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String dynamics in cosmological and black hole backgrounds: The null string expansion
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We study the classical dynamics of a bosonic string inDhéimensional flat Friedmann-Robertson-Walker
and Schwarzschild backgrounds. We make a perturbative development in the string coordinates ardund a
string configuration; the background geometry is taken into account exactly. In the cosmological case we
uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet
r coordinate is given bX’(o,7)=q(0) 72128 + 2B, 7) + - - -, BY (o, 7) =3 by (o) 7 whereq(o) is a
function of the momentum componeRy(o), by (o) are obtained from the equation for the first order fluc-
tuations, andg is the exponent of the conformal factor in the Friedmann-Robertson-Walker metric, i.e.,
R~ 5#. The string proper size, at first order in the fluctuations, grows such as the conformalRégjoand
the string energy-momentum tensor corresponds to that of a null fluid. For a string in the black hole back-
ground, we study the planar case, but keep the dimensionality of the spadetigeneric. In the null
string expansion, the radial, azimuthal, and time coordinates,{) are r=3,A}(o)(—7)2"(C*D,
d=3,A30)(—7)P52W/(O+Y) andt=3 A%o)(— 7)1 2N (O-3/(C+D) The first terms of the series repre-
sent agenericapproach to the Schwarzschild singularityratO. First and higher order string perturbations
contribute with higher powers of. The integrated string energy-momentum tensor corresponds to that of a
null fluid in D—1 dimensions. As the string approachesitked singularity its proper size grows indefinitely
such as~(— 7)~(P~3(0P+1) e end the paper giving three particular exact string solutions inside the black
hole. They represent, respectively, straight strings across the origin, twisted, and rigidly rotating strings.
[S0556-282(96)00622-6

PACS numbe(s): 11.25.Db, 04.70.Bw, 98.80.Hw

I. INTRODUCTION other general approximation method: The null string ap-
proach. In this approach, the string equations of motion and
The investigation of strings in curved spacetime is cur-constraints are systematically expanded in powers of the pa-
rently the best framework to study the physics of gravitationrameterc (the speed of light in the world sheeThis corre-
in the context of string theory. The study of string propaga_SpOI’ldS to a small string tension expansion. To zeroth order
tion in curved spacetimes provides new insight with respecthe string is effectively equivalent to a continuous line beam
to string theory in flat, Minkowski spacetim@nd with re-  Of massless particles labeled by the world-sheet spatial pa-
spect to quantum fields in curved Spaceﬁr(‘m:)e, for ex- rametero. The pointS on the “null” String do not interact
ample, Refs[1-4]). The results of this study apply to fun- among themselves, but they interact with the gravitational
damental strings, as well as to cosmic strings, which behaveackground. Note the extended character of the zeroth order
essentially in a classical way. solution in the null string approach, as opposed to the per-
The string equations of motion and constraints in curvedurbation approach in which the zeroth order is given by the
spacetime are highly nonlinear and, in general, nonexactl§tring’s center-of-mass pointlike approximation.
solvable. Different methods are available to solve this sys- We also study fluctuations around the null string configu-
tem: The string perturbation approafsl, the r-expansion ration, which naturally appears as an expansion in powers of
method [6] (which provides exact local solutions for any 7 with precisely definedr-dependent coefficients. The string
backgroung the null string approacfi], and the construc- coordinates are expressed as
tion of global solutiongby solitonic and inverse scattering
methods, for instangewhich allowed to uncover the new XMeo,1)=AN o, 1) +c?BAo, 1) +c'Cho, 7))+ -,
feature of multistring solutiong8—11]. The expansion meth- (1.9
ods are described and classified by using the world-sheet
velocity of light ¢, as an expansion parameter, in Sec. llthe zeroth ordeA*(o,7), first and second order fluctuations
below. BA(o,7),CA(o, 7) satisfy Eqs(2.3) and(2.4) as described in
An approximate but general method is the expansiorec. Il. This null string approach is a powerful description
around the center-of-mass solution of the strisgtisfying  for strings in the strong gravitational field regime, as is the
the geodesic equation of motipnthe world-sheet timer  case of black hole backgrounds near tke0 singularity and
being identified with the proper time associated to the centerin inflationary cosmological spacetimes, at late times, where
of-mass trajectory. In this paper we are concerned with anstring instabilities develop. The string perturbation method
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around the string center of mass allows to detect the emer: peing the string orbit angular momentum. In the infalling
gence of instabilitie$12,13,11, but is unable to describe the towards ther —0 singularity, the string behaves as a null
highly unstable regimg6]. We apply this null string expan- fluid in D—1 dimensions; in particular, a planar string be-

