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Quark mass correction to the string potential
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A consistent method for calculating the interquark potential generated by the relativistic string with massive
ends is proposed. In this approach, the interquark potential in the model of the Nambu-Goto string with
pointlike masses at its ends is calculated. At first the calculation is done in the one-loop approximation. For
obtaining a finite result under summation over eigenfrequencies of the Nambu-Goto string with massive ends,
an appropriate renormalization procedure is suggested. It is shown that in this cases¢herlterm in the
string potential acquires a dependence on the quark mass which results in the reduction of the absolute value
of this term. Then the interquark potential in the string model with new boundary conditions is calculated by
making use of the variational estimation of the corresponding functional integral. In this case the quark mass
correction results in decreasing the critical distaideconfinement radiisin the string potential. In the
framework of the developed approach, the one-loop interquark potential in the model of the relativistic string
with rigidity is also calculated.S0556-282(196)01520-2

PACS numbegps): 12.38.Aw, 12.39.Pn, 12.40y

I. INTRODUCTION Nambu-Goto string model and in the Polyakov-Kleinert rigid
string model.

The investigation of the quark interaction at large dis- In the Nambu-Goto string with massive ends the quark
tances is outside the QCD perturbation theory. Usually, irpotential is calculated first in the one-loop approximation of
this field the lattice simulations and string models are usedperturbation theory for arbitrary dimension of space-tibhe

The calculation of the quark interaction in the frameworkand then via a variational estimation of the corresponding
of string models has a rather long histdsee, for example, functional integral in the limit D —2)—oe. As is known, the
papers|1-9] and references therginin all these investiga- static quark potential generated by the Nambu-Goto string in
tions, without exception, only the static interquark potentialthe one-loop approximation is compiled by two terms: the
has been considered. It implies that the quarks are assumédfearly rising confinement potentigtlassical pajtand the
to be infinitely heavy. Obviously, this potential, by defini- f|r_jst quantum correctlo_n usually r_eferred to as the unlve_rsal
tion, does not depend on the quark masses. The assumptibHScher ter{14,15. It is worthwhile to remember that this
about infinitely heavy quarks is rather crude, at leastufor €M is nothing other than the Casimir energy of the string.
andd quarks with(constituent masses about 200—-300 MeV When the ends of the string are loaded by pointlike masses
that is significantly less than the characteristic hadronic masgquarks) then the I__|$cher term proves to be depend_en_t on the
scale~1 GeV. It is clear that in a general case the interquarkguark masses. It is not unnatural because the Casimir energy,

potential should depend on quark masses. Both the genergfyls knowr{16,17) is essentially determined by the bound-

. . conditions imposed on the field variablés the case
approach to this problem in the framework of Q€0 and | nqer consideration, on the string coordinatésr calculat-

the numerical calculations of the light and heavy meson,g the Casimir energy in the model of the string with mas-
spectra in potential mode[41-13 testify to this. Certainly, sjye ends, a subtraction procedure is suggested that includes
in this case one should talk not about the static potentiajne renormalization of the string tension and quark mass.
generated, for example, by a relativistic string connectingyjith the help of it, a finite value of the Casimir energy in
quarks but simply about the interaction potential betweenhis string model is derived in a unique fashion. It proves that
quarks having a finite mass rather than an infinite one.  the allowance for the finite quark masses results in reducing
The aim of the present paper is an attempt to extend théhe absolute value of the kaher term. At certain values of
standard approach to the calculation of the interquark poterthe model parameterstring tension, its length, and quark
tial in the framework of the string mod€]$,5—9 to the case mass, the ratio of the Lscher term calculated with an al-
of the finite quark masses. It turns out that this program cafowance for the finite quark mass to the value of this term in
be realized. To this end the boundary conditions in the stringhe Nambu-Goto string with fixed ends can be reduced to
model in question should be modified and a new renormal=0.2. Having defined the lacher term in the string potential
ization procedure for summation over string eigenfrequenas the Casimir energy of the string, we cannot certainly ex-
cies should be developed. pect that its dependence on the string lerigtill be 1/R at
In a proposed approach, a correction to the string potentigdny boundary conditions. Really, in the Nambu-Goto string
due to the finite quark masses is calculated both in thevith massive ends, this dependence turns out to be rather
complicated[see Eqg.(3.25] and only in the limiting cases
when m—o or m—0 we obtain the universal behavior
“Permanent address: Dipartimento di Fisica Teorica e S. M. S. AL/IR [see Eq.(3.26)].
Universitadi Salerno, 84081 Baronis¢8A), Italy. A variational calculation of the potential generated by the
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Nambu-Goto string with massive ends in the limit II. NAMBU-GOTO STRING WITH MASSIVE ENDS

(D —2)—co results in a radical expressiplq. (4.22)]. As is

known, the string potential calculated in this approach is not,,

determined at all the distanc&sbut only atR>R_, where

the critical radiusR. in the case of the Nambu-Goto string 2

with fixed ends is given bjl] R2= 7(D—2)/(12M2). Tak- S=- MSJ f dX — Z My | ds,, 2.9

ing into account the finite quark mass results in reducing the . ast Ca

value of the critical radiuRR; (see Fig. 3 The potential whereds is infinitesimal area of the string world surface,

curves, being displaced to lower distances, preserve thet, (a=1,2) are the world trajectories of the string massive

form (Fig. 2. ends, and\/l(z) is the string tension with the dimension of the
In the rigid string model with massive ends the interquarkmass squaredi(=c=1).

potential is calculated in the one-loop approximation. When For our calculations, it will be convenient to use the

confined to the quadratic approximation in the Polyakov-Gauss parametrization of the string world surface:

