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The renormalization groupRG) is used to study the asymptotically frd% theory in curved spacetime.
Several forms of the RG equations for the effective potential are formulated. By solving these equations we
obtain the one-loop effective potential as well as its explicit forms in the case of strong gravitational fields and
strong scalar fields. Using-function techniques, the one-loop vacuum energy and corresponding RG-
improved vacuum energy are found for the Kaluza-Klein backgrolRfdsS'x S and R*x S2. They are
given in terms of exponentially convergent series, appropriate for numerical calculations. A study of these
vacuum energies as a function of compactification lengths and other couplings shows that spontaneous com-
pactification can be qualitatively different when the RG-improved energy is (iIS8856-282(96)01420-9

PACS numbegw): 04.62+v, 11.10.Gh

[. INTRODUCTION this theory is given by the fact that it provides a very useful
toy model for the study of string field theopt], where also
The renormalization groupRG) has long been used to higher-dimensional interactions of ty@e are known to ap-
“improve” loop corrections in perturbative quantum field pear.
theory. Gell-Mann and Low1] first used it to study the From another side, such a model is the simplest example
asymptotic behavior of Green’s functions and in the classi®f a renormalizable Kaluza-Klein theory. In particular, being
work of Coleman and Weinberf2] the RG equation was Still in six dimensions one could also consider more compli-
used to improve the effective potential and to study sponta¢@ted higher-derivative models of the following sort:
neous symmetry breaking. This is just one of the many dif-
ferent applications that the RG has had in quantum field
:EZO%QSE Ct?gélgr’] Itr:::Sbi?rlr? emgtlgzzgrtg ET:J;[J%\;V?; Iltrr:]igs OnwhereGEGf‘w is the field strength corresponding to the six-

paper we put it to use in a renormalizable Kaluza—KIeind'mens'onal gauge field. When trying to understand the

. : .. question of whether renormalizable Kaluza-Klein theories
model, arguing that RG improvements are necessary if sta:

bility of the internal dimensions are to be correctly predicted..o lead to consequences that are different to some extent
ty yp ‘from the ones coming from nonrenormalizable theories, it is

We will also develop the RG technique in order to study the, ..\ .o1 1o start from the simplest model of this kind.

scalar effective potential in this model. Note that, as it usu- \ye start in Sec. Il using the RG equations to arrive at the
ally happens, in spite of the fact that the Kaluza-Klein mOdelone-Ioop effective potential starting from a classi¢dlsca-
chosen here will be renormalizable, the resulting compactifyy field theory on a six-dimensional curved space. This is a
fied four-dimensional4D) model will not be such, due to the enormalizable theory which is coupled to the curvature ten-
presence of the infinite tower of massive Kaluza-Kleinsor and its square. We additionally use the RG equations to
modes. Our purpose here will be to study the consequenceinid the asymptotic behavior of the effective potential when
of the renormalizability of the higher-dimensional theory, for either the gravitational field is strong or when the scalar field
instance, concerning the spontaneous compactification pajs intense. In Sec. Ill we give the one-loop vacuum energies
tern. for this scalar field on background®*xStx St and
The model that will be studied hefdenoted by¢g) isa  R*xS? We then compute RG improvements to these ener-
renormalizable higher-dimensionéf scalar field theory de- gies. We conclude that qualitative changes have occurred,
fined on a six-dimensional curved spacetime. The interest dfe., minima have disappeared from the vacuum energy and
that Kaluza-Klein stability will be correspondingly affected.
In the conclusions we also mention other possible applica-

L=G3*+GOG+RG, (1)

