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String dynamics in cosmological and black hole backgrounds: The null string expansion
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We study the classical dynamics of a bosonic string in theD-dimensional flat Friedmann-Robertson-Walker
and Schwarzschild backgrounds. We make a perturbative development in the string coordinates around anull
string configuration; the background geometry is taken into account exactly. In the cosmological case we
uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet
t coordinate is given byX0(s,t)5q(s)t1/(112b)1c2B0(s,t)1•••, B0(s,t)5(kbk(s)t

k whereq(s) is a
function of the momentum componentP0(s), bk(s) are obtained from the equation for the first order fluc-
tuations, andb is the exponent of the conformal factor in the Friedmann-Robertson-Walker metric, i.e.,
R;hb. The string proper size, at first order in the fluctuations, grows such as the conformal factorR(h) and
the string energy-momentum tensor corresponds to that of a null fluid. For a string in the black hole back-
ground, we study the planar case, but keep the dimensionality of the spacetimeD generic. In the null
string expansion, the radial, azimuthal, and time coordinates (r ,f,t) are r5(nAn

1(s)(2t)2n/(D11),
f5(nAn

3(s)(2t)(D2512n)/(D11), and t5(nAn
0(s)(2t)112n(D23)/(D11). The first terms of the series repre-

sent agenericapproach to the Schwarzschild singularity atr50. First and higher order string perturbations
contribute with higher powers oft. The integrated string energy-momentum tensor corresponds to that of a
null fluid in D21 dimensions. As the string approaches ther50 singularity its proper size grows indefinitely
such as;(2t)2(D23)/(D11). We end the paper giving three particular exact string solutions inside the black
hole. They represent, respectively, straight strings across the origin, twisted, and rigidly rotating strings.
@S0556-2821~96!00622-6#
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I. INTRODUCTION

The investigation of strings in curved spacetime is c
rently the best framework to study the physics of gravitati
in the context of string theory. The study of string propag
tion in curved spacetimes provides new insight with resp
to string theory in flat, Minkowski spacetime~and with re-
spect to quantum fields in curved spacetime! ~see, for ex-
ample, Refs.@1–4#!. The results of this study apply to fun
damental strings, as well as to cosmic strings, which beh
essentially in a classical way.

The string equations of motion and constraints in curv
spacetime are highly nonlinear and, in general, nonexa
solvable. Different methods are available to solve this s
tem: The string perturbation approach@5#, the t-expansion
method @6# ~which provides exact local solutions for an
background!, the null string approach@7#, and the construc-
tion of global solutions~by solitonic and inverse scatterin
methods, for instance!, which allowed to uncover the new
feature of multistring solutions@8–11#. The expansion meth-
ods are described and classified by using the world-sh
velocity of light c, as an expansion parameter, in Sec.
below.

An approximate but general method is the expans
around the center-of-mass solution of the string~satisfying
the geodesic equation of motion!, the world-sheet timet
being identified with the proper time associated to the cen
of-mass trajectory. In this paper we are concerned with
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other general approximation method: The null string ap-
proach. In this approach, the string equations of motion and
constraints are systematically expanded in powers of the pa
rameterc ~the speed of light in the world sheet!. This corre-
sponds to a small string tension expansion. To zeroth orde
the string is effectively equivalent to a continuous line beam
of massless particles labeled by the world-sheet spatial pa
rameters. The points on the ‘‘null’’ string do not interact
among themselves, but they interact with the gravitational
background. Note the extended character of the zeroth orde
solution in the null string approach, as opposed to the per
turbation approach in which the zeroth order is given by the
string’s center-of-mass pointlike approximation.

We also study fluctuations around the null string configu-
ration, which naturally appears as an expansion in powers o
t with precisely defineds-dependent coefficients. The string
coordinates are expressed as

XA~s,t!5AA~s,t!1c2BA~s,t!1c4CA~s,t!1•••,
~1.1!

the zeroth orderAA(s,t), first and second order fluctuations
BA(s,t),CA(s,t) satisfy Eqs.~2.3! and~2.4! as described in
Sec. II. This null string approach is a powerful description
for strings in the strong gravitational field regime, as is the
case of black hole backgrounds near ther50 singularity and
in inflationary cosmological spacetimes, at late times, where
string instabilities develop. The string perturbation method
6399 © 1996 The American Physical Society
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around the string center of mass allows to detect the em
gence of instabilities@12,13,11#, but is unable to describe the
highly unstable regime@6#. We apply this null string expan-
sion to cosmological spacetimes and to strings in the inter
of black holes, falling into the singularity atr50. In
Friedmann-Robertson-Walker cosmological spacetimes w
conformal expansion factorR}hb, h being the conformal
gauge world-sheet time, the null string evolution can be e
pressed as

X0~s,t!5q~s!t1/~112b!1c2B0~s,t!1•••, ~1.2!

where

B0~s,t!5(
k
bk~s!tk, k52,26a/b,k6 . ~1.3!

