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Generalized Raychaudhuri equations for strings in the presence of an antisymmetric tensor field
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The generalized Raychaudhuri equations derived by Capovilla and Guven are exclusively for extremal,
timelike Nambu-Goto membranes. In this article, we construct the corresponding equations for string world
sheets in the presence of a background Kalb-Ramond field. We analyze the full set of equations by concen-
trating on special cases in which the generalized shear or the generalized rotation or both are set to zero. If only
the generalized shear is set to zero then it is possible to identify the components of the generalized rotation with
the projections of the field strength of the Kalb-Ramond potert&0556-282(96)03318-§

PACS numbsds): 11.25.Mj, 11.10.Kk

I. INTRODUCTION We discuss special cases in which either the shear or the
rotation or both are set to zero and thereby obtain simplified
The importance of the consequences resulting out of theets of equations. For the case in which only the shear is set
analysis of the Raychaudhuri equations for timelike or nullto zero it is possible to identify the projections of the anti-
geodesic congruencés&—3] in the proof of the singularity Ssymmetric tensor field with the components of the rotation in
theorems of general relativityGR) [3,2] is a well-known @ special way.
fact today. At the same time, string and membrane theories The paper is organized as follows. Section Il provides
have been extremely popular among theoretical physicists gfome background material based on the paper by Capovilla
different specializations. Apart from it being a candidate forand Guven. In Sec. lll we write down and analyze the equa-
quantum gravity and unification of forces there are a multi-tions for the case of strings in the presence of an antisym-
tude of situations ranging from particle physics to biologymetric tensor field. Finally, in Sec. IV we conclude with
where membranes or strings play a pivotal role in describingemarks on future directions.
a system or analyzing a phenomenon. Given the diverse ar-
eas in which strings and membranes are applied it is perhaps Il. BACKGROUND
worthwhile to know the generalizations of the basic equa- ) _ ) _ _
tions for curves(such as the geodesic equation, the Jacobi !N this section we briefly review the work of Capovilla
equation and the Raychaudhuri equalitmthe case of sur- and quen[?] on the generalization of the Raychaudhuri
faces. Earlier papers by Guvgd], Larsen and Froloys] — €duations. _ _ _ _
and Cartef6] have succeeded in generalizing the equation of 1€ geometric objects under consideration are
geodesic deviation to the case of timelike surfaces. Mord-dimensional, timelike —surfaces embedded in an
recently, Capovilla and Guvdil] have generalized the Ray- 'N-dimensional background. ~ We  denote x*

chaudhuri equations for timelike geodesic congruences to th(a“zo'liz'-a- -,N—1) as the background spacetime coordi-
case of families of D-dimensional, timelike, extremal, hates andé® (a=0,1,2,...,D—1) as the surface coordi-

Nambu-Goto surfaces in at-dimensional background. Sub- nates. Tangents and normals are defined in the usual way and
sequently, several illustrative examples of these equationd® €an construct an orthonormal, spacetime bgists,nf}
were constructed by this author [i8,9]. The generalization at each point on the surface. The projections of the spacetime
of the notion of geodesic focusing to families of surfaces wagovariant derivatives oE7 and nf* along the surface tan-
also introduced and discussed in some detail. gents define the extrinsic curvatures, Ricci rotation coeffi-
However, it is necessary to realize that there are severdients, and the twist potentials through the standard Gauss-
other actions that arise in string and membrane theorie¥/eingarten formulas given as
which are different from the Nambu-Goto or Polyakov ac-

tions. Differences arise in various ways—the presence of DaEp= vapEc— Kaphi, @
background fields other than gravit{0], supersymmetriza- i b i
tions[12], rigidity corrections[11], and so on. What are the Dani=K5pE + win;, 2

generalizations of the Raychaudhuri equations for these ac- ) . )
tions? In this paper we attempt to analyze one such action-whereD,=E;D,, (D, being the usual spacetime covariant
the one in the presence of a background antisymmetric tens@erivative. The quantities<;,;, (extrinsic curvaturg s and

field (the Kalb-Ramond field Ysp are defined as
The generalized Raychaudhuri equations now contain , , A
many extra new terms which embody several nontrivialities. ab=—09(DaEp,n") =Kp,, (©)]
wl=g(D,n',nl), (4)