Kleinert action, the dynamical variabléstring position vec- _ . .

tor) can be presented as a sum of two terms, X“(&)=(t,r;x}(t,r), ... X°72(t,r)=(&5u(¢)), i=0,1.

u(t,r)=uq(t,r)+uy(t,r), whereuy(t,r) is a solution to the 2.2

Nambu-Goto string with massive ends amgt,r) is an ad-  The vector fieldui(t,r), j=1,...,D—2 corresponds to

ditional variable caused by the extrinsic curvature in thep —2 transverse components »f, while t=¢2, r=¢! are

Polyakov-Kleinert action. It is remarkable that the quarkthe coordinates on the string world sheet. The infinitesimal

masses only affectiy(t,r). This essentially simplifies the areads is given byds =+/—g dt dr, whereg is the deter-

problem under consideration and enables us to use directiyinant of the induced metric on the world surface of the
the results for the potential derived in the Nambu-Goto stringstring, gij=ax* d;x,, i,j=0,1. The metric of the
with massive ends. In the one-loop approximation, the variD-dimensional space-time has the signature
ablesuy(t,r) anduy(t,r) give additive contributions to the (+,—,...,—).

interquark potential generated by rigid string. It is true both In this parametrization, the induced metgg has the

in the case of the fixed string ends and for the rigid stringcomponents
with massive ends. As a result, the quark mass correction to

the one-loop potential generated by rigid string is reduced to

the modification of the contribution from the variable 9ij =
u4(t,r): the one-loop potential in the Nambu-Goto string

with massive ends calculated before should be used hergnere yu = E]D:—fuiuj, Up=du/dt=u, and u;=aul/dr
The contribution to the potential of the string oscillations due— ' Fyrther, we will use the quadratic approximation for

to ItSI’IgIdIty does not exceed, in absolute Value, the uniVer"the action(z_l)_ This approximation is the basis of the per-

sal Luscher term(Fig. 4). turbative calculations. In addition, when developing the
The layout of the paper is as follows. In Sec. Il the qua-1/D expansionsee Sec. IY string coordinates will actually

dratic approximation for the Nambu-Goto string model with be determined by the quadratic string actiamthe general

massive ends is developed. Upon linearization of the equasase, with parameters that should be varied

tions of motion and boundary conditions, the general solu- In quadratic approximation we obtain, from EG.3),

tion to them is obtained. The eigenfrequencies of the string ]

oscillations are determined by a transcendental equation. —g=defgj)=1-u’+u'?. (2.4

Then the canonical quantization of this model is outlined in .

short. In Sec. lll, the interquark potential generated by theThe line elementsls,, a=1,2, take the form

Nambu-Goto string with massive ends is calculated in the 1.

one-loop approximation of the perturbation theory. In order dsa:[l— Euz(t, ra)}dt . (2.5

to remove the divergence, a new subtraction procedure is

proposed. In Sec. IV, the interquark potential generated bys a result, actior{2.1) acquires the form

the Nambu-Goto string with massive ends is calculated by

making use of a variational estimation of the functional in- 2 M(z) ta R s '

tegral in the limit when D—2)—. In Sec. V, the rigid >~ Mo (t2_t1)R+7ﬁ dtfo drfu(t,r)—us(t,r]

string model with massive ends is treated. By making use of !

The action of the Nambu-Goto string with pointlike
asses attached to its ends is writter] 53

1-u2  —uw’

—uu’ _1_u/2)' i,j =01, (2.3

a quadratic approximation for the Polyakov-Kleinert action, 2 2 My (t2 -,

the linear equations of motion and boundary conditions are _(tz_tl)gl ma+;1 7£ dtus(t,ra),

derived. Then canonical quantization of this model is devel- - N !

oped. And finally, the interquark potential generated in this ri=0, r,=R. (2.6)

string model is calculated in the one-loop approximation. In

the ConclusiongSec. V) the obtained results are discussedWe kept here the constant terms proportional to string ten-
in short and possible extensions of them are proposed. Sonséon M3 and quark masses, . Obviously, they do not give
mathematical details of calculation are presented in Appeneontribution to the dynamical equations but they will be sig-
dices A and B. nificant when calculating the string potential.
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Variation of the action(2.6) leads to the equations of The density of the canonical momenty{t,r) is defined

motion in a standard way
O u=0 2.7 oL
I(t,r) = —=M3ul(t,r) &(r) , 2.1

and boundary conditions piL.r) aul o (t.r) &(r) 217

— M2y _ . . . . L . .

mu=Mgu’, r=0, (28 in which L is the Lagrangian density in actid@.6). Obvi-
. 5, ously, in the problem under consideration, we can assume
mu=-Mgu’, r=R, (2.9 that the total momentum of the string with massive ends

L vanishes:
whered = g%/ 9t>— 3%/ 9r?> and we assume for simplicity that

m; =m,=m. The case of arbitrary quark masses will be con- _ R _
sidered in our publicatiop19]. Pl(t)zf dr p'(t,r)=0. (2.18
General solution to the boundary value probl¢Eys. 0