sion to cosmological spacetimes and to strings in the interiohaves as a twéspatially -dimensional null fluid. The emer-

of black holes, falling into the singularity at=0. In

gence of string instabilities in Schwarzschild and Reissner-

Friedmann-Robertson-Walker cosmological spacetimes witiNordstran spacetimes, and the growing of the string proper

conformal expansion factdRx »?, » being the conformal

size near the black hole singularity was first found in Ref.

gauge world-sheet time, the null string evolution can be ex{13] using the perturbative expansion method around the

pressed as
X0, 7)=q(o) 2P+ 2B o, 1)+ -+, (1.2

where
BYo,7)=>, b(o)™, k=22*alB k.. (1.3
k

The spatial coordinateX' (o, 7) are given by Eqs(3.5) and
(3.22 in Sec. Il

The proper size of the string grows proportional to the

expansion factoR(#) and the string energy-momentum ten-
sor corresponds to that of a null fluid.

string center of masgalthough such expansion does not al-
low one to describe the highly unstable regime and the full
approach to the —0 singularity.

This paper is organized as follows: In Sec. Il we classify
the different expansion methods to solve the string dynamics
in curved spacetimes in terms of the parametéor equiva-

lently, in terms of the ratio betweex* andcX”’, the = and

o derivatives of the string coordinajeswith particular fo-
cusing on the null string expansigsee also Table )l In
Sec. Il we solve the null string expansion in cosmological
spacetimes. In Sec. IV we find the null string expansion near
the Schwarzschild —0 singularity. In Sec. V we find par-
ticular exact solutions inside the black hole event horizon

In black hole spacetimes we find the null string expansiorfjescribing straight string across=0, twisted, and rigidly

inside the Schwarzschild black hole. It is given by

t':xO(o_'T):nzl Ag(o_)(_ 7_)l+2l’1(D73)/(D+l)

+c?B%o,7)+ - -, (1.9
r=X%o,7)=2, Ala)(—7)2"P V1 c2BY g, r)+ -,
n=1
(1.5
¢.=X3(O',T): Zl Aﬁ(o’)(— 7_)(D—5+2n)/(D+:I_)
+c?B3(o, 1)+ - -, (1.6)

and we have taken, for simplicity, the string in the equatoriaI:P(‘T’ 7) v

plane, i.e.,

0=A=m/2 fori=245...D—1. (1.7

The 7 dependence exhibited above represents a generic

behavior near the—0 singularity (r——0), and generalizes
to D dimensions, the case recently analyzed in R&fl].
Higher order fluctuations®B*, c*C*, and so on contribute
with increasing orders of.

The proper string size grows indefinitely as the string ap

proaches the —0 singularity as
dl
% —

The integrated string energy-momentum tensorrferQ
behaves as

Rs

. XO,(O',’TZO)—>(—T)_(D_3)/(D+1).

(1.8

)(D—3)/2

L

- 3
2wa’r

(G- -03, 00, (1.9

rotating strings. Section VI summarizes our conclusions.

II. STRING DYNAMICS
IN GRAVITATIONAL BACKGROUNDS

The action of a bosonic string in@-dimensional curved
manifold endowed with a metriG,g (0<A,B<D-1) is
given by[15,16

S= —TOJ dod7y—deg,,

where g,,=Gag(X)d,X*3,X® is the two-dimensional
world-sheet metric (& u,v<1) andTy=1/(27«a’) is the
string tension.

By use of the reparametrization invariance of the world
sheet one can take the conformal gauge, ie,,
where 7#,, is the two-dimensional
Minkowskian metric. In this gauge, the classical equations of
motion derived from the actio(®.1) read

(2.9

92XA—c29, XA+ T8 9,XB9,XC—c?9,XB3,XC]=0,
(2.2

wherel 4 are the Christoffel symbols associated to the met-
ric Gpg and we have introduced the velocity of wave propa-
gation along the stringvelocity of light), ¢, as the second
fundamental constant after the string tension.

