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Generalized Raychaudhuri equations for strings in the presence of an antisymmetric tensor field

Sayan Kar*
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India

~Received 2 May 1996!

The generalized Raychaudhuri equations derived by Capovilla and Guven are exclusively for extremal,
timelike Nambu-Goto membranes. In this article, we construct the corresponding equations for string world
sheets in the presence of a background Kalb-Ramond field. We analyze the full set of equations by concen-
trating on special cases in which the generalized shear or the generalized rotation or both are set to zero. If only
the generalized shear is set to zero then it is possible to identify the components of the generalized rotation with
the projections of the field strength of the Kalb-Ramond potential.@S0556-2821~96!03318-8#

PACS number~s!: 11.25.Mj, 11.10.Kk
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I. INTRODUCTION

The importance of the consequences resulting out of
analysis of the Raychaudhuri equations for timelike or n
geodesic congruences@1–3# in the proof of the singularity
theorems of general relativity~GR! @3,2# is a well-known
fact today. At the same time, string and membrane theo
have been extremely popular among theoretical physicist
different specializations. Apart from it being a candidate
quantum gravity and unification of forces there are a mu
tude of situations ranging from particle physics to biolo
where membranes or strings play a pivotal role in describ
a system or analyzing a phenomenon. Given the diverse
eas in which strings and membranes are applied it is perh
worthwhile to know the generalizations of the basic equ
tions for curves~such as the geodesic equation, the Jac
equation and the Raychaudhuri equation! to the case of sur-
faces. Earlier papers by Guven@4#, Larsen and Frolov@5#
and Carter@6# have succeeded in generalizing the equation
geodesic deviation to the case of timelike surfaces. M
recently, Capovilla and Guven@7# have generalized the Ray
chaudhuri equations for timelike geodesic congruences to
case of families ofD-dimensional, timelike, extremal
Nambu-Goto surfaces in anN-dimensional background. Sub
sequently, several illustrative examples of these equat
were constructed by this author in@8,9#. The generalization
of the notion of geodesic focusing to families of surfaces w
also introduced and discussed in some detail.

However, it is necessary to realize that there are sev
other actions that arise in string and membrane theo
which are different from the Nambu-Goto or Polyakov a
tions. Differences arise in various ways—the presence
background fields other than gravity@10#, supersymmetriza-
tions @12#, rigidity corrections@11#, and so on. What are the
generalizations of the Raychaudhuri equations for these
tions? In this paper we attempt to analyze one such actio
the one in the presence of a background antisymmetric te
field ~the Kalb-Ramond field!.

The generalized Raychaudhuri equations now cont
many extra new terms which embody several nontrivialiti
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We discuss special cases in which either the shear or the
rotation or both are set to zero and thereby obtain simplified
sets of equations. For the case in which only the shear is se
to zero it is possible to identify the projections of the anti-
symmetric tensor field with the components of the rotation in
a special way.

The paper is organized as follows. Section II provides
some background material based on the paper by Capovilla
and Guven. In Sec. III we write down and analyze the equa-
tions for the case of strings in the presence of an antisym-
metric tensor field. Finally, in Sec. IV we conclude with
remarks on future directions.

II. BACKGROUND

In this section we briefly review the work of Capovilla
and Guven@7# on the generalization of the Raychaudhuri
equations.

The geometric objects under consideration are
D-dimensional, timelike surfaces embedded in an
N-dimensional background. We denote xm

(m50,1,2,. . . ,N21) as the background spacetime coordi-
nates andja (a50,1,2,. . . ,D21) as the surface coordi-
nates. Tangents and normals are defined in the usual way an
we can construct an orthonormal, spacetime basis$Ea

m ,ni
m%

at each point on the surface. The projections of the spacetime
covariant derivatives ofEa

m and ni
m along the surface tan-

gents define the extrinsic curvatures, Ricci rotation coeffi-
cients, and the twist potentials through the standard Gauss-
Weingarten formulas given as

DaEb5gab
c Ec2Kab

i ni , ~1!