2.7—(2.9] is given b
(20291 g Y The canonical Hamiltonian is defined by

j -
ul(t,r) o Ogoexq lwt] Un(r), =fRdr[p(t,r)U(t,r)—L]
0

j=1,2,...D-2. (2.10
_ 0 12 12
Amplitudesa,, satisfy the usual rule of complex conjugation = TL dr fu(t,ne(n+u=(tn]. (219
c_z:;:a_n. The eigenfunctionsi,(r) in Eq. (2.10 are de-
fined by In terms of the amplitudes’,, it reads
(1) =Ny oS )~ o sin(war) |, (2.1 -
Un(r)=Np cogwnl)— —= SiN(w,r) |, . 1 . ) )
Mg 2;1 Z (a Jn+-i-aln+ al) . (2.20

whereN,’s are the normalization constants
In guantum theoryu!(t,r) and its conjugate momentum

m R m?ew2)\ | ? j . ; .
2_ R n 14 pl(t,r) become operators with canonical commutation rela-
Nn [W‘F 2 1+_|V|é ) , N _1,_2, e tions
(2.12 _ _ .
: : : , [u't,), pl(tr)] =i 6 o(r=r"). (22D
The eigenfrequencies,, are the roots of the trigonometric
equation This implies that the Fourier coefficients become operators
2mM and satisfy the relations
~Mg [an, ah]=ond) 81imo, (2.22

On the o axis these roots are placed symmetrically

around zero. Hence, they can be numbered in the following hj=1,...Db-2, nm=*1x2....

way: w_,=—w,, h=1,2,.... Therefore, it will be suffi- . N )
cient to consider only the posmve roots. The eigenfunction +The creation and annihilation operators in Fock space
un(r) obeys the orthogonality conditions a, anda, are introduced in the usual way
R - j j i+
f dr Un(F) Un(r) &(F)=Sum, (2.14 Vonah, af'=Jena", (223
0
[a,al " 1=68 8ym, NM=12,.... (229

where the weight functior(r) is given by

m In terms of them, the Hamiltoniaf2.19 takes the form
s(r)=1+W[8(r)+5(R—r)] . (2.15
0

o D=2 D—2 o
. | | _ =2 X wpal at——> w,. (229
It is interesting to note that the functions,(r) satisfy the n=1 j=1 2 q=1
usual orthogonality conditions
The last term in Eq.2.25 is the usual Casimir energy
[16,17. When calculating the interquark potential generated
by string this term gives the lscher correction14,15 (the
first quantum correction to the classical, linearly rising po-
where the eigenfrequencies, are solutions of Eq(2.13. tential.

f:dr U (1) U’ m(r)= o2 Sym, (2.16
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Substituting Eq.(3.7) in Eqg. (3.1) and carrying out the
functional integration, we arrive at the result

In this section we shall investigate the interquark potential 2

generated by a string with massive ends via perturbation cal- (R)=M2R+ >, m,+
a=1

culations. We define the string potenti&lR) in terms of the
functional integral in a standard wd$,7-9:

exd — B V(R)]=f [Dulexp{—STul}, B—=,
(3.2)

where 8 is inverse temperature ar8f[u] is an Euclidean
version of the actiori2.1) calculated for finite “time” inter-
val 0<t<<f. As usual, the dynamical variablaét,r) should
satisfy periodic conditions in the time variaklile

u(t,r)=u(t+8,r) . (3.2

25 Trin(—=A) ,

B—o .
(3.9

Here, we have exactly taken into account the number of the
field variablesu!(t,r), j=1,2,...,D—2. Therefore, the
operator (- A) in Eq. (3.8) should be assumed now to act on
the scalar function obeying conditiof3.2) and(3.5), (3.6).
In addition, the known property of the functional determi-
nants Tr In-a A)=Tr In(—A), wherea being an arbitrary
constanf20], has been used.

For calculating the functional trace in E@.8) the eigen-
values of the operator{A) are needed

—A¢rm=Nnm®Pnm- (3.9

In this section we confine ourselves to the one-loop ap-

proximation for interquark potential. Therefor&? in Eq.
(3.1) should be substituted by its quadratic ﬁt By anal-
ogy with Eq.(2.6), we obtain

M2 (8 (R .
_ 2 0 2 12
sg_MoﬁR+—2 fodtfodr[u (t,r)+u'?(t,r)]

2 2
m, (B .
+ﬁ2 ma+2 = dt Uz(trra),
a=1 a1 2 Jo

r1=0, r2=R . (33)

Variation of Eq.(3.3 results in the equations of motion

Au=0, (3.4

and boundary conditions
m,l=—M3u’, (3.9
m,l=M3u’, (3.6)

whereA = g%/dt2+ 92/ 9r? is two-dimensional Laplacian. As
one would expect, Eq93.4—(3.6) are deduced from Eq.
(2.7—-(2.9 through formal substitution dof by it.

Functional integration should be done over the functions

u(t,r) obeying periodicity condition int [Eg. (3.2)] and
boundary condition$3.5) and (3.6). In this case, after inte-
grating by parts, actio3.3) can be written in the form

2
SE=M3BR+ B>, m,
a=1

M2 (s (R
+70f0 dtj0 dr u(t,r)(=A)u(t,r) . (3.9

Thus, by imposing the boundary conditiof&5) and (3.6)
on functionsu(t,r) we remove the contributions, propor-
tional to thes functions, toSh of the pointlike masses at the

string ends. Now, effects of these masses are taken into ac-

count through the boundary conditiof®.5 and (3.6) and
ultimately through the string eigenfrequencies.

Eigenfunctione,,(t,r) must satisfy the periodicity condi-
tion (3.2) and boundary condition®.5) and(3.6). However,
when determining the eigenvaluas,,, in Eq. (3.9 these
boundary conditions prove to be awkward. With allowance
for the equations of motio(8.4) we transform Eqs(3.5) and
(3.6) to the form

M2u’, r=R

' (3.10

New boundary condition$3.10 evidently give rise to the
same Eq(2.13 for string eigenfrequencies.

