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The renormalization group~RG! is used to study the asymptotically freef6
3 theory in curved spacetime.

Several forms of the RG equations for the effective potential are formulated. By solving these equations we
obtain the one-loop effective potential as well as its explicit forms in the case of strong gravitational fields and
strong scalar fields. Usingz-function techniques, the one-loop vacuum energy and corresponding RG-
improved vacuum energy are found for the Kaluza-Klein backgroundsR43S13S1 andR43S2. They are
given in terms of exponentially convergent series, appropriate for numerical calculations. A study of these
vacuum energies as a function of compactification lengths and other couplings shows that spontaneous com-
pactification can be qualitatively different when the RG-improved energy is used.@S0556-2821~96!01420-8#

PACS number~s!: 04.62.1v, 11.10.Gh
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I. INTRODUCTION

The renormalization group~RG! has long been used to
‘‘improve’’ loop corrections in perturbative quantum field
theory. Gell-Mann and Low@1# first used it to study the
asymptotic behavior of Green’s functions and in the clas
work of Coleman and Weinberg@2# the RG equation was
used to improve the effective potential and to study spon
neous symmetry breaking. This is just one of the many d
ferent applications that the RG has had in quantum fi
theory. Recently, it has been employed to put lower limits
the Higgs boson mass of the standard model@3#. In this
paper we put it to use in a renormalizable Kaluza-Kle
model, arguing that RG improvements are necessary if
bility of the internal dimensions are to be correctly predicte
We will also develop the RG technique in order to study t
scalar effective potential in this model. Note that, as it us
ally happens, in spite of the fact that the Kaluza-Klein mod
chosen here will be renormalizable, the resulting compa
fied four-dimensional~4D! model will not be such, due to the
presence of the infinite tower of massive Kaluza-Kle
modes. Our purpose here will be to study the consequen
of the renormalizability of the higher-dimensional theory, f
instance, concerning the spontaneous compactification
tern.

The model that will be studied here~denoted byf6
3) is a

renormalizable higher-dimensionalf3 scalar field theory de-
fined on a six-dimensional curved spacetime. The interes
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this theory is given by the fact that it provides a very useful
toy model for the study of string field theory@4#, where also
higher-dimensional interactions of typef3 are known to ap-
pear.

From another side, such a model is the simplest exampl
of a renormalizable Kaluza-Klein theory. In particular, being
still in six dimensions one could also consider more compli-
cated higher-derivative models of the following sort:

L.G31GhG1RG2, ~1!

whereG[Gmn
a is the field strength corresponding to the six-

dimensional gauge field. When trying to understand the
question of whether renormalizable Kaluza-Klein theories
can lead to consequences that are different to some exte
from the ones coming from nonrenormalizable theories, it is
natural to start from the simplest model of this kind.

We start in Sec. II using the RG equations to arrive at the
one-loop effective potential starting from a classicalf3 sca-
lar field theory on a six-dimensional curved space. This is a
renormalizable theory which is coupled to the curvature ten
sor and its square. We additionally use the RG equations t
find the asymptotic behavior of the effective potential when
either the gravitational field is strong or when the scalar field
is intense. In Sec. III we give the one-loop vacuum energie
for this scalar field on backgroundsR43S13S1 and
R43S2. We then compute RG improvements to these ener
gies. We conclude that qualitative changes have occurred
i.e., minima have disappeared from the vacuum energy an
that Kaluza-Klein stability will be correspondingly affected.
In the conclusions we also mention other possible applica
tions of the RG techniques in the context of Kaluza-Klein
theories, as higher-derivative theories and renormalizabl
theories in the ‘‘modern sense.’’
6372 © 1996 The American Physical Society
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54 6373RENORMALIZATION GROUP AND SPONTANEOUS . . .
II. A RENORMALIZABLE SELF-INTERACTING SCALAR
THEORY IN D56 CURVED SPACETIME

As an example of a renormalizable theory in highe
dimensional curved spacetime, we consider the action
D56

L5Lm1Lext,

Lm52
1

2
fhf1

1

2
M2f21

1

3!
gf31hf1

1

2
jRf21h1Rf

1h3R
2f1h4RmnR

mnf1h5RmnabR
mnabf, ~2!

