.1! read as follows in the Einstein frame:

]h~Adetgg21]jg!1]j~Adetgg21]hg!50, ~2.5!

]h~Adetgl21]jl!1]j~Adetgl21]hl!50. ~2.6!

They are two essentially decoupled SL(2)/U(1) 2Ds mod-
els of Ernst-type~both having Euclidean signature!, one for
the metric sectorg and the other for the axion-dilatonl.
SinceAdetg satisfies the 2D wave equation]h]jAdetg50,
we may choose, without loss of generality,

X05Adetg[a, X15b ~2.7!

for the corresponding pair of its conjugate solutions. Fro
now on we assume the special choice of coordinates~2.7!,
usinga5Adetg andb instead ofX0 andX1 in Eq. ~2.2!, and
reserve the notationX0, X1 for more general coordinate sys
tems. Sometimes, we will also denote the remaining t
coordinates byz andw instead ofX2 and X3, in order to
make more uniform our presentation in the following se
tions.

We recall that the differential equations for the conform
factor f are linear of first order,

]j~ lnf !52
1

a
1

a

4
Tr@~g21]jg!21~l21]jl!2#, ~2.8!

]h~ lnf !52
1

a
1

a

4
Tr@~g21]hg!21~l21]hl!2#, ~2.9!

and so, once a solution (g,l) of the two Ernsts models is
known, f can be simply determined integrating by quadr
tures. All these calculations are performed in the Einst
frame, where the decoupling of Eqs.~2.5! and ~2.6! takes
place, but the results can be easily translated in
s-model frame of string theory.

The nonlinears models of the 2D reduced theory ar
known to be integrable, and it is precisely this property th
is responsible for having an infinite-dimensional symme
group, the~string! Geroch group, acting on the space of cla
sical solutions. Because of integrability the 2Ds models
admit soliton solutions, which can be constructed explici
on any given background that acts as a seed for the solit
On any string background we may actually construct a wh
series of solitonic excitations (n,m), wheren andm denote
the soliton numbers of theg and l sectors, respectively.
Here, we briefly review the essential ingredients of the so
ton technique for the Ernsts model using only the metric
sector of the theory, but the construction is exactly the sa
for the axion-dilaton sector sinceAdetgl satisfies the same
equation~2.6! asl. The new solutions that arise in this fash
ion are solitons in the 2D sense, and although 4D str
backgrounds can be reconstructed from the (n,m) data, the
resulting configurations are not necessarily solitons of the
world saturating the Bogomol’ny bound, and thus they a
generically quantum-mechanically unstable. Next, we rev
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the soliton framework of Belinski-Sakharov@19#, because
their technique is not widely known to string theorists.

Consider the following linear system of (232)-matrix
differential equations:

D1C5
A

l2a
C, D2C5

B

l1a
C, ~2.10!

whereC(h,j; l ) is a complex matrix function depending on
a spectral parameterl that takes values in the whole complex
plane, and

A52a]jgg
21, B5a]hgg

21. ~2.11!

Also, the differential operators are

D15]j22
l

l2a
] l , D25]h12

l

l1a
] l ~2.12!

and clearly they commute,@D1 ,D2#50. The system~2.10!
is compatible provided thatg satisfies the Ernst equation
~2.5! for Adetg5a. We actually assume

C~h,j; l50!5g~h,j!, ~2.13!

and soC can be regarded as a suitable generalization ofg
with spectral parameter.

Let g0(h,j) be a known solution and letC0(h,j; l ) be
the corresponding solution of the linear system~2.10!. If we
assume that other solutions ofg exist such that

C~ l !5x~ l !C0~ l !, ~2.14!

thenx(h,j; l ) has to satisfy the system of equations

D1x5
1

l2a
~Ax2xA0!, D2x5

1

l1a
~Bx2xB0!,

~2.15!

whereA0, B0 are the currents~2.11! of a seed metricg0. If
we manage to find an appropriatex( l ), then according to
Eqs.~2.13! and ~2.14!, a new solution will be obtained

g~h,j!5x~ l50!g0 . ~2.16!

There are a few technical assumptions onx, namely, the
reality condition on the reall line, x̄( l̄ )5x( l ), and
x(`)51.

The n-soliton excitations of a given seed backgroundg0
are very special in thatx has a simple pole structure in the
complexl plane

x~h,j; l !511 (
k51

n
Rk~h,j!

l2mk~h,j!
. ~2.17!

The residue and pole functions can be determined substitut-
ing Eq. ~2.17! in Eq. ~2.15! and start comparing the pole
structure on the left- and right-hand sides. The details are
rather lengthy and we skip them here. We only give the final
result that will be used later for explicit computations. The
poles are roots of the algebraic equation

mk
212~b2C0

~k!!mk1a250, ~2.18!
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whereC0
(k) are arbitrary numerical constants~moduli!, and

mk satisfy the differential equations inh, j:

]hmk5
2mk

a1mk
, ]jmk5

2mk

a2mk
. ~2.19!