Variation of action(2.1) with respect to the world-sheet
variables yields the two nontrivial constraints

9. XR3,XBGAg=0, 2.3

[9,XA9,XB+¢c29,X"9,XB]GAg=0. (2.4

de Vega and Smhez[5] have proposed a method to
solve, both classically and quantum mechanically, the equa-
tions of motion and constraints of strings in curved space-
times, i.e., Eqs(2.2)—(2.4). This method treats the spacetime
geometry exactly and considers the string excitations small
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as compared to the energy scales associated to the back-Case(ii) c=1, and thus all derivatives and other terms
ground gravitational metric. This method is particularly well are, in principle, relevant in Eq$2.2—(2.4). One can thus
suited to study strings in strong gravitational fields such as immake developments around the center-of-mass motion as a
black holes and in cosmological scenarios as opposed to ttghysically appealing starting solution. In fact, de Vega and
usual treatment in flat spacetime. The starting point is tdSanchez[5] have proposed in their original approach
consider a particular solution to the equations of motion and A A A A

constraints, X5, {o,7)=A%,7) and then successively X"=Ao,7)+B0o,7)+Co,7)+---, (212

studying first, second, and higher order fluctuations aroungvhereAA(r) follows the geodesic equation
this particular solution; to be denoted, respectively, as 9 q

BA,CA, etc. AAL A ABAC_

In Ref.[7] have been raised the interesting possibility of AT+ TEcAA™=0, 213
usingc, the world-sheet light velocity, as the expansion pa-and the constraint
rameter in the above development. This approach allows us
to classify the different solutions proposed in the literature: ABACGg.=0 (2.19
(i) c<1 or equivalently, as can be seen from the field and
constraint equation®.2)—(2.4), 9,A*s>ca, A* (holding also means that these geodesics are null.

this inequality for second derivativegii) c=1 and thus all First order fluctuation equations now read
derivatives and other terms are, in principle, relevant in Egs. A A NBLC . A ABACGD
(2.2—(2.4); (iii) c>1 or equivalentlycd,A*>d,A? (hold- B"—B""+2I'gcA°B*+I'gc pA"A"B"=0, (2.19

ing also for second derivativgdiv) There can be, of course,

several other possibilities such as hybrid starting solution§Ind
that for some components &” (and eventuallyB*, C*, . B B oD
etc) satisfy one of the cases$), (ii), or (iii) and for other 2GgcA™B™+ G pA"ATBT=0, (218
components a different case.  BarC
GgcABB'C=0. (2.17

More explicitly, we have

Case(i) c<1: The appropriate development reads Higher order corrections can be in this way systematically

A _AA 2RA 4nA considered. Still, a Fourier series decomposition of the first
XNo, 1) =A%, 7) + BN o, 7) +¢C (0, m) + &2 5 order fluctuations can be madé¢5], i.e., B*(o,7)

' =Enexp6no)77ﬁ(r). Also, a decomposition in purely left
Plugging this into Eqs(2.2—(2.4) one obtaing7], to zeroth  A”(a+7) or right moversA®(o— 1) can be used as a start-

order inc (since now on we adopt the notatiorr d, and ing exact___solution. . A A .
'=4.) Case(iii) c>1 or equivalently,cd,A">ad,A” (holding

also for second derivativesThe appropriate development
reads in this case

AAM+TAABAC=0, (2.6)
1 1
ABACGBC=O, (2.7 XA(o,7)=ANo,7)+ ?BA(U,TH—?CA(O’,TH—-
. (2.18
ABA’CGg=0. (2.9

Plugging this expression into Eq&.2)—(2.4) yields a set of

Equation(2.6) is the geodesic path followed by each point €quations that is equivalent to Eqg.6-(2.11 upon the
of the string. Equatiofi2.7) means that this is a null geodesic Substitutionst—o and c—c"". The interpretation of this
and Eq.(2.8) states that the velocity is perpendicular to the@PProximation is now exactly the opposite to casei.e.,
string. here the zeroth order dependencewnverwhelms that on
First order fluctuations around this particular solution 7 @nd thus represents very low energy strings, frozen at first
A(o,7) can be obtained by retaining terms of oragrin  @pproximation. Solutions to this case can be obtained from

