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Quark mass correction to the string potential
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A consistent method for calculating the interquark potential generated by the relativistic string with massive
ends is proposed. In this approach, the interquark potential in the model of the Nambu-Goto string with
pointlike masses at its ends is calculated. At first the calculation is done in the one-loop approximation. For
obtaining a finite result under summation over eigenfrequencies of the Nambu-Goto string with massive ends
an appropriate renormalization procedure is suggested. It is shown that in this case the Lu¨scher term in the
string potential acquires a dependence on the quark mass which results in the reduction of the absolute valu
of this term. Then the interquark potential in the string model with new boundary conditions is calculated by
making use of the variational estimation of the corresponding functional integral. In this case the quark mas
correction results in decreasing the critical distance~deconfinement radius! in the string potential. In the
framework of the developed approach, the one-loop interquark potential in the model of the relativistic string
with rigidity is also calculated.@S0556-2821~96!01520-2#

PACS number~s!: 12.38.Aw, 12.39.Pn, 12.40.2y
,

I. INTRODUCTION

The investigation of the quark interaction at large di
tances is outside the QCD perturbation theory. Usually,
this field the lattice simulations and string models are use

The calculation of the quark interaction in the framewo
of string models has a rather long history~see, for example,
papers@1–9# and references therein!. In all these investiga-
tions, without exception, only the static interquark potent
has been considered. It implies that the quarks are assu
to be infinitely heavy. Obviously, this potential, by defin
tion, does not depend on the quark masses. The assump
about infinitely heavy quarks is rather crude, at least foru
andd quarks with~constituent! masses about 200–300 MeV
that is significantly less than the characteristic hadronic m
scale;1 GeV. It is clear that in a general case the interqua
potential should depend on quark masses. Both the gen
approach to this problem in the framework of QCD@10# and
the numerical calculations of the light and heavy mes
spectra in potential models@11–13# testify to this. Certainly,
in this case one should talk not about the static poten
generated, for example, by a relativistic string connecti
quarks but simply about the interaction potential betwe
quarks having a finite mass rather than an infinite one.

The aim of the present paper is an attempt to extend
standard approach to the calculation of the interquark pot
tial in the framework of the string models@1,5–9# to the case
of the finite quark masses. It turns out that this program c
be realized. To this end the boundary conditions in the str
model in question should be modified and a new renorm
ization procedure for summation over string eigenfreque
cies should be developed.

In a proposed approach, a correction to the string poten
due to the finite quark masses is calculated both in
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Nambu-Goto string model and in the Polyakov-Kleinert rigid
string model.

In the Nambu-Goto string with massive ends the quark
potential is calculated first in the one-loop approximation of
perturbation theory for arbitrary dimension of space-timeD
and then via a variational estimation of the corresponding
functional integral in the limit (D22)→`. As is known, the
static quark potential generated by the Nambu-Goto string in
the one-loop approximation is compiled by two terms: the
linearly rising confinement potential~classical part! and the
first quantum correction usually referred to as the universal
Lüscher term@14,15#. It is worthwhile to remember that this
term is nothing other than the Casimir energy of the string.
When the ends of the string are loaded by pointlike masses
~quarks! then the Lu¨scher term proves to be dependent on the
quark masses. It is not unnatural because the Casimir energy
as is known@16,17# is essentially determined by the bound-
ary conditions imposed on the field variables~in the case
under consideration, on the string coordinates!. For calculat-
ing the Casimir energy in the model of the string with mas-
sive ends, a subtraction procedure is suggested that includes
the renormalization of the string tension and quark mass.
With the help of it, a finite value of the Casimir energy in
this string model is derived in a unique fashion. It proves that
the allowance for the finite quark masses results in reducing
the absolute value of the Lu¨scher term. At certain values of
the model parameters~string tension, its length, and quark
mass!, the ratio of the Lu¨scher term calculated with an al-
lowance for the finite quark mass to the value of this term in
the Nambu-Goto string with fixed ends can be reduced to
'0.2. Having defined the Lu¨scher term in the string potential
as the Casimir energy of the string, we cannot certainly ex-
pect that its dependence on the string lengthR will be 1/R at
any boundary conditions. Really, in the Nambu-Goto string
with massive ends, this dependence turns out to be rather
complicated@see Eq.~3.25!# and only in the limiting cases
when m→` or m→0 we obtain the universal behavior
1/R @see Eq.~3.26!#.

A variational calculation of the potential generated by the
A.,
6387 © 1996 The American Physical Society
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Nambu-Goto string with massive ends in the lim
(D22)→` results in a radical expression@Eq. ~4.22!#. As is
known, the string potential calculated in this approach is n
determined at all the distancesR but only atR.Rc , where
the critical radiusRc in the case of the Nambu-Goto strin
with fixed ends is given by@1# Rc

25p(D22)/(12M0
2). Tak-

ing into account the finite quark mass results in reducing
value of the critical radiusRc ~see Fig. 3!. The potential
curves, being displaced to lower distances, preserve t
form ~Fig. 2!.

In the rigid string model with massive ends the interqua
potential is calculated in the one-loop approximation. Wh
confined to the quadratic approximation in the Polyako
Kleinert action, the dynamical variables~string position vec-
tor! can be presented as a sum of two term
u(t,r )5u1(t,r )1u2(t,r ), whereu1(t,r ) is a solution to the
Nambu-Goto string with massive ends andu2(t,r ) is an ad-
ditional variable caused by the extrinsic curvature in t
Polyakov-Kleinert action. It is remarkable that the qua
masses only affectu1(t,r ). This essentially simplifies the
problem under consideration and enables us to use dire
the results for the potential derived in the Nambu-Goto stri
with massive ends. In the one-loop approximation, the va
ablesu1(t,r ) andu2(t,r ) give additive contributions to the
interquark potential generated by rigid string. It is true bo
in the case of the fixed string ends and for the rigid stri
with massive ends. As a result, the quark mass correction
the one-loop potential generated by rigid string is reduced
the modification of the contribution from the variabl
u1(t,r ): the one-loop potential in the Nambu-Goto strin
with massive ends calculated before should be used h
The contribution to the potential of the string oscillations d
to its rigidity does not exceed, in absolute value, the univ
sal Lüscher term~Fig. 4!.