Dani5Kab
i Eb1va

i j nj , ~2!

whereDa[Ea
mDm (Dm being the usual spacetime covariant

derivative!. The quantitiesKab
i ~extrinsic curvature!, va

i j and
gab
c are defined as

Kab
i 52g~DaEb ,n

i !5Kba
i , ~3!

va
i j5g~Dan

i ,nj !, ~4!

gabc5g~DaEb ,Ec!52gacb . ~5!
411
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In order to analyze deformations normal to the wor
sheet we need to consider the normal gradients of the sp
time basis set. The corresponding analogues of the Ga
Weingarten equations are

DiEa5Jai jn
j1SabiE

b, ~6!

Dinj52Jai jE
a1g i j

k nk, ~7!

whereDi[ni
mDm . The quantitiesJa

i j , Sabi , andg i j
k are de-

fined as

Sab
i 5g~DiEa ,Eb!52Sba

i , ~8!

g i jk5g~Dinj ,nk!52g ik j , ~9!

Ja
i j5g~DiEa ,n

j !. ~10!

The quantityJai j is the most crucial object in our discus
sion because it is, in a sense, a measure of the allowed
thogonal deformations of the world surface which is nec
sary in obtaining information of the behavior of families o
surfaces. One can think ofJai j as a quantity which essen
tially is a surface analogue of the gradient of the tang
vector field in the case of geodesics. The major point
difference with the case of geodesics is the fact that one
one quantity along each of the tangential directions on
surface.

The evolution equations for theJai j are the generalized
Raychaudhuri equations.

Instead of taking the proper time derivative ofJai j we
look at the covariant world-sheet derivative of this quanti
This turns out to be~for details see Appendix of@7#! given as

¹̃bJa
i j52¹̃ iKab

j 2Jb
i
kJa

k j2Kbc
i Ka

c j2g„R~Eb ,n
i !Ea ,n

j
…,
~11!

where the extrinsic curvature tensor components
Kab
i 52gmnEa

a(DaEb
m)nn i .

On tracing over world-sheet indices we get

¹̃aJ
ai j52Ja

i
kJ

ak j2Kac
i Kac j2g„R~Ea ,n

i !Ea,nj…, ~12!

where we have used the equation for extremal, timeli
Nambu-Goto membranes~i.e.,Ki50). As we shall see in the
next section, it is this condition which will change an
thereby introduce all the nontrivialities when we introduce
background antisymmetric tensor field.

The antisymmetric part of Eq.~12! is given as

¹̃bJa
i j2¹̃aJb

i j5Gab
i j , ~13!

whereg„R(Y1 ,Y2)Y3 ,Y4…5RabmnY1
aY2

bY3
mY4

n and

Gab
i j 52Jb

i
kJa

k j2Kbc
i Ka

c j2g„R~Eb ,n
i !Ea ,n

j
…2~a→b!.

~14!

One can further splitJai j into its symmetric traceless
trace, and antisymmetric parts„Ja

i j5Sa
i j1La

i j1(1/N
2D)d i jua… and obtain the evolution equations for each
these quantities. The one we shall be concerned with mo
is given as
ld
ace-
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-
or-
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Dg1
1

2
]ag]ag1~M2! i

i50 ~15!

with the quantity (M2) i j given as

~M2! i j5Kab
i Kab j1RmnrsEa

mnn iErans j . ~16!

