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A class of solutions of the low-energy string theory in four dimensions is studied. This class admits a
geodesic, shear-free null congruence which is nontwisting but in general diverging and the corresponding
solutions in Einstein’s theory form the Robinson-Trautman family together with a subset of Kundt's class. The
Robinson-Trautman conditions are found to be frame invariant in string theory. The Lorentz Chern-Simons
three-form of the stringy Robinson-Trautman solutions is shown to always be closed. The stringy generaliza-
tions of the vacuum Robinson-Trautman equation are obtained and three subclasses of solutions are identified.
One of these subclasses exists, among all the dilatonic theories, only in Einstein’s theory and in string theory.
Several known solutions including the dilatonic black holes,gpewaves, the stringfC metric, and certain
solutions which correspond to exact conformal field theories are shown to be particular members of the stringy
Robinson-Trautman family. Some new solutions which are static or asymptotically flat and radiating are also
presented. The radiating solutions have a positive Bondi mass. One of these radiating solutions has the property
that it settles down smoothly to a black hole state at late retarded {j®@556-282(96)05820-1

PACS numbefs): 11.25.Mj, 04.30.Nk, 04.70.Dy

I. INTRODUCTION Killing vectors. Because of this property, the whole family

cannot be generated from the vacuum solutions of Einstein’s
In general relativity Robinson-Trautman solutiofs] equations by Ehlers-Harrison-type transformati¢s An-

have proven to be an interesting laboratory for addressingther attractive feature concerns the Lorentz Chern-Simons
certain issues of black holes, gravitational radiation, and théhree-form. We shall prove that the Lorentz Chern-Simons

asymptotic structure of space times. These solutions ardree-form of the Robinson-Trautman family is always
singled out by requiring that the spacetime admits a sheaclosed. This property is relevant to the higher-order correc-
free, nontwisting, geodesic null congruence. In Einsteintions and we shall see that the stringy Robinson-Trautman
Maxwell theory this requirement leads to a large class ofamily contains, in fact, several exact solutions or the
algebraically special solutions which belong to variousieading-order representations of exact conformal field theo-
Petrov types and one can identify the Reissner-Nordstro ries. One of the exact solutions which is of the Robinson-
black hOIeS, the Charg@ metl’ic, as well as certain radiat- Trautman type is that of an electrica”y Charged, extreme

ing solutions as particular members of the Robinsonyack hole[6,7]. Another such solution can be identified by

Trautman fam|ly{2]. The explicit forms of all the Robinson- noting that, in contrast with Einstein-Maxwell theory and
Trautman solutions are, however, not known and th& e se of the presence of the dilaton, it is possible to switch
relevance of some of these solutions to the black hole forgg o givergence of the geodesic null congruence within the

mation[3] as well as the structure of the Robmson-Trautmanstrmgy Robinson-Trautman family. By specializing to this

equat|ons[4] are still prpblems of current Interest. case and choosing the spacetime to be conformally flat, one
In this paper we wish to study the Robmson-Trautmancan arrive at the special plane-wave solution which is inter-
solutions of string theory in four dimensions. We shall look P P

for the solutions of the low-energy string theory which ad_plretable as a WGTS-ZIEImIno—WIE)téWZW) mlodel [S%hand
mit, in the Einstein frame, a shear-free, nontwisting, geodep ane waves are also known to 0e exact solutid@s ese
sic null congruence. We shall derive the stringy generalizatW0 €xamples show that the Robinson-Trautman family has a

tion of the Robinson-Trautman equation and examine th&°nempty intersection with the chiral null modgIs]. We
various subclasses of solutions. One of these subclasses !l recover several other known solutions as particular
the feature that it distinguishes, among all the dilatonic theomembers of the Robinson-Trautman family. It will be seen
ries, Einstein’s theory and the string theory_ This Subc|a5§hat the famlly contains the set of all Charged dilatonic black
exists only in these two theories. The whole family of stringyholes[6], the pp waves[11], the stringyC metric[12], the
Robinson-Trautman solutions, however, turns out to be interstatic, spherically symmetric solutions [df3] as well as the
esting for several other reasons. For example, we shall shogolutions of[14] which correspond to exact conformal field
that Robinson-Trautman conditions are frame invariant inheories. We shall also present explicitly some solutions
string theory. Hence if a solution is of the Robinson-which are static or asymptotically flat and radiating. The ra-
Trautman type in the Einstein frame, then it will also be adiating solutions that we shall study have a positive Bondi
Robinson-Trautman solution in the string frame. It is alsomass. One of these radiating solutions tends smoothly to the
worth noting that these solutions do not admit in general antringy black holes at late retarded times.
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[l. ROBINSON-TRAUTMAN FORM OF THE FIELDS Appendix. The spin-one field, on the other hand, is repre-
. . . sented by three complex scalabg, ®;, ®, and these may
Most of our discussions are based on the action be defined by

S:J d*x /_g[R+ZVM¢VM¢_'E2€_23¢F#VFMV], F+ixF=—2®,(1/An—mAm)—2d,n/\m+2®,lAm,
(2.9 (2.9
) o _ wherel=1,dx*, n=n, dx*, m=m,dx* are the null basis
whereR is the Ricci scalar for the metrig,,, , the real scalar  gne forms:l andn are real,m is complex. Throughout the

field ¢ is the dilatonF ,,=d,A,—d,A, is the spin-one field  paper an overbar denotes complex conjugation. We shall

strength,x is the coupling constang=detg,,,), anda is a  choosd* to be tangent to a geodesic, shear-free, nontwisting
real parameter. When<e<1, this action describes the dila- || congruence. In terms of the NP spin coefficients, this

tonic gravity theories which interpolate between the standargheans

Einstein-Maxwell theory(a=0, ¢=cons} and the low-

energy string theorya=1). The field equations that follow k=0=0, p=p. (2.10
from Eq. (2.1) can be written as

