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Stringy Robinson-Trautman solutions
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A class of solutions of the low-energy string theory in four dimensions is studied. This class admits a
geodesic, shear-free null congruence which is nontwisting but in general diverging and the corresponding
solutions in Einstein’s theory form the Robinson-Trautman family together with a subset of Kundt’s class. The
Robinson-Trautman conditions are found to be frame invariant in string theory. The Lorentz Chern-Simons
three-form of the stringy Robinson-Trautman solutions is shown to always be closed. The stringy generaliza-
tions of the vacuum Robinson-Trautman equation are obtained and three subclasses of solutions are identifie
One of these subclasses exists, among all the dilatonic theories, only in Einstein’s theory and in string theory
Several known solutions including the dilatonic black holes, thepp waves, the stringyC metric, and certain
solutions which correspond to exact conformal field theories are shown to be particular members of the stringy
Robinson-Trautman family. Some new solutions which are static or asymptotically flat and radiating are also
presented. The radiating solutions have a positive Bondi mass. One of these radiating solutions has the proper
that it settles down smoothly to a black hole state at late retarded times.@S0556-2821~96!05820-1#

PACS number~s!: 11.25.Mj, 04.30.Nk, 04.70.Dy
I. INTRODUCTION

In general relativity Robinson-Trautman solutions@1#
have proven to be an interesting laboratory for address
certain issues of black holes, gravitational radiation, and t
asymptotic structure of space times. These solutions
singled out by requiring that the spacetime admits a she
free, nontwisting, geodesic null congruence. In Einstei
Maxwell theory this requirement leads to a large class
algebraically special solutions which belong to variou
Petrov types and one can identify the Reissner-Nordstr¨m
black holes, the chargedC metric, as well as certain radiat-
ing solutions as particular members of the Robinso
Trautman family@2#. The explicit forms of all the Robinson-
Trautman solutions are, however, not known and t
relevance of some of these solutions to the black hole f
mation@3# as well as the structure of the Robinson-Trautma
equations@4# are still problems of current interest.

In this paper we wish to study the Robinson-Trautma
solutions of string theory in four dimensions. We shall loo
for the solutions of the low-energy string theory which ad
mit, in the Einstein frame, a shear-free, nontwisting, geod
sic null congruence. We shall derive the stringy generaliz
tion of the Robinson-Trautman equation and examine t
various subclasses of solutions. One of these subclasses
the feature that it distinguishes, among all the dilatonic the
ries, Einstein’s theory and the string theory. This subcla
exists only in these two theories. The whole family of string
Robinson-Trautman solutions, however, turns out to be int
esting for several other reasons. For example, we shall sh
that Robinson-Trautman conditions are frame invariant
string theory. Hence if a solution is of the Robinson
Trautman type in the Einstein frame, then it will also be
Robinson-Trautman solution in the string frame. It is als
worth noting that these solutions do not admit in general a
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Killing vectors. Because of this property, the whole family
cannot be generated from the vacuum solutions of Einstein’s
equations by Ehlers-Harrison-type transformations@5#. An-
other attractive feature concerns the Lorentz Chern-Simons
three-form. We shall prove that the Lorentz Chern-Simons
three-form of the Robinson-Trautman family is always
closed. This property is relevant to the higher-order correc-
tions and we shall see that the stringy Robinson-Trautman
family contains, in fact, several exact solutions or the
leading-order representations of exact conformal field theo-
ries. One of the exact solutions which is of the Robinson-
Trautman type is that of an electrically charged, extreme
black hole@6,7#. Another such solution can be identified by
noting that, in contrast with Einstein-Maxwell theory and
because of the presence of the dilaton, it is possible to switch
off the divergence of the geodesic null congruence within the
stringy Robinson-Trautman family. By specializing to this
case and choosing the spacetime to be conformally flat, one
can arrive at the special plane-wave solution which is inter-
pretable as a Wess-Zumino-Witten~WZW! model @8# and
plane waves are also known to be exact solutions@9#. These
two examples show that the Robinson-Trautman family has a
nonempty intersection with the chiral null models@10#. We
shall recover several other known solutions as particular
members of the Robinson-Trautman family. It will be seen
that the family contains the set of all charged dilatonic black
holes@6#, the pp waves@11#, the stringyC metric @12#, the
static, spherically symmetric solutions of@13# as well as the
solutions of@14# which correspond to exact conformal field
theories. We shall also present explicitly some solutions
which are static or asymptotically flat and radiating. The ra-
diating solutions that we shall study have a positive Bondi
mass. One of these radiating solutions tends smoothly to the
stringy black holes at late retarded times.
6413 © 1996 The American Physical Society
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II. ROBINSON-TRAUTMAN FORM OF THE FIELDS

Most of our discussions are based on the action

S5E d4xA2g@R12¹mf¹mf2k̃2e22afFmnF
mn#,

~2.1!

whereR is the Ricci scalar for the metricgmn , the real scalar
field f is the dilaton,Fmn5]mAn2]nAm is the spin-one field
strength,k̃ is the coupling constant,g5det~gmn!, anda is a
real parameter. When 0<a<1, this action describes the dila
tonic gravity theories which interpolate between the stand
Einstein-Maxwell theory~a50, f5const! and the low-
energy string theory~a51!. The field equations that follow
from Eq. ~2.1! can be written as

d!~e22afF !50, ~2.2!

d!df2ak̃2e22afF`!F50, ~2.3!

Rmn522¹mf¹nf12k̃2e22afS FmlFn
l2

1

4
gmnFklF

klD ,
~2.4!

whereF5 1
2Fmndx

m`dxn is the Maxwell two-form,Rmn is
the Ricci tensor, and! denotes the Hodge dual. It can b
checked that these equations are invariant under the du
transformations

F→e22af!F, f→2f. ~2.5!

We shall be primarily concerned with thea51 case of Eq.
~2.1!. In identifying this case as the low-energy string actio
one assumes that the axion field is set equal to zero.
axion field strength, however, involves the spin-one Che
Simons three-form and for a proper identification, the fie
equations must be complemented with

F`F50. ~2.6!