The layout of the paper is as follows. In Sec. II the qu
dratic approximation for the Nambu-Goto string model wi
massive ends is developed. Upon linearization of the eq
tions of motion and boundary conditions, the general so
tion to them is obtained. The eigenfrequencies of the str
oscillations are determined by a transcendental equat
Then the canonical quantization of this model is outlined
short. In Sec. III, the interquark potential generated by t
Nambu-Goto string with massive ends is calculated in t
one-loop approximation of the perturbation theory. In ord
to remove the divergence, a new subtraction procedure
proposed. In Sec. IV, the interquark potential generated
the Nambu-Goto string with massive ends is calculated
making use of a variational estimation of the functional i
tegral in the limit when (D22)→`. In Sec. V, the rigid
string model with massive ends is treated. By making use
a quadratic approximation for the Polyakov-Kleinert actio
the linear equations of motion and boundary conditions
derived. Then canonical quantization of this model is dev
oped. And finally, the interquark potential generated in th
string model is calculated in the one-loop approximation.
the Conclusions~Sec. VI! the obtained results are discusse
in short and possible extensions of them are proposed. S
mathematical details of calculation are presented in App
dices A and B.
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II. NAMBU-GOTO STRING WITH MASSIVE ENDS

The action of the Nambu-Goto string with pointlike
masses attached to its ends is written as@18#

S52M0
2E E

S
dS2 (

a51

2

maE
Ca

dsa , ~2.1!

wheredS is infinitesimal area of the string world surface,
Ca (a51,2) are the world trajectories of the string massive
ends, andM0

2 is the string tension with the dimension of the
mass squared (\5c51).

For our calculations, it will be convenient to use the
Gauss parametrization of the string world surface:

xm~j!5„t,r ;x1~ t,r !, . . . ,xD22~ t,r !…5„j i ;u~j i !…, i50,1.
~2.2!

The vector fielduj (t,r ), j51, . . . ,D22 corresponds to
D22 transverse components ofxm, while t5j0, r5j1 are
the coordinates on the string world sheet. The infinitesimal
areadS is given bydS5A2g dt dr, whereg is the deter-
minant of the induced metric on the world surface of the
string, gi j5] ix

m ] j xm , i , j50,1. The metric of the
D-dimensional space-time has the signature
(1,2, . . . ,2).

In this parametrization, the induced metricgi j has the
components

gi j5S 12u̇2 2u̇u8

2u̇u8 212u82
D , i , j 5 0,1 , ~2.3!

where uu 5 ( j51
D22ujuj , u05]u/]t5u̇, and u15]u/]r

5u8. Further, we will use the quadratic approximation for
the action~2.1!. This approximation is the basis of the per-
turbative calculations. In addition, when developing the
1/D expansion~see Sec. IV! string coordinates will actually
be determined by the quadratic string action~in the general
case, with parameters that should be varied!.

In quadratic approximation we obtain, from Eq.~2.3!,

2g5det~gi j !.12u̇21u82 . ~2.4!

The line elementsdsa , a51,2, take the form

dsa.F12
1

2
u̇2~ t, r a!Gdt . ~2.5!

As a result, action~2.1! acquires the form

S.2M0
2 ~ t22t1!R1

M0
2

2 E
t1

t2
dtE

0

R

dr@ u̇2~ t,r !2u82~ t,r !#

2~ t22t1! (
a51

2

ma1 (
a51

2
ma

2 E
t1

t2
dt u̇2~ t,r a!,

r 150, r 25R . ~2.6!

We kept here the constant terms proportional to string ten-
sionM0

2 and quark massesma . Obviously, they do not give
contribution to the dynamical equations but they will be sig-
nificant when calculating the string potential.
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Variation of the action~2.6! leads to the equations o
motion

h u50 ~2.7!

and boundary conditions

m ü5M0
2u8, r50, ~2.8!

m ü52M0
2u8, r5R , ~2.9!

whereh5]2/]t22]2/]r 2 and we assume for simplicity tha
m15m25m. The case of arbitrary quark masses will be co
sidered in our publication@19#.

General solution to the boundary value problem@Eqs.
~2.7!–~2.9!# is given by

uj~ t,r !5
1

A2M0
(
nÞ0

exp@2 ivnt#
an
j

vn
un~r !,

j51,2, . . . ,D22 . ~2.10!

Amplitudesan satisfy the usual rule of complex conjugatio
an*5a2n . The eigenfunctionsun(r ) in Eq. ~2.10! are de-
fined by

un~r !5NnFcos~vnr !2
mvn

M0
2 sin~vnr !G , ~2.11!

whereNn’s are the normalization constants

Nn
25F mM0

2 1
R

2 S 11
m2vn

2

M0
4 D G21

, n561,62, . . . .

~2.12!

The eigenfrequenciesvn are the roots of the trigonometric
equation

tan~v R!5
2mM0

2v

m2v22M0
4 . ~2.13!

On the v axis these roots are placed symmetrica
around zero. Hence, they can be numbered in the follow
way: v2n52vn , n51,2, . . . . Therefore, it will be suffi-
cient to consider only the positive roots. The eigenfuncti
un(r ) obeys the orthogonality conditions

E
0

R

dr un~r ! um~r ! «~r !5dnm , ~2.14!

where the weight function«(r ) is given by

«~r !511
m

M0
2 @d~r !1d~R2r !# . ~2.15!

It is interesting to note that the functionsun8(r ) satisfy the
usual orthogonality conditions

E
0

R

dr u8n~r ! u8m~r !5vn
2 dnm , ~2.16!

where the eigenfrequenciesvn are solutions of Eq.~2.13!.
n-

n

ly
ng

n

The density of the canonical momentumpj (t,r ) is defined
in a standard way

pj~ t,r ! 5
]L

]u̇ j
5M0

2u̇ j~ t,r ! «~r ! , ~2.17!

in which L is the Lagrangian density in action~2.6!. Obvi-
ously, in the problem under consideration, we can assume
that the total momentum of the string with massive ends
vanishes:

Pj~ t !5E
0

R

dr pj~ t,r !50 . ~2.18!