*Electronic address: eli@ecm.ub.es tions of the RG techniques in the context of Kaluza-Klein
"Electronic address: kantowski@phyast.nhn.uoknor.edu theories, as higher-derivative theories and renormalizable
*Electronic address: sergei@ecm.ub.es theories in the “modern sense.”
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Il. A RENORMALIZABLE SELF-INTERACTING SCALAR a review. From the complete set of one-loop divergences,
THEORY IN D=6 CURVED SPACETIME given explicitly in Ref.[7], there are no problems in writing
As an example of a renormalizable theory in higher_down all running couplmg constants, mcludlmgaﬁo_. To _
dimensional curved spacetime. we consider the action iSaVe space we have listed only those needed in this section.
D=6 P ' Working with the massless version of the the@®y we
use Eq/(3) first to find the effective potential at one loop and
= second to find RG-improved asymptotic forms of this poten-
L=Lm+ Leys

tial. We start by writing the effective action of this theory as

1 1 1 1
Ln= =560+ 5M*¢*+3794°+hd+ 5 6RP%+ mRe
2 2 3! 2 ]":1"|¢:O+f dox\ g+ -, @
+ 773R2¢+ 7]4R,U,VRMV¢+ WSRﬂvaBRﬂvalgd)v (2)
5 5 ) 3 where the first term is the vacuum energy and the second is
Lex= = (A +kR+a R}, 051 apR, +agR*+ 4R the effective potential. Terms that have not been explicitly
n n n . mc!udgd provide nqnco_n_staﬂbt contributions td’". The mul-
QSRR‘Z“’ %RRfZ“’“ﬁ @7RLRGR tiplicative renormalizability of the theory guarantees that the
+agR,,R,,REP+ angRmpaR; " effective action as well as the effective potential satisfy the
P RG equations

+ a10R e REVRPINT),

uvpo
J J J

Here,L,, andL ., are the Lagrangians of matter and external —+ By —— — V=0,

m ext g g M(?,LL B)\i N ’y¢¢0”¢ V=0 (5)

fields, respectively, an@ is a scalar. The Lagrangiaf®) i
represents the generalization to curved space of a renormal- ] ] ]
izable ¢g theory[5]. Such a theory in curved spacetime wasWherey, is they function of the scalar fieldcomputed here
considered a few years ago in RéB-8]. Here, the notation rom L7D):
of Ref. [7] will be adopted. In that reference, a one-loop
analysis was carried out. The form Iof,; in Eq. (2), as well _ 9 ©6)
as of the nonminimal gravitational termslip,, are such as 7¢_12(4w)§'
to make the theory multiplicatively renormalizable in curved
spacetime. We will consider only spacetimes of constant cur- |n order to find the effective potential as an expansion
vature, excluding terms of the formJR, etc., from the over curvature invariants, we will write the classical poten-
Lagrangian (2). Finally, \j={MZ?,g,h,¢, ... a1} are all tial as[its form is clear from Eq(2)]
coupling constants whose dimensionality is clear from the
form of the Lagrangiari2).
One-loop divergences of the mod@) are found in Ref. VO=> v vO=anPieh, (7)
[7]. They yield the following running coupling constartige '

give here their explicit expressions in the massless sector . . :
where thea; are numerical multipliersk;=1 are integers,

2

only):
Y and theP; are curvature invariants. Applying the method
) — 30%t described in Ref[10] (see alsd8]), we can solve the RG
g(t)=g°B (1), B(t)=1+ 20473’ equationg5) for a potential of the forn{7). Restricting our-
selves to one loop and using the tree-level poteriiialas
1 1 boundary condition, we findwe skip technical details
§(t)=§+(§— g)BS/g(t), i ,
1 g°¢ ( b 1 &
V==0g¢’— ———3|In—5— = | +hp+=Re?
()= nBYR ), @) 697 " Taame| M7 3| TR
1 1 1 g° °
_pll _ 494y _ = - —IR 2(In —3)+ R+ n3R?
75(1)=B 8('[)[773 205 8"V 1]+5g(§ 5) aam? (f e) oIz =3 mReF RS
2
1 1\2 2 2 g¢ [ &
X[B7H() -~ 1]+ 5| & g) [B2%t)— 1]}, 1R P E 1R (47)3( 22
1 X 2R2 ! R2 + ! R? 8
74.5(1) =BY(1)| 945t 120\;[84’9(0—1]} 41° 6 360 #¥ 360 ~reh|’ ®
h(t)=hBY41). This is the one-loop effective potential up to terms quadratic