Since the gravitational part of Eq.~2.1! has the standard
Einstein-Hilbert form,gmn is the Einstein metric, and the
a51 specializations of Eqs.~2.2!–~2.4! together with Eq.
~2.6! are the string field equations in the Einstein frame.
pass to the string frame, one must introduce, ata51,

gmn
s 5e2afgmn , ~2.7!

and transform Eq.~2.1! so that the string metricg mn
s is the

gravitational field variable.
Our first goal is to characterize the Robinson-Trautm

solutions of the string field equations in the Einstein fram
For this purpose it will be convenient to employ th
Newman-Penrose~NP! formalism@15# and work with a null
tetrad (lm ,nm ,mm ,m̄m). The null tetrad determines the me
ric as

gmn52l (mnn)22m(mm̄n) . ~2.8!

The NP form of Cartan’s equations of structure and the d
composition of the spacetime curvature are described in
-
ard
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Appendix. The spin-one field, on the other hand, is repre-
sented by three complex scalarsF0, F1, F2 and these may
be defined by

F1 i!F522F1~ l`n2m`m̄!22F0n`m̄12F2l`m,

~2.9!

where l5 lmdx
m, n5nmdx

m, m5mmdx
m are the null basis

one forms;l andn are real,m is complex. Throughout the
paper an overbar denotes complex conjugation. We shal
chooselm to be tangent to a geodesic, shear-free, nontwisting
null congruence. In terms of the NP spin coefficients, this
means

k5s50, r5 r̄. ~2.10!

We shall also assume thatlm is a null eigenvector ofFmn ,

F050, ~2.11!

and impose on the full energy-momentum tensor the condi-
tions

F015F0250, ~2.12!

If one were to impose Eqs.~2.10! and ~2.11! in Einstein-
Maxwell theory, the space-time would be algebraically spe-
cial:

C05C150, ~2.13!

whereC0,C1 are Weyl scalars~see the Appendix! and Eq.
~2.12! would follow from Eq.~2.11!. What one is really deal-
ing with would then be a particular case of the Goldberg
Sachs theorem@2#. Because the dilaton also contributes to
the energy-momentum tensor, this is no longer the case in
string theory. We shall require the stringy Robinson-
Trautman family to share the algebraic character of its Ein-
stein counterpart and impose Eq.~2.13! as an additional con-
dition on the spacetime curvature. Hence the solutions which
obey Eqs.~2.10!–~2.13! will constitute the stringy Robinson-
Trautman family.

The null vectorlm is now an eigenvector of bothFmn and
the Weyl tensor and the tetrad gauge freedom is partially
fixed. There is still the freedom of performing null rotations
which preserve the direction oflm and these involve four real
parameters. Using such a null rotation the complex connec-
tion one-formG1 defined, in the Appendix, can be reduced to

G15rm. ~2.14!

and as a consequence of Eqs.~2.12! and ~2.13! one finds

G1`dG150. ~2.15!

The Frobenius theorem then allows one to introduce two
arbitrary functionsP0 andz such that

G15~r/P0!dz̄ ~2.16!

andP0 can always be choosen to be real. Then, according to
Eqs. ~2.14! and ~2.16!, the complex leg of the null tetrad
must have the form
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m5
1

P0
dz̄. ~2.17!

Since Eq.~2.10! is assumed to hold,l also satisfies

l`dl50 ~2.18!

and the Frobenius theorem can be utilized once again
gether with a null rotation which preserves Eq.~2.17! to set

l5du, ~2.19!

whereu is an arbitrary real function. In order to determin
the form of the final legn, let us choose as our coordinat
system (u,r ,z,z̄), wherer is an affine parameter along th
null geodesics tangent tolm. In such a coordinate system th
most generaln can be written as

n5dr1H0du1Wdz̄1W̄dz, ~2.20!

whereH0 is a real function andW is complex. Computing
now all the NP spin coefficients for Eqs.~2.17!, ~2.19!, and
~2.20! gives

W850, Wz5W̄z̄ . ~2.21!

Here and in the sequel we use primes to denote differen
tion with respect tor whereas the other partial derivative
are denoted by subscripts:W85]W/]r , Wz5]W/]z,
Wu5]W/]u. It follows from conditions~2.21! that one can
reduce Eq.~2.20! to the form

n5dr1Hdu, ~2.22!

by a coordinate transformation:r→r1 f (u,z,z̄) without
altering the forms ofl andm. When the last two terms of Eq
~2.20! are gauged away by settingf z5W̄, the coefficient of
du transforms into a new functionH and r is now the new
coordinate. Hence there exists a coordinate system (u,r ,z,z̄)
where one is left only with two real functionsP0 andH. In
this coordinate system Eqs.~2.10!–~2.13! are all satisfied by
an arbitraryH but P0 must obey

~ lnP0!z850. ~2.23!

in order to fulfillC150. Thus the final outcome of condition
~2.10!–~2.13! can be written as

l5du,

n5dr1Hdu,

m5
R

P
dz̄, ~2.24!

where H5H(u,r ,z,z̄), R5R(u,r ), P5P(u,z,z̄) are real
functions. The stringy Robinson-Trautman line eleme
must, therefore, be of the form

ds252dudr12Hdu222R2
dzdz̄

P2 . ~2.25!

Conditions~2.11! and~2.12! also have nontrivial implica-
tions on the dilaton through the field equation~2.4!. The
to-
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vanishing of theF01 component of the Ricci tensor requires
f8fz50 andF0250 implies ufzu

250. Hence the allowable
dilaton fields are of the form

f5f~u,r ! ~2.26!

and we now have the most general forms ofgmn , f andFmn
that belong to the Robinson-Trautman family. Notice that
this family is defined for all dilatonic theories.

Let us next impose Eq.~2.6!. For an arbitrary Maxwell
field and in terms of the NP variables, Eq.~2.6! amounts to

F1
22F0F25F̄1

22F̄0F̄2 . ~2.27!

In our caseF050 and therefore,F156F̄1. Since the elec-
tric cases,F15F̄1, and the magnetic casesF152F̄1, can be
mapped to one another by a duality transformation~2.5!, we
shall choose to work only with the magnetic solutions:

F152F̄1 . ~2.28!