The canonical Hamiltonian is defined by

H5E
0

R

dr @p~ t,r ! u̇~ t,r !2L#

5
M0

2

2 E
0

R

dr @ u̇2~ t,r !«~r !1u82~ t,r !# . ~2.19!

In terms of the amplitudesan
j , it reads

H5
1

2(n51

`

(
j51

D22

~an
j an

j11an
j1 an

j ! . ~2.20!

In quantum theory,uj (t,r ) and its conjugate momentum
pj (t,r ) become operators with canonical commutation rela-
tions

@ui~ t,r !, pj~ t,r 8!# 5 i d i j d~r2r 8! . ~2.21!

This implies that the Fourier coefficients become operators
and satisfy the relations

@an
i ,am

j #5vnd
i j dn1m,0 , ~2.22!

i , j 5 1, . . . ,D22 , n,m 5 61,62, . . . .

The creation and annihilation operators in Fock space
an

1 andan are introduced in the usual way

an
j 5Avn an

j , an
j 15Avn an

j 1 , ~2.23!

@an
i ,am

j 1#5d i j dnm , n,m 5 1,2, . . . . ~2.24!

In terms of them, the Hamiltonian~2.19! takes the form

H5 (
n51

`

(
j51

D22

vn an
j1 an

j 1
D22

2 (
n51

`

vn . ~2.25!

The last term in Eq.~2.25! is the usual Casimir energy
@16,17#. When calculating the interquark potential generated
by string this term gives the Lu¨scher correction@14,15# ~the
first quantum correction to the classical, linearly rising po-
tential!.
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III. ONE-LOOP POTENTIAL GENERATED BY NAMBU-
GOTO STRING WITH MASSIVE ENDS

In this section we shall investigate the interquark potent
generated by a string with massive ends via perturbation c
culations. We define the string potentialV(R) in terms of the
functional integral in a standard way@1,7–9#:

exp@2b V~R!#5E @Du#exp$2Sb@u#%, b→` ,

~3.1!

whereb is inverse temperature andSb@u# is an Euclidean
version of the action~2.1! calculated for finite ‘‘time’’ inter-
val 0<t,b. As usual, the dynamical variablesu(t,r ) should
satisfy periodic conditions in the time variablet:

u~ t,r !5u~ t1b,r ! . ~3.2!

In this section we confine ourselves to the one-loop a
proximation for interquark potential. Therefore,Sb in Eq.
~3.1! should be substituted by its quadratic partS0

b . By anal-
ogy with Eq.~2.6!, we obtain

S0
b5M0

2bR1
M0

2

2 E
0

b

dtE
0

R

dr@ u̇2~ t,r !1u82~ t,r !#

1b (
a51

2

ma1 (
a51

2
ma

2 E
0

b

dt u̇2~ t,r a!,

r 150, r 25R . ~3.3!

Variation of Eq.~3.3! results in the equations of motion

Du50 , ~3.4!

and boundary conditions

m1ü52M0
2u8, ~3.5!

m2ü5M0
2u8, ~3.6!

whereD5]2/]t21]2/]r 2 is two-dimensional Laplacian. As
one would expect, Eqs.~3.4!–~3.6! are deduced from Eq.
~2.7!–~2.9! through formal substitution oft by i t .

Functional integration should be done over the functio
u(t,r ) obeying periodicity condition int @Eq. ~3.2!# and
boundary conditions~3.5! and ~3.6!. In this case, after inte-
grating by parts, action~3.3! can be written in the form

S0
b5M0

2bR1b (
a51

2

ma

1
M0

2

2 E
0

b

dtE
0

R

dr u~ t,r !~2D!u~ t,r ! . ~3.7!

Thus, by imposing the boundary conditions~3.5! and ~3.6!
on functionsu(t,r ) we remove the contributions, propor
tional to thed functions, toS0

b of the pointlike masses at the
string ends. Now, effects of these masses are taken into
count through the boundary conditions~3.5! and ~3.6! and
ultimately through the string eigenfrequencies.
ial
al-

p-

ns

-

ac-

Substituting Eq.~3.7! in Eq. ~3.1! and carrying out the
functional integration, we arrive at the result

V~R!5M0
2R1 (

a51

2

ma1
D22

2b
Tr ln~2D! , b→` .

~3.8!

Here, we have exactly taken into account the number of the
field variablesuj (t,r ), j51,2, . . . ,D22. Therefore, the
operator (2D) in Eq. ~3.8! should be assumed now to act on
the scalar function obeying conditions~3.2! and ~3.5!, ~3.6!.
In addition, the known property of the functional determi-
nants Tr ln(2aD)5Tr ln(2D), wherea being an arbitrary
constant@20#, has been used.

For calculating the functional trace in Eq.~3.8! the eigen-
values of the operator (2D) are needed

2Dwnm5lnmwnm . ~3.9!

Eigenfunctionwnm(t,r ) must satisfy the periodicity condi-
tion ~3.2! and boundary conditions~3.5! and~3.6!. However,
when determining the eigenvalueslnm in Eq. ~3.9! these
boundary conditions prove to be awkward. With allowance
for the equations of motion~3.4! we transform Eqs.~3.5! and
~3.6! to the form

m1u95M0
2u8, r50; m2u952M0

2u8, r5R .
~3.10!

New boundary conditions~3.10! evidently give rise to the
same Eq.~2.13! for string eigenfrequencies.

Eigenfunctions of the operator (2D) satisfying periodic-
ity condition ~3.2! and boundary conditions~3.10! have the
form

wnm~ t,r !5eiVntum~r ! , ~3.11!

where Vn52pn/b, n50,61,62, . . . are theMatsubara
frequencies following from the periodicity condition~3.2!,
andum(r ), m51,2, . . . are defined in Eqs.~2.11!–~2.13!.
Substituting Eq.~3.11! in Eq. ~3.9!, we obtain

lnm5Vn
21vm

2 , n50,61,62, . . . ,m51,2, . . . .
~3.12!