We shall also assume thktt is a null eigenvector oF ,,,,

dx (e 23¢F)=0, (2.2
(I)OIO, (21:D
dxd¢—ak’e 22¢FAxF=0, (2.3 _ .
and impose on the full energy-momentum tensor the condi-
1 tions
R,,=—2V,¢V,p+2k% 2 F \F 2 9P o F
D1 =Pp2=0, (2.12
(2.9

If one were to impose Eq<2.10 and (2.11) in Einstein-

whereF=%FM dx*/\dx” is the Maxwell two-form,R,,,, is - ;
- v oy M Il th h - I I I -
the Ricci tensor, andg denotes the Hodge dual. It can be Ci;)fwe theory, the space-time would be algebraically spe

checked that these equations are invariant under the duality
transformations Vo,=V,=0, (2.13

Foe #%F, ¢——9¢. (2.9 where W, ¥, are Weyl scalargsee the Appendjxand Eq.

. . . (2.12 would follow from Eq.(2.11). What one is really deal-
We shall be primarily concerned with tiee=1 case of EQ.  jng with would then be a particular case of the Goldberg
(2.1). In identifying this case as the low-energy string actiongachs theoreni2]. Because the dilaton also contributes to

one assumes that the axion field is set equal to zero. Th@]e energy-momentum tensor, this is no longer the case in

axion field strength, however, involves the spin-one Chem'string theory. We shall require the stringy Robinson-

Simons three-form and for a proper identification, the fieldrraytman family to share the algebraic character of its Ein-
equations must be complemented with stein counterpart and impose Eg.13 as an additional con-
dition on the spacetime curvature. Hence the solutions which
obey Egs(2.10—(2.13 will constitute the stringy Robinson-
. o Trautman family.
Since the gravitational part of Eq2.1) has the standard The null Vecz)ﬂﬂ is now an eigenvector of botk , and

i in-Hi i i i i v .
ETitem H!It?_ertt_form,gfﬂ?zls ;hze Elznlsltetm mtﬁtrlc, _ztirr:dEthe the Weyl tensor and the tetrad gauge freedom is partially
a=-_ specializations o gst : )~ - ) ogether wi Y- _ fixed. There is still the freedom of performing null rotations
(2.6) are the string field equations n the Einstein frame. Towhich preserve the direction bf and these involve four real
pass to the string frame, one must introduceaat, parameters. Using such a null rotation the complex connec-
tion one-formI’; defined, in the Appendix, can be reduced to

FAF=0. (2.6

95, =29, (2.7)
and transform Eq(2.1) so that the string metrig fw is the
gravitational field variable. _ _ and as a consequence of E¢12 and(2.13 one finds
Our first goal is to characterize the Robinson-Trautman
solutions of the string field equations in the Einstein frame. r,/Adlr';=0. (2.19

For this purpose it will be convenient to employ the
Newman-PenroseéNP) formalism[15] and work with a null  The Frobenius theorem then allows one to introduce two
tetrad (,,n,,m,,m,). The null tetrad determines the met- arbitrary functionsP, andz such that
ric as
gw,=2|(,un,,)—2m(ﬂmy). (28)

andP, can always be choosen to be real. Then, according to
The NP form of Cartan’s equations of structure and the deEqgs. (2.14 and (2.16), the complex leg of the null tetrad
composition of the spacetime curvature are described in thmust have the form
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1 vanishing of thedy,; component of the Ricci tensor requires
m=5. dz (217 ¢'¢,=0 and ®p,=0 implies |¢,|?=0. Hence the allowable
dilaton fields are of the form

Since Eq.(2.10 is assumed to hold, also satisfies

¢=o(u,r) (2.2

and we now have the most general formsgygf, ¢ andF ,,
and the Frobenius theorem can be utilized once again tdhat belong to the Robinson-Trautman family. Notice that
gether with a null rotation which preserves Ef.17 to set  this family is defined for all dilatonic theories.
Let us next impose Eq2.6). For an arbitrary Maxwell
I=du, (219  field and in terms of the NP variables, Eg.6) amounts to

INdI=0 (2.18

whereu is an arbitrary real function. In order to determine P2~ D oD, = P2 DD, . (2.27
the form of the final legn, let us choose as our coordinate o

system (1,r,z,z), wherer is an affine parameter along the |n our caseP,=0 and thereforesp,=+®,. Since the elec-
null geodesics tangent td. In such a coordinate system the tric cases®,=®,, and the magnetic casdg=—®,, can be
most generah can be written as mapped to one another by a duality transformati@s), we
shall choose to work only with the magnetic solutions:

n=dr+Hodu+Wdz+ Wdz, (2.20 -
whereH, is a real function andV is complex. Computing ®1== Py 2.28
now all the NP spin coefficients for Eq&.17), (2.19, and The problem is now to determine two real functidRg
(2.20 gives of two variables, a real functioR of three variables together

with a realH, a purely imaginary®,, and a complex®,
where the last three functions can depend on all the coordi-

Here and in the sequel we use primes to denote differentid@tes. Before embarking into the differential equations which

tion with respect tor whereas the other partial derivatives govern these functions three points are worth hoticing.
are denoted by subscriptsW’'=dWiar, W,=aW/4z, First, if one compares the above results with those of the