The problem is now to determine two real functionsR,f
of two variables, a real functionP of three variables together
with a realH, a purely imaginaryF1, and a complexF2
where the last three functions can depend on all the coordi-
nates. Before embarking into the differential equations which
govern these functions three points are worth noticing.

First, if one compares the above results with those of the
Einstein-Maxwell theory, one finds as the new feature of the
stringy Robinson-Trautman metric, the presence of a general
warp factorR(u,r ). As we shall see below this warp factor is
coupled to the dilaton. Wheneverf5const,R950 and with-
out any loss of generality one can takeR5r in Einstein-
Maxwell theory. According to Eq.~2.3! it is, of course, not
permissible to setf5const unlessa50 or F`!F50. In
Einstein’s theory the metric~2.25! was previously encoun-
tered in perfect fluid solutions@16#.

Second, suppose one chooses to work with the string met-
ric g mn

s rather than the Einstein metric. The starting point of
the foregoing analysis will then be the null tetrad ofg mn

s .
Because of Eq.~2.7!, this tetrad can be related to Eq.~2.24!
by the conformal transformation

l s5eafl , ns5eafn, ms5eafm. ~2.29!

It can be checked by computing the connection and the cur-
vature of the new tetrad that, as long asf5f(u,r ), the con-
ditions ~2.10!–~2.13! will remain to hold in the string frame.
Hence if a solution is of the Robinson-Trautman type in the
Einstein frame, it will also be a Robinson-Trautman solution
in the string frame.

Finally, let us consider the Lorentz Chern-Simons three-
form in the Einstein frame. The Lorentz Chern-Simons three-
form v 3L

0 is known to satisfy

dv3L
0 5Vab`Vab, ~2.30!

whereVab are the curvature two-forms. In terms of the NP
variables one finds that

!dv3L
0 54i @3~C̄2

22C2
2!1~C̄0C̄42C0C4!

14~C1C32C̄1C̄3!#. ~2.31!
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When one specializes to the Robinson-Trautman metr
C05C150 and moreover, it turns out thatC25C̄2 ~see the
Appendix!. Hence for any metric having the form~2.25!,

dv3L
0 50, ~2.32!

and consequently, the axion field which was taken to be z
in the leading-order approximation, can be maintained to
zero even after includingv 3L

0 as a higher-order correction
Notice that Eq.~2.25! is more general than the metrics whic
are known to enjoy this property@17#.

III. THE FIELD EQUATIONS

We are now in a position to consider the field equatio
which govern the Robinson-Trautman form of the field
Among these Maxwell equations~2.2! are the simplest:

~R2F1!850, ~3.1!

~RF2!850. ~3.2!

F1z1aRf8~F̄2 /P!50, ~3.3!

~R2F1 /P
2!u1R~F2 /P!z50. ~3.4!

The first two equations can be readily integrated to give

F15
c

R2 , F25
h

R
, ~3.5!

where c5c(u,z,z̄), h5h(u,z,z̄) and because Eq.~2.28!
holds,c52 c̄. HenceF1 andF2 depend on the coordinater
only through the functionR(u,r ). When Eq.~3.5! is taken
into account, Eqs.~3.3! and ~3.4! become

Pcz52ah̄R2f8, ~3.6!

~c/P2!u1~h/P!z50. ~3.7!

TheF00 component of the Einstein equation~2.4! has also a
very simple form,

R91~f8!2R50, ~3.8!

and the other nontrivial components of Eq.~2.4! can be sum-
marized as

6L5~Hf82fu!f8. ~3.9!

F1113L52k̃2e22afucu2/R4, ~3.10!

F1252k̃2e22afh̄c/R3. ~3.11!

F225~Hf82fu!
212k̃2e22afuhu2/R2, ~3.12!

whereL,F11,F12,F22 are constructed from the metric~2.25!
and given in the Appendix. Finally, we have the dilaton fie
equation~2.3! and this reduces to

P2@~R2/P2!f8#u1@R2~fu22Hf8!#8

524ak̃2e22afc2/R2. ~3.13!
ics,
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The problem is now to determine the six functions (R,f),
(P,c,h), andH as the solutions to these equations. In this
process it is useful to note two distinct symmetries of the
problem. One of these is the freedom of rescaling the func
tions

R→w~u!R, P→w~u!P, c→w2c, h→w~u!h
~3.14!

by an arbitraryu-dependent functionw(u). It is straightfor-
ward to check that the metric~2.25!, the Maxwell field~3.5!,
and the field equations~3.6!–~3.13! are all form invariant
under Eq.~3.14!. The second symmetry concerns the coordi-
nate gauge freedom of the metric~2.25! and the correspond-
ing tetrad rotations of Eq.~2.24!. Of particular interest is the
coordinate transformation

u→ũ5E f21~u!du, ~3.15!

r→ r̃5 f ~u!r1g~u!, ~3.16!

where f (u) andg(u) are arbitrary functions. Under such a
transformation the metric functionH transforms to

H→H̃5 f 2H2~ r̃2g! f u2 f gu , ~3.17!

but the metric~2.25! preserves its form. This coordinate
transformation induces on the tetrad~2.24! the null rotation:

l→ l̃5 f21l , n→ñ5 f n, m̃5m, ~3.18!

which preservesm as well as the directions ofl andn. The
rescalings~3.14! and the transformations~3.15!–~3.17! turn
out to be valuable tools in handling the arbitrary functions
that arise through integrations. It may also be of interest to
note that the coupling constantk̃ can always be set equal to
one by adding an appropriate constant tof. This is, of
course, manifest in Eq.~2.1!.

IV. THE CASE f8Þ0, hÞ0

Consider now Eq.~3.6!. Providedf8Þ0, this equation
determinesh(u,z,z̄) in terms of the other functions and
thereby reduces the unknowns by one. Since the left-han
side has nor dependence, it also requires, unlessh50, that

2aR2f852U~u!, ~4.1!

whereU(u) is an arbitrary function. With the above choice
of the factors in Eq.~4.1! one has (e22af)85Ue22af/R2

and the dilaton equation~3.13! can be integrated with respect
to r . The result is an expression forH1r ~ln P!u . Forming
F12 from this expression and comparing with the right-hand
side of Eq.~3.11!, where nowh̄52Pcz/U, shows that Eq.
~3.11! is satisfied if and only if

~a221!ccz50. ~4.2!