¹a is the world-sheet covariant derivative (D5¹a¹a)
and]ag5ua . Notice that we have setSa

i j andLa
i j equal to

zero. This is possible only if the symmetric traceless part o
(M2) i j is zero. One can check this by looking at the full set
of generalized Raychaudhuri equations involvingSa

i j , La
i j ,

and ua @4#. For geodesic curves the usual Raychaudhur
equations can be obtained by noting thatK00

i 50, theJai j are
related to their spacetime counterpartsJmna through the re-
lation Jmna5nm

i nn
j Jai j , and theu is defined by contracting

with the projection tensorhmn .
The ua or g basically tell us how the spacetime basis

vectors change along the normal directions as we mov
along the surface. Ifua diverges somewhere, it induces a
divergence inJai j , which, in turn means that the gradients of
the spacetime basis along the normals have a discontinuit
Thus the family of world sheets meet along a curve and
cusp/kink is formed. This, we claim, is a focusing effect for
extremal surfaces analogous to geodesic focusing in G
where families of geodesics focus at a point if certain spe
cific conditions on the matter stress energy are obeyed.

III. STRINGS IN THE PRESENCE
OF AN ANTISYMMETRIC TENSOR FIELD

In the presence of a background antisymmetric tenso
field ~the Kalb-Ramond field! the usual Nambu-Goto–
Polyakov action gets generalized by the addition of an extr
term. We, therefore, have

S5SNG1E ecaBmn]cx
m]ax

nd2j. ~17!

The field equation resulting from the variation of the ac-
tion with respect toxm is given as

Ki5
1

2
nl
i galeca]cx

b]ax
nHban , ~18!

where

Hmna5]mBna1]nBam1]aBmn . ~19!

We can also write the field equation in the following al-
ternative form by choosing the conformal gauge. In that cas
we have

]a]
axl1Grs

l ]ax
r]axs52

1

2
eca]cx

b]ax
ngalHanb . ~20!

The constraints, of course, remain the same as for th
Nambu-Goto action for extremal surfaces.

Given the above field equation we can ask—When doe
the world sheet retain its minimal character even though
background fields or potentials may be present? This implie
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investigating the conditions under which the right-hand si
~RHS! of the equation becomes zero.

First, if Hmnr50, i.e.,Bmn is pure gauge the RHS disap
pears and we are left with an equation which is the same
the original Nambu-Goto equation.

Additionally, if we choose stationary strings then it is no
necessary that all components ofHmnr be zero. Given the
stationary string ansatz@ t5t,xi5xi(s)# we find that

Ki5nqixp8H0qp . ~21!

Thus, if H0qp50;p,q thenKi50 and the world sheet re-
mains a minimal surface.

On the other hand, for circular strings in a spherical
symmetric background@ t5t(t),l5 l (t),u5p/2 ,f5s# we
have

Ki52na i ṫHa032na i l̇ Ha13. ~22!

Therefore, with

H1035H2035H21350, ~23!

we end up withKi50 and the minimality of the surface is
retained.

We now need to evaluate the quantity¹̃ iK j . It is this term
which will add up to the generalized Raychaudhuri equati
for the usual Nambu-Goto action and result in the maj
differences.

After some amount of algebra one finds the followin
expression for¹̃ iK j :

¹̃ iK j5
1

2
ecaJm

i j ~El
mEc

bEa
nHbn

l !2ecaScd
i ~EdbEa

nnl
j Hbn

l !

2ecaJc
ik~nl

j nk
bEa

nHbn
l !. ~24!

The quantities in brackets in the above expression can
thought of as projections ofHmnr along normal and tangen-
tial directions. Thus, we end up with

¹̃ iK j5ecaS 12 Jmi j Hca
m 2Scd

i Ha
jd2Jc

ikHka
j D , ~25!

where we have assumed

DiHmnr50. ~26!

Note that the first term can be very easily shown to be eq
to zero since the world-sheet indices take only two valu
(s,t). The second term for the case of the string can
written as

Scd
i ecaHa

jd5etsSts
i Hs

js1estSst
i Ht

j t, ~27!

and it is obvious that it is equal to zero by the antisymmet
of Hb

ia with respect toa,b indices. Hence only the last term
in Eq. ~25! survives.

We are now in a position to input this into the term con
taining ¹̃ iK j in the generalized Raychaudhuri equation fo
string theory in the presence of a background antisymme
tensor field.
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The equation obtained by tracing the expression for
¹̃bJa

i j with respect to the world-sheet indices is given as

¹̃aJ
ai j52Ja

i
kJ

ak j2Kac
i Kac j1ecaJc

ikHka
j

2g„R~Ea ,n
i !Ea,nj…. ~28!