W, = dW/du. It follows from conditions(2.21) that one can E"_‘Stei“"\"?xwe” theory, one fint;ls as the new feature of the
reduce Eq(2.20 to the form stringy Robinson-Trautman metric, the presence of a gen'eral
warp factorR(u,r). As we shall see below this warp factor is
n=dr+Hdu, (2.22  coupled to the dilaton. Whenever=const,R"=0 and with-
L out any loss of generality one can take=r in Einstein-
by a coordinate transformationr—r+f(u,z,z) without  Maxwell theory. According to Eq(2.3) it is, of course, not
altering the forms of andm. When the last two terms of Eq. permissible to setp=const unlessa=0 or FAxF=0. In
(2.20 are gauged away by settirfig=W, the coefficient of Einstein’s theory the metri¢2.25 was previously encoun-
du transforms into a new functiol andr is now the new tered in perfect fluid solutiongl6].
coordinate. Hence there exists a coordinate systgm,z) Second, suppose one chooses to work with the string met-
where one is left only with two real functior®, andH. In ric gfw rather than the Einstein metric. The starting point of
this coordinate system Eq&.10—(2.13 are all satisfied by the foregoing analysis will then be the null tetrad @f ,.
an arbitraryH but P, must obey Because of Eq(2.7), this tetrad can be related to E@.24
by the conformal transformation

W'=0, W,=W5- (2.21)

(InPg).,=0. (2.23
_ _ _ B IS=e?¢l, nS=e?n, m=e*’m. (2.29
in order to fulfill ¥;=0. Thus the final outcome of conditions
(2.10—(2.13 can be written as It can be checked by computing the connection and the cur-
vature of the new tetrad that, as longs ¢(u,r), the con-

I=du, ditions (2.10—(2.13 will remain to hold in the string frame.
Hence if a solution is of the Robinson-Trautman type in the
n=dr+Hdu, Einstein frame, it will also be a Robinson-Trautman solution
R in the string frame.

m=— dz_ (2.24) Finally, let us consider the Lorentz Chern-Simons three-
P form in the Einstein frame. The Lorentz Chern-Simons three-

_ _ form w3, is known to satisfy
where H=H(u,r,z,z), R=R(u,r), P=P(u,z,z) are real

functions. The stringy Robinson-Trautman line element dwd =Q,,/\Q2°, (2.30
must, therefore, be of the form

— where(},, are the curvature two-forms. In terms of the NP
d<=2dudr+ 2Hdu?— 2R dzdz (2.5  Variables one finds that

p2 o o
*dwd =4i[3(W5—V¥35)+(VoW,— VoW,

Conditions(2.11) and(2.12 also have nontrivial implica- o
tions on the dilaton through the field equatié®.4). The +4(V V- T,¥,)]. (2.31)
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When one specializes to the Robinson-Trautman metricsThe problem is now to determine the six functiori, §),
V,=V¥,=0 and moreover, it turns out thdt,=V, (see the (P,c,h), andH as the solutions to these equations. In this
AppendiX. Hence for any metric having the for(2.25), process it is useful to note two distinct symmetries of the

0 problem. One of these is the freedom of rescaling the func-
dws =0, (2.32 tions

and consequently, the axion field which was taken to be zero R—w(u)R, P—w(u)P, c—w?c, h—w(u)h
in the leading-order approximation, can be maintained to be (3.19
zero even after including$, as a higher-order correction.

Notice that Eq(2.25 is more general than the metrics which Py @n arbitraryu-dependent functiom(u). It is straightfor-
are known to enjoy this properfi. 7). ward to check that the metri@.25, the Maxwell field(3.5),

and the field equation£3.6)—(3.13 are all form invariant

under Eq.(3.14). The second symmetry concerns the coordi-

nate gauge freedom of the met(.25 and the correspond-
We are now in a position to consider the field equationgng tetrad rotations of Eq2.24). Of particular interest is the

which govern the Robinson-Trautman form of the fields.coordinate transformation

Among these Maxwell equation2.2) are the simplest:

Ill. THE FIELD EQUATIONS

(R2D,)' =0, (3.2) u—>U=f f~1(u)du, (3.195
(R®,)'=0. (3.2 r—r=f(ur+gu), (3.1

DuraRY BP0, (03 herei(y acoly me staary frctens, er such 3
(R?®,/P?),+R(P,/P),=0. (3.4 HoF=f2H— (F—g)f,— fq,. (3.17)

The first two equations can be readily integrated to give but the metric(2.25 preserves its form. This coordinate
c h transformation induces on the tetrézi24) the null rotation:
PR PR 39 |I-T=f"4, nofi=fn, m=m, (3.9

where c=c(u,z,2), h=h(u,z,z) and because Eq(2.28  which preservesn as well as the directions ¢fandn. The
holds,c= —c. Hence®, and®, depend on the coordinate  rescalings(3.14 and the transformation.15—(3.17 turn
only through the functiorR(u,r). When Eq.(3.9) is taken  out to be valuable tools in handling the arbitrary functions

into account, Eqs(3.3) and(3.4) become that arise through integrations. It may also be of interest to
— note that the coupling constartcan always be set equal to
Pc,=—ahR*¢’, (3.6 one by adding an appropriate constant ¢o This is, of

course, manifest in Eq2.1).

(c/P?),+ (h/P),=0. (3.7
The ®y,5 component of the Einstein equati¢24) has also a V. THE CASE ¢#0,h#0
very simple form, Consider now Eq(3.6). Provided ¢'+0, this equation
, o determinesh(u,z,z) in terms of the other functions and
R"+(¢')°R=0, (3.8 thereby reduces the unknowns by one. Since the left-hand

o side has na dependence, it also requires, unléss0, that
and the other nontrivial components of E8.4) can be sum- P d

marized as 2aR’¢p'=—U(u), 4.1
6A=(H¢' =)o’ (3.9  whereU(u) is an arbitrary function. With the above choice
of the factors in Eq(4.1) one has ¢ 22%)'=Ue 2¢/R?
@y +3A =2k c|?/R?, (3.10  and the dilaton equatiof8.13 can be integrated with respect
_ to r. The result is an expression fét+r(In P),. Forming
®,,=2k%e"22%hc/R3, (3.1)  @,, from this expression and_comparing with the right-hand