The residue matricesRk are degenerate having the comp
nent form

~Rk!AB5NA
~k!MB

~k! , ~2.20!

where the two-component vectorM (k) is given using the
inverse ofC0 at l5mk ,

MB
~k!5(

A
CA

~k!C0
21~h,j; l5mk!AB . ~2.21!

C(k) is an arbitrary constant two-component vector, whi
together withC0

(k) , provides all the moduli parameters of th
general solitonic excitation ofg0. The other two-componen
vectorsN(k) have more complicated forms and cannot
explicitly written with the same ease.N(k) are the solution
vectors of thenth order linear system of algebraic equation

(
l51

n

GklNA
~ l !5

1

mk
(
B

MB
~k!~g0!AB , ~2.22!

where then3n matrix G was determined by Belinski and
Sakharov

Gkl5
1

mkm l2a2(
A,B

MA
~k!~g0!ABMB

~ l ! . ~2.23!

Therefore, putting it all together we arrive at a concrete e
pression for then-soliton excitation ofg0: namely,

g~h,j!5S 12 (
k51

n
Rk

mk
D g0 . ~2.24!

A final issue is the overall normalization of the dressing m
trix x. Using this last equation we find
detg5a2n12m1

22m2
22
•••mn

22 which differs from
detg05a2. Agreement is achieved by scalingx with
m1m2•••mn /a

n, and this is what we will assume from now
on. The properly normalizedn-soliton dressing matrices o
g0,

x~ l50!5
m1m2•••mn

an S 12 (
k51

n
Rk

mk
D , ~2.25!

define specific group elements of the Geroch group. The n
malization ~2.25! is introduced to achieve consistency wit
the standard formulation of Geroch transformations that p
serve detg.

Summarizing, if we apply this proceduce to any give
string backgroundg0, l0 ~more precisely,al0 to be in exact
analogy for both sectors!, we will obtain a generic (n,m)
solitonic excitation with 3n13m continuous moduli. One of
the difficulties to implement this construction in practic
apart from the problem of inverting the corresponding mat
cesG for largen andm, is to find the explicit solutionC0 of
o-
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Eq. ~2.10! ~and itsl counterpart! when an arbitrary back-
ground is used as seed. For this reason we will start from
very simple seed solutions, knowingC0, and use the soliton
technique to construct~and hence reinterpret in this context!
the more complicated solutions that exist in the literature.

The Geroch group of the metric sector is the loop group
ŜL(2), and when both sectors are taken into account the
Geroch group becomes SˆL(2)3ŜL(2)5Ô(2,2). It is known
in this case how to obtain the entire algebra by successiv
intertwining of continuousT andS transformations@4#. We
briefly mention here that 4D backgrounds with two commut-
ing isometries exhibit the obvious O~2,2! group of transfor-
mations on the space of solutions. These transformations a
nonlocally realized in the axion-dilaton formulation of the
theory and their generators are embedded in the algebra
the string Geroch group Oˆ (2,2) as follows: we use the zero-
mode subalgebra of theg ŜL(2), sayT1

0 , T2
0 , T0

0 , and the
nonlocally realized SL~2! subalgebra of thel ŜL(2), say
T̃1

21 , T̃0
0 , T̃2

1 , that includes the61 modes. The continuous
analogue of theS-duality SL~2! transformations are locally
realized in the axion-dilaton formulation and correspond to
the zero-mode generatorsT̃1

0 , T̃2
0 , T̃0

0, of the l ŜL (2).
Hence, by intertwining O~2,2! with S we can generate after
an infinite number of steps the entire SˆL(2) algebra of the
axion-dilaton sector. To generate the other SˆL(2) we inter-
change the field variablesg↔al and perform the same in-
tertwining procedure. The exchange of the two sectors is
legitimate operation in this case because boths models have
Euclidean signature, and this is also aZ2 symmetry of the 2D
reduced string background equations, leavingf unaffected.

The n-soliton matrices~2.25! could also be described in
terms of specific elements of the infinite-dimensional group
of Geroch transformations obtained by other approache
@21#. We will not attempt here to decompose them in terms
of more fundamental operations associated with successiv
intertwining of T andS transformations, but we note as an
important property their commutativity in the following
sense: an (n1n8) soliton can either be constructed directly
from a seed background or it can be viewed as an
n8-solitonic excitation of then-soliton, and similarly for
n↔n8. Since there is a systematic understanding of the
group elements of soliton dressing, we think that is worth
exploring further the precise meaning and the consequence
of U duality in this particular sector of string theory. Of
course, much work remains to be done in this direction.

III. „1, 1… SOLITONS AND CFT BACKGROUNDS

According to the general framework of the previous sec-
tion we may compute the simplest one-soliton solution of the
Ernsts model, say Eq.~2.5!, using as the seed metric

g05S a2s1 0

0 a2s2D , s11s251. ~3.1!