We now use the splitting ofJa
i j into its symmetric trace-

less, antisymmetric, and trace parts:

Ja
i j5Sa

i j1La
i j1

1

N2D
d i jua . ~29!

The equations for each of these quantities—ua , Sai j , and
Lai j turn out to be

¹̃au
a1Sak

i Saki1Lak
i Laki1

1

N2D
uau

a1~M2! i
i

2ecaLc
ikHika50, ~30!

¹̃aL
ai j2Sk

a@ iSa
j ]k1Lak@ iLa

j ]
k22Lak@ iSa

j ]
k2ecaSc

k@ iHka
j ]

1ecaLc
k@ iHka

j ] 1
2

N2D
ecaucHa

i j1
2

N2D
uaLa

i j50,

~31!

¹̃aS
ai j1~LaikLak

j 1SaikSak
j !str1

2

N2D
Sa
i jua1@~M2! i j #str

2ecaSc
k~ iHka

j ) 1ecaLc
k~ iHka

j ) 50, ~32!

where str denotes symmetric traceless part of a matrix.
The first fact to note in the above equations is that if we

setL andS both equal to zero the second equation leads to
a relation between theua and theHa

i j which is given as

ecaucHa
i j50. ~33!

This constrains the choice ofua andHa
i j If Hs

i j5Ht
i j then,

as a consequence we haveus5ut . Therefore, theuau
a term

in the first equation vanishes and we end up with the equa-
tion

¹̃au
a1~M2! i

i50. ~34!

Furthermore, if we assume onlyLa
i j50 and

Ss
i j5St

i j , Hs
i j5Ht

i j , ~35!

we end up with Eq.~33! and a similar equation forSai j :

¹̃aS
ai j2@~M2! i j #str50. ~36!

Finally, we set onlyS equal to zero. Therefore we end up
with the following algebraic relation resulting from the third
equation:

~LaikLak
j !str1ecaLc

k~ iHka
j ) 50, ~37!

assuming that the symmetric traceless part of the object
(M2) i j is equal to zero.

This above algebraic relation can be satisfied~for the
string case! if we assume the following to hold true:
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Lt
j
k5Hks

j , Lsk
j 5Hkt

j . ~38!

Thus, a geometric quantityLa
i j has been related to a

physical object: the field strength of the Kalb-Ramond p
tential. It would be worthwhile trying to understand how th
generalized rotation has its physical meaning in the proj
tions of theHmnr .

With this identification of theL with the projections of
H we find that the second equation reduces to the sim
equation

¹̃aL i j
a50, ~39!

and the equation for the generalized expansionu turns out to
be

¹̃au
a1

1

N2D
uau

a1~M2! i
i50. ~40!

Let us now turn to the antisymmetric equations. Rec
that the¹̃ iK j term does not contribute to these equation
They are given by

2¹̃@aLb]
i j 522L@a

k@ iLb]
j ]
k22S@a

k@ iSb]
j ]
k2Vab

i j , ~41!

2]@aub]50, ~42!

2¹̃@aSb]
i j 522~L [a

ikLb]k
j 1S@a

ikSb]k
j str14L@a

k~ iLb]k
j ) . ~43!

First, let us look at the case withSs
i j5St

i j , Hs
i j5Ht

i j and
La
i j50. With these assumptions, we can easily check that

antisymmetric equations essentially reduce to one equa
given by

¹̃aSai j50. ~44!

However, one of the traced equations~36! matches with
the above equation only if@(M2) i j #str50.

For the case in whichSa
i j50, the identification of theH

with the L results in some constraints on theH or theL
which have to be satisfied in order to have a consistent
lution of the full set of equations. These constraints turn o
to be as follows.