Eigenfunctions of the operator(A) satisfying periodic-
ity condition (3.2) and boundary condition§.10 have the
form

mu"=M3u’, r=0; myu’'=—

(3.11)

Enm(t,r)= emntum(r) )

where Q,=2mn/B, n=0,£1,+2,... are theMatsubara
frequencies following from the periodicity conditiai3.2),
anduy(r), m=1,2,... are defined in Eq$2.11)—(2.13.
Substituting Eq(3.12) in Eq. (3.9), we obtain
n=0,£1,=2,... m=

Anm= Q2+ 02, 1,2, .

312

Now, we calculate the functional trace in E.9):

2mn

B

2
2
+ o

Trin(=A)= > > In

n=-o m=1

+ oo 00

> 21 In[(27n)%+ B2w?] . (3.13

n=-—o m=

Summation over the Matsubara frequencies in(Bdl3 can

be accomplished by making use of the known metH@ds
One of them is presented in Appendix A. As a result, we
obtain

Trin(-8)=23, %Hn(l—e*ﬁ“’m) . (3.14
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Substituting Eq.(3.14 in Eq. (3.8) and taking the limit f(w)=2mM3w cof wR)— (M2w?—M$) sifwR)=0.
B—x, the final formula for the potential (R) assumes the (3.19
form

2 o Substituting Eq(3.19 in Eq. (3.18, we deduce
) D-2
V(R)=MZR+ > my+ —— > on. (3.19
a=1 2 m=1

1 d
Ec(m)=— f;; o do——[Inf(w)], (3.20
Thus, the first quantum correction to the string potential is ¢ Ami Jc do

the Casimir energy for the string with given boundary con-
ditions. Certainly, we could, at the very beginning, obtain
Eq. (3.15 proceeding from the energy of the string found in
the preceding sectidisee Eq(2.25]. We gave here detailed
derivation of Eq.(3.19 by making use of the functional
integration technique because many points of this conside
ation will be used while investigating the string potential in
the limit D—co (see next section

Let us turn to calculation of the Casimir energy of the
string entering Eq(3.195:

where countelC encloses the real positive semiaxis where
the roots of Eq(3.19 are placed. As the functiof(w) in

Eqg. (3.19 has no singularities on the right half plane, the
counterC can be transformed into a semicircle with radius
'A and the segment of the imaginary axisi(A, iA). At any
finite A, the counter integral in Eq3.20 is finite. Therefore,
this integral can be treated as a regularized value of
ESYm,R). We have noted here exact dependencg@bn

the length of the stringr (distance between quanks

1.7 To carry out the renormalization of the Casimir energy we
Ec==> . (3.1  Must, as usudll6,17,23, subtract fromEEYm,R) the value
231 of this energy aR—:

Obviously, this sum diverges and to obtain finite physical
value of this energy, regularization and following renormal-
ization are needed. For simplicity, the case of equal quark
massesn; = m,=m will be treated further. The general case Contribution to the finite (renormalizedd value of

my#m, will be investigated in our forthcoming publication E[:en(m,R) gives 0n|y the integra| a|ong the imaginary axis in
[19]. Eq. (3.20. This will be seen from the final result. Therefore,

The Casimir energy3.16 is a function of quark mass e confine ourselves to the integral along the imaginary axes
Ec(m) and for two limiting valuesn= (immobile quark$  ijn complex planew:

andm=0 (free ends of the stringt can be calculated easily
by making use of the Riemann zeta-function renormaliza-

S(m,R)=EZYm,R)—EZAM,R—)|, ... (3.2)

tion. Whenm=« andm=0, the frequency equatiof2.13 re __ LJA 2
givesw,=nw/R, n=1,2, ... . The corresponding Casimir Ec{mR) A ,Ay dy{in[2mMoy cosiyR)
energy is o
+(m?y?+Mg)sinh(yR)]}". (3.22
_ _ _ _ r ” _ T _ v
Ec(m=o)=Ec(m=0)= ﬁzl n= ﬁg(_ 1)=- 24R Integrating by parts and dropping the terms outside the inte-

(3.17  gral (formally they vanish, we arrive at the formula

The renormalized Casimir energy at finite value of 1 (A

Ec(m), should satisfy these limiting conditions. This re- E[?g(m,R)zz—f dyIn[ZmMSy coshyR)
quirement, as will be shown below, determines subtraction Tlo

procedure uniquely. +(my2+ Mé)sinr(yR)] _ (3.23

To sum over the string eigenfrequencies in 2116 we
use the following integral formula from the complex analysis
[22]. Let us consider an analytical functidfw) with zeros  In order to renormaliz&S° we must subtract from E¢3.23
of order ny at pointsw=w, and with poles of ordep, at  the asymptotic oECY whenR—o:
points w=®, in a region bounded by a conto@. From
Cauchy’s theorem it follows that 1 (A
re —voo)= — YR 2\2 . .

L ) 1 | ESYm,R—) wao dy In[e"Y(my+M§)4/2] (3.29

ﬁ e do o f(—w)_ﬁ %C do o [Inf(w)]
Substituting Eqs(3.23 and(3.24) into Eq.(3.21), we obtain
:E nkwk_z P& . (318 renormalized Casimir energy
k |

In order to get rid of the poles in E43.18 we rewrite the lin Ref. [24] other subtraction procedures have been considered
frequency equatio2.13) in the form which satisfy condition(3.17) only atm=cc.
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1 (= my—M3) 2
re — _ a— 2Ry
EC"(m,R) wao dyln[l e myTM%
2
- _a—2x 71
5 R deln[l e s ,

(3.2

whereq is a dimensionless parametgr= M3R/m. Analysis

of integrand in Eq(3.25 shows that integral along the semi-
circle of radiusA, that has been discarded above, actually
vanishes whenA—«. One can easily convince that
ES'(m,R) obeys limiting conditiong3.17):

ES(m=0R)=E£(m=x,R)

q:MozR/m

0.0

LALLL e  n Ra e e R U T

1 (- 0001 01 10 1000
=—f dy In(1—e 2RY)
2 0 y
FIG. 1. Functionn(q) [see definition(3.29] describes the ef-

ar fect of the finite quark mass on the value of thésther term in
=TSR (3.26  string potential.