Lext52~L1kR1a1Rmnab
2 1a2Rmn

2 1a3R
21a4R

3

1a5RRmn
2 1a6RRmnab

2 1a7RmnRs
mRns

1a8RmnRrsR
mrns1a9RmnR

mlrsRlrs
n

1a10RmnrsRlt
mnRrslt!.

Here,Lm andLext are the Lagrangians of matter and extern
fields, respectively, andf is a scalar. The Lagrangian~2!
represents the generalization to curved space of a renor
izablef6

3 theory@5#. Such a theory in curved spacetime w
considered a few years ago in Refs.@6–8#. Here, the notation
of Ref. @7# will be adopted. In that reference, a one-loo
analysis was carried out. The form ofLext in Eq. ~2!, as well
as of the nonminimal gravitational terms inLm , are such as
to make the theory multiplicatively renormalizable in curve
spacetime. We will consider only spacetimes of constant c
vature, excluding terms of the formfhR, etc., from the
Lagrangian ~2!. Finally, l i5$M2,g,h,j, . . . ,a10% are all
coupling constants whose dimensionality is clear from
form of the Lagrangian~2!.

One-loop divergences of the model~2! are found in Ref.
@7#. They yield the following running coupling constants~we
give here their explicit expressions in the massless se
only!:

g2~ t !5g2B21~ t !, B~ t !511
3g2t

2~4p!3
,

j~ t !5
1

5
1S j2

1

5DB25/9~ t !,

h1~ t !5h1B
1/18~ t !, ~3!

h3~ t !5B1/18~ t !Fh32
1

1200g
@B4/9~ t !21#1

1

5g S j2
1

5D
3@B21/9~ t !21#1

1

2g S j2
1

5D
2

@B22/3~ t !21#G ,
h4,5~ t !5B1/18~ t !Fh4,56

1

120g
@B4/9~ t !21#G ,

h~ t !5hB1/18~ t !.

It is clear from expression~3! that the theory is asymptoti
cally free at high energies@g2(t)→0#, and that it is asymp-
totically conformal invariant in the matter sector~see@9# for
r-
in

al

al-
s

p

d
ur-

he

ctor

a review!. From the complete set of one-loop divergences,
given explicitly in Ref.@7#, there are no problems in writing
down all running coupling constants, includingMÞ0. To
save space we have listed only those needed in this section

Working with the massless version of the theory~2! we
use Eq.~3! first to find the effective potential at one loop and
second to find RG-improved asymptotic forms of this poten-
tial. We start by writing the effective action of this theory as

G5Guf501E d6xAgV1•••, ~4!

where the first term is the vacuum energy and the second is
the effective potential. Terms that have not been explicitly
included provide nonconstantf contributions toG. The mul-
tiplicative renormalizability of the theory guarantees that the
effective action as well as the effective potential satisfy the
RG equations

S m
]

]m
1bl i

]

]l i
2gff

]

]f DV50, ~5!

wheregf is theg function of the scalar field~computed here
from @7#!:

gf5
g2

12~4p!3
. ~6!

In order to find the effective potential as an expansion
over curvature invariants, we will write the classical poten-
tial as @its form is clear from Eq.~2!#

V~0!5(
i
Vi

~0! , Vi
~0!5ail iPiw

ki, ~7!

where theai are numerical multipliers,ki>1 are integers,
and thePi are curvature invariants. Applying the method
described in Ref.@10# ~see also@8#!, we can solve the RG
equations~5! for a potential of the form~7!. Restricting our-
selves to one loop and using the tree-level potential~7! as
boundary condition, we find~we skip technical details!