Egs.(2.2—(2.4): solutions to caséi) by making the above mentioned substi-
tutions. These represent, at zeroth order, stationary solutions
5 A B[ AB; _An IBp Y as opposed to the dynamical ones. While solutions to @Gase
BA+ 2T 3 ABBC+ ¢ pABACBP = A"A+THABA'C, PP y o

2.9 are appropriate to describe strings in strong gravitational
fields, for instance, near black hole singularities, R0,
solutions to the casii) are rather appropriate for strings far
away from black holes, i.eR— . We thus have an approxi-
) . . mate duality here, represented by the transformatiensr
(BPA'C+APB’©)Gpc+Gpe pAPA’“BP=0. (2.1)  andR—R"?, which map the solutions to the casésand
) into each other.

iii
Higher order corrections can thus be systematically obtainec}. Case(iv): This corresponds to a hybrid case. The circular
The interpretation of these equations is that they give th%tring ansatz is an example of this situation:

high energy(compared to the Planck enejgstring behavior,
corresponding to the limit of vanishing tensig¢and thus X°=X%7), R=R(7), ¢=u(o), 6O=mul2.
smallc). (2.19

(2ABBC+A'BA’C)Gge+ G pABACBP =0, (2.10
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Clearly, X° and R coordinates follow casé) while ¢ fol- TABLE I. Here, we recall the explicit confgrmal timep] and
lows caseiii) and 6 could be assigned to cagig). The first ~ cosmic time {) dependence of the flat Friedmann-Robertson-

order fluctuations around this starting solution have beeiValker metric as usually referred to in the literat{i6e.
studied in Refs[17,11] with regards to the stability analysis

as the string approaches the black hole singularity. The st&(7)=(7/8)" R(t)~teAED Spacetime
tionary string ansatz has been studied in RE8]. Constant,3—0 Constant Flat space
Finally, one can consider exact or asymptotic particularnﬁ 0< <o t* 0<a<1 Standard cosmology
string solutions that deserve study in their own. Asymptotice,7’18_>C>o ’ t Linear expansion
solutions in a Friedmann-Robertson-Walker background rep- ; o .

. . . 7, —1<B<0 tY, —o<a<0 Super inflation
resenting highly unstable strings have been fol6ldExact 1 Ht de Sitter
string and multistring solutions in de Sitter spacetime have”B N € o
been found by solitonic methods single world sheet de- 7 mesp<-1 t I<a<e Power-law inflation
scribing multiple different and independent stripgs
[19,8,9,11. Ring solutions in black hold4.0] have also been b1
studied. For the sake of completeness it is also worth remark- P)2=S (P2 33
ing that the propagation of strings in shock wave and conical (Po)*= =4 (P07, 33
spacetimes has been exactly soly26,21.

Two physical interesting quantities can be computed: The D-1
string energy-momentum tensor integrated over a spatial vol- DO/ AOY/ oy
ume completely enclosing the strifig2], at fixed timeX°, PAAD ;1 PIAY, @4
IAB(XO)zf J=GTAB(X)dP~1X, (2.20  where we use the notatioh (o, 7=0)=A*.

From Eq.(3.2) we see that the only relevanidependence
is that of A°( 7). In fact, we can write

where

[ ~TAB 1 Ay B 1Ay 1B i e P! 0 A0

-GT (X)Zm dO’dT[X XE=X"X ] A(T)—AZ_—PO[A (T)—A ] (35)

DIy —
x &P[X=X(o.n)], (2.2 By direct integration of the zeroth component of E8§.2),
and the invariant string size[3], one obtains
d12= — XAXBG 55(X) do2. 2.2 —_[(1+2B)p*PP, M),
as(X) (2.22 A(7)— AO= = = (o) FHL+28)

[Note that the differential string size has the form of an ef- (3.6)

fective massng( 7, 0) for the geodesic motion, and actually

represents a projection from the target space onto the worlghe particular time dependence of the scale factor as usually
shee] referred to in the literature is recalled in Table I. The cases
dealt with in Ref.[7] are inD=4 andB=-1/2 and—1,