side of Eq.(3.11, where nowh=2Pc,/U, shows that Eq.
®,=(H¢p' — ¢)%+2k% 22%h|R?, (3.12 (3.1 is satisfied if and only if

whereA,®,;,®;,,P,, are constructed from the metri2.25 (a®—1)cc,=0. 4.2
and given in the Appendix. Finally, we have the dilaton field
equation(2.3) and this reduces to Recall that the parametex labels the different dilatonic
theories andc,#0 by assumption. Hence the Robinson-
P (R?/P?) ¢'],+[R3(p,—2H "]’ Trautman solutions withp’#0, h#0 exist, among all the

dilatonic theories, only in string theorg=1. A similar set
= —4ak’e 22¢c?/R?, (3.13  of solutions also exists in the Einstein-Maxwell theory where
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a=c,=0 and¢=const but not in any other theory with#1.  zations of the vacuum Robinson-Trautman equation. When
Having noted this interesting selection within the dilatonick=0, Q=0 and it can also be deduced tHdt=0. In this

theories, from now on we shall assume that limit Eq. (4.10 is trivially satisfied and Eq4.11) reduces to
the standard form of the vacuum Robinson-Trautman equa-
a=1. (4.3 tion [2] by settingb=1. Notice that becaus®?=kM, one

The other subfamilies of solutions havirg=0 or ¢'=0 can replace Eq4.10 with

which we shall later study in fact allow generalizations to AQ=kP*Q/P?),. (4.12
arbitrary values ofa. However, we shall not be concerned
with these generalizations and concentrate on the solutions In general, the solutions under consideration are algebra-

of the string theory. ically special, admit no Killing vectors, and can belong to
After substituting¢’:—U/2R2 and integrating once with various Petrov types. Suppose we now concentrate on the
respect tar, Eq. (3.8) can be written as solutions obeyind?,=0. Then Eq.(4.12 is a heat equation
S 5 o on a two-dimensional surface having the metric
[(R9)"]*=4s(u)R"+U*(u), (44 g?=2dzdZP? andk plays the role of a diffusion constant.

. . . . . The Gaussian curvature of this two-surface is
wheres(u) arises as a function of integration. Depending on

whether or nots(u) can be taken to be zero, two subcases K=A InP. (4.13
need to be distinguished.

The subcass(u) #0: Whens(u)#0 both¢ andR can  Let us specialize further to the spaces of constant curvature
be completely determined, afl integrations can be com- and normalizeK to K=0,+1. Under these assumptions
pleted and the problem reduces to the solution of two
coupled partial differential equations. Starting from E44)
and utilizing the gauge freedo(8.14—(3.18, one finds that
without any loss of generality one can set

1
P=1+ > Kzz (4.19

and the other metric function can be written as

e*2¢=b—5, R=re ¢, (4.5 oM
r 2H=K-——, (4.15
whereb andk are constants. After introducing two real func-
tions Q(u,z,z) andM (u,z,z) which satisfy where we have takeb=1. The simplest way to satisfy Egs.
(4.10 and (4.1 is then to setM =const and clearly, if
Q*=kM, (46 M=>0, k=0. We have now obtained three different

Robinson-Trautman solutions depending on the valu& of

whereQ=—2i«c and the operator and they are all of Petrov typP. The significant solution

_op29 g among these ha§=1 and describes the dilatonic black holes
A=2P0x0z @D (6] if Q?=2m?.
which is essentially the Laplacian on the=const,r =const Another solution which belongs to this subcase and which
hypersurfaces, one obtains is also of Petrov typ® is the dilatonicC metric[12]. In this
particular example botR andQ depend solely on a function
i Q i PQs x=Xx(u,z,z) which is defined implicitly by
ti=mre TR 4.8 .
. M G Y(x)dx= > (dz+dz)+Adu, (4.1
H=—b[A InP+k(InP),]— ——r(InP),. (4.9

2 r where

The solutions belonging to this category therefore involve G(x)=1—x2—Ar x3 4.17

two parameterd,k and two independent functiorid,M. It

is possible to seb=1 by choosing¢—0 asr—= and, of andA,r. are real parameters. After choosibg-1 and in-
course, one can choose to work within place ofM. The  troducing

functionsP andM are governed by

02 F(x)=1+KkAX (4.18
AM+k[4M(InP)u—Mu]=V MMz, (410  one has
AA(INP) +126°M(InP),,— 4b2M, P?=2F(x)/G(x), Q=—gkF(x),  (4.19
2p2 whereq is the fourth parameter appearing in the solution.

+KAH{20(INP) J? = (INP)yu} = — 7=

v M,M5 (4.1)  The metric functiorH is now expressible as

r22

and it can be checked that all field equations are taken into H=

= (4.20
account. Equationg!.10 and(4.11) are the stringy generali- 2F(x)

1
ez‘f’G(x)—G( xe 24— —) .
Ar
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The subcases(u)=0: Starting from Eq(4.4) one can de- the other hand, can be regained from the previous subcase
termine ther dependence of all the fields completely alsos(u)#0. Each of these three solutions is known to corre-
when s(u)=0 but now a different structure emerges. Thisspond to an exact conformal field thedn].
time the gauge freedoit8.14—(3.17) allows one to set

V. THE CASE h=0, ¢'+#0

€
$=o(u)— 5 Inr, R*=r, (4.21 Whenh=0 the two principal null directions of the Max-
well tensor coincide®,=0. Clearly, in this case,=0 and
where ¢o(u) is arbitrary,e=+1 and the coordinate is re-  Ed. (4.1) cannot be deduced from E€.6). From Egs.(3.7)
stricted to the range>0. Introducing again two functions and(3.11) it follows that
Q(u,z,z) andM(u,z,z) one obtains ,
(In P),,=0, H.,=0. (5.1)