in the curvature. It is clear that this potential is not bounded
It is clear from expressiol3) that the theory is asymptoti- from below (this is the well-known instability of thep3
cally free at high energidgy?(t)— 0], and that it is asymp- theory. This kind of potential is useful for studying six-
totically conformal invariant in the matter sect@ee[9] for ~ dimensional cosmology coupled tod quantum field.
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Another application of the RG equations to the effectivewhere

potential V is to study the asymptotics of the effective po-
tential in curved spacetimel1,8]. The homogeneity condi-
tion of V has the form

V(82t¢ved)\‘t}\i !eiztgaﬁ ’etM) = e6tv(¢!)\i !gaﬁ :/—L): (9)

wheret= const and, is the dimension ok;. Relation(9)
leads to the equations

(9 pmd,+d\ Nidy, + 2434, —6)V (¢, ?gup, . . .)=0,
(10
5
e+ pud,+ dxi)\i&xi—Zgaﬂ@—G
XV(€$,gup, .- .)=0, (11)

54
t -1
A= 1+”T()} . B(0=0,
9ap(t:X)=2A(08ap(t,X),  Gap(0X)=0up(X),
Ni(D) =AM BR, (D) —dx Ni(D)]. (18)

As we see, contrary to what happens with Ed<l) for the
effective couplings, the multiplieA(t) appears on the right-
hand sidgRHS) of Egs.(18). Using arguments similar to the
ones given in Ref[12] (where the procedure to study the
asymptotics of the effective potential in flat spacetime was
developedl one can show that the presenceAgt) does not
influence the asymptotics of the effective couplings. Again,

where the parameters of the potential that are not writtelu€ to the fact that the theory is asymptotically free, it is

explicitly are not scaled. Combining E¢p) with Egs. (10)
and(11), we obtain

[dt—(By,— Ay M) oy,

+(yy+t2)pd,—6IV(h.e %95, ...)=0, (12

1)
o+ (1+ 7¢/2)_1{ _(ﬁxi_dxi)\i)ﬁxi_z%ﬁm_GH

XV(e*$, 0,45, .. .)=0.

The RG equation§12) and(13) describe the asymptotics of
the effective potential. In particular, Wh%5—>972tga5,
R2—e*R?, Eq. (12) gives the asymptotic behavior of the
effective potential in a strong gravitational field. Similarly,
Eq. (13) gives the behavior d¥ in the case of a strong scalar
field. Solving Eq.(12) we get(see alsd11,8))

V(¢veiztgaﬁ 1)\i) = thv(¢(t) rgaﬁ rhi(t))r

(13

Ni(D=8),(D=dy (D), N(0)=N;, (14)

d()=—[2+7,1)]p(1), ¢H(0)=¢.

Selecting the leading coupling constants from E3). and
using Eq.(6), we obtain

V(h,e 2g, 50~ b n3()R*+ na(DRS,

+ 75(DRZ e, (15)

where

B(t)=pe 2B~ VHt). (16)

natural to expect that the asymptotic behavior of the effective
potential is given by the lowest order of perturbation theory,
with the parameters replaced by the corresponding effective
couplings.

Now, since¢(t) = ¢ and the effective curvature is always
small, R(t)~e~?' [see Eq(18)], we get

V(€*¢,gap i) =5 €%g(1) ¢°.

The asymptotic value of the effective potential, in the limit
of strong scalar curvature, is not bounded from below. This
result can be useful for the study of six-dimensional quantum
cosmology near the initial singularity. We conclude this dis-
cussion of the application of RG equations to the effective
potential for the curved spacetingg theory and go on to an
application of the RG equations to the vacuum energy.