V5
1

6
gf32

g3f3

12~4p!3 S lnf2

m2 2
11

3 D1hf1
j

2
Rf2

2
g2

4~4p!3 S j2
1

6DRf2S lnf2

m2 23D1h1Rf1h3R
2f

1h4Rmn
2 f1h5Rmnab

2 f2
gf

~4p!3 S lnf2

m2 22D
3F14 S j2

1

6D
2

R22
1

360
Rmn
2 1

1

360
Rmnab
2 G . ~8!

This is the one-loop effective potential up to terms quadratic
in the curvature. It is clear that this potential is not bounded
from below ~this is the well-known instability of thew6

3

theory!. This kind of potential is useful for studying six-
dimensional cosmology coupled to aw6

3 quantum field.



as

n,
is
ve
y,
ive

it
is
m
-
e

d
tum
nd
ing

s,
-
ent

p

m-
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Another application of the RG equations to the effectiv
potentialV is to study the asymptotics of the effective po
tential in curved spacetime@11,8#. The homogeneity condi-
tion of V has the form

V~e2tf,edl i
tl i ,e

22tgab ,e
tm!5e6tV~f,l i ,gab ,m!, ~9!

wheret5 const anddl i
is the dimension ofl i . Relation~9!

leads to the equations

~] t1m]m1dl i
l i]l i

12f]f26!V~f,e22tgab , . . . !50,

~10!

S ] t1m]m1dl i
l i]l i

22gab

d

dgab
26D

3V~e2tf,gab , . . . !50, ~11!

where the parameters of the potential that are not writt
explicitly are not scaled. Combining Eq.~5! with Eqs. ~10!
and ~11!, we obtain

@] t2~bl i
2dl i

l i !]l i

1~gf12!f]f26#V~f,e22tgab , . . . !50, ~12!

H ] t1~11gf/2!21F2~bl i
2dl i

l i !]l i
22gab

d

dgab
26G J

3V~e2tf,gab , . . . !50. ~13!

The RG equations~12! and~13! describe the asymptotics of
the effective potential. In particular, whengab→e22tgab ,
R2→e4tR2, Eq. ~12! gives the asymptotic behavior of the
effective potential in a strong gravitational field. Similarly
Eq. ~13! gives the behavior ofV in the case of a strong scala
field. Solving Eq.~12! we get~see also@11,8#!

V~f,e22tgab ,l i !5e6tV„f~ t !,gab ,l i~ t !…,

l̇ i~ t !5bl i
~ t !2dl i

l i~ t !, l i~0!5l i , ~14!

ḟ~ t !52@21gf~ t !#f~ t !, f~0!5f.

Selecting the leading coupling constants from Eq.~3! and
using Eq.~6!, we obtain

V~f,e22tgab,l i !;e6tf~ t !@h3~ t !R
21h4~ t !Rmn

2

1h5~ t !Rmnab
2 #, ~15!

where

f~ t !5fe22tB21/18~ t !. ~16!

Thus, the asymptotics of the effective potential in a stron
gravitational field are defined by the nonminimal interactio
of the scalar with the quadratic curvature invariants. Su
approximations can be useful in studying quantum effects
the early Universe~e.g., in the Kaluza-Klein framework!.

In a similar way, we can solve Eq.~13!, with the result

V~e2tf,gab ,l i !5expF6E
0

t

dt8A~ t8!GV„f,gab~ t !,l̃i~ t !…,

~17!
e
-

en

,
r

g
n
ch
in

where

A~ t !5F11
gf~ t !

2 G21

, f~ t !5f,

ġab~ t,x!52A~ t !gab~ t,x!, gab~0,x!5gab~x!,

l8 i~ t !5A~ t !@b l̃ i
~ t !2dl̃ i

l̃i~ t !#. ~18!

As we see, contrary to what happens with Eqs.~14! for the
effective couplings, the multiplierA(t) appears on the right-
hand side~RHS! of Eqs.~18!. Using arguments similar to the
ones given in Ref.@12# ~where the procedure to study the
asymptotics of the effective potential in flat spacetime w
developed!, one can show that the presence ofA(t) does not
influence the asymptotics of the effective couplings. Agai
due to the fact that the theory is asymptotically free, it
natural to expect that the asymptotic behavior of the effecti
potential is given by the lowest order of perturbation theor
with the parameters replaced by the corresponding effect
couplings.