. NULL STRING DYNAMICS respectively. Note that the cosmic timeis related to the
IN COSMOLOGICAL BACKGROUNDS conformal timexomAO by

Let us consider, as a simple application of the formalism —
above, the isotropic cosmological geometry given by the K(A®—A%)*A
conformally flat Friedmann-Robertson-Walker metric t=to= BP(1+pB) 3.7
—pR2/y0 0y2 1\2 2\2
ds°=RAXO[— (dX) %+ (dXT)*+ (dX)*+ - Thus, 7 doesnot coincide witht.
+(dXP~1)?], (3.1 We can now compute the zeroth order energy-momentum
density tensor from E¢2.20
where we parametrize the conformal factor as

R(X%) =K(X%B)~. PaPcn®®
We are interested in this paper in the null string dynamics 13(0)= P (3.8
and the fluctuations around Zeroth order:The equations 0%
of motion (2.6) have the following first integral of motion ]
(conservation of the four-momef,): Hence, at zeroth order, the string energy and momentum
keep constant as the Universe evolves. The tradg ofn-
R2(A%A%a,7)=—Py(c), RAADA(a,7)=Pi(a), ishes to this zeroth order. Since, to this order, each point of

(3.2  the string follows a null geodesic, the proper size equation
(2.22 also vanishes.
where from now on,j run from 1 toD—1. First order fluctuations:The 0 component of Eq2.9
The constraints at=0 yield yields
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BO+ 2dR[A°B°+AiBi]+ d ( dr )[(A°)2+(A‘)2]B°
RdX dx° | RdX®

=A%+ d—§0[<A°’>2+<A">Z].
Rd
With the help of the constraint equati¢®.10),
(2BAAB + APBB') r5=0, (3.9
we obtain an uncoupled equation BF:

2a? 2(A)?2

. 4da. " .
B%+ —B°- WB":AO +—po =Fa,7),
(3.10
wherea= B/(B+1), and we have used that
dR B d [ dR -B
RAX X0’ W( Rdxo) =xoz G
We can write the general solution to E8.10 as
B%o,7)=2 bi(0)7, (312
k

Let us now consider thecomponents of Eq.2.9) for the
first order fluctuations:

. 2 dR
B+ = ——3

(A% + A0+ 2- 0 [ AR ) joaigo A"
dX%\ RdX
dR N
+2mA A (3.1

With the help of Eq.(3.11),

.. 2a.. ., 2BA'AY 2aP;(._  aB°
B'+ —B'=A"+ + BO—
T

Al PoT BT
=Fi(o,7). (3.17

Knowing B%(o, ) the general solution to this equation can

be written in terms of quadratures:

B! E+ETI_2Q
(,7)= 1-2«

+ [(ozz e [@oriom),
(3.18

whereB' = B/(,0). Note thaB' andB' can be absorbed into
A' and P;, respectively. We are thus left with the two con-

wherebyandby_ are arbitrary constants corresponding t0stantsh, which are fixed by the two first order constraint
the general solution to the homogeneous equation associatggyationg2.10 and (2.11):

to Eq. (3.10; ki=—(4a—1)2+(2a—1/12)%+2a°B.

The other powers dk correspond to the series development (APBB+AAAB') 7,5=0

of the functionF°(o,7) and give the particular solution to

the inhomogeneous equation.

To provide a simpler solvable example we ta&=0. In
this caseF° takes the form

2B(Piq)'? 4BA_"<Piq)'
0 _ /el al B__ 7
F'(o,7)=|q"+ q Po) T —q Py
A_i’ 2
+'8(q — (3.13

Plugging this into the right-hand side of E§.10 and using
the form of B® given by Eq.(3.12), we obtain

2k b k(k—1)+4ka—2a% Bl 2=F% o, 7).
(3.19

Thus, there are only three values df given by

k—2=0,* a/ B with the correspondinb, as defined by Egs.