In a purely gravitational context this choice of the seed met
ric corresponds to a Kasner cosmological background. Ther
are two special cases in this family, namely,
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s150, s251; s15s25
1

2
; ~3.2!

which correspond to flat space~in polar coordinates! and an
isotropic universe, respectively. Using Eq.~2.10! we may
determineC0 for this background,

C0~ l !5S ~ l 212b l1a2!s1 0

0 ~ l 212b l1a2!s2
D . ~3.3!

We see clearly thatC0( l50)5g0 as required on genera
grounds~2.13!.

We will first derive the general form of the one-solito
solution, and then make various specializations according
l

n
to

the connections we would like to make later with 4D CFT
backgrounds. The one-soliton background ong0 ~3.1! is ob-
tained using only one pole located at

m5m65C02b6A~C02b!22a2. ~3.4!

This pole is positioned on the real axis of the complexl
plane provided that

~C02b!2>a2. ~3.5!

Otherwise, we will be forced to consider more complicated
double-soliton solutions, since complex poles always com
in pairs. Then, the physical one-soliton matrix~after normal-
ization withm/a) reads
g15
a

mA SC2
2~2C0m!2s1m21C1

2~2C0m!2s2a4s1 2C0C1C2m~a22m2!

2C0C1C2m~a22m2! C1
2~2C0m!2s2m21C2

2~2C0m!2s1a4s2D , ~3.6!
where

A5C1
2~2C0m!2s2a2s11C2

2~2C0m!2s1a2s2. ~3.7!

If we were to apply the same construction to the axio
dilaton Ernsts model ~2.6!, we should have scaleda in
front of the seed matrix~3.1!, sinceg0 behaves the same wa
asAdetgl05al0. Let us begin with a background having

e22F05a2s2821, b050 ~3.8!

with s181s2851 as well. Scaling outa from the general form
of the one-soliton solution, we find that the new axio
dilaton system is given by the configuration

e22F15m
C18

2~2C08m8!2s28a2s181C28
2~2C08m8!2s18a2s28

C18
2~2C08m8!2s28a4s181C28

2~2C08m8!2s18m82
,

~3.9!

b15
2C08C18C28m8~a22m82!

C18
2~2C08m8!2s28a4s181C28

2~2C08m8!2s18m82
,

~3.10!

where the primes are used to distinguish the parameter
the axion-dilaton system from those of the metric moduli

Suppose now we are combining both sectors to const
the (1,1) soliton starting from the following solution of th
string background equations in the Einstein frame:

ds252da21db21a~dz21dw2!, ~3.11!

b050, e22F05a. ~3.12!

This particular choice of the seed background is very spe
in that it isT dual toF (4), i.e., the flat space metric with zer
dilaton and antisymmetric tensor fields. To see this we tra
late Eq.~3.11! in thes-model frame and performT duality
n-

y

n-

s of
.
ruct
e

cial
o
ns-

with respect to the Killing coordinateb, which yields the
purely gravitational background

ds252
1

a
da21adb21dz21dw2. ~3.13!

Introducing coordinates

x52Aacosh
b

2
, y52Aasinh

b

2
, ~3.14!

the metric ~3.13! assumes the flat space form
ds252dx21dy21dz21dw2. Actually, it is immediately
recognized that~3.14! is a Rindler transformation of the 2D
Minkowski space (x,y) with (lna,b) providing the corre-
sponding pair of Rindler coordinates. Hence, we start from
the 2D Rindler wedge times a flat 2D Euclidean space pa-
rametrized by the other two coordinates (z,w), and use its
T-dual face as seed string background.

We notice that ourAnsatze~3.11! and~3.12! for the seed
background imply the following choice of the Kasner-type
parameters for the two sectors:

g: s15s25
1

2
, ~3.15!

l: s1850, s2851. ~3.16!

Then, the resulting (1,1) soliton simplifies considerably and
in the Einstein frame is given by

g15
1

C1
21C2

2 S C1
2a2

m
1C2

2m C1C2S a2

m
2m D

C1C2S a2

m
2m D C1

2m1C2
2a2

m

D ,
~3.17!
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e22F15
1

4C08
2C18

21C28
2 S 4C08

2C18
2m81C28

2
a2

m8D ,
~3.18!

b15
2C08C18C28

4C08
2C18

21C28
2 S a2

m8
2m8D . ~3.19!

As for the conformal factorf , which follows by integration
of Eqs.~2.8! and~2.9!, we find after some lengthy computa-
tion the result

f 15
m~4C08

2C18
2m821C28

2a2!

~a22m2!~a22m82!
~3.20!

up to an overall numerical factor, whereasf 051 by inspect-
ing Eq. ~3.11!.