Now, sincef(t)5f and the effective curvature is always
small,R(t);e22t @see Eq.~18!#, we get

V~e2tf,gab ,l i !5 1
6 e

6tg~ t !f3. ~19!

The asymptotic value of the effective potential, in the lim
of strong scalar curvature, is not bounded from below. Th
result can be useful for the study of six-dimensional quantu
cosmology near the initial singularity. We conclude this dis
cussion of the application of RG equations to the effectiv
potential for the curved spacetimef6

3 theory and go on to an
application of the RG equations to the vacuum energy.

III. THE VACUUM ENERGY IN THE f6
3 THEORY

ON A KALUZA-KLEIN SPACETIME

Starting from the works@13,14#, the vacuum energy of
matter and gravitational fields on spherically compactifie
internal spaces was calculated and the process of quan
spontaneous compactification was studied. For a review a
a list of references of papers on related questions concern
Kaluza-Klein theories, see@15,9#. In particular, in@16–21#
and @22# vacuum energies were evaluated for scalar field
etc. ~including gravity! defined on even-dimensional com
pactified spaces. In most of these studies only the diverg
parts~in dimensional regularization! of the vacuum energies
were evaluated.

Our goal here is to obtain the RG-improved one-loo
vacuum energies corresponding to the theory~2! on two
Kaluza-Klein backgrounds, namelyR43S13S1 and
R43S2, and to investigate the process of spontaneous co
pactification.

A. R43S13S1 space

At the one-loop level, the vacuum energy is given by

G~1!5 1
2 Trln~2h1M2!. ~20!

The calculation can be done with the help ofz function
regularization~for an introduction, see@23#!. The spectrum
has the form
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l5k4
21S 2pn1

L1
D 21S 2pn2

L2
D 21X, ~21!

with X5M2 here, and the corresponding ‘‘Euclideanized’’z
function is

zE~s!5(
l

l2s5
1

G~s!(l
E
0

`

dtts21e2lt

5
1

G~s! (n1n2 E
d4k

~2p!4
E
0

`

dtts21

3expH 2Fk21S 2pn1
L1

D 21S 2pn2
L2

D 21XG tJ
5

1

4~2p!2~s11!~s21!~s22!

3F S X

4p2D 22s

1ES s22;L1
22 ,0,L2

22 ;
X

4p2D G . ~22!
E(s;a,b,c;q) is the z function introduced and studied in
@24#:

E~s;a,b,c;q![ (
m,nPZ

8 ~am21bmn1cn21q!2s,

Re~s!.1. ~23!

In the general theory@24#, one requires thata,c.0, that the
discriminant

D54ac2b25S 2

L1L2
D 2.0, ~24!

and thatam21bmn1cn21qÞ0, for all m,nP Z. These
conditions are all satisfied in this case. The analytic contin
ation @25# of this z function is

6375P AND SPONTANEOUS . . .
E~s;a,b,c;q!52q2s1
2pq12s

~s21!AD
1

4

G~s! FSqaD 1/4S p

AqaD
s

(
k51

`

ks21/2Ks21/2S 2pkAq

aD 1Aq

aS 2pA a

qD D s(
k51

`

ks21

3Ks21S 4pkAaq

D D 1A2

a
~2p!s(

k51

`

ks21/2cos~pkb/a!(
duk

d122sS D1
4aq

d2 D 1/42s/2

3Ks21/2S pk

a
AD1

4aq

d2 D G . ~25!

This explicit form~25! and its derivative~given below! appeared for the first time in@25#. It is remarkable that the only simple
pole (s51) is so explicit in Eq.~25!. This expression also has excellent convergence properties, in fact, for largeq the
convergence behavior of the series of Bessel functions is at least exponential. Particular values fors52n, n50,1,2,3, . . . are

E~2n;a,b,c;q!52qn2
2p

n11

qn11

AD
, ~26!

and

E~2n;a,b,c;0!50. ~27!