The spatial coordinatesXi(s,t) are given by Eqs.~3.5! and
~3.22! in Sec. III.

The proper size of the string grows proportional to th
expansion factorR(h) and the string energy-momentum ten
sor corresponds to that of a null fluid.

In black hole spacetimes we find the null string expansi
inside the Schwarzschild black hole. It is given by

t5̇X0~s,t!5 (
n51

`

An
0~s!~2t!112n~D23!/~D11!

1c2B0~s,t!1•••, ~1.4!

r 5̇X1~s,t!5 (
n51

`

An
1~s!~2t!2n/~D11!1c2B1~s,t!1•••,

~1.5!

f5̇X3~s,t!5 (
n51

`

An
3~s!~2t!~D2512n!/~D11!

1c2B3~s,t!1•••, ~1.6!

and we have taken, for simplicity, the string in the equator
plane, i.e.,

u i5̇Ai5p/2 for i52,4,5, . . . ,D21. ~1.7!

The t dependence exhibited above represents a gen
behavior near ther→0 singularity (t→0), and generalizes
to D dimensions, the case recently analyzed in Ref.@14#.
Higher order fluctuationsc2Bm, c4Cm, and so on contribute
with increasing orders oft.

The proper string size grows indefinitely as the string a
proaches ther→0 singularity as

S dlds D→SRS

r D ~D23!/2

X08~s,t50!→~2t!2~D23!/~D11!.

~1.8!

The integrated string energy-momentum tensor forr→0
behaves as

Q r
r→2

L

2pa8r
52Qf

f , Q t
t→0, ~1.9!
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L being the string orbit angular momentum. In the infalling
towards ther→0 singularity, the string behaves as a null
fluid in D21 dimensions; in particular, a planar string be-
haves as a two~spatially! -dimensional null fluid. The emer-
gence of string instabilities in Schwarzschild and Reissner-
Nordström spacetimes, and the growing of the string proper
size near the black hole singularity was first found in Ref.
@13# using the perturbative expansion method around the
string center of mass~although such expansion does not al-
low one to describe the highly unstable regime and the full
approach to ther→0 singularity!.

This paper is organized as follows: In Sec. II we classify
the different expansion methods to solve the string dynamics
in curved spacetimes in terms of the parameterc ~or equiva-
lently, in terms of the ratio betweenẊA andcXA8, thet and
s derivatives of the string coordinates!, with particular fo-
cusing on the null string expansion~see also Table II!. In
Sec. III we solve the null string expansion in cosmological
spacetimes. In Sec. IV we find the null string expansion near
the Schwarzschildr→0 singularity. In Sec. V we find par-
ticular exact solutions inside the black hole event horizon
describing straight string acrossr50, twisted, and rigidly
rotating strings. Section VI summarizes our conclusions.

II. STRING DYNAMICS
IN GRAVITATIONAL BACKGROUNDS

The action of a bosonic string in aD-dimensional curved
manifold endowed with a metricGAB (0<A,B<D21) is
given by @15,16#

S52T0E dsdtA2detgmn , ~2.1!

where gmn5GAB(X)]mX
A]nX

B is the two-dimensional
world-sheet metric (0<m,n<1) andT051/(2pa8) is the
string tension.

By use of the reparametrization invariance of the world
sheet one can take the conformal gauge, i.e.,gmn

5r(s,t)hmn , where hmn is the two-dimensional
Minkowskian metric. In this gauge, the classical equations of
motion derived from the action~2.1! read

]t
2XA2c2]sX

A1GBC
A @]tX

B]tX
C2c2]sX

B]sX
C#50,

~2.2!

whereGBC
A are the Christoffel symbols associated to the met-

ric GAB and we have introduced the velocity of wave propa-
gation along the string~velocity of light!, c, as the second
fundamental constant after the string tension.

Variation of action~2.1! with respect to the world-sheet
variables yields the two nontrivial constraints

]tX
A]sX

BGAB50, ~2.3!