Recall that the parametera labels the different dilatonic
theories andczÞ0 by assumption. Hence the Robinson-
Trautman solutions withf8Þ0, hÞ0 exist, among all the
dilatonic theories, only in string theory:a51. A similar set
of solutions also exists in the Einstein-Maxwell theory where
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a5cz50 andf5const but not in any other theory withaÞ1.
Having noted this interesting selection within the dilaton
theories, from now on we shall assume that

a51. ~4.3!

The other subfamilies of solutions havingh50 or f850
which we shall later study in fact allow generalizations t
arbitrary values ofa. However, we shall not be concerne
with these generalizations and concentrate on the soluti
of the string theory.

After substitutingf852U/2R2 and integrating once with
respect tor , Eq. ~3.8! can be written as

@~R2!8#254s~u!R21U2~u!, ~4.4!

wheres(u) arises as a function of integration. Depending o
whether or nots(u) can be taken to be zero, two subcase
need to be distinguished.

The subcases(u)Þ0: Whens(u)Þ0 bothf andR can
be completely determined, allr integrations can be com-
pleted and the problem reduces to the solution of tw
coupled partial differential equations. Starting from Eq.~4.4!
and utilizing the gauge freedom~3.14!–~3.18!, one finds that
without any loss of generality one can set

e22f5b2
k

r
, R5re2f, ~4.5!

whereb andk are constants. After introducing two real func
tionsQ(u,z,z̄) andM (u,z,z̄) which satisfy

Q25kM, ~4.6!

whereQ522i k̃c and the operator

D52P2]z] z̄ , ~4.7!

which is essentially the Laplacian on theu5const,r5const
hypersurfaces, one obtains

F15
i

2k̃

Q

R2 , F252
i

k̃

PQz̄

kR
, ~4.8!

H5
1

2b
@D lnP1k~ lnP!u#2

M

r
2r ~ lnP!u . ~4.9!

The solutions belonging to this category therefore involv
two parametersb,k and two independent functionsP,M . It
is possible to setb51 by choosingf→0 as r→` and, of
course, one can choose to work withQ in place ofM . The
functionsP andM are governed by

DM1k@4M ~ lnP!u2Mu#5
P2

M
MzM z̄ , ~4.10!

DD~ lnP!112b2M ~ lnP!u24b2Mu

1k2$2@~ lnP!u#
22~ lnP!uu%5

2b2P2

kM
MzM z̄ ~4.11!

and it can be checked that all field equations are taken i
account. Equations~4.10! and~4.11! are the stringy generali-
ic
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zations of the vacuum Robinson-Trautman equation. When
k50, Q50 and it can also be deduced thatMz50. In this
limit Eq. ~4.10! is trivially satisfied and Eq.~4.11! reduces to
the standard form of the vacuum Robinson-Trautman equa-
tion @2# by settingb51. Notice that becauseQ25kM, one
can replace Eq.~4.10! with

DQ5kP2~Q/P2!u . ~4.12!

In general, the solutions under consideration are algebra-
ically special, admit no Killing vectors, and can belong to
various Petrov types. Suppose we now concentrate on the
solutions obeyingPu50. Then Eq.~4.12! is a heat equation
on a two-dimensional surface having the metric
ds252dzdz̄/P2 andk plays the role of a diffusion constant.
The Gaussian curvature of this two-surface is

K5D lnP. ~4.13!

Let us specialize further to the spaces of constant curvature
and normalizeK to K50,61. Under these assumptions

P511
1

2
Kzz̄ ~4.14!

and the other metric function can be written as

2H5K2
2M

r
, ~4.15!

where we have takenb51. The simplest way to satisfy Eqs.
~4.10! and ~4.11! is then to setM5const and clearly, if
M.0, k>0. We have now obtained three different
Robinson-Trautman solutions depending on the value ofK
and they are all of Petrov typeD. The significant solution
among these hasK51 and describes the dilatonic black holes
@6# if Q2<2M2.

Another solution which belongs to this subcase and which
is also of Petrov typeD is the dilatonicC metric@12#. In this
particular example bothP andQ depend solely on a function
x5x(u,z,z̄) which is defined implicitly by

G21~x!dx5
1

2
~dz1dz̄!1Adu, ~4.16!

where

G~x!512x22Ar1x
3 ~4.17!

andA,r1 are real parameters. After choosingb51 and in-
troducing

F̃~x!511kAx, ~4.18!

one has

P252F̃~x!/G~x!, Q52qk̃F̃~x!, ~4.19!

whereq is the fourth parameter appearing in the solution.
The metric functionH is now expressible as

H5
r 2A2

2F̃~x!
Fe22fG~x!2GS xe22f2

1

Ar
D G . ~4.20!
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The subcases(u)50: Starting from Eq.~4.4! one can de-
termine ther dependence of all the fields completely als
when s(u)50 but now a different structure emerges. Thi
time the gauge freedom~3.14!–~3.17! allows one to set

f5f0~u!2
e

2
lnr , R25r , ~4.21!

wheref0(u) is arbitrary,e561 and the coordinater is re-
stricted to the ranger.0. Introducing again two functions
Q(u,z,z̄) andM (u,z,z̄) one obtains

F15
i

2k̃

Q

R2 , F25
2 i

k̃

Qz̄

R
~4.22!

and

H5M1Q2e22f0r e2r @~ lnP!u1eḟ0#, ~4.23!

wheref05df0/du. The field equations no longer impose a
relationship betweenQ andM and reduce to

DQ2eP2~Q/P2!u50, ~4.24!

DM1P2~M /P2!u22eḟ0M50, ~4.25!