(19

lll. THE VACUUM ENERGY IN THE  ¢2 THEORY
ON A KALUZA-KLEIN SPACETIME

Starting from the workg13,14], the vacuum energy of
matter and gravitational fields on spherically compactified
internal spaces was calculated and the process of quantum
spontaneous compactification was studied. For a review and
a list of references of papers on related questions concerning
Kaluza-Klein theories, segl5,9). In particular, in[16—21]
and [22] vacuum energies were evaluated for scalar fields,
etc. (including gravity defined on even-dimensional com-
pactified spaces. In most of these studies only the divergent
parts(in dimensional regularizatiorof the vacuum energies
were evaluated.

Our goal here is to obtain the RG-improved one-loop
vacuum energies corresponding to the the@y on two
Kaluza-Klein backgrounds, namelyR*xS!xS! and
R*x S?, and to investigate the process of spontaneous com-

Thus, the asymptotics of the effective potential in a strongpactification.

gravitational field are defined by the nonminimal interaction

of the scalar with the quadratic curvature invariants. Such

A. R*x S'x S! space

approximations can be useful in studying quantum effects in

the early Universde.g., in the Kaluza-Klein framewoyk
In a similar way, we can solve E@13), with the result

t ~
V(eth)!gaﬁ 1)\i) = EXF{ 6fodt,A(t,):|V(¢!gaﬁ(t)!)\l(t)):
17

At the one-loop level, the vacuum energy is given by

I=31Trin(-O+M?3). (20)

The calculation can be done with the help offunction
regularization(for an introduction, se¢23]). The spectrum
has the form
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277]’12 2
Lo

E(s;a,b,c;q) is the ¢ function introduced and studied in
2D 245

27N\ 2
)\=k§+( 1)

Ly

with X=M?2 here, and the corresponding “Euclideanized”
function is E(s;a,b,c;q)= >, (am?+bmn+cn?+q)~3,

mneZ
1 ©
— —S_ s—1,—At
{e(s) 27\ F(S); fo ditste

Re(s)>1. 23
1 d'k f dts? In th | theorf24] ires th 0, that th
= 4 n the general theorf24], one requires tha,c>0, that the
T(S)im, J (2m)7Jo discriminant
2mn,\2 [2mn,\?

Xexp{— K2+ 7LT 1) +< 7LT 2) +XH , |2

! 2 A=4ac—b2=< ) >0, (24)
1 Lilo

T 4(2m)25D(s—1)(s-2)
2—s
+E

and thatam?+bmn+cn?+q#0, for all mne Z. These
conditions are all satisfied in this case. The analytic continu-
ation[25] of this ¢ function is

S o
a, /& o1
\/; 2 qA) k§=:1k

1/4—s/2

X

] —2 2. X
4—71_2 S—Z,Ll ,O,L2 ,4—772 . (22)

|
2mqlt™S 4

1/4
P H, 9 s—1/2 \ﬁ
N T () (r) 2K ”(”k

47rk\/ \[(277) E ks~ mcos{wkb/a); di-2s
wk 4aq
XKg_1/2 = A+? .

This explicit form(25) and its derivativégiven below appeared for the first time {125]. It is remarkable that the only simple
pole (s=1) is so explicit in Eqg.(25). This expression also has excellent convergence properties, in fact, forgaige