*Present address: IUCAA, Post Bag 4, Ganeshkhind, Pune 411
007, India. Electronic address: sayan@iucaa.ernet.in Yabc=9(DaEp . E¢) = — Yach- (5)
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54 GENERALIZED RAYCHAUDHURI EQUATIONS FOR ... 6409
In order to analyze deformations normal to the world 1 o

sheet we need to consider the normal gradients of the space- Ay+ §3a7037+(M )i=0 (15

time basis set. The corresponding analogues of the Gauss-

Weingarten equations are with the quantity M2)ii given as

DiEa:‘Jaijnj+SabiEbr (6) (MZ)ij:KiabKabj+R EgnViEpant. (16)

nypo

- k
Dinj=—Jq E*+ Yij Mo (7 V. is the world-sheet covariant derivative\ € V2V )

andd,y=6,. Notice that we have s&} andA} equal to
zero. This is possible only if the symmetric traceless part of
(M?) is zero. One can check this by looking at the full set
g —g(D'E Eb):—SL ®) of generalized Raychaudhuri equations involvidy, A,
ab & & and 6, [4]. For geodesic curves the usual Raychaudhuri
equations can be obtained by noting tKgt=0, theJ,;; are
related to their spacetime counterpaifs, through the re-
Ji=g(D'E,,ni). (100 lation J,,a=n,n\Ja;, and thed is defined by contracting
with the projection tensoh,,,, .

The quantityd,;; is the most crucial object in our discus- ~ The 6, or y basically tell us how the spacetime basis
sion because it is, in a sense, a measure of the allowed ovectors change along the normal directions as we move
thogonal deformations of the world surface which is necesalong the surface. 19, diverges somewhere, it induces a
sary in obtaining information of the behavior of families of divergence inl,;;, which, in turn means that the gradients of
surfaces. One can think df;; as a quantity which essen- the spacetime basis along the normals have a discontinuity.
tially is a surface analogue of the gradient of the tangenfhus the family of world sheets meet along a curve and a
vector field in the case of geodesics. The major point ofcusp/kink is formed. This, we claim, is a focusing effect for
difference with the case of geodesics is the fact that one hagxtremal surfaces analogous to geodesic focusing in GR
one quantity along each of the tangential directions on thavhere families of geodesics focus at a point if certain spe-

whereD;=n{D,. The quantitieslg » Sapi» and y!‘j are de-
fined as

Yiik=9(Dinj ;N = = Yikj » 9

surface. cific conditions on the matter stress energy are obeyed.
The evolution equations for thé,;; are the generalized

Raychaudhuri equations. ll. STRINGS IN THE PRESENCE
Instead of taking the proper time derivative &f;; we OF AN ANTISYMMETRIC TENSOR FIELD

look at the covariant world-sheet derivative of this quantity. ) .

This turns out to béfor details see Appendix ¢7]) given as . In the presence of a b'ackground antisymmetric tensor

field (the Kalb-Ramond field the usual Nambu-Goto—

’V”ini' — _’V'iKLb_Jikagj_ Kl KS—g(R(E,,n")Ey,nd), Polyakov action gets generalized by the addition of an extra

(11  term. We, therefore, have

where the extrinsic curvature tensor components are j )
! i S=S\gt | €3B,,dXx I x"d2E. 1
Klab:_gqug(DaEﬁ)n”'- Sne €7B,y0cX" 04 £ (17

On tracing over world-sheet indices we get . ) ] o
The field equation resulting from the variation of the ac-

"V'aJaiJ: _JiakJakJ'_ K;CKaCJ—g(R(Ea,ni)Ea,nJ), (12) tion with respect tox* is given as
where we have used the equation for extremal, timelike, i_} i @\ Cag B
Nambu-Goto membrandse.,K'=0). As we shall see in the K= Mmg™ e dex 0" pa (18)
next section, it is this condition which will change and
thereby introduce all the nontrivialities when we introduce awhere
background antisymmetric tensor field.
The antisymmetric part of Eq12) is given as Huva=09,Brat d,BaytdaB,. (19
"V'ini _"V'a‘]ig:Gijb, (13) We can also write the field equation in the following al-
a a ternative form by choosing the conformal gauge. In that case
whereg(R(Y1,Y5)Y3,Y4)=Rus,,Y{YEY4Y} and we have

ij _ i qkj i cj i j
Ge{b_ _‘]bk‘]aJ_KbCKaJ_g(R(Eb!n )Ea!nj)_(aﬂbzi4) aa&ax)\_’_l“z(r&axpaaxoz _ %Ecaacxﬁaaxvga)\HaVB‘ (20)
One can further splily;; into its symmetric traceless, The constraints, of course, remain the same as for the
trace, and antisymmetric parts(J3=37+A7+ (1N Nambu-Goto action for extremal surfaces.
—D)é8"6,) and obtain the evolution equations for each of Given the above field equation we can ask—When does
these quantities. The one we shall be concerned with mostithe world sheet retain its minimal character even though
is given as background fields or potentials may be present? This implies
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investigating the conditions under which the right-hand side The equation obtained by tracing the expression for