D lnP2~ lnP!u1eḟ05~11e!Q2e22f0. ~4.26!

where the operatorD is again defined by Eq.~4.7!.
When all fields are assumed to have nou dependence,

Eqs. ~4.24!–~4.26! take a particularly simple form and be-
come equations on the two-dimensional spacelike surfa
whose Gaussian curvature is given by Eq.~4.13!. According
to Eq. ~4.26!, the Gaussian curvature is now equal to

K5~11e!Q2e22f0 ~4.27!

and the surface in question is locally flat ife521. For both
values ofe, M andQ are two independent harmonic func-
tions on this two-surface and moreover,K>0. Specializing
to the spaces of constant curvature, ifK50, eithere521 or
e51,Q50. The two-sphere,K51, is allowed only ife51 in
which case 2Q25e2f0 andM must also be constant. Note
that whenevers(u)50, the string frame line element is

dss
25e2f0F2r2e~dudr1Hdu2!22

r 12e

P2 dzdz̄G
~4.28!

and if the fields are independent ofu and e51, the string
metric is a direct product of two-dimensional metrics
ChoosingK51 gives in particular

dss
25e2f0F2r dudr1S 11

2M

r Ddu22dV2
2G , ~4.29!

wheredV 2
2 is the line element of the unit two-sphere. The

sign of the constantM now determines the sign of the Gauss
ian curvature of the (u,r ) subspace. ChoosingM50 pro-
duces the throat solution of@14# and by letting 2M5
2e2f0 one can check that Eq.~4.29! reduces to the black
hole plus infinite throat solution of@14#. The third, asymp-
totically flat region plus infinite throat solution of@14#, on
o
s

ce

.

-

the other hand, can be regained from the previous subcas
s(u)Þ0. Each of these three solutions is known to corre-
spond to an exact conformal field theory@14#.

V. THE CASE h50, f8Þ0

Whenh50 the two principal null directions of the Max-
well tensor coincide:F250. Clearly, in this casecz50 and
Eq. ~4.1! cannot be deduced from Eq.~3.6!. From Eqs.~3.7!
and ~3.11! it follows that

~ ln P!uz50, Hz850. ~5.1!

Differentiating the dilaton equation~3.13! with respect toz
then gives the condition

Hz~R
2f8!850, ~5.2!

which can be satisfied in two ways. IfHzÞ0, one sees that
Eq. ~4.1! must hold. Hence the solutions withHzÞ0 are sim-
ply theF250,Q5Q(u) specializations of the solutions dis-
cussed in Sec. IV. Note that for these special solutions Eq.
~4.2! holds for all values of the parametera.

The second way to satisfy Eq.~5.2! is, of course, to set
Hz50. Then Eq.~4.1! need not hold and one is dealing with
a subset which contains new solutions. All of these solutions
are of Petrov typeD and can be represented by the fields
having the form

H5H~u,r !, P5P~z,z̄!, F15R22~u,r !, ~5.3!

modulo the gauge freedom~3.14!–~3.17!. The two-
dimensionalu5const,r5const sections of these spacetimes
are again spaces of constant Gaussian curvature,

D lnP5K, ~5.4!

and the functionsH(u,r ), f(u,r ), R(u,r ) are governed by
the field equations

R91~f8!2R50, ~5.5!

~R2f8!u1@R2~fu22Hf8!#8524k̃2e22f/R2, ~5.6!

K1~R2!u82@H~R2!8#8524k̃e22f/R2, ~5.7!

2K1~R2H !952R2f8fu1~R2!u812R2~ lnR!u8

1~R2!8~ lnR!u , ~5.8!

HuR812HRu82H8Ru2Ruu5~fu22Hf8!Rfu .
~5.9!

For the special caseK51, Hu5Ru5fu50, the solutions of
these equations were obtained in@13# and it can be verified
that similar sets ofu-independent solutions also exist for
K50 andK521.

VI. THE CASE f850

When the dilaton depends only onu the dilaton equation
~3.13! together with Eq.~3.8! can be used to infer

F150, R5R~u! ~6.1!
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and because Eq.~3.14! is a symmetry of the problem, one
can simply set

R51. ~6.2!

This shows how the divergence of the null geodesiclm con-
gruence is regulated in string theory by the dilaton fiel
Whenf850, it follows from Eq.~6.2! that r50 and one is
dealing with nondiverging solutions which are analogs
Kundt’s class in general relativity@2#. This is to be con-
trasted with Einstein-Maxwell theory where a passage fro
the Robinson-Trautman family to Kundt’s class is not po
sible.

For the casef850, all the field equations except Eq
~3.12! amount to

D lnP50, ~6.3!

H5V~u,z,z̄!2r ~ lnP!u , ~6.4!

F25PS̄~u,z̄!. ~6.5!

The general solution of Eq.~6.3! is well known:

lnP5 f ~u,z!1 f̄ ~u,z̄!, ~6.6!

where f (u,z) is an arbitrary complex function which is ana
lytic in z. The functionS(u,z) is also analytic inz but oth-
erwise arbitrary. Since the dilaton field is not constrained
the field equations, the solutions involve three arbitrary fun
tionsf(u), f (u,z), andS(u,z). The remaining field equation
~3.12! becomes

DV52fu
214k̃2e22fP2uSu21@~ lnP2!u#

22~ lnP2!uu ,
~6.7!

where the functionsf(u), f (u,z), andS(u,z) act as source
terms. Hence the problem is now reduced to the solution
one nontrivial differential equation~6.7!.

It can be checked that such solutions belong to one of
Petrov types III,N, or O:

C250, ~6.8!

2C35P~ lnP!u z̄ , ~6.9!

C45~P2Vz̄ ! z̄2r @P2~ lnP!u z̄# z̄ ~6.10!

and the curvature scalar vanishes:L50. WhenC350, one
can setP51 by a coordinate transformation and a redefin
tion of the metric functionV(u,z,z̄). In this special case the
solutions are of Petrov typeN and describepp waves. The
pp waves are known to be exact solutions ofd54 string
theory whenf(u) is chosen appropriately@11,9#. If one fur-
ther specializes to the conformally flat caseVz̄ z̄50, the so-
lution can be brought to the form

ds252du@dr1~fu
212k̃2e22fuF2u2!zz̄du#22dzdz̄,

~6.11!

f5f~u!, F25F2~u!, ~6.12!

wheref(u) andF2(u) are arbitrary. Whenf andF2 are
constants such that 8k̃ 2e22fuF2u

251, this particular case
d.

of

m
s-

.