@]tX
A]tX

B1c2]sX
A]sX

B#GAB50. ~2.4!

de Vega and Sa´nchez @5# have proposed a method to
solve, both classically and quantum mechanically, the equa-
tions of motion and constraints of strings in curved space-
times, i.e., Eqs.~2.2!–~2.4!. This method treats the spacetime
geometry exactly and considers the string excitations small
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as compared to the energy scales associated to the b
ground gravitational metric. This method is particularly we
suited to study strings in strong gravitational fields such as
black holes and in cosmological scenarios as opposed to
usual treatment in flat spacetime. The starting point is
consider a particular solution to the equations of motion a
constraints, Xpart

A (s,t)5AA(s,t) and then successively
studying first, second, and higher order fluctuations arou
this particular solution; to be denoted, respectively,
BA,CA, etc.

In Ref. @7# have been raised the interesting possibility o
usingc, the world-sheet light velocity, as the expansion p
rameter in the above development. This approach allows
to classify the different solutions proposed in the literatur
~i! c!1 or equivalently, as can be seen from the field an
constraint equations~2.2!–~2.4!, ]tA

A@c]sA
A ~holding also

this inequality for second derivatives!; ~ii ! c51 and thus all
derivatives and other terms are, in principle, relevant in Eq
~2.2!–~2.4!; ~iii ! c@1 or equivalently,c]sA

A@]tA
A ~hold-

ing also for second derivatives!; ~iv! There can be, of course,
several other possibilities such as hybrid starting solutio
that for some components ofAA ~and eventuallyBA, CA,
etc.! satisfy one of the cases~i!, ~ii !, or ~iii ! and for other
components a different case.

More explicitly, we have
Case~i! c!1: The appropriate development reads

XA~s,t!5AA~s,t!1c2BA~s,t!1c4CA~s,t!1•••.
~2.5!

Plugging this into Eqs.~2.2!–~2.4! one obtains@7#, to zeroth
order in c ~since now on we adopt the notation˙5]t and
85]s),

ÄA1GBC
A ȦBȦC50, ~2.6!

ȦBȦCGBC50, ~2.7!

ȦBA8CGBC50. ~2.8!

Equation~2.6! is the geodesic path followed by each poin
of the string. Equation~2.7! means that this is a null geodesic
and Eq.~2.8! states that the velocity is perpendicular to th
string.

First order fluctuations around this particular solutio
A(s,t) can be obtained by retaining terms of orderc2 in
Eqs.~2.2!–~2.4!:

B̈A12GBC
A ȦBḂC1GBC,D

A ȦBȦCBD5A9A1GBC
A A8BA8C,

~2.9!

~2ȦBḂC1A8BA8C!GBC1GBC,DȦ
BȦCBD50, ~2.10!

~ḂBA8C1ȦBB8C!GBC1GBC,DȦ
BA8CBD50. ~2.11!

Higher order corrections can thus be systematically obtain
The interpretation of these equations is that they give t
high energy~compared to the Planck energy! string behavior,
corresponding to the limit of vanishing tension~and thus
small c).
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Case~ii ! c51, and thus all derivatives and other terms
are, in principle, relevant in Eqs.~2.2!–~2.4!. One can thus
make developments around the center-of-mass motion as a
physically appealing starting solution. In fact, de Vega and
Sánchez@5# have proposed in their original approach

XA5AA~s,t!1BA~s,t!1CA~s,t!1•••, ~2.12!

whereAA(t) follows the geodesic equation

ÄA1GBC
A ȦBȦC50, ~2.13!

and the constraint

ȦBȦCGBC50 ~2.14!

means that these geodesics are null.
First order fluctuation equations now read

B̈A2B9A12GBC
A ȦBḂC1GBC,D

A ȦBȦCBD50, ~2.15!

and

2GBCȦ
BḂC1GBC,DȦ

BȦCBD50, ~2.16!

GBCȦ
BB8C50. ~2.17!

Higher order corrections can be in this way systematically
considered. Still, a Fourier series decomposition of the first
order fluctuations can be made@5#, i.e., BA(s,t)
5Snexp(ins)hn

A(t). Also, a decomposition in purely left
AA(s1t) or right moversAA(s2t) can be used as a start-
ing exact solution.

Case~iii ! c@1 or equivalently,c]sA
A@]tA

A ~holding
also for second derivatives!. The appropriate development
reads in this case

XA~s,t!5AA~s,t!1
1

c2
BA~s,t!1

1

c4
CA~s,t!1•••.

~2.18!