(RHS) of the equation becomes zero. VU with respect to the world-sheet indices is given as
First, ifH,,,=0, i.e.,B,, is pure gauge the RHS disap- B A o A o

pears and we are left with an equation which is the same as V3= — gL gaki— KL K2l e JKH],

the original Nambu-Goto equation. ) )
Additionally, if we choose stationary strings then it is not —9g(R(E,,n")E% n’). (28)

necessary that all components HL be zero. Given the

stationary string ansafz = 7,x = x (U)] we find that We now use the splitting o into its symmetric trace

less, antisymmetric, and trace parts:
K'=n%xP"Hpqp. (21) 1
_ J=ST+ AT+ ——44,. (29)
Thus, if Hoqp=0Vp,q thenK;=0 and the world sheet re- N-D
mains a minimal surface.
On the other hand, for circular strings in a spherically
symmetric backgrount=t(7),l=I1(7),0=%/2 ,¢p=0c] we

The equations for each of these quantitie2. ;;, and
A,jj turn out to be

have 1 .
‘ . . Va 0P+ 33k p A IS~ g gay (M2)
Ki=—n®tH g5~ N*1H 3. (22 N—-D
Therefore, with —AHika=0, (30
H103: H203: H213: O, (23) ’ﬁaAaij _Eek‘[izja]k—’_Aak[iAja]k_2Aak[i2£;1]k_ ECBEE[iHL]a
. . . . o 2 - 2
we end up withK;=0 and the minimality of the surface is capKliggil 4 _cag i an ij —
retained. i + %A Hka-I—N_D €O H + ——— N=D %A,
We now need to evaluate the quanfit{k!. It is this term (31)

which will add up to the generalized Raychaudhuri equation

for the usual Nambu-Goto action and result in the major

Ea”-f-(Aa'kAJ 2a|k21 )str+ 203+[(M2)”]Str

differences. N—-D
After some_amount of algebra one finds the following o o
expression folV'K!: —ecas iy + ecaAKiRH)) =0, (32
~ 1 - _ ) where str denotes symmetric traceless part of a matrix.
V'K'=§6°aJ',#(ETE'fE;HzV)— €3S, (EYPENIHY ) The first fact to note in the above equations is that if we
setA andX both equal to zero the second equation leads to
— @)% (nlnf EVH* J)- (24)  arelation between thé, and theH} which is given as
The quantities in brackets in the above expression can be €20 Hy =0. (33

thought of as projections dfl ,,, along normal and tangen-

i i i i i — il
tial directions. Thus, we end up with This constrains the choice @f, andH, If H =H_ then,

as a consequence we hafig= 6,. Therefore, thed, 62 term
- 1 in the first equation vanishes and we end up with the equa-
ViKI=¢t2 2J'JH'C“a SLHI—JkRl ], (25)  tion

V. 02+ (M?)i=0. 34
where we have assumed a (M?); (34

Furthermore, if we assume only!)=0 and

DiHMVPZO' (26) o N -
2,=37, Hg=HI, (35)
Note that the first term can be very easily shown to be equal
to zero since the world-sheet indices take only two valuesve end up with Eq(33) and a similar equation fQ¥ ,j; :
(o,7). The second term for the case of the string can be - -
written as V.22 —[(M?)T]=0, (36)
SLdEcaHjad_ emslm L_U+ EWQMHJTT' 27) Finally, we set onl\% equal to zero. Therefore we end up

with the following algebraic relation resulting from the third

and it is obvious that it is equal to zero by the antisymmetryedquation:
pf HE with respect taa,b indices. Hence only the last term (ABKAT sty ecap i) —, 37)
in Eq. (25 survives.

We are now in a position to input this into the term con-assuming that the symmetric traceless part of the object
taining V'K! in the generalized Raychaudhuri equation for(M?)!l is equal to zero.
string theory in the presence of a background antisymmetric This above algebraic relation can be satisfiéar the
tensor field. string casgif we assume the following to hold true:
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A= HLU, Affk: HLT_ (38  of these two equations follows from E(B9) while the sec-
ond one is a descendant of Hg4).