-

by
c-

of

the

i-

can be interpreted as a WZW model which is based on the
six-dimensional Heisenberg group@18,8# and reduced to four
spacetime dimensions.

VII. NEW RADIATING SOLUTIONS

Having seen all possible subfamilies of the stringy
Robinson-Trautman family, we now present some new radi-
ating solutions. The solutions that we shall consider belong
to the subcases(u)Þ0 of Sec. IV. Before deriving these
solutions it will be instructive to go to a gauge where the
dilaton picks up au dependence:

e22f5b2
D~u!

r
, R5re2f. ~7.1!

This is accomplished by a coordinate transformation~3.15!–
~3.17! which has a simple effect on Eqs.~4.6!–~4.9!. All
expressions in Eqs.~4.6!–~4.9! remain valid except that now

Q2~u,z,z̄!5D~u!M ~u,z,z̄!, ~7.2!

H5
1

2b
@D lnP1D~ lnP!u2Ḋ#2

M

r
2r ~ lnP!u , ~7.3!

where Ḋ5dD/du. In the new gauge the field equations
~4.11! and ~4.12! become

DD~ lnP!112b2M ~ lnP!u24b2Mu

1D2$2@~ lnP!u#
22~ lnP!uu%1DD̈23DḊ~ lnP!u

5
2b2P2

MD
MzM z̄ , ~7.4!

DQ5DP2~Q/P2!u . ~7.5!

WhenD is taken to be constant,D5k, these equations as
well as Eqs.~7.1!–~7.3! reduce to their previous forms.
Moreover, ifD is any given function ofu, one can pass to
the gauge of the Sec. IV by the coordinate transformation

r̃5
k

D~u!
r , ũ5

1

k E D~u!du, ~7.6!

which has a unit Jacobian. If one also introduces

H̃5
k2

D2 H1
kḊ

D2 r̃ , ~7.7!

P̃5
k

D
P, M̃5

k3

D3 M , Q̃5
k2

D2 Q ~7.8!

then it can be checked that Eqs.~4.5!–~4.12! are all valid for
the tilded variables.

Suppose nowQ is a constant,Q5Q0 , thenM5Q 0
2/D(u)

can depend only on the null coordinateu. Let us also assume
thatP5P(z,z̄) and specialize once again to the case where
the Gaussian curvatureK5D lnP is constant. Under these
assumptions,

F15
i

2k̃

Q0

r 2
e2f, F250, ~7.9!
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2H5
1

b
~K2Ḋ !2

2M

r
, ~7.10!

ds252dudr12Hdu22r 2e22fdV2
2, ~7.11!

wheredV 2
2 is the line element for the two-dimensional spa

of constant Gaussian curvature. The field equation~7.5! is
then trivially satisfied and Eq.~7.4! reduces to an ordinary
differential equation forD(u):

D3D̈14b2Q0
2Ḋ50. ~7.12!

Any solution of Eq.~7.12! will give us a particular member
of the Robinson-Trautman family and the simplest soluti
is, of course,D5k. Choosing for convenienceb51, one
regains in this particular case the solutions~4.15! with a
constantM . TheK51, Ḋ50 solutions are known to posses
both future and past null infinities as well as a spatial infin
and describe black holes. Let us therefore concentrate on
K51, ḊÞ0 solutions which are not gauge equivalent to t
black hole solutions. It is easy to see that such solutions
still be asymptotically flat in the sense that they will posse
at least a portion of the future null infinity. The parameterQ0
will be interpretable as the conserved magnetic charge of
solutions. Using the fact that the dilatonic current

! j D5!df2k̃ 2e22fA`!F, ~7.13!

where A5Amdx
m, is conserved by the virtue of the fiel

equation~2.3!, one can also relateD(u0) to the dilatonic
charge on au5u0 hypersurface but, of course,D(u) is not
conserved. The same applies to the Bondi massMB(u) of the
solutions which we define as

MB5M2
1

4b2
DḊ. ~7.14!

This definition is motivated by the field equation~7.4! and
agrees with the Arnowitt-Deser-Misner~ADM ! mass of the
black holes atḊ50. If ḊÞ0, Eq. ~7.4! implies that

ṀB52~Ḋ !2/4b2 ~7.15!

and consequently,MB(u) is always a decreasing function o
u. SinceD(u) can either increase or decrease as a funct
of u, this means that the Bondi mass can either be conve
into the dilatonic charge through the gravitational radiati
or both of these quantities can be radiated out to the fut
null infinity.

Integrating Eq.~7.12! once gives

Ḋ22b2Q0
2/D25C, ~7.16!

where C is a constant and depending on whetherC50,
C.0, orC,0, one gets three distinct solutions. The posit
ity of the Bondi mass requires

CD2<2Q0
2b2, ~7.17!

and this condition is respected for all values ofu if C<0. We
shall display these solutions after choosingb51. Consider
first the choiceC50. Then
ce

on
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D~u!5~c016Q0
2u!1/3, ~7.18!

wherec0 is an arbitrary real constant and the Bondi mass can
be written asMB5M /2 whereM5Q 0

2(c016Q 0
2u)21/3. For

the remainingCÞ0 cases,D(u) involves two real constants
c0 ,c1 and is given as an implicit function ofu. Letting
C52c 1

2, one finds that

D~u!2
Q0

c1
arctanF c1Q0

D~u!G5c012c1
2u, ~7.19!

whereas forC522c 1
2,

D~u!1
Q0

2c1
lnUD~u!2Q0 /c1
D~u!1Q0 /c1

U5c022c1
2u. ~7.20!

Each of these solutions is of Petrov typeD. As r→`, the
only nonzero component of the Weyl spinorC2 and the cur-
vature scalarL behave as

C252~M2DḊ/6!r231O~r24!, ~7.21!