There is an ambiguity to choosem1 or m2 in Eqs.
~3.17!–~3.19!, but since

m65
a2

m7
, ~3.21!

the two choices yield the same result provided that in th
metric soliton moduli space (C1 ,C2)→(2C2 ,C1). Simi-
larly, in the axion-dilaton sector the two choicesm68 are
equivalent provided that (C18 ,C28)→(2C28/2C08 ,2C08C18).
Hence, in the following we may choose, without loss of gen
erality,

m5C02b1A~C02b!22a2,

m85C082b1A~C082b!22a2. ~3.22!

Next, we show how to obtain the string backgrounds asso
ated with the two coset models SL(2)3SU(2)/
SO(1,1)3U(1) and SL~2!/SO~1,1!3SO(1,1)2 by making
appropriate choices of the moduli parameters in the 6D spa
of solutions we have obtained.

~i! Nappi-Witten universe: In theg sector of the general
(1,1) soliton solution we choose

C150, ~3.23!

which gives rise to a diagonal metric with components

gzz5C02b1A~C02b!22a2,

gww5C02b2A~C02b!22a2 ~3.24!

independent ofC2. For the axion-dilaton sector we set

C0851,
C28

2C18
5
sinu21

cosu
, ~3.25!

whereu is an arbitrary numerical constant. Hence, choosin
m18 we also fix

e22F512b1sinuA~12b!22a2, ~3.26!

b5cosuA~12b!22a2, ~3.27!
e

-

ci-

ce

g

while the conformal factor in the Einstein frame is deter-
mined according to Eq.~3.20!.

We claim that this solution corresponds to the cosmologi-
cal background found by Nappi and Witten while consider-
ing the SL(2)3SU(2)/SO(1,1)3U(1) CFT coset. In this
regard, the numerical parameteru that was introduced in Eq.
~3.25! will be shown to describe the arbitrariness in the gaug-
ing of this coset. For this purpose we also choose

C0521, ~3.28!

thus describing the sameu-dependent string background for
any point in the soliton moduli space that is restricted by
Eqs.~3.23!, ~3.25!, and~3.28!.

The construction is rather formal up to now, while making
various seemingly unjustified choices of the free parameters
At this point we introduce coordinatesX0, X1 in terms of
a, b given by

a5sin2X0sin2X1, b5cos2X0cos2X1, ~3.29!

thus also restricting the range ofa andb asX0 andX1 range
from 0 top/2. This is a good choice because

e22F512cos2X0cos2X11sinu~cos2X02cos2X1!
~3.30!

is manifestly real and positive, as should be expected for an
honest dilaton field. For the axion we find

b5cosu~cos2X02cos2X1!. ~3.31!

At first sight it seems that these choices are not good for the
metric sector~3.24!, since

gzz524sin2X0sin2X1, gww524cos2X0cos2X1,
~3.32!

and the signature turns out to be22 instead of11. Recall,
however, the way we have obtained the physical metric in
the soliton construction of Sec. II. There, we had to scale
x( l50) accordingly so that detg5detg05a2. The scaling
wasm/a for the one-soliton, but equally well we could have
taken2m/a. The latter choice renders the signature ofg
physical, i.e.,11, and there is no contradiction.

To make exact contact with the Nappi-Witten cosmologi-
cal background we introduce coordinatesX2 andX3 by scal-
ing

w5A11sinu

2
X2, z5A12sinu

2
X3 ~3.33!

and compute the full metric in thes-model frame. The final
result reads

ds~s!
2 52~dX0!21~dX1!2

1
2

12cos2X0cos2X11sinu~cos2X02cos2X1!

3@~11sinu!cos2X0cos2X1~dX2!2

1~12sinu!sin2X0sin2X1~dX3!2#. ~3.34!
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We also compute the antisymmetric tensor field from t
axion and find that all its components are zero apart from

B235
1

2

cos2X02cos2X11sinu~12cos2X0cos2X1!

12cos2X0cos2X11sinu~cos2X02cos2X1!
.

~3.35!

This is precisely the result that was obtained in the semicl
sical limit of the SL(2)3SU(2)/SO(1,1)3U(1) coset
model having an arbitrary parameteru that specifies the
gauging@12#.

So, according to this, the Nappi-Witten universe can
created from flat space starting from~a suitably restricted
part of! the Rindler wedge, performing aT duality transfor-
mation and then a (1,1) soliton dressing. Consequently,
procedure completely determines the group element of
string Geroch group Oˆ (2,2) that connects classically the tw
backgrounds. The Nappi-Witten background describes
closed expanding and recontracting universe asX0 varies
from 0 ~big bang! to p/2 ~big crunch!. These two authors
performed an in-depth analysis of the model noting that f

12sinu

cosu
5rational number ~3.36!

X050 orp/2 are orbifold singularities. Also, away from th
special valuesX150 or p/2, respectively, these are singu
larities in the causal structure of spacetime rather than c
vature singularities.