Plugging this expression into Eqs.~2.2!–~2.4! yields a set of
equations that is equivalent to Eqs.~2.6!–~2.11! upon the
substitutionst↔s and c→c21. The interpretation of this
approximation is now exactly the opposite to case~i!, i.e.,
here the zeroth order dependence ons overwhelms that on
t and thus represents very low energy strings, frozen at first
approximation. Solutions to this case can be obtained from
solutions to case~i! by making the above mentioned substi-
tutions. These represent, at zeroth order, stationary solutions
as opposed to the dynamical ones. While solutions to case~i!
are appropriate to describe strings in strong gravitational
fields, for instance, near black hole singularities, i.e.,R→0,
solutions to the case~iii ! are rather appropriate for strings far
away from black holes, i.e.,R→`. We thus have an approxi-
mate duality here, represented by the transformationst↔s
andR↔R21, which map the solutions to the cases~i! and
~iii ! into each other.

Case~iv!: This corresponds to a hybrid case. The circular
string ansatz is an example of this situation:

X05X0~t!, R5R~t!, c5c~s!, u5p/2.
~2.19!
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Clearly,X0 andR coordinates follow case~i! while c fol-
lows case~iii ! andu could be assigned to case~ii !. The first
order fluctuations around this starting solution have be
studied in Refs.@17,11# with regards to the stability analysis
as the string approaches the black hole singularity. The
tionary string ansatz has been studied in Ref.@18#.

Finally, one can consider exact or asymptotic particu
string solutions that deserve study in their own. Asympto
solutions in a Friedmann-Robertson-Walker background r
resenting highly unstable strings have been found@6#. Exact
string and multistring solutions in de Sitter spacetime ha
been found by solitonic methods~a single world sheet de-
scribing multiple different and independent string!
@19,8,9,11#. Ring solutions in black holes@10# have also been
studied. For the sake of completeness it is also worth rema
ing that the propagation of strings in shock wave and coni
spacetimes has been exactly solved@20,21#.

Two physical interesting quantities can be computed: T
string energy-momentum tensor integrated over a spatial v
ume completely enclosing the string@22#, at fixed timeX0,

I AB~X0!5E A2GTAB~X!dD21XW , ~2.20!

where

A2GTAB~X!5
1

2pa8
E dsdt@ẊAẊB2X8AX8B#

3d~D !@X2X~s,t!#, ~2.21!

and the invariant string sizel @3#,

dl252ẊAẊBGAB~X!ds2. ~2.22!

@Note that the differential string size has the form of an e
fective massmeff(t,s) for the geodesic motion, and actuall
represents a projection from the target space onto the w
sheet.#

III. NULL STRING DYNAMICS
IN COSMOLOGICAL BACKGROUNDS

Let us consider, as a simple application of the formalis
above, the isotropic cosmological geometry given by t
conformally flat Friedmann-Robertson-Walker metric

ds25R2~X0!@2~dX0!21~dX1!21~dX2!21•••

1~dXD21!2#, ~3.1!

where we parametrize the conformal factor
R(X0)5K(X0/b)b.

We are interested in this paper in the null string dynam
and the fluctuations around it.Zeroth order:The equations
of motion ~2.6! have the following first integral of motion
~conservation of the four-momentPA):

R2~A0!Ȧ0~s,t!52P0~s!, R2~A0!Ȧi~s,t!5Pi~s!,
~3.2!

where from now oni , j run from 1 toD21.
The constraints att50 yield
en
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~P0!
25 (

i51

D21

~Pi !
2, ~3.3!

2P0~Ā0!85 (
i51

D21

Pi~Āi !8, ~3.4!

where we use the notationAA(s,t50)5ĀA.
From Eq.~3.2! we see that the only relevantt dependence

is that ofA0(t). In fact, we can write

Ai~t!2Āi5
Pi

2P0 @A0~t!2Ā0#. ~3.5!

By direct integration of the zeroth component of Eq.~3.2!,
one obtains

A0~t!2Ā05F ~112b!b2bP0

K2 tG1/~112b!

5̇q~s!t1/~112b!.

~3.6!

The particular time dependence of the scale factor as usual
referred to in the literature is recalled in Table I. The case
dealt with in Ref.@7# are inD54 andb521/2 and21,
respectively. Note that the cosmic timet is related to the
conformal timeX0'A0 by

t2t05
K~A02Ā0!11b

bb~11b!
. ~3.7!

Thus,t doesnot coincide witht.
We can now compute the zeroth order energy-momentum

density tensor from Eq.~2.20!