(3.13 and(3.14:
4BA7
 q[2+8a—2a%8]"
. ’2
q"+ 2_3(@)
b _ q I:)O (3 15)
2B (24 ol B)(1+4a+al B)— 20 B’ .

b2:

o BA")
2-alB g[(2— al B)(1+4a—al B)— 2021 B]°

(2B*AB" + APBB') 5,5=0. (3.19

We are thus sure we are not adding any spurious degree of
freedom at first order.

___We can again show the explicit dependence for the case
A%=0. In this caseF' takes the form

: —n P ’_-r
Fl(o,r)=Al +2b2ap—'(2—alﬁ)+2B%A'
0

Piq\” q’' (Pia)|’ i .
‘[(p—o) o R
+4ab2,a,ﬁpi(l—a/,8)7' alf
+2aby, 5 (k) —al Bl7= 2, (3.20

Po

or in a more compact way

Fi(o, =2, Fl(co)7", n=0*alB,(k.)—2,
(3.20)

where the notatioffr,, clearly refers to the coefficient of the
nth power of 7 in Eq. (3.20.

Plugging this into the right-hand side of E(.18 and
using the form ofB° given by Egs.(3.12 and (3.15, we
obtain
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) — gl 2a 2 [:in7n+2 where for simplicity we consider a string lying on the equa-
B'(o,7)=B'+B' + : torial plane.L(o) is the angular momentum of each point
1=2a % (n+2)(2a+n+1) forming the string. The other first integrals of motion are

n=0,+alB,(k.)—2. (3.22

0= A= E(0)g (1) 2= (A 2=E%(0) - = g1)
The proper string size that vanished to zeroth order now ' r2 '
takes the form (4.5
d|2:R277ABAA’AB’dO_2 (3.23 From this last equation one can see that for the Reissner-

Nordstran black hole, ifL (o) #0, the string will only skirt
where we have used the constraiftl9. We see that the the singularity. Since we are interested in the string approach
string size grows such as the conformal factor of theto the singularity, we consider from now on Schwarzschild
Friedmann-Robertson-Walker metric. This unstable behaviop!ack holes(in D dimensions _
was already observed in R¢lL2] in the fluctuations around ~_ 'N€ remaining constraint equati¢2.g) at =0 takes the

the center-of-mass zeroth order solution. simple form
The coordinate fluctuatiorB® andB' evolve with several
powers ofr and for a given value qf the conformal factor E'(U): L(o) E/(U). (4.6)
exponenta, we will have several regimes. We can see from E(o)
the above expression&q. (3.22] that in the regime oR _ .
large, that isT—o, for /B3>0, ie., f>—1, the over- We can further integrate expressi¢h5) near the black
whelming power will be (2-a/B) or (2+k,). When hole singularity to obtain
al B<0, i.e.,f<—1, the regime oR large is reached when 1 (D1
7—0, then the predominant power will be+2/g8 or Al(o,7)=p(0)(—1)#P*Y,
2+k_ . Note also that these results do not depend explicitly 2D=1) (4.7)
on the dimensiorD since neither of the metric coefficients _ 1 (D-3)/2
does. p(o)=|5(D+1)Rs L(o) ,
IV. BLACK HOLE SPACETIMES Where we haVe ChoseﬂSO SUCh thaAl(T:O)ZO 7T mea-

sures the proper time of infall to the singularityrat 0.
We are particularly interested in studying the dynamics of By use of the above expression, we find
strings in black hole spacetimes and its approach to the sin-

gularity at radial coordinate=0. — (D+1) [p(o)\P3 -
Let us consider &-dimensional black hole background Ao, 1) =A+ (3D—5) | Rs (=7)EP7ET,
[23], (4.8

ds?=—g(r)(dX%2%+g(r) " *dr?+r2dQp_,, (4.1) and

where for the Reissner-Nordstmometric o 7-):3— (D+1) L(o) _yo-3n0
Re|P73 (5|20~ ’ (D—-3) p*(o) ’
g(r)=1—(TS |~ , 4.9
(4.2) Al=x/2 fori=245...D—1. (4.10
2(D-3)_ 87GQ’ . . . .
Q ~(D-2)(D-3)" Comparison of these expressions with the corresponding

ones found in Ref13] [Eq. (88)], shows that they have the

with M and Q being, respectively, the mass and charge ofS2Me” dependence. The difference lies in the prefactors: In
the black ho(I?a. g P y g Egs. (4.7) and (4.8) above they arer dependent while in