For the corresponding derivative at zero we have

E8~0;a,b,c;q!52
2pq

AD
1S 11

2pq

AD
D lnq22ln~12e22pAq/a!14Aq

a(n51

`

n21K1S 4npAaq

D D
14(

n51

`

n21cos~npb/a!(
dun

dexpF2
pn

a S D1
4aq

d2 D 1/2G , ~28!

and, in general, fors52n, n50,1,2,3,. . . ,

E8~2n;a,b,c;q!52
2pqn11

~n11!2AD
1qnS 11

2pq

~n11!AD
D lnq14

~21!n

n!pn Fqn/211/4an/221/4

3 (
k51

`

k2n21/2Kn11/2S 2pkAq

aD 122nS qaD ~n11!/2

Dn/2(
k51

`

k2n21Kn11S 4pkAaq

D D
1
22n11/2

Aa (
k51

`

k2n21/2cos~pkb/a!(
duk

d2n11S D1
4aq

d2 D k/211/4

Kn11/2S pk

a
AD1

4aq

d2 D G . ~29!
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These are the only expressions needed for what follows. W
want to evaluate the effective actionG (1)/V4, where

G~1!5 1
2 @z8E~0!1zE~0!lnm2#, ~30!

andV4 is the four volume,V4[*d4x. The result is immedi-
ate from the expressions above:

G~1!

V4
5
M6L1L2
128p3 S 2

11

36
1
1

6
ln
M2

m2 D 12A2

p

M5/2

L1
3/2

3 (
n51

`

n25/2K5/2~nML1!1
M3L1
4pL2

2

3 (
n51

`

n23K3~nML1!1
2A2p2

L1
3/2 (

n51

`

n25/2

3(
dun

d5S 4L22 1
M2

p2d2D 5/4K5/2S pnL1A 4

L2
2 1

M2

p2d2D .
~31!

Notice that the result is given in terms of a rapidly conve
gent series, very well suited for numerical computation.
the massless case (M250), we are left with the last term

G~1!

V4
uM2505

16p2

L1
3/2L2

5/2 (
n51

`

n25/2s5~n!K5/2S 2pn
L1
L2

D . ~32!

B. R43S2 space

In this case, for simplicity, the vacuum energy will b
calculated for the massless theory only

G~1!5 1
2 Trln~2h1jR!. ~33!

The spectrum is now

l5k4
22L l

21X, ~34!

whereX5jR. For the two-sphereR52/r 2 when written in
terms of the sphere’s radiusr . For scalar fields,

L l
252

l ~ l11!

r 2
, l50,1,2, . . . ~35!

with associated multiplicities

Dl52l11. ~36!

The correspondingz function is

zE~s!5
G~s22!

16p2G~s!(l Dl~L l
21X!22s

5
r 2~s22!

16p2~s21!~s22!(l50

`

~2l11!@~ l11/2!2

1~Xr221/4!#22s

52
r 2~s22!

16p2~s21!~s22!~s23!

3
]

]c
F~s23;c;Xr221/4!uc51/2, ~37!
e

r-
In

e

whereF(s;c;q) is another typicalz function studied in full
detail in @24#:

F~s;c;q![ (
n50

`

@~n1c!21q#2s[G~s;1,c;q!. ~38!

From the general asymptotic expansion ofG(s;a,c;q) in
powers ofq21 ~see@24#!,

G~s;a,c;q![ (
n50

`

@a~n1c!21q#2s

;
q2s

G~s! (m50

`
~21!mG~m1s!

m! S qaD
2m

zH~22m,c!

1Ap

a

G~s21/2!

2G~s!
q1/22s

1
2ps

G~s!
a21/42s/2q1/42s/2

3 (
n51

`

ns21/2cos~2pnc!Ks21/2~2pnAq/a!,

~39!

we easily obtain the asymptotic expansion

zE~s!;2
r 2~s22!