E(s;a,b,c;q)=—q"°

XKg-1

i

(29

convergence behavior of the series of Bessel functions is at least exponential. Particular vaeesfion=0,1,2,3, ... are
20 qn+l
E(—n;a,b,c;q)=—q" —m\/x, (26)
and
E(—n;a,b,c;0)=0. (27)
For the corresponding derivative at zero we have
E’'(0:a,b C'q)=—Ziq 1+2 a Ing—2In(1— 2”@5)+4\ﬁ§, n~K 4n7-r\/ﬂ
A4, M, L, \/Z \/K an:]_ 1 A
- mn 4aq\ "’
+4 nflcos/\nwb/a); dexp{——(AJr —2> 1 (28)
n=1 dln a d
and, in general, fos=—-n, n=0,1,2,3,. . .,
+1
E'(—n:a,b,c;q)=— 2mq" +qn| 1+ 2mq ) (_1)n g2+ Vagni2-1/4
B (n+1)%JA (n+1)VA "
o q q (n+1)/2 3 aq
XE kinil/ZKnJrl/z 27Tk\/: +2*I"I —_ AnIZE kinilKrH,l 47Tk —
k=1 a a k=1 VA
2 n+1/2 *®

2 k=" 1’2cos(wkb/a); d2+ 1 A+

k/2+1/4
q 7k 4aq
s Kn+1/2(?\/A+ FZ—H (29

e
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These are the only expressions needed for what follows. WerhereF(s;c;q) is another typical function studied in full

want to evaluate the effective actidi®/V,, where

I=3[¢"e(0)+ ¢e(0)Inu?],

andV, is the four volumey,= [d*x. The result is immedi-
ate from the expressions above:

(30

I MOeLiL,[ 11 1I M?2 s 2 M52
V., 128 | 36 6" PaRL
X 2 K (NMLy) + —
n=1 Amls

o0 2 o

2
x 2, 3K (nML1)+TE n~%2

Ly
><d}r?,1 d®

Notice that the result is given in terms of a rapidly conver-
gent series, very well suited for numerical computation. In
the massless cas®1€=0), we are left with the last term

M 2
(31

MZ
* 7°d?

4
Eg ) K5/2( 7Tn|_1 L_§+

oo

re 16 72
A ~—|m2=0= EmF/zE n

-5/2 Ly
B. R*x S? space
In this case, for simplicity, the vacuum energy will be
calculated for the massless theory only

IrY=1ITrn(—0O+¢R). (33

The spectrum is now
(34)

A=ki—AZ+X,

whereX=¢R. For the two-spher®=2/r? when written in
terms of the sphere’s radius For scalar fields,

I(1+1)

AZ=— Z—, 1=012,... (35)
with associated multiplicities
D,=2I+1. (36)
The corresponding function is
— ( 2 2-s
Le(s)= wz—r(s)Z Di(A7+X)
I,2(5 2) *
2
T 2)2 I+ 1)[(1+1/2)
+(Xr2—1/4)1%"s
r2(s=2)
 1672(s—1)(s—2)(s—3)
d
X%F(S—3;C;Xr2—1/4)|c=1/2, (37

detail in[24]:

o

F(s;c;q)fgo[(n+c)2+q]‘SEG(s;1,c;q). (38)

From the general asymptotic expansion @&fs;a,c;q) in
powers ofq ! (see[24]),

G(s;a,c;q)EgO [a(n+c)?+q]®

oo

4 ° < (=1)™(m+s) (g} "
+ \/EM 1/2-s
a 2I(s)
2mS
—1/4—s/21/4— /2
+F(s)a q

X ¥, n¥ Y2coq27nc)Ke 1 2mnygla),
n=1
(39
we easily obtain the asymptotic expansion

2(s—2) *®

16772

—2172mB, I'(s+n—3)
n'T(s)

-1

{e(s)~
><(Xr2—1/4 3-smn) (40

where theB,,, are Bernoulli numbers. This yields immedi-
ately

0)= ! Xr2—1/4)3 ! Xr2—1/4)~1
Ce( )_W( r ) E+ﬂ( r )
_ _ 3
480(Xr 1/4)~? 8064(Xr 1/4)~
(41)
and
'(0)= 0)In| X 1 ! Xr2—1/4)3
{e(0)=—(0)In a2 +w( r-—1/4
1 Xr2—1/4)"1- Xr2—1/4
><_3._6+1_6(r_ ) 480“_ )*
o0 (_1)n+1(1_21—2n)82n
+ Xr2—1/4)~"
2 hn D203 )
(42)