Now, we calculate the functional trace in Eq.~3.8!:

Tr ln~2D!5 (
n52`

1`

(
m51

`

lnF S 2pn

b D 21vm
2 G

5 (
n52`

1`

(
m51

`

ln@~2pn!21b2vm
2 # . ~3.13!

Summation over the Matsubara frequencies in Eq.~3.13! can
be accomplished by making use of the known methods@21#.
One of them is presented in Appendix A. As a result, we
obtain

Tr ln~2D!52(
m51

` Fbvm

2
1 ln~12e2bvm!G . ~3.14!
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Substituting Eq.~3.14! in Eq. ~3.8! and taking the limit
b→`, the final formula for the potentialV(R) assumes the
form

V~R!5M0
2R1 (

a51

2

ma1
D22

2 (
m51

`

vm . ~3.15!

Thus, the first quantum correction to the string potential
the Casimir energy for the string with given boundary co
ditions. Certainly, we could, at the very beginning, obta
Eq. ~3.15! proceeding from the energy of the string found i
the preceding section@see Eq.~2.25!#. We gave here detailed
derivation of Eq.~3.15! by making use of the functional
integration technique because many points of this consid
ation will be used while investigating the string potential i
the limit D→` ~see next section!.

Let us turn to calculation of the Casimir energy of th
string entering Eq.~3.15!:

EC5
1

2(k51

`

vk . ~3.16!

Obviously, this sum diverges and to obtain finite physic
value of this energy, regularization and following renorma
ization are needed. For simplicity, the case of equal qua
massesm15m25m will be treated further. The general cas
m1Þm2 will be investigated in our forthcoming publication
@19#.

The Casimir energy~3.16! is a function of quark mass
EC(m) and for two limiting valuesm5` ~immobile quarks!
andm50 ~free ends of the string! it can be calculated easily
by making use of the Riemann zeta-function renormaliz
tion. Whenm5` andm50, the frequency equation~2.13!
givesvn5np/R, n51,2, . . . . The corresponding Casimi
energy is

EC~m5`!5EC~m50!5
p

2R(
n51

`

n5
p

2R
z~21!52

p

24R
.

~3.17!

The renormalized Casimir energy at finite value ofm,
EC(m), should satisfy these limiting conditions. This re
quirement, as will be shown below, determines subtracti
procedure uniquely.

To sum over the string eigenfrequencies in Eq.~3.16! we
use the following integral formula from the complex analys
@22#. Let us consider an analytical functionf (v) with zeros
of order nk at pointsv5vk and with poles of orderpl at
points v5ṽ l in a region bounded by a contourC. From
Cauchy’s theorem it follows that

1

2p i RC dv v
f 8~v!

f ~v!
5

1

2p i R
C
dv v @ lnf ~v!#8

5(
k

nkvk2(
l

plṽ l . ~3.18!

In order to get rid of the poles in Eq.~3.18! we rewrite the
frequency equation~2.13! in the form
is
n-
in
n

er-
n

e

al
l-
rk
e

a-

r

-
on

is

f ~v!52mM0
2v cos~vR!2~m2v22M0

4! sin~vR!50 .
~3.19!

Substituting Eq.~3.19! in Eq. ~3.18!, we deduce

EC~m!5
1

4p i RCv dv
d

dv
@ lnf ~v!# , ~3.20!

where counterC encloses the real positive semiaxis where
the roots of Eq.~3.19! are placed. As the functionf (v) in
Eq. ~3.19! has no singularities on the right half plane, the
counterC can be transformed into a semicircle with radius
L and the segment of the imaginary axis (2 iL, iL). At any
finiteL, the counter integral in Eq.~3.20! is finite. Therefore,
this integral can be treated as a regularized value of
EC
reg(m,R). We have noted here exact dependence ofEC on

the length of the stringR ~distance between quarks!.
To carry out the renormalization of the Casimir energy we

must, as usual@16,17,23#, subtract fromEC
reg(m,R) the value

of this energy atR→`:

EC
ren~m,R!5EC

reg~m,R!2EC
reg~m,R→`!uL→` . ~3.21!

Contribution to the finite ~renormalized! value of
EC
ren(m,R) gives only the integral along the imaginary axis in

Eq. ~3.20!. This will be seen from the final result. Therefore,
we confine ourselves to the integral along the imaginary axes
in complex planev:

EC
reg~m,R!52

1

4pE2L

L

y dy$ ln@2mM0
2y cosh~yR!

1~m2y21M0
4!sinh~yR!#%8. ~3.22!

Integrating by parts and dropping the terms outside the inte
gral ~formally they vanish!, we arrive at the formula

EC
reg~m,R!5

1

2pE0
L

dy ln@2mM0
2y cosh~yR!

1~m2y21M0
4!sinh~yR!# . ~3.23!

In order to renormalizeEC
regwe must subtract from Eq.~3.23!

the asymptotic ofEC
reg whenR→`:

EC
reg~m,R→`!5

1

2pE0
L

dy ln@eyR~my1M0
2!2/2# . ~3.24!

Substituting Eqs.~3.23! and~3.24! into Eq.~3.21!, we obtain
renormalized Casimir energy1

1In Ref. @24# other subtraction procedures have been considered
which satisfy condition~3.17! only atm5`.
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EC
ren~m,R!5

1

2pE0
`

dy lnH 12e22RySmy2M0
2

my1M0
2D 2J

5
1

2pRE0
`

dx lnH 12e22xS x2q

x1qD 2J ,

~3.25!

whereq is a dimensionless parameter,q5M0
2R/m. Analysis

of integrand in Eq.~3.25! shows that integral along the semi
circle of radiusL, that has been discarded above, actua
vanishes whenL→`. One can easily convince tha
EC
ren(m,R) obeys limiting conditions~3.17!:

EC
ren~m50,R!5EC

ren~m5`,R!

5
1

2pE0
`

dy ln~12e22Ry!

52
p

24R
. ~3.26!