Subtraction of divergent ak—o contribution(3.24) is in-  gion q~0.2, it is dropped to~0.2. If one assumes that the
terpreted as a transition to physical values of string tensiostring length is of the order of the Compton wavelength of
MS and quark masses, in Eq. (3.15. For simplicity, we  quark R~ m~1, then the maximal alteration of the &cher
will not introduce any new notation for renormalized param-term happens at the quark mass-2.2M,, i.e., for suffi-
eters of the model. The final formula for the interquark po-ciently heavy quarksin string modelsM~0.4 GeV).

tential derived in the one-loop approximation reads

IV. VARIATIONAL ESTIMATION OF THE STRING

V(R)=M3R+(D—2)EETm,R) , (3.27 POTENTIAL

where EC'(m,R) is determined in Eq(3.25. The constant In the preceding section the string potential has been cal-
2m, giving the rest energy of quarks, has been dropped irulated in the one-loop approximation by using the perturba-
this formula. tive theory for an arbitrary dimension of space-tibe Oth-

It is natural to compare E(3.27) with the one-loop in-  erwise, this potential can be investigated in the liBit> o
terquark potential generated by string with fixed eptls by making use of the variational estimation of the functional

(D-2) integral[1,4-9.
fixed, oy — p 2 Lo )T Let us turn to the initial Eq(3.1) determining the string
VIR =MgR 24R (3.28 potential

The last term here is the universaldaher term independent

of the concrete form of the string action but calculated for e*BV(REJ [Du] exp{—SP[ul}, B—=, (4.0
fixed ends of the strin§14,15. A clear picture of the quark

mass influence on the string potential in any given approxi- _ ) )

mation provides the ratio dE''(m,R) to the Lischer term  WhereS’ is the Euclidean action

in Eq. (3.28, i.e., toES(m==,R). This ratio depends only

on the dimensionless parametgr M3R/m and is given by o P (R Jde(3 Tau
the formulé Sﬁ[u]—MO Odt Odr de(éij-h?iu &ju)
ES(m,R) 12 (= q—x\2 2 B .
- - 7 —2x 2
D= o me )~ 2), XML gk +a§=‘,l m, | dt VI+ui(tra), 4.2
(3.29
Deviation of 5(q) from 1 characterizes the contribution of 1,j=01, r;=0, r=R.

the quark masses to the first quantum correction to the string
potential. The functiory(q) is plotted in Fig. 1. In the re- The 1/(D—2) expansion is carried out in a standard Way
Let us introduce the composite fietd; for d;u J;u and con-
strainoj; = d;u d;u through the Lagrange multiplier”. By
%In Ref. [25] other subtraction procedure has been used in theusing the exponential parametrization of #éunction, with
model under consideration and as a result the formulazfar) the understanding that the’ functional integrals run from
obtained there does not coincide with £g.29. —io to +io, Egs.(4.1) and(4.2 become
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e AVR= J [Dul[Da][Dolexp— S u,a,0l}, B,

4.3
where
M3 (8 (R
S’B[U,CY,O']ZTJ dtf dr[Z\de(5|J+O'|])
0 0
+aij(&iu (?J'U_O'ij)]
2
B -
+> my | dtVi+uR(t,ry),
a=1 0
i,j :0,1, r]_:O, I‘2=R . (44)
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this end, we again transform boundary conditi¢a$) and
(4.7) taking here into account E@4.5):

m;

u"=M3au’, r=0;
\1+O'0
m; 2.0
u'=—Mga“u’, r=R. (4.9
\/1+0’O 0

Equations of motion4.5 with boundary conditiong4.6),
(4.7), or (4.9 result in the same frequency equation

. R) ZmW)w
a =,
e mzwz_M(Z)

(4.10

Further, the 1/p —2) expansion is constructed in the follow- \ynere M_g:ao\/1+—oo MS- One can be easily convinced

ing way [1]. Functional integral over string coordinatesn
Eqg. (4.3 can be done exactly as acti¢h.4) is quadratic in

u. Functional integrals ovee'! and gjj are estimated by
making use of the variational method, the stationary values

of these functional variables being given by constamde-
pendent ont and r) diagonal matrices o' =46"a’,
gjj= 6o (no summation ovey).

When integrating oveu in Eq. (4.3), we have to take into
account the quark contribution to acti¢f4). As in the pre-
ceding section, we do this by imposing ancorresponding
boundary conditions. Variation of actigd.4) with respect to
string coordinates results in the equations of motion

(4.9

A u= i+ atu"=0,
and boundary conditions

my

u=-M3a'u’, r=0, (4.6

:

1+O’0

m;
\/1+ 0o

We require that the functional variablest,r) in Egs. (4.3
and (4.4) satisfy the boundary condition&.6) and (4.7).
Then, integrating by parts in the second term in ), we
can present actioB’[u,a, o] in the form

u=M3a'u’, r=R.