Finally,



54 RENORMALIZATION GROUP AND SPONTANEOW . .. 6377

rev 1 1\3([ 12 1 r r
— = 26— = — 4 —(2&—1UH 1 —=—AL%+ —. 46
Va :J,zwzr“(zf 4) 36" 16267 1 Va Va 49
_ L (9e_ -2 The conditions of spontaneous compactification are:
280 2614
e — F
(_1)n+1(1_21 Zn)an “n r=o, _(_ =0. (47)
* & - Dn-2-3) 26V L1V
wlr? 1 1 . Note that the topology of the external dimensions actually
+In e 14| 5 7222614 defines the gravitational metric. The first of E¢47) gives

the condition for the vanishing of the effective cosmological
constant. At the same time, the second of E4g) is simply
], (43 the gravitational equatiofor Einstein equation which re-
sults from the variation of the effective action over the met-
ric. This has been explicitly shown in all detail in RE13].
which is an asymptotic expansion for large valid for In the <case under discussion, we have
£>1/8. The optimal truncation of this asymptotic expansionI'=T"(A,M?, u,L). Having two conditions and four param-
is obtained after tha=4 term. The poin=1/8 has nothing eters, the expectations of finding some solution of @&g)
to do with the conformal coupling value but instead dependsire great. We will fixM? and . and considel" as a function
on how the expansion afg(s) was done. This result ceases of the compactification length only. In Fig. 1 we call this
to be valid wheré<1/8. For the particular valué=1/8, we  effective action(i.e., I" divided by the four volumesimply
can go back to the definition of thefunction and show that V(L), and show its form explicitly for some specified values
F reduces to an ordinary Riemarthfunction F(s;1/2;0)  of M?,u, andA that correspond to one of those situations in

! 28— 142+ 31 2&8—1/4)73
_4_80( E—1/4) m( £—1/4)

={4(2s;1/2)= (25— 1){(2s), and ©/ac){u(s;c)  which spontaneous compactification takes place for a definite
=—s{y(s+1;c), resulting in value of the compactification length Note that in this case
we are beyond the range of validity of our approximation
r2(s=2)(22s75_1) (which is analogous to that of the Coleman-Weinberg poten-

le(8) =g = —{(2s=5), &=1/8. (44 tial [2]), because of the large logarithmic contribution. For
87(s—1)(s—2)
reasonably small values of the lI¢ghere the one-loop result
can be trustex that is up tdIn(M% u?)|=1, there is no mini-

Then, mum
L Let us now see how this picture changes, in general, when
re 1 (3 §+I 2| |”_2_3 (—5 we take into account RG effects, e.g., when we enlarge the
Vv, 2Y7%%|504|2 (17| = 55531 (=91, parameter space. As the theory is multiplicatively renormal-

izable, the effective action satisfies the RG equat®)nThis
£=1/8 (45) equation can be solved using the method of the characteris-
' tics, yielding the so-called RG-improved effective action
Wilsonian effective action26]). The corresponding RG-

For £<1/8 the expansioit43) is replaced by a convergent improved effective potentidl] has been widely discussed in
series stemming from the binomial expansionFdgs;,c;q)

in powers ofg, 0<qg<1 [see Eq.38)]. This can be easily
done, as described in detail [24,25. One would then have v Effective action for M=25, =1, A=4.5
expressions which cover the whole range of valuest.of s
However, in order to limit discussion we will illustrate the
physical argument with the help of ti#e>1/8 case, i.e., Eq. 4}
(43). Similar considerations would also apply to the1/8
cases.

C. Spontaneous compactification 2

Using the vacuum energies that we have calculated above,
we can now study the process of quantum spontaneous com- \

pactification on Kaluza-Klein backgroundsee, e.g.[15]).
In particular, we want to investigate consequences of using
RG improvements to these energies on spontaneous compac-o 1 z 3 4
tification.