This cosmological solution is positioned in the enti
moduli space of (1,1) solitons as follows: consider the 3
subspace with axis labeled byC2, C18 , andC28 , while keep-
ing the other coordinates fixed to their chosen valu
C150, C085152C0; if we draw all 2D planes having the
C2 line as common axis, then every point on each such pl
will correspond to the same solution, while rotating plan
changeu. In this description the criterion~3.36! for having
orbifold singularities is equivalent to considering ration
values for the slope of the solution plane, which is given
C28/C18 according to Eq.~3.25!.

Concluding we mention that the points of the modu
space with the same restrictions as before, but withC2850,
yield ~a suitable analytic continuation of! the background
SL(2)/SO(1,1)3SU(2)/U(1). Using the parametrization
~3.29! it follows from our general expression that the axio
field is zero, the dilaton field is

e22F5cos2X0sin2X1, ~3.37!

and the metric in thes-model frame is diagonal,

ds~s!
2 52~dX0!21~dX1!21cot2X1~dX2!21tan2X0~dX3!2.

~3.38!

It describes a suitable real form of the direct product of tw
2D black hole cosets. This background was used in@14# to
obtain the complete Nappi-Witten solution by O~2,2! trans-
formations. If (12sinu)/cosu takes only integer values, the
transformation is in O~2,2;Z) and the underlying back-
grounds are equivalent as exact conformal field theories.
interesting to note that the transformation that provides
(1,1) soliton dressing already contains in it the correspo
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ing O~2,2! group elements; but it also contains much mor
that allow for a flat space derivation of these CFT back
grounds.

~ii ! The coset SL~2!/SO~1, 1!3SO~1,1! 2: Following the
same construction as above we will now specify other poin
in the moduli space of soliton solutions~3.17!–~3.19! that
lead to the semiclassical geometry of the SL~2!/SO~1,1!
3SO~1,1! 2 coset.

We chooseC150 for the metric sector, thus arriving at
the same expression~3.24! as before, while for the axion-
dilaton sector we letC2850. In this case we find

e22F5C082b1A~C082b!22a2, ~3.39!

b50. ~3.40!

We furthermore let

C05C08 , ~3.41!

and introduce the coordinate transformation

a5
1

2
e2X

1
sinh2X0, b5C02

1

2
e2X

1
cosh2X0, ~3.42!

which clearly has (C02b)2>a2 as required for reality. We
find in this parametrization

e22F5e2X
1
cosh2X0, ~3.43!

while the antisymmetric tensor field is zero and the metric
diagonal. In thes-model frame, also settingw5X2 and
z5X3, the metric assumes the form

ds~s!
2 52~dX0!21~dX1!21tanh2X0~dX2!21~dX3!2,

~3.44!

and the resulting background coincides with the geometry
the coset SL~2!/SO~1,1!3SO~1, 1! 2 as it was advertised.

The wormhole background will be discussed separately
Sec. V using 2D solitons in Euclidean space.

IV. BLACK HOLES AS 2D „2,0… SOLITONS

In this section we briefly review for completeness the in
terpretation of ordinary 4D black holes as 2D (2,0) solitons
filling up some of the intermediate steps of the calculatio
@19# as well. We use as a starting point the flat space metr
in polar coordinates,

ds25da21db21a2dw22dt2, ~4.1!

for which the matrixC of the linearized system~2.10! for
stationary axisymmetric metrics is

C0~ l !5S a222b l2 l 2 0

0 21
D . ~4.2!

We point out a few differences between this case and t
cosmological setting of the two previous sections. Here, th
2D space (a,b) has Euclidean signature, while the
s-model g is Lorentzian. As a result, one has to take into
account various sign changes in order to adopt the gene
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soliton construction to stationary axisymmetric metrics;
particular, Eq.~2.18! changes to

mk
212~b2C0

~k!!mk2a250, ~4.3!

and the factor mkm l2a2 in Eq. ~2.23! changes to
mkm l1a2. Analogous changes have to be introduced in t
linearized system of equations~2.10!–~2.12! and the differ-
ential equations~2.19! for the polesmk . Also, then-soliton
transformation of a seed backgroundg0 yields
detg5(21)na2n12m1

22m2
22
•••mn

22 and the normalization
~2.25! is the same as before forn even. Ifn is odd, however,
the signature of the soliton metricg changes sign to11,
which is is not acceptable. For this reason the simplest phy
cal soliton to construct is the double-soliton solution on fl
space~4.1!.

The present version of the formalism will also becom
relevant in the next section, while considering Euclidea
gravitational solutions of the string background equations.
that case the axion-dilaton system corresponds to a Loren
ian s-modell, and the explicit construction of its solitons
will require the modifications we are considering here.