Subtraction of divergent atL→` contribution~3.24! is in-
terpreted as a transition to physical values of string tens
M0

2 and quark massesma in Eq. ~3.15!. For simplicity, we
will not introduce any new notation for renormalized param
eters of the model. The final formula for the interquark po
tential derived in the one-loop approximation reads

V~R!5M0
2R1~D22!EC

ren~m,R! , ~3.27!

whereEC
ren(m,R) is determined in Eq.~3.25!. The constant

2m, giving the rest energy of quarks, has been dropped
this formula.

It is natural to compare Eq.~3.27! with the one-loop in-
terquark potential generated by string with fixed ends@1#:

Vfixed~R!5M0
2R2

~D22!p

24R
. ~3.28!

The last term here is the universal Lu¨scher term independent
of the concrete form of the string action but calculated f
fixed ends of the string@14,15#. A clear picture of the quark
mass influence on the string potential in any given appro
mation provides the ratio ofEC

ren(m,R) to the Lüscher term
in Eq. ~3.28!, i.e., toEC

ren(m5`,R). This ratio depends only
on the dimensionless parameterq5M0

2R/m and is given by
the formula2

h~q!5
EC
ren~m,R!

EC
ren~m5`,R!

52
12

p2E
0

`

dx lnF12e22xS q2x

q1xD
2G .

~3.29!

Deviation ofh(q) from 1 characterizes the contribution o
the quark masses to the first quantum correction to the str
potential. The functionh(q) is plotted in Fig. 1. In the re-

2In Ref. @25# other subtraction procedure has been used in t
model under consideration and as a result the formula forh(q)
obtained there does not coincide with Eq.~3.29!.
-
lly
t

ion

-
-

in

or

xi-

f
ing

gion q'0.2, it is dropped to'0.2. If one assumes that the
string length is of the order of the Compton wavelength of
quarkR;m21, then the maximal alteration of the Lu¨scher
term happens at the quark massm;2.2M0, i.e., for suffi-
ciently heavy quarks~in string modelsM0;0.4 GeV!.

IV. VARIATIONAL ESTIMATION OF THE STRING
POTENTIAL

In the preceding section the string potential has been cal-
culated in the one-loop approximation by using the perturba-
tive theory for an arbitrary dimension of space-timeD. Oth-
erwise, this potential can be investigated in the limitD→`
by making use of the variational estimation of the functional
integral @1,4–9#.

Let us turn to the initial Eq.~3.1! determining the string
potential

e2b V~R!5E @Du# exp$2Sb@u#%, b→` , ~4.1!

whereSb is the Euclidean action

Sb@u#5M0
2E

0

b

dtE
0

R

drAdet~d i j1] iu ] ju!

1 (
a51

2

maE
0

b

dt A11u̇2~ t,r a!, ~4.2!

i , j50,1, r 150, r 25R .

The 1/(D22) expansion is carried out in a standard way@1#.
Let us introduce the composite fields i j for ] iu ] ju and con-
strains i j 5 ] iu ] ju through the Lagrange multipliera

i j . By
using the exponential parametrization of thed function, with
the understanding that thea i j functional integrals run from
2 i` to 1 i`, Eqs.~4.1! and ~4.2! become

he

FIG. 1. Functionh(q) @see definition~3.29!# describes the ef-
fect of the finite quark mass on the value of the Lu¨scher term in
string potential.
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e2bV~R!5E @Du#@Da#@Ds#exp$2Sb@u,a,s#%, b→` ,

~4.3!

where

Sb@u,a,s#5
M0

2

2 E
0

b

dtE
0

R

dr@2Adet~d i j1s i j !

1a i j ~] iu ] ju2s i j !#

1 (
a51

2

maE
0

b

dtA11u̇2~ t,r a!,

i , j50,1, r 150, r 25R . ~4.4!

Further, the 1/(D22) expansion is constructed in the follow
ing way @1#. Functional integral over string coordinatesu in
Eq. ~4.3! can be done exactly as action~4.4! is quadratic in
u. Functional integrals overa i j and s i j are estimated by
making use of the variational method, the stationary valu
of these functional variables being given by constant~inde-
pendent on t and r ) diagonal matricesa i j5d i ja j ,
s i j5d i js j ~no summation overj ).

When integrating overu in Eq. ~4.3!, we have to take into
account the quark contribution to action~4.4!. As in the pre-
ceding section, we do this by imposing onu corresponding
boundary conditions. Variation of action~4.4! with respect to
string coordinates results in the equations of motion

Dau[a0ü1a1u950, ~4.5!

and boundary conditions

m1

A11s0

ü52M0
2a1u8, r50, ~4.6!

m2

A11s0

ü5M0
2a1u8, r5R . ~4.7!

We require that the functional variablesu„t,r … in Eqs. ~4.3!
and ~4.4! satisfy the boundary conditions~4.6! and ~4.7!.
Then, integrating by parts in the second term in Eq.~4.4!, we
can present actionSb@u,a,s# in the form

Sb@u,a,s#5
M0

2

2 E
0

b

dtE
0

R

dr u~2Da!u

1M0
2b RFA~11s0!~11s1!

2
1

2
~a0s01a1s1!G , ~4.8!

where operatorDa is defined in Eq.~4.5!. Thus, we arrive at
the action exactly quadratic in the transverse string coor
natesu„t,r …. Functional integration overu in Eqs.~4.3! and
~4.8! gives standard contribution to effective actio
@(D22)/2# Tr ln(2Da). In order to calculate this functiona
trace the eigenvalues of the operator (2Da) are needed. To
-

es

di-

n
l

this end, we again transform boundary conditions~4.6! and
~4.7! taking here into account Eq.~4.5!:

m1

A11s0

u95M0
2a0u8, r50;

m2

A11s0

u952M0
2a0u8, r5R . ~4.9!