Q Q:
R

OFES 5, D= (4.22 Differentiating the dilaton equatio(8.13 with respect toz

K then gives the condition

N .
xl|
py)

and H,(R?¢")"' =0, (5.2

_ 2.~ 2¢ppe_ '
H=M+Q% ““or*=r[(InP),+edo], (4.23 which can be satisfied in two ways. if,#0, one sees that

where ¢y=d¢,/du. The field equations no longer impose a Eq. (4.1 must hold. Hence the solutions wikh,#0 are sim-

relationship betwee® andM and reduce to ply the <I?2=O, Q=Q(u) specializations of the_solutions dis-
cussed in Sec. IV. Note that for these special solutions Eq.
AQ-€P?(Q/P?),=0, (4.24 (4.2 holds for all values of the parametar
The second way to satisfy E¢5.2) is, of course, to set
AM + p2(|\/|/p2)u—26'¢,0|\/| =0, (4.25 H,=0. Then Eq(4.1) need not hold and one is dealing with

a subset which contains new solutions. All of these solutions
A |np_(|np)u+6¢0=(1+6)Q28*2¢0. (4.26  are of Petrov typeD and can be represented by the fields
having the form
where the operatah is again defined by Ed4.7). _ 72
When all fields are assumed to have madependence, H=H(ur), P=P(z,2, ®;=R“(ur), (53
Eqgs. (4.24—(4.26) take a particularly simple form and be-
come equations on the two-dimensional spacelike surfac .OdUIO. the gauge freedon{3.1_4)—(3.17). The two-
whose Gaussian curvature is given by E413. According |men5|_onalu=const,r=const sections of these spacetimes
to Eq.(4.26), the Gaussian curvature is now equal to are again spaces of constant Gaussian curvature,

K=(1+¢e)Q% 2% (4.27 A InP=K, (5.9
and the functiondH(u,r), ¢(u,r), R(u,r) are governed by

h f i ion is locally flatéf—1. F h . X
and the surface in question is locally flatef or bot the field equations

values ofe, M and Q are two independent harmonic func-

tions on this two-surface and moreov&=0. Specializing R+ (¢')?R=0 (5.5

to the spaces of constant curvatureKit0, eithere=—1 or ’ '
e=1,Q=0. The two-sphere&l=1, is allowed only ife=1 in R24'). +[R2(db.—2HG ) = — 4%2e 24/R2. (5.6
which case B?=e2% and M must also be constant. Note (REDu+ Ry )] - 68
that wheneves(u) =0, the string frame line element is K+ (R?)!—[H(R?)']' = — 4xe 24|R? (5.7)

u ' '

rl—s
ds2=e?%| 2r ¢(dudr+ Hduz)—Z?z— dzd —K+(R?H)"=2R2¢' ¢,+ (R?)+2R*(InR),,

(4.28 +(R?)'(INR),, (5.8

and if the fields are independent ofand e=1, the string , / / _ /
. . . . ; + — — = - .
metric is a direct product of two-dimensional metrics. HUR™H2ZHR, = H'R, = Ru=(¢u=2H )Ry 5.9
ChoosingKk =1 gives in particular '
For the special casé=1, H,=R,= ¢,=0, the solutions of
. (4.29 these equations were obtained[ 8] and it can be verified
that similar sets ofu-independent solutions also exist for

2. . _ K=0 andK=—1.
whered(5 is the line element of the unit two-sphere. The

sign of the constari! now determines the sign of the Gauss-
ian curvature of the ,r) subspace. Choosinlyl =0 pro-
duces the throat solution of14] and by letting M= When the dilaton depends only enthe dilaton equation
—e %0 one can check that E¢4.29 reduces to the black (3.13 together with Eq(3.8) can be used to infer

hole plus infinite throat solution dfl4]. The third, asymp-

totically flat region plus infinite throat solution ¢fi4], on ®,=0, R=R(u) (6.0

2

— dudr+

=24
ds§e0r

2M
1+T)du2—d92

VI. THE CASE ¢'=0
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and because Ed3.14) is a symmetry of the problem, one can be interpreted as a WZW model which is based on the
can simply set six-dimensional Heisenberg gro{ip8,8] and reduced to four

spacetime dimensions.
R=1. (6.2

This shows how the divergence of the null geodéSicon- VIl NEW RADIATING SOLUTIONS

gruence is regulated in string theory by the dilaton field. Having seen all possible subfamilies of the stringy
When ¢'=0, it follows from Eq.(6.2) that p=0 and one is  Robinson-Trautman family, we now present some new radi-
dealing with nondiverging solutions which are analogs ofating solutions. The solutions that we shall consider belong
Kundt's class in general relativitj2]. This is to be con- o the subcases(u)#0 of Sec. IV. Before deriving these

trasted with Einstein-Maxwell theory where a passage fromolutions it will be instructive to go to a gauge where the
the Robinson-Trautman family to Kundt's class is not pos-gijjaton picks up au dependence:

sible.