After some calculation we find that the general (2,0) so
ton on the purely gravitational background~4.1! has metric
components

gtw52~m12m2!~a21m1m2!
N1

D
, gtt524m1m2

N2

D
,

~4.4!

where

N15AS~a21m1
2!~a21m2

2!1AMa2~m1
22m2

2!

2BS~a42m1
2m2

2!, ~4.5!

N25S2~a21m1m2!
22A2a2~m12m2!

2, ~4.6!

D5@~S1M !m11~S2M !m2#
2~a21m1m2!

21@~A2B!a2

2~A1B!m1m2#
2~m12m2!

2, ~4.7!

while gww is determined by the condition detg52a2. Also,
the corresponding conformal factor turns out to be

f5
m1m2

4~m12m2!
2~a21m1

2!~a21m2
2!~a21m1m2!

2D,

~4.8!

whereasf 051. In the above expressions the parametersA,
B,M , andS are the special combinations of theC(k) moduli,

C1
~1!C2

~2!5~S2M !C0
~1!, C1

~1!C1
~2!52~A2B!C0

~1!C0
~2! ,

C2
~1!C1

~2!52~S1M !C0
~2! ,

C2
~1!C2

~2!5
1

2
~A1B!, ~4.9!

which clearly satisfy the condition

S25M22A21B2. ~4.10!
n
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Also, using an appropriate shift ofb we may fix,

S5
1

2
~C0

~1!2C0
~2!!, Z5

1

2
~C0

~1!1C0
~2!!. ~4.11!

We introduce now the change of variables

a5A~r2M !22S2sinu, b2Z5~r2M !cosu, ~4.12!

and substitute form1 andm2. Provided that we choose the
solutionsmk1 of Eq. ~4.3!, we obtain

m152~r2M1S!sin2
u

2
, m252~r2M2S!sin2

u

2
.

~4.13!

Hence, the two-soliton solution depends only on three
moduli A, B, andM , while S is fixed by Eq.~4.10! andZ
does not appear anywhere. It is also useful to introduce the
change of variable

t52t12Aw ~4.14!

and identifyt with the time coordinate. Then, substituting in
Eq. ~4.4!–~4.8! we may compute the explicit form of the
two-soliton metric in the coordinates (r ,u,w,t).

The special caseA5B50 is the simplest, since the re-
sulting two-soliton metric is diagonal,

ds25r 2~du21sin2udw2!1
r

r22M
dr22

r22M

r
dt2,

~4.15!

and coincides with the Schwarzschild metric. In the more
general situation we obtain the Kerr metric with mass param-
eter M , rotation parameterA, and NUT parameterB that
describes the behavior of the 4D metric at infinity. The result
of the two-soliton construction precisely yields the complete
Kerr metric in Boyer-Lindquist coordinates,

ds25
1

r 21~B2Acosu!2
$2@~r2M !22S22A2sin2u#dt2

1@sin2u~r 21A21B2!22„~r2M !22S2
…~2Bcosu

1Asin2u!2#dw214@Bcosu~~r2M !22S2!

2Asin2u~Mr1B2!#dtdw%1@r 21~B2Acosu!2#

3S du21
1

~r2M !22S2dr
2D . ~4.16!

We note finally that the Lorentzian analogue of the self-
dual Taub-NUT metric corresponds to the limitsS505A
andM56 iB. These limits, however, are somewhat peculiar
in the two-soliton sector because all three quantitiesN1,
N2, D become zero, and the two real poles~4.13! coincide.

V. EUCLIDEAN „0,2… SOLITONS

We describe now how axionic instanton solutions of the
Euclidean string background equations can be accommo-
dated into the present scheme. More specifically, we study
the moduli space of (0,2) 2D solitons and determine the
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specific choice of parameters that give rise to the wormho
~and other related backgrounds! as solitons on flat space. It is
true that these backgrounds were originally introduced
soliton solutions of the 10D heterotic string theory~see, for
instance,@14# and references therein!, but their description as
2D solitons of the reducedb-function equations using
inverse-scattering methods appears to be new.

We consider the general form of the (0,2) soliton solu
tions starting from 4D flat Euclidean space. It will be conve
nient for later use to consider as seed metric

ds25
1

2Aa21b2
~da21db2!1~Aa21b22b!dc2

1~Aa21b21b!dt2 ~5.1!

with detg5a2, instead of the Euclidean version of Eq.~4.1!.
However, the explicit form of the metric background will be
used only after completing the soliton construction in th
axion-dilaton sector. The seedF and b are zero, and the
metric ~5.1! is flat as can be seen using the transformation

a5
1

2
e2rsin2w, b5

1

2
e2rcos2w, ~5.2!

or introducing z5exp(r1it)cosw, w5exp(r1ic)sinw that
yieldsds25dzdz̄1dwdw̄.