Turning back to our first example, we will now consider a  gig. 1. The effective action'=T"/V,, as a function of., for the
g theory on aR*x S'x S! background where, for simplic- specified values d¥12, u, andA (in units of 1¢). They correspond

ity, we setlL;=L,=L. The effective action which takes into to a situation in which spontaneous compactification takes place. At
account the one-loop correctiof3l) is given by the minimum, the value of the compactification lenitis selected.
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renormalizable theories with a Higgs boson sector, both itompletely disappears. At best, the minimum can turn into

flat [3] and in curved spacetin{@7]. an inflection point and appear something like the inflection
The solution of the RG equatiofb) (at ¢#=0) for the point in Fig. 3. Figure 3, however, is another non-RG-
effective action gives improved case to which we have applied the RG improve-
ment(see Fig. 4to find that not only is compactification not
(N Gag ) =T (\i(1),90p,1€), (48 possible, the inflection point has disappeared. As can be eas-

) ] ) ) ily seen these two examples are typical of what happens for
where the effe‘?t_“’e couplings are given in HG). As the  {he Réx Slx S background, i.e., the RG improvement de-
boundary condition for Eq(48), it is convenient to use the stroys any chance of spontaneous compactification.

one-loop effective actiot46). Then, the RG-improved effec-  The same type of compactification calculation can be re-
tive agtlon is given by thg same expressidb) but with the peated for the theory defined on the backgrowfuk S2.
following changes of variables: Using the same principles as above, we can write
2 20Y — M 2 3g°t | r 1 ro
M —=M*(t)=M 1+W , V—4=V—4f dGX\/aLext+V_4! (51
2 204) — ,, 202t .
mo—u(t)=ue”, whereL = Lex(A K, a1, . . . ,a10) [see Eq(2)], andT'V) is
5 b\ o3 given by Eq.(43). Expressio!”(51) yie]ds the one—loop effec-.
Ao A=A — s (1+ 3g°t 1 49) tive action. The corresponding RG-improved effective action
6g° 2(4m)® ' is given by the same formui®2l) but with the substitutions:
In order to definet we may choose the standard and most 1 1 o
natural condition of dropping out the logarithmic tefifior §—&)= §+ 1= 5 BN, ai—ai(t), (52
more details and different ways of defining see the last
reference in 3]) wherei =45, . ..,10. Theexplicit form of ;(t) can be eas-
5 ” o ily obtained from Refs[7,8]. One can establish the same
M=(t) = ue”. (50 comparison as before between the results of the spontaneous

. . compactification process corresponding to the one loop and
The SO'““C’”Z of Eq(50 _d_eterm|2nes the value ofas a func- 5 the RG-improved effective actions & 2. In this case
tion of g, M, and . Fixing M* and ., as before, we oW  here are a total of 14 parameters to satisfy just two condi-
obtain the corresponding picture for the RG-improved effecyigns, Setting aside exceptional situations, a great variety of
tive potentiall” as a function oL. This is depicted in Fig. 2 yssibilities occur. For this case the difference in the process
for specified values oM, u, A, andg that correspond 10 o compactification introduced by the RG improvement of
those of Fig. 1. The value d¢fwhich is a solution of Eq(50)  the effective action is found again. We omit plots similar to
is t=3.2182. Differences in the effective potentidlas a  he previous example. Regretfully enough, in our analysis we
function of L caused by the RG improvement can be seen byaye not been able to find a single example of a more “con-
comparing Figs. 1 and 2. A virtue of the RG improvement issryctive” kind, that is, a model unstable at one loop, which
that the domain of validity of the approximation is greatly js stapilized by the RG correction. For this second back-
enzlargzed, l.e., it is now permissible to let the quotientyround we can only say that a most plausible conjecture is
M*/u® take on values as large as those shown in Fig. 1. Aghat such a stabilization cannot occur. Similar patterns of
is now clearly observable in these figures, the RG improvespontaneous compactification on other backgrounds have
ment can dramatically modify the spontaneous compactificaheen considered elsewhere. In particular, we have also inves-
tion pattern. As actually happens in this case, the minimuniigated backgrounds of the form,XH,, whereH, is a