Equations of motion~4.5! with boundary conditions~4.6!,
~4.7!, or ~4.9! result in the same frequency equation

tan~vR!5
2mM̄0

2v

m2v22M̄0
2 , ~4.10!

where M̄0
25a0A11s0 M0

2. One can be easily convinced
that the eigenvalueslnk of the operator (2Da) with bound-
ary conditions~4.9! are given by

lnk5a0S 2pn

b D 21a1vk
2 ,

n50,61,62, . . . , k51,2, . . . , ~4.11!

wherevk are the positive roots of Eq.~4.10!. Using Eqs.
~3.13! and ~3.14!, we obtain

lim
b→`

1

2b
Tr ln~2Da!5

1

2
Aa1

a0(
k51

`

vk5Aa1

a0EC ,

~4.12!

whereEC5(1/2)(k51
` vk is the Casimir energy for the fre-

quency equation~4.10!. Now, EC obviously depends on the
variational parametersa0 and s0. Finally, effective action
that should be varied with respect toa i , s i , i50,1 as-
sumes the form

Sb5M0
2bRHA~11s0! ~11s1!2

1

2
~a0s01a1s1!J

1b~D22!Aa1

a0 EC . ~4.13!

For calculatingEC , formula~3.25! should be used with sub-
stitution ofM0

2 by M̄0
2. Variation of Eq.~4.13! results in the

equations

a05A11s1

11s0
1
D22

M0
2R
Aa1

a0

]EC

]s0
, ~4.14!

a15A11s0

11s1
, ~4.15!

s052
D22

M0
2Ra0Aa1

a0 EC12
D22

M0
2R
Aa1

a0

]EC

]a0 , ~4.16!

s15
D22

M0
2R

EC

Aa0a1
. ~4.17!
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Now, we use simplifying assumption that enables us to wri
the solutions to Eqs.~4.14!–~4.17! in an analytical form.
When calculating the Casimir energyEC , we puta

051 and
s050. The limits of applicability of this approximation are
discussed in Appendix B. Omitting terms with]EC /]s0 and
]EC /]a0 in Eqs. ~4.14! and ~4.16!, we arrive at the equa-
tions @1# solution of which is given by

a05A122l , ~4.18!

a15
1

A122l
, ~4.19!

s05
l

122l
, ~4.20!

s152l , ~4.21!

wherel52(D22) EC /(M0
2R), the Casimir energyEC be-

ing defined in Eq.~3.25!.
Calculating the action~4.13! on the solutions~4.18!–

~4.21!, we arrive at the final expression for the string poten
tial:

V~R!5M0
2RA11

2~D22!

M0
2R

EC~m,R! . ~4.22!

In Fig. 2 the dimensionless string potentialV(R)/M0 is plot-
ted as a function of the dimensionless distancer5M0R for
different values of ratiom5m/M0. For the chosen symmetri-
cal quark configurationm15m25m, the Casimir energy
EC(m,R) remains negative~see the preceding section!.
Therefore, Eq.~4.22! has sense only at such values ofR
when

FIG. 2. The dimensionless interquark potentialV(r)/M0 as a
function of r5M0R is shown at different values of the ratio
m5m/M0. All the curves start at the points onx axis presenting the
value of rc at givenm. The left- most curve correspond to the
minimal value of rc ~see Fig. 3!. When r→` the curves tend
towards the linearly rising potentialV(r);M0

2r. Dashed curve pre-
sents the interquark potential generated by string with fixed~or free!
ends. Whenm tends to infinity or to zero, the potential curves
calculated by the formula~4.22! approach the dashed one.
te

-

1>2
2~D22!

M0
2R

EC~m,R! . ~4.23!

Equality to zero of the radicand in Eq.~4.22! determines the
critical radiusRc of the string potential. In the case of the
infinitely heavy quarks, it is given byM0Rc5Ap/6.0.72
~for D54). Figure 3 presents the dependence of the dimen-
sionless critical radiusrc5Rc /M0 on the ratiom5m/M0.
This plot shows that account of the finite quark masses re-
sults in reducing the critical radius. For a given quark mass
configuration,m15m25m, the minimal value (.0.31) of
rc is reached atm.1.15. If we take as usualM0.0.4 GeV
thenm.0.5 GeV.

V. QUARK MASS CORRECTIONS TO THE RIGID
STRING POTENTIAL

In this section we calculate the quark mass corrections to
the one-loop interquark potential in the framework of the
rigid string model@5,26#. As is known, this model can be
treated as an effective one, taking into account the finite
thickness of gluonic tube@27,28#. The basic aim of this cal-
culation is to show the principal applicability of the proposed
method to the rigid string model with massive ends. Varia-
tional estimation of the interquark potential in the framework
of this model will be published elsewhere.

The Polyakov-Kleinert action for a rigid string with mas-
sive ends has the form@5,26#

S52M0
2E E

S
dSF 12

a

2
r s
2 ~DL2Bx

m! ~DL2Bxm!G
2 (

a51

2

maE
Ca

dsa , ~5.1!

FIG. 3. The critical radius,rc5M0R, of the string potential is
presented as a function of the dimensionless quark mass
m5m/M0. Whenm tends to infinity or to zero,rc(m) approaches
the critical radius of the potential generated by string with fixed~or
free! ends rc

fixed.0.72. The plot indicates that even for heavy
quarks withm5102 ~region of the top quark mass!, the critical
radius of the potential generated by a string with massive ends
significantly differs from the limiting valuerc

fixed.
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where the new parametersr s and a are, respectively, the
radius of gluonic tube and a dimensionless constant;DL2B is
the Laplace-Beltrami operator for the induced metricgi j on
the string world sheet

DL2B5
1

A2g

]

]j i SA2g gi j
]

]j j D . ~5.2!

In the Gauss parametrization~2.2!, the operator~5.2!, up to
the second order inu, can be written as

DL2B.h1O~u2! , ~5.3!

whereh5]2/]t22]2/]r 2. Now action~5.1! reads

S.2M0
2E

t1

t2
dtE

0

R

drF12
1

2
u̇21

1

2
u821

a

2
r s
2 ~hu!2

2 (
a51

2
ma

2 E
t1

t2
dt u̇2~ t,r a!, r 150, r 25R . ~5.4!

The equations of motion and boundary conditions for th
action ~5.4! are

~11a r s
2 h ! h u50 , ~5.5!

~11a r s
2 h ! u85

m

M0
2 ü , r 50 , ~5.6!

~11a r s
2 h ! u852

m

M0
2 ü , r5R , ~5.7!

h u50 , r50,R, ~5.8!