For the case¢’=0, all the field equations except Eq. _ D(u) B
(3.12 amount to e ?=b- . R=re ‘. 7.0
A InP=0, 6.3 Thisis accomplished by a coordinate transformati®i5—
_ (3.17 which has a simple effect on Eq&4.6)—(4.9). All
H=V(u,z,2)—r(InP)y, (64 expressions in Eqg4.6—(4.9) remain valid except that now
©,=P3(u,2). (6.5 Q%(u,22)=D(u)M(u,z,2), (7.2

The general solution of Eq6.3) is well known: 1 . M
. H=%[A InP+D(InP)u—D]—T—r(InP)u, (7.3
InP=f(u,z)+f(u,z), (6.6)

: . . _ where D=dD/du. In the new gauge the field equations
wheref(u,z) is an arbitrary complex function which is ana- (4.17) and (4.12 become
lytic in z. The functionX(u,z) is also analytic inz but oth- ' '
erwise arbitrary. Since the dilaton field is not constrained by AA(INP)+1202M(InP),,— 4b2M,
the field equations, the solutions involve three arbitrary func- . .
tions ¢(u), f(u,z), and2(u,z). The remaining field equation +D?2[(InP),]?>~(InP),,}+ DD —3DD(InP),
(3.12 becomes ob2p?

mp MMz
67

AQ=DP?Q/P?),. (7.9
where the functiong(u), f(u,z), andX(u,z) act as source Q (QP%),
terms. Hence the problem is now reduced to the solution ofVhen D is taken to be constanD =k, these equations as

(7.9

AV=2¢2+4%%e 29P3 |2+ [(InP?),]%~ (InP?),,

one nontrivial differential equatiof6.7). well as Egs.(7.1)—(7.3) reduce to their previous forms.
It can be checked that such solutions belong to one of th#loreover, if D is any given function ofi, one can pass to
Petrov types IlIN, or O: the gauge of the Sec. IV by the coordinate transformation
¥,=0, (6.9 ~ k ~ 1 f DUl -6
r—mr, U_E (U) u, ()
2V 3;=P(InP),7, (6.9
which has a unit Jacobian. If one also introduces
V4= (P?V)z— r[PA(InP) 1z (6.10 ,
~ k kD _
and the curvature scalar vanishés=0. WhenW¥;=0, one H= D2 H+ Dz " (7.7
can setP=1 by a coordinate transformation and a redefini-
tion of the metric functioV(u,z,z). In this special case the ~ K ~ K ~ K
solutions are of Petrov typd and describgp waves. The P= ) P, M= e M, Q= D2 Q (7.9

pp waves are known to be exact solutions f4 string
theory wheng(u) is chosen appropriateid1,9]. If one fur-
ther specializes to the conformally flat cage;=0, the so-
lution can be brought to the form

then it can be checked that Eq4.5—(4.12) are all valid for
the tilded variables.
Suppose nov® is a constantQ=Q,, thenM =Q3/D(u)
ds?=2duldr + ( b2+ 27229 d.|2) 7 zdul— 2dzdz can depend only on the nu!l coordmateget us also assume
uldr+ (¢ + 2ic"e™ 7|0, zzu] z (g 11 that P=P(z,z) and specialize once again to the case where
' the Gaussian curvaturé=A InP is constant. Under these

$=p(u), Dp=Dy(u), (6.1 ~ assumptions,
where ¢(u) and ®,(u) are arbitrary. Whenp and &, are O,= '_ Qo 26 §.=0 7.9
constants such thatx8%e™2¢|d,/?=1, this particular case 1Rz & Pl 7.9
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1 . 2M D(u)=(ce+6Q3u)*?, 7.1

on= (k-y- 24, .10 ()= (co+6Qpu) (7.18

wherec, is an arbitrary real constang and the 2Bondi/smass can

H — — -1
ds2=2dudr+ 2Hdu?—r2e-29402, 71 be written asMlg= M/2 WhereM.—Qo(coJr 6Qgu) . For
(7.19 the remainingC+#0 casesP(u) involves two real constants

whered)3 is the line element for the two-dimensional space0:€1 :-émd is given as an implicit function ofi. Letting

of constant Gaussian curvature. The field equatibg) is ~ ©=2C1, one finds that

then trivially satisfied and Eq.7.4) reduces to an ordinary Q c

differential equation foiD (u): D(u)— C_O arcta+—1

1

QP

=co+2ciu, (7.19

3R 2020 —

DD +4b°QgD =0. (7.12 whereas folC=—2c3,
Any solution of Eq.(7.12 will give us a particular member Q D(u)—Qq/c
of the Robinson-Trautman family and the simplest solution D(u)+ =<0 w#
is, of course,D=k. Choosing for conveniencb=1, one 2c;  |D(u)+Qo/cy
regains in this particular case the solutio@@s15 with a
constantM. TheK=1, D=0 solutions are known to possess
both future and past null infinities as well as a spatial infinity
and describe black holes. Let us therefore concentrate on th&
K=1, D+#0 solutions which are not gauge equivalent to the
black hole solutions. It is easy to see that such solutions will
still be asymptotically flat in the sense that they will possess : _ _
at least a portion of the future null infinity. The paramefgyr —(¥,+2A)=(M=DD/4r*+0(r™%), (7.2

Willl b_e intelerr_etabrLe a;s thehconﬁer(\ﬁd mf_;lgnetic charge of thgnd Eq.(7.22 can be used to check that EF.14 agrees
solutions. Using the tact that the dilatonic current with the general definition of the Bondi mass given, e.g., in
[19].

Using Eqs.(3.19—(3.17) it is, of course, possible to rep-
where A=A, dx*, is conserved by the virtue of the field resent these solutions in alternative gauges wivrie con-
equation(2.3), one can also relat®(u,) to the dilatonic ~ Stant butD andQ are functions oti or whereD is constant
charge on ai=u, hypersurface but, of coursB,(u) is not but M and Q are functions ofu. There is also a gauge in

conserved. The same applies to the Bondi méagéu) of the ~ Which Egs.(7.19 and (7.20 can be written in a unified
solutions which we define as manner as an explicit function af. This occurs when one

setsM (0)=AQ(0), D(0)=x"1Q(0) for some real constant
\. In this gauge the casé=0 corresponds to

=co—2ciu. (7.20

Each of these solutions is of Petrov type As r—oo, the
only nonzero component of the Weyl spind, and the cur-
ture scala\ behave as