I A
B~s!5

PAPChCB

2P0a8
. ~3.8!

Hence, at zeroth order, the string energy and momentum
keep constant as the Universe evolves. The trace ofI A

B van-
ishes to this zeroth order. Since, to this order, each point o
the string follows a null geodesic, the proper size equation
~2.22! also vanishes.

First order fluctuations:The 0 component of Eq.~2.9!
yields

TABLE I. Here, we recall the explicit conformal time (h) and
cosmic time (t) dependence of the flat Friedmann-Robertson-
Walker metric as usually referred to in the literature@6#.

R(h)5(h/b)b R(t);ta5b/(b11) Spacetime

Constant,b→0 Constant Flat space
hb, 0,b,` ta, 0,a,1 Standard cosmology
eh, b→` t Linear expansion
hb, 21,b,0 ta, 2`,a,0 Super inflation
h21 eHt de Sitter
hb, 2`,b,21 ta, 1,a,` Power-law inflation
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B̈01
2dR

RdX0
@Ȧ0Ḃ01Ȧi Ḃi #1

d

dX0 S dR

RdX0D @~Ȧ0!21~Ȧi !2#B0

5A091
dR

RdX0
@~A08!21~Ai 8!2#.

With the help of the constraint equation~2.10!,

~2ḂAAB81ȦABB8!hAB50, ~3.9!

we obtain an uncoupled equation forB0:

B̈01
4a

t
Ḃ02

2a2

bt2
B05A091

2~Ai 8!2

A0 5̇F0~s,t!,

~3.10!

wherea5b/(b11), and we have used that

dR

RdX0
5

b

X0 ,
d

dX0 S dR

RdX0D5
2b

~X0!2
. ~3.11!

We can write the general solution to Eq.~3.10! as

B0~s,t!5(
k
bk~s!tk, ~3.12!

wherebk1
andbk2

are arbitrary constants corresponding t
the general solution to the homogeneous equation associa
to Eq. ~3.10!; k652(4a21)/26A(2a21/2)212a2/b.
The other powers ofk correspond to the series developmen
of the functionF0(s,t) and give the particular solution to
the inhomogeneous equation.

To provide a simpler solvable example we takeĀ050. In
this caseF0 takes the form

F0~s,t!5Fq91
2b

q S Piq

P0
D 8 2Gta/b2

4bĀi 8

q S Piq

P0
D 8

1
b~Āi 8!2

q
t2a/b. ~3.13!

Plugging this into the right-hand side of Eq.~3.10! and using
the form ofB0 given by Eq.~3.12!, we obtain

(
k
bk@k~k21!14ka22a2/b#tk225F0~s,t!.

~3.14!

Thus, there are only three values ofk given by
k2250,6a/b with the correspondingbk as defined by Eqs.
~3.13! and ~3.14!:

b252
4bĀi 8

q@218a22a2/b#
,

b21a/b5

q91
2b

q S Piq

P0
D 8 2

~21a/b!~114a1a/b!22a2/b
, ~3.15!

b22a/b5
b~Āi 8!2

q@~22a/b!~114a2a/b!22a2/b#
.

o
ted

t

Let us now consider thei components of Eq.~2.9! for the
first order fluctuations:

B̈i1
2

R

dR

dX0
@Ȧ0Ḃi1Ȧi Ḃ0#12

d

dX0 S dR

RdX0D Ȧ0ȦiB05Ai 9

12
dR

RdX0
A08Ai 8. ~3.16!

With the help of Eq.~3.11!,

B̈i1
2a

t
Ḃi5Ai 91

2bAi 8A08

A0 1
2aPi

P0t
S Ḃ02

aB0

bt D
5̇Fi~s,t!. ~3.17!

Knowing B0(s,t) the general solution to this equation can
be written in terms of quadratures:

Bi~s,t!5B̄i1Ḃī
t122a

122a
1E t

dt5 t522aE t̃
dt̃t5 2aFi~s,t̃ !,

~3.18!

whereB̄i5Bi(s,0). Note thatB̄i andḂī can be absorbed into
Āi andPi , respectively. We are thus left with the two con-
stantsbk6

which are fixed by the two first order constraint
equations~2.10! and ~2.11!:

~ȦAḂB1AA8AB8!hAB50,

~2ḂAAB81ȦABB8!hAB50. ~3.19!

We are thus sure we are not adding any spurious degree o
freedom at first order.