We can now study the string dynamics by using the nulthose of Ref[13] they are constant. This is due to the dif-
string approach described in Sec. II. ferent zeroth order solution we have chosen. In RES] we

We then propose the development for the string coordihave taken the center-of-mass motion which is a pointlike
nates solution, while now we have a null string, an extended zeroth
order solution.
XA(or, ) =AP(o, 1)+ C2BA(or, 7) + - - - (4.3 We can consider the approach to the singularity with
higher powers ofA® (our radial coordinate This yields the
Replacing this into the field equatiorg.2), with Eq. (4.1  following power dependence i
acting as the curved background, we find to zeroth order the

first integrals of motion -
9 A= Al(0)(~ 7O, (4.1
n=

o . L
0=A?=0, ¢p=A3=

=, 4.9

r and then
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* L
A= A¥(o)(—m)Psr2midFh (4.1 O] —5——=-03, 050 (4.18
n=1
w We first observe that the results are independent of the space-
A°=E A(g)(— 7)1 +2n(D=3)/(D+1) (4.13 time dimensionalityD. The facts that the trace vanishes
=" (since we are dealing with a null systgnand that®5—0,

reduce the system to &( 1)-dimensional null systerfin
This 7 dependence seems to be a quite general behavigiur example of a planar string, this reduces the system to a
near singularities and generalizesRodimensions the case two-dimensional null string
analyzed recently in Ref14]. There will still be higher or-
der corrections coming form the first order fluctuatidrts V. EXACT STRING SOLUTIONS INSIDE A BLACK HOLE
second order fluctuation8#, and so on. We have already
seen that in the cosmological case, five different powers of In four dimensions the equations of motion of a string in

7 contribute to the first order. the curved backgroun@.l) read[18]
The proper string size that at zeroth order vanished for
null string, does not vanish at higher order. In order to com- i—t"+ &('t'r—t’r’)zo

pute the first order correction to the string size we do not
need to explicitly compute thBA terms. In fact, by use of

the constraint2.4), Eq. (2.22 can be rewritten as . . . .
( ) aq ( 2 r_rrr_%(rZ_r/2)+%(t2_t/2)_gr(02_0!2)
dl\? 29 2
) wA yB’ .
(da’) X* X GAB(X) (414) _grsin20(¢2_¢/2):0,
Plugging expression&t.5) and (4.4) into this equation and W2 ) o o
making use of the constraiii2.8) to eliminateAl’, we ob- 0= 0"+ T (6r—0'r’) —sinfcod(¢"— ¢ )=0,
tain
y " 2 .. 1t iy rogr
dl 2 ) . (EAO'_LA3’)2 ¢_¢ +F(¢r_¢r )+2C0t0(0¢_0¢):0,
—| ==g(A”)?+(AH*(A® )+ Qo aT -
do (E°—L“g/(AY)?) (5.9
(4.15 )
and the constraints
As the string approaches the singularity it diverges in the 1
following way: —git’+§'rr’+r2i90’+rzsir126g'b¢’=0,
2 D-3
(ﬂ) H(R_S) (ﬁ’)z_)(_T)—Z(D—3)/(D+1). 1
do r .18 —g(i2+t’2)+a('r2+r’2)+r2(i92+0’2)
This unstable behavior has already been discovered in +r2sir0( 2+ ¢'2)=0. (5.2

Ref. [13], where we studied string propagation in
D-dimensional Reissner-Nordsimoblack holes under the We are interested in finding solutions inside the black hole,
approximation labeled bg=1. We solved there the first where we know that the coordinate becomes timelike while
order string fluctuations around the center-of-mass motion dhe t coordinate is spacelike. We thus look for solutions of
spatial infinity, near the event horizon and at the spacetiméhe particular form
singularity. In Reissner-Nordstmo black holes the radial ) )
components and angular string components develop insta- r=r(r)=7(r) andt=t(o)=R(0). (5.3
bilities as the string approachs the singularity. The string
motion is such as that of a particle in a strongly attractiveUsing this ansatz, the first equation of motion in E§.1)
potential proportional to—(A7)~2. As A7—0 the string  9Ives us
ends trapped by the black hole singularity.