(4.7

M2
Flu,a,0]= TOJBdtJRdr u(—A,u
0 0

+M3B R[ VA +0p)(1+0;)

, 4.9

- E(aoao—i- aloy)

where operatoq , is defined in Eq(4.5). Thus, we arrive at

the action exactly quadratic in the transverse string coordi- 90~ — M2Ra® V o Ec"‘ZTMOR % 9a%"’

natesu(t,r). Functional integration oveu in Egs. (4.3 and
(4.8) gives standard contribution

trace the eigenvalues of the operaterX,) are needed. To

to effective action
[(D—2)/2] Tr In(—A,). In order to calculate this functional

that the eigenvalues, of the operator - A ,) with bound-
ary conditions(4.9) are given by

27\ 2
A= aO(T + alwﬁ,

n=0+1,+2 ..., k=12, ..., (4.11)

where w, are the positive roots of Eq4.10. Using Egs.
(3.13 and(3.14), we obtain

i 1 | 1 o [a

where E¢c=(1/2)2_,wy is the Casimir energy for the fre-
guency equatiori4.10. Now, E. obviously depends on the
variational parametera® and o,. Finally, effective action
that should be varied with respect #d, o;, i=0,1 as-
sumes the form

SIB=MS,BR V(1+og) (1+0y)— % (a%oo+ ato)

al
+,8(D—2)\/ZOEC.

For calculatingec, formula(3.25 should be used with sub-
stitution of M2 by M2. Variation of Eq.(4.13 results in the

(4.13

equations
[1+o, D-2 [a® 9E¢
0_ + —\— — .
o 1+0_0 M%R 0(0 F7(TQ ’ (4 14)
1+0'0
1:
a =1/ Tro,’ (4.15
D-2 /at D-2 [a'oEc
(4.1
D-2 Ec
(X MSR aoal . (417)
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V(p) /Mo
1.0 A
pu=1.15, 10.0, 100.0, 0.3, 0.05
0.5 A
0.0 \ 1
0.2 0.7 1.2

FIG. 2. The dimensionless interquark potentglp)/M, as a
function of p=MyR is shown at different values of the ratio
w=m/Mg. All the curves start at the points oraxis presenting the
value of p. at given u. The left- most curve correspond to the
minimal value ofp. (see Fig. 3 When p—« the curves tend
towards the linearly rising potenti®(p) ~MZp. Dashed curve pre-
sents the interquark potential generated by string with fieedree
ends. Whenu tends to infinity or to zero, the potential curves
calculated by the formulé.22 approach the dashed one.

Now, we use simplifying assumption that enables us to write

the solutions to Eqgs(4.14—(4.17) in an analytical form.
When calculating the Casimir energy, we puta®=1 and
oo=0. The limits of applicability of this approximation are
discussed in Appendix B. Omitting terms widlk/do and
9Ec/da® in Egs.(4.14 and (4.16, we arrive at the equa-
tions[1] solution of which is given by

a®=1-2\ , (4.18
! ! (4.19
o= s .
1-2\
__> 4.2
Uo—m, (4.20
0'1:_}\ , (42])

whereh=—(D—2) EC/(MSR), the Casimir energ¥ be-
ing defined in Eq(3.25.

Calculating the action4.13 on the solutions(4.18-
(4.22), we arrive at the final expression for the string poten-

tial:
V(R)= MSR\/

In Fig. 2 the dimensionless string potenti&lR)/M is plot-
ted as a function of the dimensionless distapeeM R for
different values of ratiqu=m/M. For the chosen symmetri-
cal quark configuratiorm;=m,=m, the Casimir energy
Ec(m,R) remains negative(see the preceding section
Therefore, Eq.(4.22 has sense only at such values Rf
when

14+ 2072 o (MR)
s R) .
M2R

(4.22

V. NESTERENKO

pe(rt)
0.8 -
072 |
0.6 -
0.4 -
pu=m /M,
0,2 T T LELRRLLL] T ANRLELRRLLL] LA RUSRLLLY T
0.01 0.1 1 10 100 1000 10000

FIG. 3. The critical radiusp.=M¢R, of the string potential is
presented as a function of the dimensionless quark mass
pm=m/My. Whenu tends to infinity or to zerop.(«) approaches
the critical radius of the potential generated by string with figed
free) ends p™®?=0.72. The plot indicates that even for heavy
quarks with u=10? (region of the top quark magsthe critical
radius of the potential generated by a string with massive ends
significantly differs from the limiting valug™.

2(D-2)

M3R

= Ec(m,R) . (4.23

Equality to zero of the radicand in E¢}.22) determines the
critical radiusR; of the string potential. In the case of the
infinitely heavy quarks, it is given b R.= \7/6=0.72

(for D=4). Figure 3 presents the dependence of the dimen-
sionless critical radiup,=R;/M on the ratiou=m/M,.
This plot shows that account of the finite quark masses re-
sults in reducing the critical radius. For a given quark mass
configuration,m;=m,=m, the minimal value £0.31) of

pc is reached ap=1.15. If we take as usu@l;=0.4 GeV
thenm=0.5 GeV.

V. QUARK MASS CORRECTIONS TO THE RIGID
STRING POTENTIAL

In this section we calculate the quark mass corrections to
the one-loop interquark potential in the framework of the
rigid string model[5,26]. As is known, this model can be
treated as an effective one, taking into account the finite
thickness of gluonic tubg27,2§. The basic aim of this cal-
culation is to show the principal applicability of the proposed
method to the rigid string model with massive ends. Varia-
tional estimation of the interquark potential in the framework
of this model will be published elsewhere.