16p2 (
n50

`
~21!n~122122n!B2nG~s1n23!

n!G~s!

3~Xr221/4!32s2n, ~40!

where theB2n are Bernoulli numbers. This yields immedi-
ately

zE~0!5
1

16p2r 4
~Xr221/4!3F2

1

6
1
1

24
~Xr221/4!21

2
7

480
~Xr221/4!221

31

8064
~Xr221/4!23G ,

~41!

and

zE8 ~0!52zE~0!lnS X2
1

4r 2D 1
1

16p2r 4
~Xr221/4!3

3F2
11

36
1

1

16
~Xr221/4!212

7

480
~Xr221/4!22

1 (
n54

`
~21!n11~122122n!B2n

n~n21!~n22!~n23!
~Xr221/4!2nG .

~42!

Finally,
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G~1!

V4
5

1

32p2r 4 S 2j2
1

4D 3H F2
11

36
1

1

16
~2j21/4!21

2
7

480
~2j21/4!22

1 (
n54

`
~21!n11~122122n!B2n

n~n21!~n22!~n23!
~2j21/4!2nG

1 lnS m2r 2

2j21/4D F2
1

6
1
1

24
~2j21/4!21

2
7

480
~2j21/4!221

31

8064
~2j21/4!23G J , ~43!

which is an asymptotic expansion for largej, valid for
j.1/8. The optimal truncation of this asymptotic expansi
is obtained after then54 term. The pointj51/8 has nothing
to do with the conformal coupling value but instead depen
on how the expansion ofzE(s) was done. This result cease
to be valid whenj<1/8. For the particular valuej51/8, we
can go back to the definition of thez function and show that
F reduces to an ordinary Riemannz function F(s;1/2;0)
5zH(2s;1/2)5(22s21)z(2s), and (]/]c)zH(s;c)
52szH(s11;c), resulting in

zE~s!5
r 2~s22!~22s2521!

8p2~s21!~s22!
z~2s25!, j51/8. ~44!

Then,

G~1!

V4
5

1

211p3r 4 H 31504F321 ln~m2r 2!G2
ln2

252
231z8~25!J ,

j51/8. ~45!

For j,1/8 the expansion~43! is replaced by a convergen
series stemming from the binomial expansion ofF(s;,c;q)
in powers ofq, 0<q,1 @see Eq.~38!#. This can be easily
done, as described in detail in@24,25#. One would then have
expressions which cover the whole range of values ofj.
However, in order to limit discussion we will illustrate th
physical argument with the help of thej.1/8 case, i.e., Eq.
~43!. Similar considerations would also apply to thej<1/8
cases.

C. Spontaneous compactification

Using the vacuum energies that we have calculated abo
we can now study the process of quantum spontaneous c
pactification on Kaluza-Klein backgrounds~see, e.g.,@15#!.
In particular, we want to investigate consequences of us
RG improvements to these energies on spontaneous com
tification.

Turning back to our first example, we will now consider
f6
3 theory on aR43S13S1 background where, for simplic-

ity, we setL15L25L. The effective action which takes into
account the one-loop corrections~31! is given by
on

ds
s

t

e

ve,
om-

ing
pac-

a

G

V4
52LL21

G~1!

V4
. ~46!

The conditions of spontaneous compactification are:

G50,
]

]L S G

V4
D50. ~47!

Note that the topology of the external dimensions actually
defines the gravitational metric. The first of Eqs.~47! gives
the condition for the vanishing of the effective cosmological
constant. At the same time, the second of Eqs.~47! is simply
the gravitational equation~or Einstein equation!, which re-
sults from the variation of the effective action over the met-
ric. This has been explicitly shown in all detail in Ref.@13#.