Thus, a geometric quantith! has been related to a If we further assume that the string world sheet is flat then
physical object: the field strength of the Kalb-Ramond po-the covariantized world-sheet derivatives are reduced to or-
tential. It would be worthwhile trying to understand how the dinary derivatives on the world sheet. The pair of first-order
generalized rotation has its physical meaning in the projecpartial differential equations can therefore be thought of as a
tions of theH ,,, . single second-order wave equation for eithé) or HY

With this identification of theA with the projections of given as
H we find that the second equation reduces to the simple
equation F2HI g
VA2 =0, (39) ar* 92 “8)

and the equation for the generalized expangidarns out to . . . .
be g g P Therefore, with the identification of the projections of the

H .., field with the generalized rotatiofi ;;; we end up with
_ 1 , an equation for ther and two constraints on the field. This
V.62 + N=D 0,6%+(M?);=0. (40)  is all we need to solve in order to analyze focusing effects for
world sheets which are extremal solutions of the Nambu-
Let us now turn to the antisymmetric equations. RecallG0to action with an antisymmetric tensor fi.eld added toit. In
that the V'K term does not contribute to these equations.fa.Ct’ apart frqm the extrinsic cur_vature which wil now con-
They are given by tain some objects related to thiefield and the constraints on
the H we have nothing more to analyze except the usual
T Al — _oAKiAIl _osKisil _ i generalized Raychaudhuri equation for the The crucial
2Viaht = = 2A @ Aok 23 g Qapy - (4D result of this paper is the demonstration of the fact that the
(42) generalized rotation can indeed be related to the projections
of theH ,,, field. This in turn leads us to a system of equa-
tions which are tractable.

One might ask—What are the generalized Raychaudhuri
equations for strings in a background three-dimensional
spacetime? Note that in this case the string world sheet is a
ﬁypersurface and therefore considerable simplifications oc-
Cur. One can very easily show thatK! is identically zero

(the term containing a product of normals vanishes because
V.S =0 (44) of the fact that there is only one normal now ahd is
amal antisymmetric in itsi,j indices. Therefore the generalized

However, one of the traced equatiof86) matches with Raychaudhuri equations are the same as for the case without
the above equation only f{M?2)1]5'=0. an antisymmetric tensor field.

For the case in whick} =0, the identification of théd
with the A results in some constraints on the or the A
which have to be satisfied in order to have a consistent so-
lution of the full set of equations. These constraints turn out The aim of this paper has been to derive the generalized
to be as follows. Raychaudhuri equations for strings in the presence of a back-

The second of these equations results in the relatioground antisymmetric tensor field. We have analyzed several
0,=d,y. The third is satisfied identically with the assump- special cases by choosing the shear, the rotation, or both to
tion of the relation betweemd and A. The first equation zero. It turns out that if the shear is set to zero then it is
(with the choiceQ)}) =0) yields an extra constraint on the possible to identify the projections of the field strength of the
H which reads Kalb-Ramond potential with the generalized rotation. This,

_ o in fact demonstrates that a geometric object can be related to
Via Q]=2H'[‘gH'a]k. (450  a physical quantity. Recall, that in the geodesic case one
could give a physical meaning to the rotation. In the paper of

For the string world sheet in a background four- Capovilla and Guven such a physical meaning for the gen-
dimensional spacetime one ends up with the following coneralized shear or rotation was lacking. We have, in this pa-

2(9[a0b]=0,
2ViaSt = —2(A KA L+ SES LS+ AAUAD, . 43

First, let us look at the case with!! =31, H! =HY and
A =0. With these assumptions, we can easily check that th
antisymmetric equations essentially reduce to one equati

given by

IV. CONCLUDING REMARKS

straints onH: per, been able to make some progress along this direction for
- o~ at least one of these quantities.
V,H!=V H], (46) A multitude of open issues remains in this area. As an
o extension to this paper one can work out the generalized
V,HI=V HY. (470  Raychaudhuri equations for other actions which were men-

tioned in the Introduction. Apart from this, one has to under-
This is because there are only two normals to the worldstand the issue of focusing of surfaces in a better and more
sheet and the,j indices inH} are antisymmetric. The first general way without referring to specific examples. Thereaf-
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ter, one can address the question of spacetime singularitieseory has the unique feature: the geodesic equétiajec-

and their relation to string focusing effects. tory of test particlescan be derived from the Einstein equa-
In drawing parallels with the basic equations of GR-tions. Therefore, one can frame the question—What is the

geodesic equation, deviation equation, Raychaudhuri equ&Einstein equation” which will lead to the string equations

tions, and the Einstein equation one now notices that in thef motion? An answer to this question will perhaps help us to

context of strings we actually have the first three. The fourthunderstand the relation between strings, gravity, and space-

one is, however, not there. However, recall that GR as @éime geometry in a novel way.
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