We can also compute the integrated energy-momentum
tensor from expression®.20 and (2.21). Using Egs.(4.5
and (4.4), we find

R(o)=Eo+t,, (5.9

whereE andtg are arbitrary constants.
From the first constraint equatidb.2) we have

gre 0 1 gAW" @17 T(r)2sirf0p b’ =0. (5.5

do  2ma’ \[EZ-2g/(AT)?’ .
In terms of Kruskal coordinates we have

where we have taken into account that inside the black hole Tir)| 22 (o)
A% is spacelike and\! is timelike. _[_ AT [T(7)]/AM o; ,,( g
In the limitr—0, we have u(o,7) (1 ) e sinf — | (5.9
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TABLE Il. In this table we show the different approaches to study the string dynamics in curved space-
times.c<1, c=1, andc>1 correspond t@ X*>cd XA, 9, X*~ca,X*, andd X <cd XA, respectively.
Hybrid cases are still possible when some components of the string coordlihateisfy eventually one of
the inequalities while other coordinate components do not. The regimes of stability of the first order fluc-
tuations are also shown as well as the references in which the apprdacitesmology and black holgs
have been originally developed.

Black holes Cosmology
Approach Zeroth order Fluctuations Zeroth order Fluctuations
R—0 R— o0

(i) Impulsive,c<1 Null string? Unstable Null strin§ Unstable

XAs e XA
(ii) Perturbativec=1 Center of mass Unstable Center of ma&s  Stable/unstable

XA~cxA
(iii ) Adiabatic,c>1 Initial configuratiof Unstable Initial configuratich Unstable

XA<cex®
(iv) Hybrid Ringf Unstable Asymptotic Stable/unstable
&This paper.
bReferencd 7].
‘Referencd 13].
dReferencd5].
®Referencd 17].
‘Referencd6].

T(7)\ Y2 i R(o) perturbative expansion series is conveniently described in
v(ion)={1- 54 el cos am (5.7 terms of the parametet, the wave propagation velocity

Equation(5.5) allows us to analyze three cases:
(@) #=const- 7/2. Theng is also constant and

T(7)=*Eg(7)

represents a straight string in the two-dimensioRat¢
space.
(b) For 6= /2, i.e., the planar case, we have

(b1) $=0. Then, from the equation of motion @f we

(5.9

deducep=no+ ¢q, wheren and ¢ are arbitrary constants.

While for the timelike coordinatd(7), we have

T(7)?=E%g(D?*~n*T(7)>. (5.9
This solution represents a straight twisted string in ®e
¢ space.

(b2 ¢'=0. Then, from the equation of motion @f we

deduce¢=L/7(7)?. Here,L is a constant and now

2

. L
T1)*=E(D*-9(T) 73

T2 (5.10

This solution represents a rigid rotating straight string in th

R—¢ space.

VI. CONCLUSION

along the string. The zeroth order describes a null string
configuration; first and higher order fluctuations around it are
systematically constructed. The null string expansion series
in D-dimensional Friedmann-Robertson-Walker and
Schwarzschild spacetimes have been computed. In the latter
case, the first terms of the series represent a generic approach
to the string falling towards the=0 singularity. The string-
integrated energy-momentum tensor and string proper size
have been computed and analyzed.

The different methods to solve the string dynamics in
curved spacetime have been characterized in terms of the
parameterc (or equivalently, in terms of the ratio between

XA andcX”'), as summarized in Sec. Il and Table II:

(i) “Impulsive,” c<1 (null string expansion

(i) “Perturbative,” c=1 (center-of-mass expansipn

(iii) “Adiabatic,” c¢>1 [dual to (i), initial configuration
expansiof

(iv) “Composite,” (7—0 expansion, ring string expan-
sion).

The null string expansion is well appropriate to describe
the string propagation in the strong gravitational field regime
and well encompasses the~0 expansion in cosmological
and black hole spacetimes, in the string unstable regime
where the proper size of the string grows such as the scalar
factor, and such asRg/r)(P =32~ (— )~ (P=3)/(O+1) jnside

&he Schwarzschild black hol@ear ther =0 singularity.
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