In the case under discussion, we have
G5G(L,M2,m,L). Having two conditions and four param-
eters, the expectations of finding some solution of Eq.~47!
are great. We will fixM2 andm and considerG as a function
of the compactification lengthL only. In Fig. 1 we call this
effective action~i.e., G divided by the four volume! simply
V(L), and show its form explicitly for some specified values
of M2,m, andL that correspond to one of those situations in
which spontaneous compactification takes place for a definite
value of the compactification lengthL. Note that in this case
we are beyond the range of validity of our approximation
~which is analogous to that of the Coleman-Weinberg poten-
tial @2#!, because of the large logarithmic contribution. For
reasonably small values of the log~where the one-loop result
can be trusted!, that is up tou ln(M2/m2)u.1, there is no mini-
mum.

Let us now see how this picture changes, in general, when
we take into account RG effects, e.g., when we enlarge the
parameter space. As the theory is multiplicatively renormal-
izable, the effective action satisfies the RG equation~5!. This
equation can be solved using the method of the characteris
tics, yielding the so-called RG-improved effective action~or
Wilsonian effective action@26#!. The corresponding RG-
improved effective potential@2# has been widely discussed in

FIG. 1. The effective actionV[G/V4, as a function ofL, for the
specified values ofM2, m, andL ~in units of 104). They correspond
to a situation in which spontaneous compactification takes place. A
the minimum, the value of the compactification lengthL is selected.
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renormalizable theories with a Higgs boson sector, both
flat @3# and in curved spacetime@27#.

The solution of the RG equation~5! ~at f50) for the
effective action gives

G~l i ,gab ,m!5G„l i~ t !,gab ,me
t
…, ~48!

where the effective couplings are given in Eq.~3!. As the
boundary condition for Eq.~48!, it is convenient to use the
one-loop effective action~46!. Then, the RG-improved effec-
tive action is given by the same expression~46! but with the
following changes of variables:

M2→M2~ t !5M2S 11
3g2t

2~4p!3D
25/9

,

m2→m2~ t !5m2e2t,

L→L~ t !5L2
M2

6g2 F S 11
3g2t

2~4p!3D
22/3

21G . ~49!

In order to definet we may choose the standard and mo
natural condition of dropping out the logarithmic term~for
more details and different ways of definingt, see the last
reference in@3#!

M2~ t !5m2e2t. ~50!

The solution of Eq.~50! determines the value oft as a func-
tion of g, M 2, andm. Fixing M2 andm, as before, we now
obtain the corresponding picture for the RG-improved effe
tive potentialG as a function ofL. This is depicted in Fig. 2
for specified values ofM , m, L, andg that correspond to
those of Fig. 1. The value oft which is a solution of Eq.~50!
is t53.2182. Differences in the effective potentialG as a
function ofL caused by the RG improvement can be seen
comparing Figs. 1 and 2. A virtue of the RG improvement
that the domain of validity of the approximation is great
enlarged, i.e., it is now permissible to let the quotie
M2/m2 take on values as large as those shown in Fig. 1.
is now clearly observable in these figures, the RG impro
ment can dramatically modify the spontaneous compactifi
tion pattern. As actually happens in this case, the minim

FIG. 2. Plot of the renormalization-group-improved effectiv
action for values ofM , m, L, andg that correspond to those of Fig
1. When comparing with Fig. 1, it is clearly observed that the R
improvement can modify the spontaneous compactification patt
in

st

c-

by
is
y
nt
As
e-
a-
m

completely disappears. At best, the minimum can turn into
an inflection point and appear something like the inflection
point in Fig. 3. Figure 3, however, is another non-RG-
improved case to which we have applied the RG improve
ment~see Fig. 4! to find that not only is compactification not
possible, the inflection point has disappeared. As can be ea
ily seen these two examples are typical of what happens fo
the R43S13S1 background, i.e., the RG improvement de-
stroys any chance of spontaneous compactification.

The same type of compactification calculation can be re
peated for the theory defined on the backgroundR43S2.
Using the same principles as above, we can write

G

V4
5

1

V4
E d6xAgLext1

G~1!