The second of these equations results in the relat
ua5]ag. The third is satisfied identically with the assump
tion of the relation betweenH and L. The first equation
~with the choiceVa

i j50) yields an extra constraint on th
H which reads

¹̃@aLb]
i j 52H @b

k jHa]
i k. ~45!

For the string world sheet in a background fou
dimensional spacetime one ends up with the following co
straints onH:

¹̃sHt
i j5¹̃tHs

i j , ~46!

¹̃sHs
i j5¹̃tHt

i j . ~47!

This is because there are only two normals to the wo
sheet and thei , j indices inHa

i j are antisymmetric. The first
o-
e
ec-

ple

all
s.

the
tion

so-
ut

ion
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e

r-
n-

rld

of these two equations follows from Eq.~39! while the sec-
ond one is a descendant of Eq.~44!.

If we further assume that the string world sheet is flat then
the covariantized world-sheet derivatives are reduced to or-
dinary derivatives on the world sheet. The pair of first-order
partial differential equations can therefore be thought of as a
single second-order wave equation for eitherHs

i j or Ht
i j

given as

]2Ht,s
i j

]t2
2

]2Ht,s
i j

]s2 50. ~48!

Therefore, with the identification of the projections of the
Hmnr field with the generalized rotationLai j we end up with
an equation for theg and two constraints on theH field. This
is all we need to solve in order to analyze focusing effects for
world sheets which are extremal solutions of the Nambu-
Goto action with an antisymmetric tensor field added to it. In
fact, apart from the extrinsic curvature which will now con-
tain some objects related to theH field and the constraints on
the H we have nothing more to analyze except the usual
generalized Raychaudhuri equation for theu. The crucial
result of this paper is the demonstration of the fact that the
generalized rotation can indeed be related to the projections
of theHmnr field. This in turn leads us to a system of equa-
tions which are tractable.

One might ask—What are the generalized Raychaudhuri
equations for strings in a background three-dimensional
spacetime? Note that in this case the string world sheet is a
hypersurface and therefore considerable simplifications oc-
cur. One can very easily show that¹̃ iK j is identically zero
~the term containing a product of normals vanishes because
of the fact that there is only one normal now andHa

i j is
antisymmetric in itsi , j indices. Therefore the generalized
Raychaudhuri equations are the same as for the case withou
an antisymmetric tensor field.

IV. CONCLUDING REMARKS

The aim of this paper has been to derive the generalized
Raychaudhuri equations for strings in the presence of a back-
ground antisymmetric tensor field. We have analyzed several
special cases by choosing the shear, the rotation, or both to
zero. It turns out that if the shear is set to zero then it is
possible to identify the projections of the field strength of the
Kalb-Ramond potential with the generalized rotation. This,
in fact demonstrates that a geometric object can be related to
a physical quantity. Recall, that in the geodesic case one
could give a physical meaning to the rotation. In the paper of
Capovilla and Guven such a physical meaning for the gen-
eralized shear or rotation was lacking. We have, in this pa-
per, been able to make some progress along this direction for
at least one of these quantities.

A multitude of open issues remains in this area. As an
extension to this paper one can work out the generalized
Raychaudhuri equations for other actions which were men-
tioned in the Introduction. Apart from this, one has to under-
stand the issue of focusing of surfaces in a better and more
general way without referring to specific examples. Thereaf-
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ter, one can address the question of spacetime singular
and their relation to string focusing effects.

In drawing parallels with the basic equations of GR
geodesic equation, deviation equation, Raychaudhuri eq
tions, and the Einstein equation one now notices that in
context of strings we actually have the first three. The fou
one is, however, not there. However, recall that GR as
ities

-
ua-
the
rth
a

theory has the unique feature: the geodesic equation~trajec-
tory of test particles! can be derived from the Einstein equa-
tions. Therefore, one can frame the question—What is the
‘‘Einstein equation’’ which will lead to the string equations
of motion? An answer to this question will perhaps help us to
understand the relation between strings, gravity, and space
time geometry in a novel way.
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