The axion-dilaton sector has Lorentzian signature@we
should replaceb21e24F with b22e24F in Eq. ~2.1!, since
the relevant conjugate pair of field variables is no
S65b6e22F instead of b6 ie22F#, and therefore, the
(0,2) soliton calculation is analogous to (2,0) metric soliton
of stationary axisymmetric gravity. There is a difference wit
the analysis of the previous section, however, in that o
normalized axion-dilaton seed matrixal05diag(a,2a) is
‘‘isotropic,’’ while g05diag(a2,21) in Eq. ~4.1!. It is,
therefore, appropriate in the present case to consider

C0~ l !5Aa222b l2 l 2S 1 0

0 21
D . ~5.3!

Explicit calculation shows that the (0,2) axion-dilaton sol
ton fields are

e22F52m1m2

N18

D8
, b5~m12m2!~a21m1m2!

N28

D8
,

~5.4!

where

N185B2a2~m12m2!
21C2~a21m1m2!

2, ~5.5!

N285AC~m11m2!~a21m1m2!

1BD~m12m2!~a22m1m2!, ~5.6!

D85C2~m1
21m2

2!~a21m1m2!
22B2~m12m2!

2~a41m1
2m2

2!

2~m12m2!~a21m1m2!@AB~m12m2!~a22m1m2!

1CD~m11m2!~a21m1m2!#. ~5.7!
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Here, we have used for convenience the notation

C1
~1!C1

~2!5
1

2
~A1B!, C1

~1!C2
~2!52

1

2
~C1D !,

C2
~1!C2

~2!5
1

2
~A2B!, C1

~2!C2
~1!5

1

2
~C2D !, ~5.8!

which satisfy the relation

C25D22A21B2. ~5.9!

So, the soliton moduli depends on four parameters in th
case,A, B, C, and one of theC0

(k) , since the other one can be
absorbed by shiftingb.

Searching for an axionic instanton solution in this modul
space we notice that if

A56D, B25C2 ~5.10!

we obtain

e22F7b51. ~5.11!

One can also prove relatively easily that there are no oth
axionic instanton solutions in this sector. Moreover, from al
soliton constructions we have considered so far, only th
example exhibits axionic instanton solutions.

Next, we determine the explicit form of the solution
choosingA5D andB5C for concreteness. Substituting in
Eq. ~5.4! we obtain

e2F5
D8

2m1m2N18
512

A

B

~m12m2!~a21m1m2!

m2~a21m1
2!

. ~5.12!

Further manipulation using Eq.~4.3! yields

e2F5122
A

B
~C0

~1!2C0
~2!!

1

m11
a2

m1

~5.13!

and so the dilaton depends only onm1. Choosing the solution
m1 and taking into account thatm252a2/m1 in this case,
we finally arrive at the result

e2F511
M

A~C0
~1!2b!21a2

, M5~C0
~2!2C0

~1!!
A

B
.

~5.14!

C0
(1) can be absorbed by shiftingb, and hence for all pur-

poses it may be set equal to zero.
We also note for completeness that forA5D, but

B52C, the dilaton depends only onm2 and the result turns
out to be essentially the same up to an interchange ofC0

(1)

andC0
(2) . Similar remarks apply to the axionic anti-instanton

caseA52D with B56C.
The solution we have obtained in this fashion can be pu

together with the flat space metric~5.1! to yield in the Ein-
stein frame the 4D string background

ds25e2r~dr21dw21sin2wdc21cos2wdt2!, ~5.15!
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e2F5112Me22r, b5e22F1const. ~5.16!

We have used the change of coordinates~5.2! and the fact
that for axionic instantons there is no contribution to t
conformal factorf coming from thel sector@see Eqs.~2.8!
and~2.9!#. This configuration is actually known as the worm
hole solution. A related version of it, which represents on
the throat of the wormhole and coincides with the semicl
sical geometry of the SU~2!3U(1) WZW model, consists of
a dilaton field with different boundary condition in that th
constant term in Eq.~5.16! is missing, but with the same
Einstein metric. These two models are related to each o
by an SL(2,R) transformation~the continuous counterpart o
S duality!, which keeps the axionic instanton condition in
variant, sayS2 constant, and simply shiftse2F by a constant.

We finally point out that higher solitonic excitations o
the axion-dilaton sector might be interesting to consider
this case. We have determined the solution of the lineari
system for thel sector of the semiclassical background
the model SU(2)3U(1),

Cwh~ l !5S a22b l

2A~a21b2!~a222b l2 l 2!
Aa222b l2 l 2

Aa222b l2 l 2 0
D .

~5.17!

However, we are not in a position at this moment to give
good spacetime interpretation to its multi-soliton excitatio
It might turn out an interesting geometrical problem and
hope to return to it elsewhere.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have considered solitonic solutions of
2D reducedb-function equations for gravitational strin
backgrounds with axion and dilaton fields. We found th
many known solutions that admit an exact conformal fie
theory description arise as simple solitonic excitations of
space, or itsT-dual face, depending on the particular e
ample. These backgrounds include cosmological solutio
as well as 4D blackholes and wormholes. It should be a
interesting to consider further generalizations to collidi
gravitational plane wave solutions of string theory, thus e
tending the results of@20# to strings.