V4
, ~51!

whereLext5Lext(L,k,a1 , . . . ,a10) @see Eq.~2!#, andG (1) is
given by Eq.~43!. Expression~51! yields the one-loop effec-
tive action. The corresponding RG-improved effective action
is given by the same formula~51! but with the substitutions:

j→j~ t !5
1

5
1S 12

1

5DB25/9~ t !, a i→a i~ t !, ~52!

wherei54,5, . . . ,10. Theexplicit form ofa i(t) can be eas-
ily obtained from Refs.@7,8#. One can establish the same
comparison as before between the results of the spontaneo
compactification process corresponding to the one loop an
to the RG-improved effective actions onR43S2. In this case
there are a total of 14 parameters to satisfy just two condi
tions. Setting aside exceptional situations, a great variety o
possibilities occur. For this case the difference in the proces
of compactification introduced by the RG improvement of
the effective action is found again. We omit plots similar to
the previous example. Regretfully enough, in our analysis we
have not been able to find a single example of a more ‘‘con
structive’’ kind, that is, a model unstable at one loop, which
is stabilized by the RG correction. For this second back-
ground we can only say that a most plausible conjecture i
that such a stabilization cannot occur. Similar patterns o
spontaneous compactification on other backgrounds hav
been considered elsewhere. In particular, we have also inve
tigated backgrounds of the formM43H2, whereH2 is a

e

G
rn.

FIG. 3. Plot of the effective action for values ofM , m, L, and
g that yield an inflection point, a situation that stays on the verge o
spontaneous compactification.
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two-dimensional hyperbolic space~for an introduction and
calculations of vacuum energies on hyperbolic spaces,
@23#!. The numerical analysis of this case yields the sam
qualitative result, no possibility exists for a stable spontan
ous compactification within the RG-improved effective po
tential.

IV. CONCLUSIONS

In this work we have investigated renormalization grou
effects in thef6

3 curved spacetime theory. Using this mode
as an example, the usefulness of the RG improvement
higher-dimensional theories has been demonstrated by ca
lating the one-loop effective potential and its asymptotics
strong fields. By using the one-loop vacuum energy and t
RG improved vacuum energy on Kaluza-Klein backgroun
R43S13S1 andR43S2, we have additionally shown that
the RG improvement can lead to significant qualitative d
ferences in spontaneous compactification. In both examp
the RG improvement destabilized a minimum or destroy

FIG. 4. Plot of the RG-improved effective action for values o
M , m, L, andg corresponding to Fig. 3. The inflection point ha
disappeared and we are driven far away from spontaneous com
tification.
see
e
e-
-

p
l
in
lcu-
in
he
ds

if-
les,
ed

an inflection point that existed at one loop. Even though we
could not find a point where an inflection could be stabilized
by the RG improvement, we cannot exclude such a possibil
ity in more elaborate backgrounds. However, we can, with
certainty, conclude that one-loop predictions in Kaluza-Klein
theories cannot be trusted.

There are not many theories in higher dimensions which
are renormalizable in the standard way. But the number in-
creases by the introduction of higher-derivative kinetic terms
~probably at the expense of spoiling unitarity!. For example,
in D56 one can consider a gauge theory withFmn

3 terms as
kinetic terms plus any other term not prohibited by dimen-
sional arguments~they can have equal or lower dimension-
ality! or gauge invariance. Such a theory will be renormaliz-
able in the same sense asR2 gravity inD54 is ~see@9# for
a review!.

On the other hand, one can consider Kaluza-Klein theo-
ries to be renormalizable in the sense of the inclusion of an
infinite number of additional terms and their corresponding
counterterms~for a recent discussion, see@28#!. Under these
circumstances, the RG analysis can be applied again, but, o
course, the RG equations will be infinite in number. Never-
theless, there are ways of truncating them in a systematic an
consistent way, keeping just a finite number of terms. This
can be done by considering, say just one-loop effects~in the
even-dimensional case!, or terms up to some particular order
in the derivatives. As we have shown here, if the goal is
studying spontaneous quantum compactification, the RG im
proved vacuum energy should be used.
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