V,=—(M—DD/6)r 3+0(r %), (7.20)

xjp=*dp—% 2 2¢A/\xF, (7.13

Mg=M DD. (7.14

S — i
4b Q(U)=4)\%0+¢y, (7.23
This definition is motivated by the field equatign.4) and
agrees with the Arnowitt-Deser-MisnéADM) mass of the

black holes aD =0. If D#0, Eq.(7.4) implies that

wherec, is constant and i€ +0, one obtains

Q) = 80eSi—ar3/C, (7.24
No— — (D)2/ah2 “
Mg=—(D)7/4b (7.19 whereC=2AC/Q,. SinceM andD scale differently under

. . : Eqg. (7.6, it is manifest in this gauge that none of these
and consequenti B.(u) 1S always a decreasing function O.f I;'solutions is gauge equivalent to the stringy black holes.
of u, this means that the Bondi mass can either be converteltrd1 Atr::ac;r;%iesiﬁ ?r?ilstlé);sselztﬁzzig)tés El?ircglsué?)rrlétgrﬁsrecs:gn be
into the dilatonic charge through the gravitational radiation 9 ' g

or both of these quantities can be radiated out to the futurgrr_anged in such a way thette solution appr_oach_es to the
nul infinity. Stringy black hole solutions at late retarded tim&his prop-

. , erty can be easily seen also in the gauge of @R4 by
Integrating Eq/(7.12 once gives setting Mo=M (ii=) and Qu=Q(ii=x) which implies
that A=M/Q, and C=—4M /Q¢. Let My>0 which will
be consistent with the fact thégz— M, asu—c. Then Eq.
(7.24) gives

D - 2b2QZ/D2=C, (7.16

where C is a constant and depending on whetl@&+0,
C>0, orC<0, one gets three distinct solutions. The positiv-
ity of the Bondi mass requires

CD?<2Q20?, (7.17) Q(1)=(Qo/Mg)M(D), (7.26

M (D)= Mo+ (EoMo/Qo)exp( —aM3/QY), (7.2

and this condition is respected for all valuesudf C<0. We D({)=(QZ/M2)M(Q). (7.27
shall display these solutions after choosimg 1. Consider
first the choiceC=0. Then In this coordinate system the Einstein frame metric is
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family possesses various remarkable properties. We have
seen in particular that the family preserves its identity under
the transformations between the string and the Einstein
frames and the Lorentz Chern-Simons three-form was found
to be always closed. In the detailed structure of the
Robinson-Trautman family the crucial role was played by
the dilaton field. This massless mode of the string theory
regulated the divergence of the null geodesics and together
with the spin-one field gave rise to three subclasses of solu-
tions. Two of these subclasses were seen to be diverging
FIG. 1. The Penrose diagram for the radiating solution whichyyhile the third one had a vanishing divergence. Due to this
settles down to a stringy black hole wh@f<2M§. The singu-  pehavior, it was possible to recover a significant number of
larities are located at=k, wherer is the radial coordinate of Sec. the well-known solutions, including the stringy black holes
IV. The =, portion of the future null infinity isL™ and® " is the and thepp waves as particular members of the Robinson-
future horizon. Trautman family. We have also obtained some new solutions
- - explicity and described how a radiating solution tends
ds?=2dUdT +2HdU?—(Qo/Q)f%e™2?d03, (7.28  smoothly to the stringy black holes at late retarded times.
Among the solutions we have studied, the closest analogs
of the vacuum Robinson-Trautman solutions are the ones
. - - . which belong to the first subclass of Sec. IV. The field equa-
F(0,1)=Q/Qy—1-TQ/Q—QyQ/2M¢—2(M —M,)/T, tions (4.10 and(4.11) which govern this subclass reduce to
(7.29  the vacuum Robinson-Trautman equation wheaQ=0.
The vacuum Robinson-Trautman equation is known to be a

where H = F(0,r)+1—-2My/r and

with Q=dQ/dl. The other fields are given by special case of the Calabi equatif@0] which arises in the
~ . study of the extremal Kaer metrics and it will be interest-
e 2¢=1-D(0)/f, ®,=ie??Q(0)/2kf%2, ®,=0. ing to see whether a geometric interpretation can also be
(7.30 given for the stringy Robinson-Trautman equatiddsl0

and(4.13).

In Einstein’s theory the global existence and the conver-
gence of the solutions of the vacuum Robinson-Trautman
equation have been extensively studj@d]. These studies
\/— @b/4M have shown that the vacuum Robinson-Trautman spacetimes
V=ge"""Mo, (7.32 : ", .

exist for all positive retarded times and converge exponen-
whered =+ 2F +4MIn(F/2M 4—1), one finds that tially fast to the Schwarzschild manifold. Thg soluhonsz
however, can be extended across the event horizon only with
a finite degree of smoothness. How these properties are gen-

After introducing the Kruskal coordinatet:*is,\A/:

U=—g WMo, (7.3)

32m3

ds*= 7 e~ MogdUdV+ 16M3e"2MoF (§1,f)d U2 eralized in string theory and under what initial conditions the
solutions converge to the stringy black holes is an interesting
_(QO/Q)fZe—Zd)dQ%_ (7.33 open problem. The appropriate framework for this problem

is again furnished by the first subclass of Sec. IV. In this
SinceF(G,F)Ne_mga/Qg as -, the solution converges Subclass a partial answer to the question of convergence of

exponentially fast to a solution having(0,F)=0, if the solutions can be given easily by specializing to the case
QZ2<2v2MZ. For the stringy black hole®@2<2M 2 and this P=P(z,2). Under this assumption the parabolic equation
condition is always obeyed. Therefore, by choosing(7-9 can be used to infer that all solutions converge to the
Q3<2M3, the solution can be joined smoothly to a black Q=const solutions. We have examined @Qe-const solu-
hole solution of mas#!, and magnetic chargd, along the ~ tons whose Gaussian curvature is also constant in Sec. VI
null hypersurfacé{* which is defined byi=c. The Penrose and found that there are three types of radiating solutions for
diagram describing the Kruskal extension of this solution forthe topology of a two-sphere. Only one of these solutions
Q2<2M?Z is shown in Fig. 1. Notice that, in contrast to the Was Seen to converge exponentially fast to the stringy black
generic behavior of the vacuum Robinson-Trautman solul©le spacetimes and for this particular example the extension
tions, the extension of the present solution through the hori@cross the horizon was infinitely differentiable. Whether this
zonH* is infinitely differentiable. is a generic behavior of all the solutions which belong to the
first subclass of Sec. IV is not known at present and should
be further investigated.