(m15m25m). The Lagrangian in the action~5.4! depends
on the first and the second derivatives of the string coor
nates, therefore the number of derived boundary conditio
is twice compared with those of the Nambu-Goto string.

The boundary value problem@Eqs.~5.5!–~5.8!# reduces to
two independent ones. Indeed, equations of motion are giv
by the product of commuting differential operator
(11 a r s

2 h) and h. Hence, the general solution to this
equation can be represented as a sum of two terms

u~ t,r !5u1~ t,r !1u2~ t,r ! , ~5.9!

where

h u150 , ~5.10!

u1852
m

M0
2 ü1 , r50 , ~5.11!

u185
m

M0
2 ü1 , r5R , ~5.12!
e

di-
ns

en
s

and

~11a r s
2 h ! u250 , ~5.13!

u2~ t,0!5u2~ t,R!50 . ~5.14!

In this case,u1(t,r ) is the solution to the Nambu-Goto
string with massive ends that we have analyzed in Sec. II.
The string rigidity is taken into account by function
u2(t,r ). The general solution to Eq.~5.13! obeying Eq.
~5.14! can be presented as

u2
j ~ t,r !5

21

A2 M0
(
n5” 0

exp@ inn t#
bn
j

nn
vn~r ! ,

j51,2, . . . ,D22 . ~5.15!

The eigenfunctionsvn(r ) are given by

vn~r !52 v2n5A2

R
sinS np

r

RD , n51,2, . . . .

~5.16!

For the natural frequenciesnn in Eq. ~5.15!, we have

nn52 n2n5AS np

R D 21 1

ar s
2, n51,2, . . . . ~5.17!

The amplitudesbn
j satisfy the usual relations of complex

conjugationbn*5b2n , n51,2, . . . .
The Hamiltonian formulation of the model under consid-

eration is developed in the following way. According to Os-
trogradsky@29,30#, the canonical variables are defined by

q1
j 5uj , q2

j 5u̇ j , ~5.18!

p1
j 5

]L

]u̇ j
2 p2

j , p2
j 5

]L

]ü j
, ~5.19!

j51,2, . . . ,D22 ,

whereL is the Lagrangian density in action~5.4!:

L5
M0

2

2
@«~r ! u̇22u822a r s

2 ~hu!2# . ~5.20!

Weight function«(r ) was determined in Eq.~2.15!. Putting
L and Eq.~5.9! into Eqs.~5.18! and ~5.19! and taking into
account Eqs.~5.10! and ~5.13!, one obtains

q15u1 1 u2 , q25u̇11u̇2 , ~5.21!

p15M0
2 @«~r !1a r s

2 h# u̇ ,

p252 a r s
2 M0

2 h u5M0
2 u2 . ~5.22!
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The canonical Hamiltonian is defined by

H5E
0

R

dr @p1q̇11p2q̇22L# . ~5.23!

In terms of Fourier amplitudes it becomes

H5
1

2 (
n51

`

(
j51

D22

~an jan j
1 1an j

1 an j!

2
1

2 (
n51

`

(
j51

D22

~bn jbn j
1 1bn j

1 bn j! . ~5.24!

The quantum theory is based on the canonical commu
tion relations

@ua
i ~ t,r !, pb

j ~ t,r 8!#5 i dab d i jd~r2r 8! ,

a51,2 , i , j51,2, . . . ,D22 , ~5.25!

or in terms of the Fourier amplitudes

@an
i ,am

j #5vn d i j dn1m,0 ,

@bn
i ,bm

j #5nn d i j dn1m,0 , n,m561,62, . . . . ~5.26!

By introducing, in standard way, the annihilation and cr
ation operators

an
i 5~vn!

21/2 an
i , an

i15~vn!
21/2 an

i1 ,

bn
j 5~nn!

21/2 bn
j , bn

j15~nn!
21/2 bn

j1 , ~5.27!

n51,2, . . . , i , j51,2, . . . ,D22 ,

the Hamiltonian operator~5.24! acquires the form

H5 (
n51

`

vn (
j51

D22

an
j1 an

j 2 (
n51

`

nn (
j51

D22

bn
j1 bn

j

1
D22

2 S (
n51

`

vn2 (
n51

`

nnD . ~5.28!

The last two terms in Eq.~5.28! define the Casimir energy in
the model under consideration@31#. It is important to note
that the second oscillation mode with frequenciesnn , re-
sponsible for the string rigidity, gives a negative contributio
to the energy as compared with the oscillation of the fi
mode with frequenciesvn . This is also true for the Casimir
energy@see the last two terms in Eq.~5.28!#. It is a direct
consequence of the classical expression for the total ene
in the rigid string model~5.24!. We point out that this defect
is typical in all the theories with higher derivatives. To re
move it, certainly in the formal way only, the quantum stat
with negative norm are sometimes used@32–34#.

Now, we calculate the rigid string potential in the on
loop approximation. Again, we shall treat the Euclidean ve
sion of the model under consideration.

The interquark potential is given by Eq.~3.1! with the
Euclidean action (t150, t25b)
ta-

e-

n
rst

rgy

-
es

e-
r-

Sb5M0
2E

0

b

dtE
0

R

drF11
1

2
u ~12a r s

2 D! ~2D!u G .
~5.29!

We have integrated here by parts and taken into account the
boundary conditions. As in Sec. IV, the boundary terms in
action~5.4! will be taken into account by finding the proper
eigenvalues of the corresponding differential operators.

After functional integration, the potential takes the form

V~R!5M0
2R1

D22

2b
Tr ln@~12ar s

2D!~2D!#, b→`.

~5.30!