The Polyakov-Kleinert action for a rigid string with mas-
sive ends has the forfib,26]

S= —MSJ Ldi{ 1- g r2 (AL _gx*) (AL _gX,)

(5.7

2
_E maJ dsav
a=1 Ca
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where the new parameterg and « are, respectively, the and
radius of gluonic tube and a dimensionless constapt;g is

the Laplace-Beltrami operator for the induced megicon (1+ar20) u,=0 (5.13
the string world sheet s ’

Uy(t,0)=u,(t,R)=0. (5.19
_ 1 4 \/_ i 9
BT /_—g %" 99 agl (52 In this case,u,(t,r) is the solution to the Nambu-Goto
string with massive ends that we have analyzed in Sec. Il.
In the Gauss parametrizatid@.2), the operatof5.2), up to ~ The string rigidity is taken into account by function
the second order in, can be written as u,(t,r). The general solution to Eq5.13 obeying Eq.
(5.19 can be presented as
AL,BZD“FO(UZ) y (53) .
_ — B
whered = §%/9t?— 9%/ or2. Now action(5.1) reads uL(t,r)= > exdiv, t] vn(r),
\/E MO n£0
1., 1, 5 )
S=-M j dtf dr 1—§u +2 ’+ (Du) ji=12,...D-2. (5.19
ty

2 m, The eigenfunctions ,(r) are given by
-> TL dt u3(t,ry), r;=0, r,=R. (5.4
1

a=1

2 r
. . o va(r)=— an\ﬁSin<nﬂ'—), n=12,... .
The equations of motion and boundary conditions for the R R
action (5.4) are (5.19

For the natural frequencies, in Eq. (5.15, we have

(14ar20) 0 u=0, (5.5
nm\? 1
m Vn=— V_p= ﬁ +—2, n=1,2, e (517)
(1+ar20) W=t i, r=0, (5.6 als
0 .
The amplitudesg!, satisfy the usual relations of complex
conjugationg} =8_,, n=1,2,... .
m no . .
(1+a rg )u'=——U, r=R, (5.7) The Hamiltonian formulation of the model under consid-
M3 eration is developed in the following way. According to Os-
trogradsky[ 29,30, the canonical variables are defined by
Ou=0, r=0R, (5.8
o . : gi=u, ab=u, (5.18
(m;=m,=m). The Lagrangian in the actiofb.4) depends
on the first and the second derivatives of the string coordi-
nates, therefore the number of derived boundary conditions j aL j j aL
is twice compared with those of the Nambu-Goto string. pFﬁ - P2, p2=£ : (5.19
The boundary value problefigs.(5.5—(5.8)] reduces to
two independent ones. Indeed, equations of motion are given
by the product of commuting differential operators ji=1,2,...,D-2,
1+ «a r§ [0) and . Hence, the general solution to this _ _ o _
equation can be represented as a sum of two terms wherelL is the Lagrangian density in actiab.4):
u(t,r)=uq(t,r)+uy(t,r) (5.9 M3 .
’ ne 2 ' L=—[e(r) w—u'?—ar2(0uw?. (5.20
where

Weight functione(r) was determined in Eq2.15. Putting
O u;=0, (5.10 L and Eq.(5.9 into Egs.(5.18 and (5.19 and taking into
account Egs(5.10 and(5.13, one obtains

(5.11 Qi=U; + Uy, Qp=U;+Uy, (5.21
pi=MZ[e(n+ar20]u,

u':—“ s r:R, 5.1
1=z s (512 D= — a2 M2 0 u=M2 u,. (5.22
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The canonical Hamiltonian is defined by 8 R 1
=M f dtf drjl+5u(l-a r2A) (—Au

R . .
H=f0 dr [p1d;+p202—L] . (5.23 (5.29

We have integrated here by parts and taken into account the
boundary conditions. As in Sec. IV, the boundary terms in

In terms of Fourier amplitudes it becomes

12 D2 action(5.4) will be taken into account by finding the proper
— 2 2 (aniar+atan) eigenvalues of the corresponding differential operators.
2 =1 j=1 ol e After functional integration, the potential takes the form
o D-2
- 2 2 (BuiButBaib) - (524 D-2
245 =y TNEN PmEe ' V(R)=MjR+ ——— o5 IN[(1—arfA)(—A)], B—oe.
The quantum theory is based on the canonical commuta- (5.30

tion relations Now, we turn to the calculation of the functional trace in Eq.

[ul(t,r), phit,r')]=i Sap SV8(r—r"), (5.30:

a=12, i,j=12,...D-2, (529  Trin[(1—ar2A)(—A)]=Trin(1—ar2A)+Trin(—A) ,
(5.3

provided that the operator elargA) should be supple-
mented by the boundary conditiofs.14) and the operator
(—A) by Eq.(3.10. Analogously, with the calculations in
Sec. lll, we obtain

or in terms of the Fourier amplitudes
[ain 1a£n]:wn 5” 5n+m,0|
[,BinuBJ;n]:Vn s On+mo, NM==1+2... . (526

By introducing, in standard way, the annihilation and cre-
ation operators

V(R)=M3 R+ ( 2 Wt 2 Vk), (5.32
alr|:(wn)7l/2 a'ln: alr1+:(wn) 12 an )

wherew, are the eigenfrequencies of the Nambu-Goto string
with massive end$2.13 and v, are the string frequencies
responsible for its rigidityfsee Eq.(5.17)]. The last term in
Eq. (5.32 has, in contrast to Eq5.28), a positive sign. As

bl=(vy) Y28, bl =) Y2BL", (5.27)