V-RCrs improved effective action M=25, =1, A=4.5,g=1,t=3.2 v Effective action for M=24.5, p=1, A=4.5

4@ 4

(M)

-2}
-2

-4

FIG. 2. Plot of the renormalization-group-improved effective
action for values oM, u, A, andg that correspond to those of Fig. FIG. 3. Plot of the effective action for values bf, u, A, and
1. When comparing with Fig. 1, it is clearly observed that the RGg that yield an inflection point, a situation that stays on the verge of
improvement can modify the spontaneous compactification patterrspontaneous compactification.
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an inflection point that existed at one loop. Even though we
could not find a point where an inflection could be stabilized
4 by the RG improvement, we cannot exclude such a possibil-
ity in more elaborate backgrounds. However, we can, with
certainty, conclude that one-loop predictions in Kaluza-Klein
theories cannot be trusted.

There are not many theories in higher dimensions which

V_REe improved effective action M=24.5, u=1, A=4.5,g=1,t=3.2

0.4 0.6 0.8 are renormalizable in the standard way. But the number in-

creases by the introduction of higher-derivative kinetic terms
-2 (probably at the expense of spoiling unitajitiFor example,
in D=6 one can consider a gauge theory V\Etfj,, terms as

-4 kinetic terms plus any other term not prohibited by dimen-

sional argumentsgthey can have equal or lower dimension-
ality) or gauge invariance. Such a theory will be renormaliz-
FIG. 4. Plot of the RG-improved effective action for values of able in the same sense RS gravity in D=4 is (see[9] for
M, u, A, andg corresponding to Fig. 3. The inflection point has a review.
disappeared and we are driven far away from spontaneous compac- On the other hand, one can consider Kaluza-Klein theo-
tification. ries to be renormalizable in the sense of the inclusion of an
infinite number of additional terms and their corresponding
two-dimensional hyperbolic spadéor an introduction and countertermgfor a recent discussion, s¢28]). Under these
calculations of vacuum energies on hyperbolic spaces, sagrcumstances, the RG analysis can be applied again, but, of
[23]). The numerical analysis of this case yields the sameourse, the RG equations will be infinite in number. Never-
qualitative result, no possibility exists for a stable spontanetheless, there are ways of truncating them in a systematic and
ous compactification within the RG-improved effective po- consistent way, keeping just a finite number of terms. This
tential. can be done by considering, say just one-loop eff@ntshe
even-dimensional cageor terms up to some particular order
IV. CONCLUSIONS in the derivatives. As we have shown here, if the goal is

studying spontaneous quantum compactification, the RG im-
In thls Work we ha.Ve |nVest|gated renorma“zat")n groupproved vacuum energy Shou|d be used

effects in the¢6 curved spacetime theory. Using this model
as an example, the usefulness of the RG improvement in
higher-dimensional theories has been demonstrated by calcu-
lating the one-loop effective potential and its asymptotics in  S.D.O. is grateful to the members of the Department
strong fields. By using the one-loop vacuum energy and th&CM, Barcelona University, for warm hospitality. This work
RG improved vacuum energy on Kaluza-Klein backgroundsvas supported by DGICYTSpain Project No. PB93-0035
R*x S'x St and R*x S?, we have additionally shown that and Grant No. SAB93-0024, by CIRIGeneralitat de Cata-
the RG improvement can lead to significant qualitative dif-lunya) Grant No. GR94-8001, and by RFFR Project No. 94-
ferences in spontaneous compactification. In both example§20324. R.K. was supported by the U.S. Department of En-
the RG improvement destabilized a minimum or destroyedergy.
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