Now, we turn to the calculation of the functional trace in Eq.
~5.30!:

Tr ln@~12ar s
2D!~2D!#5Tr ln~12ar s

2D!1Tr ln~2D! ,
~5.31!

provided that the operator (12ar s
2D) should be supple-

mented by the boundary conditions~5.14! and the operator
(2D) by Eq. ~3.10!. Analogously, with the calculations in
Sec. III, we obtain

V~R!5M0
2R1

D22

2 S (
k51

`

vk1 (
k51

`

nkD , ~5.32!

wherevk are the eigenfrequencies of the Nambu-Goto string
with massive ends~2.13! and nk are the string frequencies
responsible for its rigidity@see Eq.~5.17!#. The last term in
Eq. ~5.32! has, in contrast to Eq.~5.28!, a positive sign. As
was mentioned above, it means that the formalism applied
here effectively uses quantum states with negative norm to
describe the string excitations with frequenciesnk . The
renormalized value of the first sum in Eq.~5.32!, the Casimir
energy of the Nambu-Goto string with massive ends, was
derived in Sec. III@see Eq.~3.25!#. Now, we have to calcu-
late only the second sum in Eq.~5.32! which is the Casimir
energy due to the string oscillations with ‘‘rigidity’’ frequen-
cies

EC
rigid5

1

2(n51

`

nn5
p

2R(
n51

`

An21e2, ~5.33!

where the dimensionless parametere is given by
e25R2/(asp

2r s
2). This sum has been considered in many

problems~see, for example,@31,35,36#!. Therefore, we di-
rectly use its finite value which is obtained by subtracting the
analogous contribution of the infinite string

EC
rigid52

e

2R(
n51

`
K1~2pne!

n
, ~5.34!

whereK1(z) is the modified Bessel function@37#.
Finally, the one-loop interquark potential generated by

Polyakov-Kleinert rigid string with massive ends has the
form
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V~R!5M0
2R1~D22!@EC~m,R!1EC

rigid~as ,R!#,
~5.35!

whereEC(m,R) is the Casimir energy of the Nambu-Got
string with massive ends@Eq. ~3.25!# andEC

rigid(as ,R) is the
Casimir energy@Eq. ~5.34!# due to the string rigidity.

In Sec. III the contribution ofEC(m,R) to string potential
has been analyzed by comparing it with the universal Lu¨s-
cher term@see Eq.~3.29! and Fig. 1#. It is worthwhile to do
the same withEC

rigid by considering the ratio

j~e!5
EC
rigid~as ,R!

EC~m5`!
5
12e

p (
n51

`
K1~2pne!

n
~5.36!

that depends only on the dimensionless parametere. The plot
of this function is presented in Fig. 4. It shows that, for a
value ofe the contribution of the string rigidity to interquark
potential does not exceed, in absolute value, the Lu¨scher
term.

VI. CONCLUSION

In this paper we have developed a consistent method
calculating the interquark potential generated by relativis
string with pointlike masses~spinless quarks! at its ends. The

FIG. 4. Functionj(e) @see definition~5.36!# presents the con-
tribution of the string rigidity to the quark potential in the one-loo
approximation.
o

ny

for
tic

obtained results indicate that the correction to the potentia
due to the finite quark masses turns out to be considerab
both in the one-loop approximation and through the varia
tional estimation of the string functional integral. The exten-
sion of the proposed method for investigating the model o
the relativistic string with massive ends at finite temperature
is of undoubted interest.

Finally, the following should be noted. In our approach
only transverse vibrations of the string and its massive end
have been considered at fixed string length. Therefore, w
have calculated really the contribution of the finite quark
masses to the statical part of the interquark potential. Obv
ously, the longitudinal motions of the string and quarks at its
ends also will give contribution to the string potential. But
this problem is beyond the scope of our paper.
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APPENDIX A: SUMMATION OVER THE MATSUBARA
FREQUENCIES

Here, we show how to cast Eq.~3.13! into Eq. ~3.14!
summing over the Matsubara frequencies. We shall procee
from the known representation of the entire function sinhz in
terms of the infinite product@37#

sinh
z

2
5
z

2)n51

` S 11
z2

4p2n2D . ~A1!

Taking the logarithm of both sides of this equation, we ob-
tain

(
n51

`

lnS 11
z2

4p2n2D5 ln~ez21!2 lnz2
z

2
. ~A2!

Now, the sum over the Matsubara frequencies in Eq.~3.13!,
in view of Eq. ~A2!, can be rewritten as

p

(
n52`

`

ln@~2pn!21b2vm
2 #52(

n51

`

lnS 11
b2vm

2

4p2n2D 14(
n51

`

ln~2pn!12ln~bvm!

52ln~ebvm21!2bvm14(
n51

`

ln~2pn!52ln~12e2bvm!1bvm14(
n51

`

ln~2pn! . ~A3!

The last divergent term in Eq.~A3! should be dropped because after dividing byb @see Eq.~3.8!# and taking the limit
b→`, it vanishes. In view of this, Eq.~3.13! transforms to Eq.~3.14!.
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APPENDIX B: ANALYSIS OF APPROXIMATION
USED FOR CONSTRUCTING THE SOLUTION

TO VARIATIONAL EQUATIONS

Here, we consider the approximations which have be
done for obtaining the solutions~4.18!–~4.21! to variational
equations~4.14!–~4.17!.

From boundary conditions~4.6! and ~4.7!, it follows that
the dependence ofEC ons0 takes actually into account rela
tivistic corrections in dynamical equations describing t
motion of quarks. Therefore, putting in Eq.~4.6! and ~4.7!
s050, we restrict ourselves to nonrelativistic description
the quark dynamics. This is admissible for sufficiently hea
quarks.

The next assumption consists in setting, under calcula
of EC , a0.1 and neglecting the last term in Eq.~4.16!.
Having done this approximation, we directly obtain solutio
~4.18!–~4.21!. Let us show that this solution leads to estim
tion of a0 that agrees fairly well with the initial assumptio
en

-
he

of
vy

tion

ns
a-
n

a0.1. In fact, proceeding from the definition~3.29!, we
obtain

s152h~q!
p~D22!

24M0
2R2 . ~B1!

String model claims the description of the interquark poten
tial at distances whenM0R;1. Analysis of the function
h(q) in Sec. III shows thatuh(q)u,1. Hence, forD54 we
infer from Eq.~B1!

s1;2h~q!/4;20.25 . ~B2!

In view of this and Eqs.~4.18! and ~4.21!, we obtain

a05A11s1;0.9 , ~B3!

which is in a fairly good agreement with our initial assump-
tion a0.1.
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