We can again show the explicit dependence for the case
Ā050. In this caseFi takes the form

Fi~s,t!5Āi 912b2a
Pi

P0
~22a/b!12b

q8

q
Āi 8

2F S Piq

P0
D 9

12b
q8

q S Piq

P0
D 8

24ab21a/b

Pi

P0
Gta/b

14ab22a/b

Pi

P0
~12a/b!t2a/b

12abk6

Pi

P0
@~k6!2a/b#tk622, ~3.20!

or in a more compact way

Fi~s,t!5(
n

Fn
i ~s!tn, n50,6a/b,~k6!22,

~3.21!

where the notationFn
i clearly refers to the coefficient of the

nth power oft in Eq. ~3.20!.
Plugging this into the right-hand side of Eq.~3.18! and

using the form ofB0 given by Eqs.~3.12! and ~3.15!, we
obtain
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Bi~s,t!5B̄i1Ḃī
t122a

122a
1(

n

Fn
i tn12

~n12!~2a1n11!
,

n50,6a/b,~k6!22. ~3.22!

The proper string size that vanished to zeroth order no
takes the form

dl25R2hABA
A8AB8ds2, ~3.23!

where we have used the constraint~3.19!. We see that the
string size grows such as the conformal factor of th
Friedmann-Robertson-Walker metric. This unstable behav
was already observed in Ref.@12# in the fluctuations around
the center-of-mass zeroth order solution.

The coordinate fluctuationsB0 andBi evolve with several
powers oft and for a given value of the conformal factor
exponenta, we will have several regimes. We can see from
the above expressions@Eq. ~3.22!# that in the regime ofR
large, that ist→`, for a/b.0, i.e., b.21, the over-
whelming power will be (21a/b) or (21k1). When
a/b,0, i.e.,b,21, the regime ofR large is reached when
t→0, then the predominant power will be 21a/b or
21k2 . Note also that these results do not depend explicit
on the dimensionD since neither of the metric coefficients
does.

IV. BLACK HOLE SPACETIMES

We are particularly interested in studying the dynamics o
strings in black hole spacetimes and its approach to the s
gularity at radial coordinater50.

Let us consider aD-dimensional black hole background
@23#,

ds252g~r !~dX0!21g~r !21dr21r 2dVD22 , ~4.1!

where for the Reissner-Nordstro¨m metric

g~r !512SRS

r D D23

1S Q̃r D 2~D23!

,

~4.2!

Q̃2~D23!5
8pGQ2

~D22!~D23!
,

with M andQ being, respectively, the mass and charge o
the black hole.

We can now study the string dynamics by using the nu
string approach described in Sec. II.

We then propose the development for the string coord
nates

XA~s,t!5AA~s,t!1c2BA~s,t!1•••. ~4.3!

Replacing this into the field equations~2.2!, with Eq. ~4.1!
acting as the curved background, we find to zeroth order t
first integrals of motion

u̇.Ȧ250, ḟ.A35
L~s!

r 2
, ~4.4!
w

e
ior

ly

f
in-

f

ll

i-

he

where for simplicity we consider a string lying on the equa-
torial plane.L(s) is the angular momentum of each point
forming the string. The other first integrals of motion are

Ẋ0.Ȧ05E~s!g21~r !, ṙ 2.~Ȧ1!25E2~s!2
L2~s!

r 2
g~r !.

~4.5!

From this last equation one can see that for the Reissner
Nordström black hole, ifL(s)Þ0, the string will only skirt
the singularity. Since we are interested in the string approach
to the singularity, we consider from now on Schwarzschild
black holes~in D dimensions!.

The remaining constraint equation~2.8! at t50 takes the
simple form

Ā08~s!5
L~s!

E~s!
Ā38~s!. ~4.6!

We can further integrate expression~4.5! near the black
hole singularity to obtain

A1~s,t!.p~s!~2t!2/~D11!,
~4.7!

p~s!5F12 ~D11!RS
~D23!/2L~s!G2/~D11!

,

where we have chosent<0 such thatA1(t50)50. t mea-
sures the proper time of infall to the singularity atr50.

By use of the above expression, we find

A0~s,t!.Ā01
~D11!

~3D25!
ES p~s!

RS
D D23

~2t!~3D25!/~D11!,

~4.8!

and

A3~s,t!.Ā32
~D11!

~D23!

L~s!

p2~s!
~2t!~D23!/~D11!,

~4.9!

Ai5p/2 for i52,4,5, . . . ,D21. ~4.10!