A key point in implementing our construction is the no
trivial interplay between the coordinate and the solutio
generating~Geroch-type! transformations. These two kind
of transformations do not commute with each other, and
should always use a coordinate system in the seed b
ground with nonconstant detg. The Geroch transformation
leave detg invariant, and only after the solitonic dressing
performed we may transform the new background into a
other suitable coordinate system. Note that the action of
Geroch group would be trivial if we were starting from fla
space in Cartesian coordinates because there are no
physical solutions of the Ernsts model with detg561 that
are also compatible with the equations for the conformal f
tor f . Actually, the conformal factor has a very special ro
incorporating the effects of 2D gravity in the reduced form
the string background equations.
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For certain discrete values of the soliton moduli the un
derlying string backgrounds are equivalent as exact confo
mal field theories, as it was demonstrated explicitly for the
general one-parameter form of the Nappi-Witten universe
This happens because the corresponding O(2,2;Z)
T-duality transformations@17# act on the soliton moduli as
described. Since the soliton transformations provide specifi
elements of the string Geroch group, i.e., the current grou
Ô(2,2) in the simplest case under discussion, and they al
containS transformations and their intertwining withT, our
description suggests that other discrete remnants of th
infinite-dimensional group could act asU dualities in string
compactifications to two dimensions@4,10#.

Further progress in this direction certainly requires ex
tending the formalism to include gauge fields as well. Fo
example, it will be interesting to describe 4D black holes
with electric chargeQ as 2D solitons of an Ernst-type
SU~2,1! s model. The points in the soliton moduli space tha
describe extremal black holes are special in that a soliton
interpretation of the resulting configuration exists in four as
well as in two ~reduced! dimensions. This should be ulti-
mately extended to O(8,24)s models, which are applicable
to heterotic string compactifications to two dimensions
@10,11#. One should also try to find in this context the nec-
essary conditions on the Killing isometries so that the soli
tonic nature of a given configuration is preserved or attaine
under reduction. It seems that the relevant distinction in th
examples we have considered so far is provided by the tran
lational vs the rotational character of the corresponding Kill
ing vector fields~using the same terminology as in@3#!. For
Euclidean black holes, for example,]/]t is rotational unless
M5B ~self-dual Taub-NUT limit withA50 in the vacuum
case! orM5Q ~extremal nonrotating solution of the electro-
vacuum equations!, in which cases we find that]/]t be-
comes translational. These two examples demonstrate clea
that the reduction with respect to rotational isometries ca
give rise to 2D solitonic configurations, in the sense de
scribed above, even if the 4D configurations are not so.
characteristic feature of rotational isometries in supersym
metric backgrounds is that the fermions depend on the Kil
ing coordinates, while the bosonic fields do not, and hence
is such as having a coordinate-dependent compactification

The soliton solutions of the 4D theory~Bogomolny,
Prasad, Sommerfield states! are quantum-mechanically
stable having manifest space time supersymmetry. On th
other hand, the 2D solitonic interpretation of a given con
figuration was only used here in the context of the inverse
scattering method with no reference to supersymmetr
Hence, a natural question arises to find the special properti
of these 2D solitons with respect to 2D reductions of the
spacetime supersymmetry algebra. To the best of our know
edge the only helpful results that exist in the literature ar
contained in@22#, where the 2-dim reduction of maximal
supergravity~and some of its consistent truncations! were
described in terms of Lax pairs and integrable structures. W
briefly mention that the local supersymmetry transformation
can be bosonized in two dimensions and they can be in
cluded as Kac-Moody variations into the corresponding
infinite-dimensional hidden symmetry~Geroch-type! trans-
formations. Also, the variation of the conformal factor that
accounts for the 2D gravitational effects in this case can b
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included systematically using central extensions of the as
ciated current groups@23#. Further work is certainly required
in this direction, putting together in a more constructive w
the vast variety of soliton solutions obtained by the inver
scattering methods with the supersymmetric configurati
of the 2D reduced supergravity. It is conceivable that 1
supergravity will be singled out in this line of thought, a
cording to earlier expectations by Nicolai@22#.

Summarizing, the 2D reduced sector of string theory
quite rich in symmetry due to the integrability structure
so-

ay
e-
ns
D
-

is
of

the lowest order effective theory. Better understanding of its
soliton solutions are worthy in the light of the recent devel-
opments in nonperturbative string theory, in order to estab-
lish and explore the meaning of infinitely manyU dualities
in the spectrum. This particular sector of string theory, where
many more connections are expected to exist than those in
other sectors, could also help in the long run to expose bette
the right structures that are needed for the ultimate formula-
tion of string theory. Could it be an exactly solvable sector?
We hope to return to it elsewhere.
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