The radiating solution which converges to §=2M 3

In this paper we have studied a class of algebraically spestringy black holes appears to be particularly interesting be-
cial solutions of the low-energy string theory in four dimen- cause both the electric7] and the magneti¢22] extreme
sions under the assumption that the spacetime admits a gelkack holes can be interpreted as exact solutions of string
desic, shear-free, nontwisting null congruence. We have¢heory and are supersymmetf3]. This raises the question
called all the solutions which follow from these assumptionswhether the corresponding radiating solution is also exact
the stringy Robinson-Trautman family and noted that theand supersymmetric. Since a timelike Killing vector is not

VIIl. CONCLUSIONS
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present, the radiating solution cannot be supersymmetric ex- +(7m—a—B)n/A\m+(uw—px)m/\m,

cept atu=c. The issue of exactness, however, is more subtle o

and deserves further attention. dm=—(7+mIAn+(u+y—PIAm+NAm=—on/\m
The principal goal of the present paper was to see how _ -

certain classical predictions of Einstein’s theory are general- +(e—€e—p)n/Am+(B—a)m/\m. (A6)

ized in string theory. With all the above issues in hand, it

seems reasonable o expect that stringy Robinson-Trautman 1€ SU2.C) Lie-algebra-valued curvature is defined as

family will furnish us with further insights towards the reso- o) 0
lution of this fundamental problem. R=d[+TAT=| ° 72 (A7)
0, —0y)’
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are expanded as
APPENDIX o
. . . 5 . ®0=(A_CDll_\Ifz)I/\n+\I,3|/\m+q)lzl/\m_q)lon/\m
In this appendix we describe the NP variables in terms of

exterior differential forms and compute the NP scalars for —¥.nAm+(¥,—d;— A)ymAm,

the stringy Robinson-Trautman metri2.25. This formal- o
ism is similar to the approaches [#4,25 and was utilized O,=(V+Py)IAN—=(T,+2M) /A AM—=Dpl Am
in [26].

Let us adopt the NP spacetime conventions and represent + ®oon/Am+Fon/Am+ (Lo~ ¥y )mAm,

';gtremnsug:tetrad in terms of a’22 Hermitian matrix of one- @)= — (W4 D)l AN+ W Am+ Dol A= Dogn/AM

— (W, 2A)nAM+ (W 5— Do) mAT. (A9)

o=

I m

m :j A1) Here ¥,,¥,,¥,,¥,;,¥, are the components of the Weyl
spinor, 24\ is the curvature scalar, anfi’'s represent the
Ricci spinor[15].

FS5Sh (A2) Let us define the Hodge duals:

*1=—ilAn/Am/A\m,

The effect of a Lorentz transformation @nis

whereSe SL(2,C). Cartan’s first equation of structure can be
written as

*=ilAmAm, *n=-—in/Am/Am, *m=-—il/An/\m,
do+oAI'-TTAT=0, (A3) S _
*(IAn)=imAm, x(m/Am)=il/\n,
where o o
*(IAm)=—ilAm, x(nAm)=—in/Am, (A10)
Iy T
I'= r, -T,) (A4)  and note that«1=—1, *xI=I. In these conventions one

finds that for a vacuum spacetine,,=0:
is the Sl(2,C) Lie-algebra-valued connection. NP spin coef-
ficients are defined as the coefficients of the complex con-
nection one-forms:

*R=—IiR. (A1)

Consider now the metrid2.25. When the tetrad is

[o=yl+en—am—Bm, choosen as in Eq2.25, the nonzero spin coefficients are
I'y=—7l—«kn+pm+om, (A5) y=H'2, a=—P32R,  p=Pi2R,
Ty= vl + 70— Am— pim. p=—R'IR, v=—PH;/R, (A12)
By writing Eq. (A3) explicitly, it can be checked that pu=—{HR'/R+[In(P/R)],}.
di=—(e+ OIAN+(a+ B—DIAM+(a+ -1 AM The nonzero components of the Weyl spinor are found to
be
—kn/Am—kn/Am+(p—p)mAm,
B vt 1(HR’)’ Lo et Ru)'
dn=—(y+ PIAN+ I Am+TTAM+ (7— a— B)n/Am 26" Tl R/ eRMTIIR)
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P 2R
\szﬁ (InP)u7—H7+?HZ .

1
V=5 (PPHZ), (AL3)

where A=2P23,95~. The nonzero projections of the Ricci

tensor are

(I)OOZ - R”/R,

HZz+(InP),],

P
Cplzz_ﬁ[

6423

!

Ru}’ 1HR” R In(P/R
R +§( )+E[n( s

iy 3A= 3
1™ _E -

1
(I)11+3A: ﬁ A InP+

R,\’ (R’)Z 1 -,
E) “Hiwr| ~rHRY
2 !
— & [In(P/R)]y,

!

1 R
® =507 AH+(H' = 2HR'/R)[IN(P/R) ]+ = Hy

"

R
ENTERA T
H? = +2H| 3

!

+[IN(P/R) ]y —{[In(P/R)],}*.

(A14)
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