Comparison of these expressions with the corresponding
ones found in Ref@13# @Eq. ~88!#, shows that they have the
samet dependence. The difference lies in the prefactors: In
Eqs. ~4.7! and ~4.8! above they ares dependent while in
those of Ref.@13# they are constant. This is due to the dif-
ferent zeroth order solution we have chosen. In Ref.@13# we
have taken the center-of-mass motion which is a pointlike
solution, while now we have a null string, an extended zeroth
order solution.

We can consider the approach to the singularity with
higher powers ofA1 ~our radial coordinate!. This yields the
following power dependence int:

A15 (
n51

`

An
1~s!~2t!2n/~D11!, ~4.11!

and then
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A35 (
n51

`

An
3~s!~2t!~D2512n!/~D11!, ~4.12!

A05 (
n51

`

An
0~s!~2t!112n~D23!/~D11!. ~4.13!

This t dependence seems to be a quite general beha
near singularities and generalizes toD dimensions the case
analyzed recently in Ref.@14#. There will still be higher or-
der corrections coming form the first order fluctuationsBm,
second order fluctuationsCm, and so on. We have already
seen that in the cosmological case, five different powers
t contribute to the first order.

The proper string size that at zeroth order vanished
null string, does not vanish at higher order. In order to com
pute the first order correction to the string size we do n
need to explicitly compute theBA terms. In fact, by use of
the constraint~2.4!, Eq. ~2.22! can be rewritten as

S dlds D 25XA8XB8GAB~X!. ~4.14!

Plugging expressions~4.5! and ~4.4! into this equation and
making use of the constraint~2.8! to eliminateA18, we ob-
tain

S dlds D 252g~A08!21~A1!2~A38!21g
~EA082LA38!2

„E22L2g/~A1!2…
.

~4.15!

As the string approaches the singularity it diverges in t
following way:

S dlds D 2→SRS

r D D23

~X̄08!2→~2t!22~D23!/~D11!.

~4.16!

This unstable behavior has already been discovered
Ref. @13#, where we studied string propagation in
D-dimensional Reissner-Nordstro¨m black holes under the
approximation labeled byc51. We solved there the first
order string fluctuations around the center-of-mass motion
spatial infinity, near the event horizon and at the spacetim
singularity. In Reissner-Nordstro¨m black holes the radial
components and angular string components develop ins
bilities as the string approachs the singularity. The strin
motion is such as that of a particle in a strongly attractiv
potential proportional to2(Dt)22. As Dt→0 the string
ends trapped by the black hole singularity.

We can also compute the integrated energy-moment
tensor from expressions~2.20! and ~2.21!. Using Eqs.~4.5!
and ~4.4!, we find

QAB5
dIAB

ds
'

1

2pa8

A2gȦAȦB

AE22L2g/~A1!2
, ~4.17!

where we have taken into account that inside the black h
A0 is spacelike andA1 is timelike.

In the limit r→0, we have
vior

of

for
-
ot

he

in

at
e

ta-
g
e

um

ole

Q1
1→2

L

2pa8r
52Q3

3 , Q0
0→0. ~4.18!

We first observe that the results are independent of the space
time dimensionalityD. The facts that the trace vanishes
~since we are dealing with a null system!, and thatQ0

0→0,
reduce the system to a (D21)-dimensional null system~in
our example of a planar string, this reduces the system to a
two-dimensional null string!.

V. EXACT STRING SOLUTIONS INSIDE A BLACK HOLE

In four dimensions the equations of motion of a string in
the curved background~4.1! read@18#

ẗ2t91
g,r
g

~ ṫ ṙ2t8r 8!50,

r̈2r 92
g,r
2g

~ ṙ 22r 82!1
gg,r
2

~ ṫ22t82!2gr~ u̇22u82!

2grsin2u~ḟ22f82!50,

ü2u91
2

r
~ u̇ ṙ2u8r 8!2sinucosu~ḟ22f82!50,

f̈2f91
2

r
~ḟ ṙ2f8r 8!12cotu~u̇ḟ2u8f8!50,

~5.1!

and the constraints

2g ṫt81
1

g
ṙ r 81r 2u̇u81r 2sin2uḟf850,

2g~ ṫ21t82!1
1

g
~ ṙ 21r 82!1r 2~ u̇21u82!

1r 2sin2u~ḟ21f82!50. ~5.2!

We are interested in finding solutions inside the black hole,
where we know that ther coordinate becomes timelike while
the t coordinate is spacelike. We thus look for solutions of
the particular form

r5r ~t!5̇T~t! and t5t~s!5̇R~s!. ~5.3!