n=12,..., i,j=12,...D-2, was mentioned above, it means that the formalism applied
here effectively uses quantum states with negative norm to
the Hamiltonian operata(5.24 acquires the form describe the string excitations with frequencigs. The
renormalized value of the first sum in E&.32), the Casimir
* p-2 =» Db-2 energy of the Nambu-Goto string with massive ends, was
H=> w,> a"a—-> v,> b bl derived in Sec. Il[see Eq(3.25]. Now, we have to calcu-
n=1 j=1 n=1 =1 late only the second sum in E€5.32 which is the Casimir
D—2 [~ o energy due to the string oscillations with “rigidity” frequen-
— 2 . — 2 v (5.28 cies
2 n=1 n n=1 "
The last two terms in E(5.28 define the Casimir energy in Erigid_ e
the model under consideratidB1]. It is important to note c E n= 2|:zE €, (5.33

that the second oscillation mode with frequencigs re-

sponsible for the string rigidity, gives a negative contributionwhere the dimensionless parameter is given by

to the energy as Compared with the oscillation of the ﬁl'Stez—RZ/(aSﬂ- ) This sum has been considered in many
mode with frequencies, . This is also true for the Casimir problems(see, for example]31,35,36). Therefore, we di-

energy[see the last two terms in E¢5.28)]. It is a direct  rectly use its finite value which is obtained by subtracting the
consequence of the classical expression for the total energshalogous contribution of the infinite string

in the rigid string mode(5.24). We point out that this defect
is typical in all the theories with higher derivatives. To re- o
move it, certainly in the formal way only, the quantum states prigid_ _ € Ki(27ne) (5.3
with negative norm are sometimes u§é@—34. ¢ 2R=1 n ' '
Now, we calculate the rigid string potential in the one-
loop approximation. Again, we shall treat the Euclidean verwhereK;(z) is the modified Bessel functidrd7].
sion of the model under consideration. Finally, the one-loop interquark potential generated by
The interquark potential is given by E3.1) with the  Polyakov-Kleinert rigid string with massive ends has the
Euclidean actiont(=0, t,= ) form
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£(e)

1.0 ~
0.8 A
0.6
0.4 A
0.2 1

e=R/(a'*mr,)

0.0 =T L UNREL AL B R R LT I
0.0001 OOOI 0.01 0.1 1 10

FIG. 4. Functioné(e) [see definition(5.36)] presents the con-

obtained results indicate that the correction to the potential
due to the finite quark masses turns out to be considerable
both in the one-loop approximation and through the varia-
tional estimation of the string functional integral. The exten-
sion of the proposed method for investigating the model of
the relativistic string with massive ends at finite temperature
is of undoubted interest.

Finally, the following should be noted. In our approach
only transverse vibrations of the string and its massive ends
have been considered at fixed string length. Therefore, we
have calculated really the contribution of the finite quark
masses to the statical part of the interquark potential. Obvi-
ously, the longitudinal motions of the string and quarks at its
ends also will give contribution to the string potential. But
this problem is beyond the scope of our paper.
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APPENDIX A: SUMMATION OVER THE MATSUBARA
FREQUENCIES

Here, we show how to cast E¢3.13 into Eq. (3.19
summing over the Matsubara frequencies. We shall proceed
from the known representation of the entire function giimh
terms of the infinite produdt37]

. Z_Zﬁ L v AL
SNy = 20y | 1 2z - (AD

of this function is presented in Fig. 4. It shows that, for any

value ofe the contribution of the string rigidity to interquark
potential does not exceed, in absolute value, thecher
term.

VI. CONCLUSION

Taking the logarithm of both sides of this equation, we ob-
tain

Vi z
m =In(eZ—1)—Inz— E . (AZ)

> Inl 1+
n=1

In this paper we have developed a consistent method for
calculating the interquark potential generated by relativistidNow, the sum over the Matsubara frequencies in BdL3),

string with pointlike masse@pinless quarksat its ends. The

o0

> In[(27n)2+ ﬂzw;]=221 In

n=—oo

2 2

I

in view of Eqg.(A2), can be rewritten as

©

m +4Z1 In(27Nn) + 2In( Bwy,)

=2In(efom—1) —ﬁwm+421 In(27n) = 2In(1— e~ Am) +me+4zl In(27n) . (A3)

The last divergent term in EQA3) should be dropped because after dividing ®ysee Eq.(3.8)] and taking the limit
B— o, it vanishes. In view of this, Eq3.13 transforms to Eq(3.14).
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APPENDIX B: ANALYSIS OF APPROXIMATION a®=1. In fact, proceeding from the definitiof8.29, we
USED FOR CONSTRUCTING THE SOLUTION obtain
TO VARIATIONAL EQUATIONS
: N . m(D—-2)
Here, we consider the approximations which have been o= n(q)m . (B1)
0

done for obtaining the solutiong.18—(4.21) to variational
equationg4.14—(4.17).

From boundary condition&t.6) and(4.7), it follows that
the dependence & on o takes actually into account rela-
tivistic corrections in dynamical equations describing the
motion of quarks. Therefore, putting in EG.6) and (4.7)

String model claims the description of the interquark poten-
tial at distances whemM R~1. Analysis of the function
7(q) in Sec. lll shows thal»(q)|<1. Hence, foD =4 we
infer from Eq.(B1)

oo=0, we restrict ourselves to nonrelativistic description of o1~ — 7(q)/4~—0.25 . (B2)
the quark dynamics. This is admissible for sufficiently heavy
quarks. _ o _ ~ In view of this and Eqs(4.18 and (4.21), we obtain
The next assumption consists in setting, under calculation
of Ec¢, a’=1 and neglecting the last term in EG.16). a’=\1+0,~0.9, (B3)

Having done this approximation, we directly obtain solutions
(4.18—(4.21). Let us show that this solution leads to estima-which is in a fairly good agreement with our initial assump-
tion of a° that agrees fairly well with the initial assumption tion a®=1.
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