2~C212L!5~M2DḊ/4!r231O~r24!, ~7.22!

and Eq.~7.22! can be used to check that Eq.~7.14! agrees
with the general definition of the Bondi mass given, e.g., in
@19#.

Using Eqs.~3.15!–~3.17! it is, of course, possible to rep-
resent these solutions in alternative gauges whereM is con-
stant butD andQ are functions ofu or whereD is constant
but M andQ are functions ofu. There is also a gauge in
which Eqs. ~7.19! and ~7.20! can be written in a unified
manner as an explicit function ofu. This occurs when one
setsM̂ (û)5lQ̂(û), D̂(û)5l21Q̂(û) for some real constant
l. In this gauge the caseC50 corresponds to

Q̂~ û!54l3û1 ĉ0 , ~7.23!

whereĉ0 is constant and ifCÞ0, one obtains

Q̂~ û!5 ĉ0e
Ĉû24l3/Ĉ, ~7.24!

whereĈ52lC/Q0 . SinceM andD scale differently under
Eq. ~7.6!, it is manifest in this gauge that none of these
solutions is gauge equivalent to the stringy black holes.

Among these solutions Eq.~7.20! is particularly interest-
ing because, in this case the integration constants can be
arranged in such a way thatthe solution approaches to the
stringy black hole solutions at late retarded times. This prop-
erty can be easily seen also in the gauge of Eq.~7.24! by
setting M05M̂ (û5`) and Q05Q̂(û5`) which implies
that l5M0/Q0 and Ĉ524M 0

3/Q 0
4. Let M0.0 which will

be consistent with the fact thatMB→M0 asû→`. Then Eq.
~7.24! gives

M̂ ~ û!5M01~ ĉ0M0 /Q0!exp~24M0
3û/Q0

4!, ~7.25!

Q̂~ û!5~Q0 /M0!M̂ ~ û!, ~7.26!

D̂~ û!5~Q0
2/M0

2!M̂ ~ û!. ~7.27!

In this coordinate system the Einstein frame metric is
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ds252dûdr̂12Ĥdû22~Q0 /Q̂! r̂ 2e22fdV2
2, ~7.28!

where 2Ĥ5F(û, r̂ )1122M0/ r̂ and

F~ û, r̂ !5Q̂/Q0212 r̂ Q̂
˙
/Q̂2Q0Q̂

˙
/2M022~M̂2M0!/ r̂ ,

~7.29!

with Q̂
˙

5dQ̂/dû. The other fields are given by

e22f512D̂~ û!/ r̂ , F15 ie2fQ̂~ û!/2k̃ r̂ 2, F250.
~7.30!

After introducing the Kruskal coordinatesÛ,V̂:

Û52e2û/4M0, ~7.31!

V̂5ev̂/4M0, ~7.32!

wherev̂5û12r̂14M0ln~r̂ /2M021!, one finds that

ds25
32M0

3

r̂
e2 r̂ /2M0dÛdV̂116M0

2eû/2M0F~ û, r̂ !dÛ2

2~Q0 /Q̂! r̂ 2e22fdV2
2. ~7.33!

SinceF(û, r̂ );e24M0
3û/Q0

4
as û→`, the solution converges

exponentially fast to a solution havingF(û, r̂ )50, if
Q 0

2,2&M 0
2. For the stringy black holesQ 0

2<2M 0
2 and this

condition is always obeyed. Therefore, by choosin
Q 0

2<2M 0
2, the solution can be joined smoothly to a blac

hole solution of massM0 and magnetic chargeQ0 along the
null hypersurfaceH1 which is defined byû5`. The Penrose
diagram describing the Kruskal extension of this solution f
Q 0

2,2M 0
2 is shown in Fig. 1. Notice that, in contrast to th

generic behavior of the vacuum Robinson-Trautman so
tions, the extension of the present solution through the ho
zonH1 is infinitely differentiable.

VIII. CONCLUSIONS

In this paper we have studied a class of algebraically sp
cial solutions of the low-energy string theory in four dimen
sions under the assumption that the spacetime admits a g
desic, shear-free, nontwisting null congruence. We ha
called all the solutions which follow from these assumption
the stringy Robinson-Trautman family and noted that th

FIG. 1. The Penrose diagram for the radiating solution whic
settles down to a stringy black hole whenQ 0

2,2M 0
2. The singu-

larities are located atr̃5k, wherer̃ is the radial coordinate of Sec.
IV. The û>û0 portion of the future null infinity isI1 andH1 is the
future horizon.
g
k
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family possesses various remarkable properties. We have
seen in particular that the family preserves its identity under
the transformations between the string and the Einstein
frames and the Lorentz Chern-Simons three-form was found
to be always closed. In the detailed structure of the
Robinson-Trautman family the crucial role was played by
the dilaton field. This massless mode of the string theory
regulated the divergence of the null geodesics and together
with the spin-one field gave rise to three subclasses of solu-
tions. Two of these subclasses were seen to be diverging
while the third one had a vanishing divergence. Due to this
behavior, it was possible to recover a significant number of
the well-known solutions, including the stringy black holes
and thepp waves as particular members of the Robinson-
Trautman family. We have also obtained some new solutions
explicitly and described how a radiating solution tends
smoothly to the stringy black holes at late retarded times.

Among the solutions we have studied, the closest analogs
of the vacuum Robinson-Trautman solutions are the ones
which belong to the first subclass of Sec. IV. The field equa-
tions ~4.10! and ~4.11! which govern this subclass reduce to
the vacuum Robinson-Trautman equation whenk5Q50.
The vacuum Robinson-Trautman equation is known to be a
special case of the Calabi equation@20# which arises in the
study of the extremal Ka¨hler metrics and it will be interest-
ing to see whether a geometric interpretation can also be
given for the stringy Robinson-Trautman equations~4.10!
and ~4.11!.