Using this ansatz, the first equation of motion in Eq.~5.1!
gives us

R~s!5Es1t0 , ~5.4!

whereE and t0 are arbitrary constants.
From the first constraint equation~5.2! we have

T~t!2sin2uḟf850. ~5.5!

In terms of Kruskal coordinates we have

u~s,t!5S 12
T~t!

2M D 1/2e[T~t!]/4MsinhSR~s!

4M D , ~5.6!



6406 54C. O. LOUSTO AND N. SÁNCHEZ
TABLE II. In this table we show the different approaches to study the string dynamics in curved space-
times.c!1, c51, andc@1 correspond to]tX

A@c]sX
A, ]tX

A;c]sX
A, and]tX

A!c]sX
A, respectively.

Hybrid cases are still possible when some components of the string coordinateXA satisfy eventually one of
the inequalities while other coordinate components do not. The regimes of stability of the first order fluc-
tuations are also shown as well as the references in which the approaches~in cosmology and black holes!
have been originally developed.

Black holes Cosmology
Approach Zeroth order Fluctuations Zeroth order Fluctuations

R→0 R→`

~i! Impulsive,c!1 Null stringa Unstable Null stringb Unstable

ẊA@cXA8

~ii ! Perturbative,c51 Center of massc Unstable Center of massd Stable/unstable

ẊA;cXA8

~iii ! Adiabatic,c@1 Initial configurationa Unstable Initial configurationa Unstable

ẊA!cXA8

~iv! Hybrid Ringe Unstable Asymptoticf Stable/unstable

aThis paper.
bReference@7#.
cReference@13#.
dReference@5#.
eReference@17#.
fReference@6#.
n

s

er
ch

e

e

e
r

f

v~s,t!5S 12
T~t!

2M D 1/2e[T~t!]/4McoshSR~s!

4M D . ~5.7!

Equation~5.5! allows us to analyze three cases:
~a! u5constÞp/2. Thenf is also constant and

Ṫ~t!56Eg~T! ~5.8!

represents a straight string in the two-dimensionalR–f
space.

~b! For u5p/2, i.e., the planar case, we have
~b1! ḟ50. Then, from the equation of motion off we

deducef5ns1f0, wheren andf0 are arbitrary constants
While for the timelike coordinateT(t), we have

Ṫ~t!25E2g~T!22n2T~t!2. ~5.9!

This solution represents a straight twisted string in theR–
f space.

~b2! f850. Then, from the equation of motion off we
deduceḟ5L/T(t)2. Here,L is a constant and now

Ṫ~t!25E2g~T!22g~T!
L2

T~t!2
. ~5.10!

This solution represents a rigid rotating straight string in t
R–f space.

VI. CONCLUSION

We have performed a systematic study of the null str
expansion method to solve the string equations of mot
and constraints in curved spacetimes. This corresponds
small string tension expansion~inverse powers ofa8). The
.

he

ing
ion
to a

perturbative expansion series is conveniently described i
terms of the parameterc, the wave propagation velocity
along the string. The zeroth order describes a null string
configuration; first and higher order fluctuations around it are
systematically constructed. The null string expansion serie
in D-dimensional Friedmann-Robertson-Walker and
Schwarzschild spacetimes have been computed. In the latt
case, the first terms of the series represent a generic approa
to the string falling towards ther50 singularity. The string-
integrated energy-momentum tensor and string proper siz
have been computed and analyzed.

The different methods to solve the string dynamics in
curved spacetime have been characterized in terms of th
parameterc ~or equivalently, in terms of the ratio between
ẊA andcXA8), as summarized in Sec. II and Table II:

~i! ‘‘Impulsive,’’ c!1 ~null string expansion!;
~ii ! ‘‘Perturbative,’’ c51 ~center-of-mass expansion!;
~iii ! ‘‘Adiabatic,’’ c@1 @dual to ~i!, initial configuration

expansion#;
~iv! ‘‘Composite,’’ (t→0 expansion, ring string expan-

sion!.
The null string expansion is well appropriate to describe

the string propagation in the strong gravitational field regime
and well encompasses thet→0 expansion in cosmological
and black hole spacetimes, in the string unstable regim
where the proper size of the string grows such as the scala
factor, and such as (RS /r )

(D23)/2;(2t)2(D23)/(D11) inside
the Schwarzschild black hole~near ther50 singularity!.
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