In Einstein’s theory the global existence and the conver-
gence of the solutions of the vacuum Robinson-Trautman
equation have been extensively studied@21#. These studies
have shown that the vacuum Robinson-Trautman spacetimes
exist for all positive retarded times and converge exponen-
tially fast to the Schwarzschild manifold. The solutions,
however, can be extended across the event horizon only with
a finite degree of smoothness. How these properties are gen-
eralized in string theory and under what initial conditions the
solutions converge to the stringy black holes is an interesting
open problem. The appropriate framework for this problem
is again furnished by the first subclass of Sec. IV. In this
subclass a partial answer to the question of convergence of
the solutions can be given easily by specializing to the case
P5P(z,z̄). Under this assumption the parabolic equation
~7.5! can be used to infer that all solutions converge to the
Q5const solutions. We have examined theQ5const solu-
tions whose Gaussian curvature is also constant in Sec. VII
and found that there are three types of radiating solutions for
the topology of a two-sphere. Only one of these solutions
was seen to converge exponentially fast to the stringy black
hole spacetimes and for this particular example the extension
across the horizon was infinitely differentiable. Whether this
is a generic behavior of all the solutions which belong to the
first subclass of Sec. IV is not known at present and should
be further investigated.

The radiating solution which converges to theQ 0
252M 0

2

stringy black holes appears to be particularly interesting be-
cause both the electric@7# and the magnetic@22# extreme
black holes can be interpreted as exact solutions of string
theory and are supersymmetric@23#. This raises the question
whether the corresponding radiating solution is also exact
and supersymmetric. Since a timelike Killing vector is not

h
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present, the radiating solution cannot be supersymmetric
cept atû5`. The issue of exactness, however, is more sub
and deserves further attention.

The principal goal of the present paper was to see h
certain classical predictions of Einstein’s theory are gene
ized in string theory. With all the above issues in hand,
seems reasonable to expect that stringy Robinson-Traut
family will furnish us with further insights towards the reso
lution of this fundamental problem.
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APPENDIX

In this appendix we describe the NP variables in terms
exterior differential forms and compute the NP scalars
the stringy Robinson-Trautman metric~2.25!. This formal-
ism is similar to the approaches of@24,25# and was utilized
in @26#.

Let us adopt the NP spacetime conventions and repre
the null tetrad in terms of a 232 Hermitian matrix of one-
forms s̃:

s̃5S lm m̄
n D . ~A1!

The effect of a Lorentz transformation ons̃ is

s̃→Ss̃S†, ~A2!

whereSPSL~2,C!. Cartan’s first equation of structure can b
written as

ds̃1s̃`G2G†`s̃50, ~A3!

where

G5S G0 G2

G1 2G0
D , ~A4!

is the SL~2,C! Lie-algebra-valued connection. NP spin coe
ficients are defined as the coefficients of the complex c
nection one-forms:

G05g l1en2am2bm̄,

G152t l2kn1rm1sm̄, ~A5!

G25n l1pn2lm2mm̄.

By writing Eq. ~A3! explicitly, it can be checked that

dl52~e1 ē !l`n1~a1b̄2 t̄ !l`m1~ ā1b2t!l`m̄

2k̄n`m2kn`m̄1~r2 r̄ !m`m̄,

dn52~g1ḡ !l`n1n l`m1 n̄ l`m̄1~p2a2b̄ !n`m
ex-
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1~p̄2ā2b!n`m̄1~m2m̄ !m`m̄,

dm52~t1p̄ !l`n1~m̄1g2ḡ !l`m1l̄l`m̄2sn`m̄

1~e2 ē2r!n`m1~b2ā !m`m̄. ~A6!

The SL~2,C! Lie-algebra-valued curvature is defined as

R5dG1G`G5S Q0 Q2

Q1 2Q0
D , ~A7!

where the curvature two-forms

Q05dG02G1`G2 ,

Q15dG122G0`G1 , ~A8!

Q25dG212G0`G2 ,

are expanded as

Q05~L2F112C2!l`n1C3l`m1F12l`m̄2F10n`m

2C1n`m̄1~C22F112L!m`m̄,

Q15~C11F01!l`n2~C212L!l`m2F02l`m̄

1F00n`m1C0n`m̄1~F012C1!m`m̄,

Q252~C31F21!l`n1C4l`m1F22l`m̄2F20n`m

2~C212L!n`m̄1~C32F21!m`m̄. ~A9!

Here C0,C1,C2,C3,C4 are the components of the Weyl
spinor, 24L is the curvature scalar, andF’s represent the
Ricci spinor@15#.

Let us define the Hodge duals:

!152 i l`n`m`m̄,

! l5 i l`m`m̄, !n52 in`m`m̄, !m52 i l`n`m,

!~ l`n!5 im`m̄, !~m`m̄!5 i l`n,

!~ l`m!52 i l`m, !~n`m̄!52 in`m̄, ~A10!

and note that!!1521, !! l5 l . In these conventions one
finds that for a vacuum spacetime,Rmn50:

!R52 iR. ~A11!

Consider now the metric~2.25!. When the tetrad is
choosen as in Eq.~2.25!, the nonzero spin coefficients are

g5H8/2, a52Pz̄/2R, b5Pz/2R,

r52R8/R, n52PHz̄ /R, ~A12!

m52$HR8/R1@ ln~P/R!#u%.

The nonzero components of the Weyl spinor are found to
be

C25
1

6
H92

1

6 SHR8

R D 8
2

1

6R2 D lnP1
1

3 SRu

R D 8
,
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C35
P

2R F ~ lnP!u z̄2Hz̄81
2R8

R
H z̄G .

C45
1

R2 ~P2H z̄ ! z̄ , ~A13!

whereD52P2]z] z̄ . The nonzero projections of the Ricc
tensor are

F0052R9/R,

F1252
P

2R
@Hz81~ lnP!zu#,
i

F1123L5
1

2
H92SRu

R D 8
1
1

R
~HR8!81

R8

R
@ ln~P/R!#u ,

F1113L5
1

2R2 D lnP1SRu

R D 8
2HSR8

R D 22 1

R
~HR8!8

2
2R8

R
@ ln~P/R!#u ,

F225
1

2R2 DH1~H822HR8/R!@ ln~P/R!#u1
R8

R
Hu

2H2
R9

R
12HSRu

R D 8
1@ ln~P/R!#uu2$@ ln~P/R!#u%
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